

Welcome to Kivy

Welcome to Kivy’s documentation. Kivy is an open source software library for the
rapid development of applications equipped with novel user interfaces, such as
multi-touch apps.

We recommend that you get started with Getting Started. Then head
over to the Programming Guide. We also have Create an application if you are
impatient.

You are probably wondering why you should be interested in using Kivy. There is
a document outlining our Philosophy that we encourage you to read, and a
detailed Architectural Overview.

If you want to contribute to Kivy, make sure to read Contributing. If
your concern isn’t addressed in the documentation, feel free to Contact Us.

	Getting Started
	Introduction

	Installing Kivy

	A first App

	Properties

	Kv Design Language

	Events

	Non-widget stuff

	Layouts

	Drawing

	Packaging

	Diving in

	Kivy Project
	Philosophy

	Contributing

	FAQ

	Contact Us

	Programming Guide
	Kivy Basics

	Controlling the environment

	Configure Kivy

	Architectural Overview

	Events and Properties

	Input management

	Widgets

	Graphics

	Kv language

	Integrating with other Frameworks

	Packaging your application

	Package licensing

	Tutorials
	Pong Game Tutorial

	A Simple Paint App

	Crash Course

	API Reference
	Kivy framework

	Low level Metrics

	Animation

	Application

	Atlas

	Kivy Base

	Cache manager

	Clock object

	Compatibility module for Python 2.7 and >= 3.4

	Configuration object

	Context

	Core Abstraction

	Audio

	Camera

	Clipboard

	OpenGL

	Image

	Spelling

	Text

	Text Markup

	Text layout

	Video

	Window

	Kivy module for binary dependencies.

	Effects

	Damped scroll effect

	Kinetic effect

	Opacity scroll effect

	Scroll effect

	Event dispatcher

	Event Manager

	Factory object

	Garden

	Geometry utilities

	Gesture recognition

	Graphics

	BoxShadow

	CGL: standard C interface for OpenGL

	Graphics compiler

	Context management

	Context instructions

	Framebuffer

	GL instructions

	Canvas

	OpenGL

	OpenGL utilities

	Scissor Instructions

	Shader

	Stencil instructions

	SVG

	Tesselator

	Texture

	Transformation

	Input management

	Motion Event Factory

	Motion Event

	Input Postprocessing

	Calibration

	Dejitter

	Double Tap

	Ignore list

	Retain Touch

	Triple Tap

	Motion Event Provider

	Providers

	Android Joystick Input Provider

	Native support for HID input from the linux kernel

	Leap Motion - finger only

	Native support of Wacom tablet from linuxwacom driver

	Native support of MultitouchSupport framework for MacBook (MaxOSX platform)

	Mouse provider implementation

	Native support for Multitouch devices on Linux, using libmtdev.

	Auto Create Input Provider Config Entry for Available MT Hardware (linux only).

	TUIO Input Provider

	Common definitions for a Windows provider

	Input recorder

	Motion Event Shape

	Interactive launcher

	Kivy Language

	Builder

	Parser

	External libraries

	DDS File library

	GstPlayer

	Python mtdev

	Asynchronous data loader

	Kivy Logging

	Metrics

	Modules

	Console

	Inspector

	JoyCursor

	Keybinding

	Monitor module

	Recorder module

	Screen

	Touchring

	Web Debugger

	Multistroke gesture recognizer

	Network support

	UrlRequest

	Parser utilities

	Properties

	Resources management

	Storage

	Dictionary store

	JSON store

	Redis Store

	Support

	Tools

	Packaging

	Widgets

	Accordion

	Action Bar

	Anchor Layout

	Behaviors

	Button Behavior

	Code Navigation Behavior

	Compound Selection Behavior

	Cover Behavior

	Drag Behavior

	Emacs Behavior

	Focus Behavior

	Kivy Namespaces

	ToggleButton Behavior

	Touch Ripple

	Box Layout

	Bubble

	Button

	Camera

	Carousel

	CheckBox

	Code Input

	Color Picker

	Drop-Down List

	EffectWidget

	FileChooser

	Float Layout

	Gesture Surface

	Grid Layout

	Image

	Label

	Layout

	ModalView

	PageLayout

	Popup

	Progress Bar

	RecycleBoxLayout

	RecycleGridLayout

	RecycleLayout

	RecycleView

	RecycleView Data Model

	RecycleView Layouts

	RecycleView Views

	Relative Layout

	reStructuredText renderer

	Sandbox

	Scatter

	Scatter Layout

	Screen Manager

	ScrollView

	Settings

	Slider

	Spinner

	Splitter

	Stack Layout

	Stencil View

	Switch

	TabbedPanel

	Text Input

	Toggle button

	Tree View

	Video

	Video player

	VKeyboard

	Widget class

	Utils

	Vector

	Weak Method

	Weak Proxy

Appendix

The appendix contains licensing information and an enumeration of all the
different modules, classes, functions and variables available in Kivy.

License

Kivy is released and distributed under the terms of the MIT license starting
version 1.7.2. Older versions are still under the LGPLv3.

You should have received a copy of the MIT license alongside your Kivy
distribution. See the LICENSE file in the Kivy root folder. An online version
of the license can be found at:

https://github.com/kivy/kivy/blob/master/LICENSE

In a nutshell, the license allows you to use Kivy in your own projects
regardless of whether they are open source, closed source, commercial or free.
Even if the license doesn’t require it, we would really appreciate when you
make changes to the Kivy sourcecode itself, share those changes with us!

For a list of authors, please see the file AUTHORS that accompanies the
Kivy source code distribution (next to LICENSE).

Kivy – Copyright 2010-2023, The Kivy Authors.

Getting Started

	Introduction

	Installing Kivy

	A first App

	Properties

	Kv Design Language

	Events

	Non-widget stuff

	Layouts

	Drawing

	Packaging

	Diving in

Introduction

Start Developing Kivy Apps Right Away!

Creating Kivy apps is fun and rewarding. This guide should be the perfect
starting point to get you on the right track for app development. You will
require a basic knowledge of Python to follow this introduction.

[image: ../_images/gs-introduction.png]
If you need more background on the Python language, you might be interested in
these tutorials:

	The Official Python Tutorial [http://docs.python.org/tutorial/]

	Learn Python in 10 minutes [https://www.stavros.io/tutorials/python/]

	Learn Python the hard way [http://learnpythonthehardway.org/]

With Kivy, you can create apps that run on:

	Desktop computers: macOS, Linux, *BSD Unix, Windows.

	iOS devices: iPad, iPhone.

	Android devices: tablets, phones.

	Any other touch-enabled professional/homebrew devices supporting TUIO
(Tangible User Interface Objects).

Kivy empowers you with the freedom to write your code once and have it run
as-is on different platforms.

Follow this guide to get the tools you need, understand the major concepts and
learn best practices. As this is an introduction, pointers to more information
will be provided at the end of each section.

As you proceed through the guide, you will, using Kivy:

	Learn: The basics of programming with the Kivy language.

	Explore: The Kivy framework.

	Create: A simple cross-platform app.

	Package: For your choice of platform.

Finally, you will learn how to Deploy on the device of your choice.

Each section of the guide introduces a new topic, trying to give you enough
information to get started and links to related articles for more in-depth
explanations. When you are done with this guide, you’ll be able to develop Kivy
apps and you will know where to look for information for the more challenging
stuff your innovative applications will require.

Enough introductions, let’s get down to business.

Installing Kivy

Installation for Kivy version 2.2.0. Read the changelog here.
For other Kivy versions, select the documentation from the dropdown on the top left.

Kivy 2.2.0 officially supports Python versions 3.7 - 3.11.

	‎

	Platform

	Installation

	Packaging

	[image: w_logo]

	Windows

	pip

	PyInstaller

	[image: m_logo]

	macOS

	pip, Kivy.app

	Kivy.app, PyInstaller

	[image: l_logo]

	Linux

	pip, PPA

	—

	[image: b_logo]

	*BSD (FreeBSD,..)

	pip

	—

	[image: r_logo]

	RPi

	pip

	—

	[image: a_logo]

	Android

	python-for-android

	python-for-android

	[image: i_logo]

	iOS

	kivy-ios

	kivy-ios

	[image: c_logo]

	Anaconda

	conda

	—

Using pip

The easiest way to install Kivy is with pip, which installs Kivy using either a
pre-compiled wheel, if available, otherwise from source (see below).

Kivy provides pre-compiled wheels for the supported Python
versions on Windows, macOS, Linux, and RPi.

If no wheels are available pip will build the package from sources (i.e. on *BSD).

Alternatively, installing from source is required for newer Python versions not listed
above or if the wheels do not work or fail to run properly.

On RPi, when using a 32 bit OS, wheels are provided for Python 3.7 (Raspberry Pi OS Buster) and Python 3.9 (Raspberry Pi OS Bullseye),
via the PiWheels [https://www.piwheels.org/] project. For other Python versions, on 32 bit OSes, you will need to
install from source.

Setup terminal and pip

Before Kivy can be installed, Python and pip needs to be pre-installed.
Then, start a new terminal that has
Python available. In the terminal, update pip and other installation
dependencies so you have the latest version as follows (for linux users you may have to
substitute python3 instead of python and also add a --user flag in the
subsequent commands outside the virtual environment):

python -m pip install --upgrade pip setuptools virtualenv

Create virtual environment

Create a new virtual environment [https://virtualenv.pypa.io/en/latest/]
for your Kivy project. A virtual environment will prevent possible installation conflicts
with other Python versions and packages. It’s optional but strongly recommended:

	Create the virtual environment named kivy_venv in your current directory:

python -m virtualenv kivy_venv

	Activate the virtual environment. You will have to do this step from the current directory
every time you start a new terminal. This sets up the environment so the new kivy_venv
Python is used.

For Windows default CMD, in the command line do:

kivy_venv\Scripts\activate

If you are in a bash terminal on Windows, instead do:

source kivy_venv/Scripts/activate

If you are in linux or macOS, instead do:

source kivy_venv/bin/activate

Your terminal should now preface the path with something like (kivy_venv), indicating that
the kivy_venv environment is active. If it doesn’t say that, the virtual environment
is not active and the following won’t work.

Install Kivy

Finally, install Kivy using one of the following options:

Pre-compiled wheels

The simplest is to install the current stable version of kivy and optionally kivy_examples
from the kivy-team provided PyPi wheels. Simply do:

python -m pip install "kivy[base]" kivy_examples

This also installs the minimum dependencies of Kivy. To additionally install Kivy with
audio/video support, install either kivy[base,media] or kivy[full].
See Kivy’s dependencies for the list of selectors.

From source

If a wheel is not available or is not working, Kivy can be installed from source
with some additional steps. Installing from source means that Kivy will be installed
from source code and compiled directly on your system.

First install the additional system dependencies listed for each platform:
Windows, macOS,
Linux, *BSD,
RPi

Note

In past, for macOS, Linux and BSD Kivy required the installation of the SDL dependencies from package
managers (e.g. apt or brew). However, this is no longer officially supported as the version
of SDL provided by the package managers is often outdated and may not work with Kivy as we
try to keep up with the latest SDL versions in order to support the latest features and bugfixes.

You can still install the SDL dependencies from package managers if you wish, but we no longer
offer support for this.

Instead, we recommend installing the SDL dependencies from source. This is the same process
our CI uses to build the wheels. The SDL dependencies are built from source and installed into a
specific directory.

With all the build tools installed, you can now install the SDL dependencies from source for SDL support
(this is not needed on Windows as we provide pre-built SDL dependencies for Windows)

In order to do so, we provide a script that will download and build the SDL dependencies
from source. This script is located in the tools directory of the Kivy repository.

Create a directory to store the self-built dependencies and change into it:

mkdir kivy-deps-build && cd kivy-deps-build

Then download the build tool script, according to your platform:

On macOS:

curl -O https://raw.githubusercontent.com/kivy/kivy/master/tools/build_macos_dependencies.sh -o build_kivy_deps.sh

On Linux:

curl -O https://raw.githubusercontent.com/kivy/kivy/master/tools/build_linux_dependencies.sh -o build_kivy_deps.sh

Make the script executable:

chmod +x build_kivy_deps.sh

Finally, run the script:

./build_kivy_deps.sh

The script will download and build the SDL dependencies from source. It will also install
the dependencies into a directory named kivy-dependencies. This directory will be used
by Kivy to build and install Kivy from source with SDL support.

Kivy will need to know where the SDL dependencies are installed. To do so, you must set
the KIVY_DEPS_ROOT environment variable to the path of the kivy-dependencies directory.
For example, if you are in the kivy-deps-build directory, you can set the environment
variable with:

export KIVY_DEPS_ROOT=$(pwd)/kivy-dependencies

With the dependencies installed, and KIVY_DEPS_ROOT set you can now install Kivy into the virtual environment.

To install the stable version of Kivy, from the terminal do:

python -m pip install "kivy[base]" kivy_examples --no-binary kivy

To install the latest cutting-edge Kivy from master, instead do:

python -m pip install "kivy[base] @ https://github.com/kivy/kivy/archive/master.zip"

If you want to install Kivy from a different branch, from your forked repository, or
from a specific commit (e.g. to test a fix from a user’s PR) replace the corresponding
components of the url.

For example to install from the stable branch, the url becomes
https://github.com/kivy/kivy/archive/stable.zip. Or to try a specific commit hash, use e.g.
https://github.com/kivy/kivy/archive/3d3e45dda146fef3f4758aea548da199e10eb382.zip

Pre-release, pre-compiled wheels

To install a pre-compiled wheel of the last pre-release version of Kivy, instead of the
current stable version, add the --pre flag to pip:

python -m pip install --pre "kivy[base]" kivy_examples

This will only install a development version of Kivy if one was released to
PyPi [https://pypi.org/project/Kivy/#history]. Instead, one can also install the
latest cutting-edge Nightly wheels from the Kivy server with:

python -m pip install kivy --pre --no-deps --index-url https://kivy.org/downloads/simple/
python -m pip install "kivy[base]" --pre --extra-index-url https://kivy.org/downloads/simple/

It is done in two steps, because otherwise pip may ignore the wheels on the server and install
an older pre-release version from PyPi.

Development install

If you want to edit Kivy before installing it, or if you want to try fixing some Kivy issue
and submit a pull request with the fix, you will need to first download the Kivy source code.
The following steps assumes git is pre-installed and available in the terminal.

The typical process is to clone Kivy locally with:

git clone https://github.com/kivy/kivy.git

This creates a kivy named folder in your current path. Next, follow the same steps of the
Installing from source above, but instead of installing Kivy via a
distribution package or zip file, install it as an
editable install [https://pip.pypa.io/en/stable/cli/pip_install/#editable-installs].

In order to do so, first change into the Kivy folder you just cloned::
and then install Kivy as an editable install:

cd kivy
python -m pip install -e ".[dev,full]"

Now, you can use git to change branches, edit the code and submit a PR.
Remember to compile Kivy each time you change cython files as follows:

python setup.py build_ext --inplace

Or if using bash or on Linux, simply do:

make

to recompile.

To run the test suite, simply run:

pytest kivy/tests

or in bash or Linux:

make test

On *BSD Unix remember to use gmake (GNU) in place of make (BSD).

Checking the demo

Kivy should now be installed. You should be able to import kivy in Python or,
if you installed the Kivy examples, run the demo.

on Windows:

python kivy_venv\share\kivy-examples\demo\showcase\main.py

in bash, Linux and macOS:

python kivy_venv/share/kivy-examples/demo/showcase/main.py

on *BSD Unix:

python3 kivy_venv/share/kivy-examples/demo/showcase/main.py

The exact path to the Kivy examples directory is also stored in kivy.kivy_examples_dir.

The 3d monkey demo under kivy-examples/3Drendering/main.py is also fun to see.

Installation using Conda

If you use Anaconda [https://en.wikipedia.org/wiki/Anaconda_(Python_distribution)], you can
install Kivy with its package manager Conda [https://en.wikipedia.org/wiki/Conda_(package_manager)] using:

conda install kivy -c conda-forge

Do not use pip to install kivy if you’re using Anaconda, unless you’re installing from source.

Installing Kivy’s dependencies

Kivy supports one or more backends for its core providers. E.g. it supports glew, angle,
and sdl2 for the graphics backend on Windows. For each category (window, graphics, video,
audio, etc.), at least one backend must be installed to be able to use the category.

To facilitate easy installation, we provide extras_require
groups [https://setuptools.readthedocs.io/en/latest/userguide/dependency_management.html#optional-dependencies]
that will install selected backends to ensure a working Kivy installation. So one can install
Kivy more simply with e.g.``pip install “kivy[base,media,tuio]”``. The full list of selectors and
the packages they install is listed in
setup.py [https://github.com/kivy/kivy/blob/master/setup.cfg]. The exact packages in each selector
may change in the future, but the overall goal of each selector will remain as described below.

We offer the following selectors:

	base: The minimum typical dependencies required for Kivy to run,
	not including video/audio.

	media: Only the video/audio dependencies required for Kivy to
	be able to play media.

	full: All the typical dependencies required for Kivy to run, including video/audio and
	most optional dependencies.

	dev: All the additional dependencies required to run Kivy in development mode
	(i.e. it doesn’t include the base/media/full dependencies). E.g. any headers required for
compilation, and all dependencies required to run the tests and creating the docs.

tuio: The dependencies required to make TUIO work (primarily oscpy).

The following selectors install backends packaged as wheels by kivy under the Kivy_deps namespace.
They are typically released and versioned to match specific Kivy versions, so we provide selectors
to facilitate installation (i.e. instead of having to do pip install kivy kivy_deps.sdl2==x.y.z,
you can now do pip install "kivy[sdl2]" to automatically install the correct sdl2 for the Kivy
version).

	gstreamer: The gstreamer video/audio backend, if it’s available
	(currently only on Windows)

	angle: A alternate OpenGL backend, if it’s available
	(currently only on Windows)

	sdl2: The window/image/audio backend, if it’s available (currently only on Windows,
	on macOS, Linux and *BSD Unix is already included in the main Kivy wheel).

glew: A alternate OpenGL backend, if it’s available (currently only on Windows)

Following are the kivy_deps dependency wheels:

	gstreamer [https://gstreamer.freedesktop.org] (optional)

kivy_deps.gstreamer is an optional dependency which is only needed for audio/video support.
We only provide it on Windows, for other platforms it must be installed independently.
Alternatively, use ffpyplayer [https://pypi.org/project/ffpyplayer/] instead.

	glew [http://glew.sourceforge.net/] and/or
angle [https://github.com/Microsoft/angle]

kivy_deps.glew and kivy_deps.angle are for OpenGL [https://en.wikipedia.org/wiki/OpenGL].
You can install both, that is no problem. It is only available on Windows. On other
platforms it is not required externally.

One can select which of these to use for OpenGL using the
KIVY_GL_BACKEND environment variable: By setting it to glew
(the default), angle_sdl2, or sdl2. Here, angle_sdl2 is a substitute for
glew but requires kivy_deps.sdl2 be installed as well.

	sdl2 [https://libsdl.org]

kivy_deps.sdl2 is for window/images/audio and optionally OpenGL. It is only available on Windows
and is included in the main Kivy wheel for other platforms.

Python glossary

Here we explain how to install Python packages, how to use the command line and what wheels are.

Installing Python

Kivy is written in
Python [https://en.wikipedia.org/wiki/Python_%28programming_language%29]
and as such, to use Kivy, you need an existing
installation of Python [https://www.python.org/downloads/windows/].
Multiple versions of Python can be installed side by side, but Kivy needs to
be installed as package under each Python version that you want to use Kivy in.

To install Python, see the instructions for each platform:
Windows, macOS,
Linux, RPi,
*BSD.

Once Python is installed, open the console and make sure
Python is available by typing python --version.

How to use the command line

To execute any of the pip or wheel commands given here, you need a command line (here also called console, terminal, shell [https://en.wikipedia.org/wiki/Unix_shell] or bash [https://en.wikipedia.org/wiki/Bash_(Unix_shell)], where the last two refer to Linux / *BSD Unix style command lines) and Python must be on the PATH [https://en.wikipedia.org/wiki/PATH_(variable)].

The default command line on Windows is the
command prompt [http://www.computerhope.com/issues/chusedos.htm], short cmd. The
quickest way to open it is to press Win+R on your keyboard.
In the window that opens, type cmd and then press enter.

Alternative Linux style command lines on Windows that we recommend are
Git for Windows [https://git-for-windows.github.io/] or Mysys [http://www.mingw.org/wiki/MSYS].

Note, the default Windows command line can still be used, even if a bash terminal is installed.

To temporarily add your Python installation to the PATH, simply open your command line and then use the cd command to change the current directory to where python is installed, e.g. cd C:\Python37.

If you have installed Python using the default options, then the path to Python will already be permanently on your PATH variable. There is an option in the installer which lets you do that, and it is enabled by default.

If however Python is not on your PATH, follow the these instructions to add it:

	Instructions for the windows command line [http://www.computerhope.com/issues/ch000549.htm]

	Instructions for bash command lines [http://stackoverflow.com/q/14637979]

What is pip and what are wheels

In Python, packages such as Kivy can be installed with the python package
manager, named pip [https://pip.pypa.io/en/stable/] (“python install package”).

When installing from source, some packages, such as Kivy, require additional steps, like compilation.

Contrary, wheels (files with a .whl extension) are pre-built
distributions of a package that has already been compiled.
These wheels do not require additional steps when installing them.

When a wheel is available on pypi.org [https://pypi.python.org/pypi] (“Python Package Index”) it can be installed with pip. For example when you execute python -m pip install kivy in a command line, this will automatically find the appropriate wheel on PyPI.

When downloading and installing a wheel directly, use the command
python -m pip install <wheel_file_name>, for example:

python -m pip install C:\Kivy-1.9.1.dev-cp27-none-win_amd64.whl

What are nightly wheels

Every day we create a snapshot wheel of the current development version of Kivy (‘nightly wheel’).
You can find the development version in the master branch of the
Kivy Github repository [https://github.com/kivy/kivy].

As opposed to the last stable release (which we discussed in the previous section), nightly
wheels contain all the latest changes to Kivy, including experimental fixes.
For installation instructions, see Pre-release, pre-compiled wheels.

Warning

Using the latest development version can be risky and you might encounter
issues during development. If you encounter any bugs, please report them.

A first App

Immerse yourself in the world of Kivy with your first App.

[image: ../_images/gs-tutorial.png]
The Pong Game Tutorial introduces the fundamental design patterns and
the application development process. As you follow the tutorial, you will create a simple app.
You will also learn how to run the app on your OS. The simple steps in the tutorial
introduce elegant, useful concepts that you will use over and over again in app development.

The Pong Game Tutorial is the most important article in the road map. It
lays the foundation for the concepts that you will learn more about later. Each
of the other articles expands on one of those concepts.

Properties

Kivy introduces a new way of declaring properties within a class.
Before:

class MyClass(object):
 def __init__(self):
 super(MyClass, self).__init__()
 self.numeric_var = 1

After, using Kivy’s properties:

class MyClass(EventDispatcher):
 numeric_var = NumericProperty(1)

These properties implement the Observer pattern [http://en.wikipedia.org/wiki/Observer_pattern]. They help you to:

	Easily manipulate widgets defined in the Kv language

	Automatically observe any changes and dispatch functions/code accordingly

	Check and validate values

	Optimize memory management

To use them, you have to declare them at class level. That is, directly in
the class, not in any method of the class. A property is a class attribute
that will automatically create instance attributes. Each property by default
provides an on_<propertyname> event that is called whenever the property’s
state/value changes.

	Kivy provides the following properties:
	NumericProperty,
StringProperty,
ListProperty,
ObjectProperty,
BooleanProperty,
BoundedNumericProperty,
OptionProperty,
ReferenceListProperty,
AliasProperty,
DictProperty,
VariableListProperty,
ConfigParserProperty,
ColorProperty

For an in-depth explanation, take a look at Properties.

Kv Design Language

Kivy provides a design language specifically geared towards easy and scalable
GUI Design. The language makes it simple to separate the interface design from
the application logic, adhering to the
separation of concerns principle [http://en.wikipedia.org/wiki/Separation_of_concerns]. For example:

[image: ../_images/gs-lang.png]
In the above code :

<LoginScreen>: # every class in your app can be represented by a rule like
 # this in the kv file
 GridLayout: # this is how you add your widget/layout to the parent
 # (note the indentation).
 rows: 2 # this how you set each property of your widget/layout

That’s it, that’s how simple it is to design your GUI in the Kv language. For
a more in-depth understanding, please refer to the Kv language
documentation.

Events

Kivy is mostly event-based [http://en.wikipedia.org/wiki/Event-driven_programming], meaning the flow of the program is determined
by events.

Clock events

[image: ../_images/gs-events-clock.png]
The Clock object allows you to schedule a function call in the
future as a one-time event with schedule_once(),
or as a repetitive event with schedule_interval().

You can also create Triggered events with
create_trigger(). Triggers have the advantage of
being called only once per frame, even if you have scheduled multiple triggers
for the same callback.

Input events

[image: ../_images/gs-events-input.png]
All the mouse click, touch and scroll wheel events are part of the
MotionEvent, extended by
Input Postprocessing and dispatched through the
on_motion event in
the Window class. This event then generates the
on_touch_down(),
on_touch_move() and
on_touch_up() events in the
Widget.

For an in-depth explanation, have a look at Input management.

Class events

[image: ../_images/gs-events-class.png]
Our base class EventDispatcher, used by
Widget, uses the power of our
Properties for dispatching changes. This means when a widget
changes its position or size, the corresponding event is automatically fired.

In addition, you have the ability to create your own events using
register_event_type(), as the
on_press and on_release events in the Button
widget demonstrate.

Another thing to note is that if you override an event, you become responsible
for implementing all its behaviour previously handled by the base class. The
easiest way to do this is to call super():

def on_touch_down(self, touch):
 if super().on_touch_down(touch):
 return True
 if not self.collide_point(touch.x, touch.y):
 return False
 print('you touched me!')
 return True

Get more familiar with events by reading the Events and Properties documentation.

Non-widget stuff

	Animation is
used to change a widget’s properties (size/pos/center etc.) to a target
value within a target time.
Various transition functions
are provided. You can use them to animate widgets and build very smooth UI
behaviours.

	[image: animation_img]

	Atlas is a class for
managing texture maps, i.e. packing multiple textures into one image.
This allows you to reduce the number of images loaded and thus speed up the
application start.

	[image: atlas_img]

	Clock provides you with a
convenient way to schedule jobs at set time intervals and is preferred
over sleep(), which would block the kivy event loop. These intervals can
be set relative to the OpenGL drawing instructions,
before or
after. The Clock also provides you with a way
to create triggered events that are grouped
together and called only once before the next frame.

	
	schedule_once()

	schedule_interval()

	unschedule()

	create_trigger()

	UrlRequest
is useful for asynchronous requests that do not block the event loop. You
can use it to manage the progress of URL requests via callbacks.

	

Layouts

Layouts are containers used to arrange widgets in a particular manner.

	AnchorLayout:
	Widgets can be anchored to the ‘top’, ‘bottom’, ‘left’,
‘right’ or ‘center’.

	BoxLayout:
	Widgets are arranged sequentially, in either a ‘vertical’
or a ‘horizontal’ orientation.

	FloatLayout:
	Widgets are essentially unrestricted.

	RelativeLayout:
	Child widgets are positioned relative to the layout.

	GridLayout:
	Widgets are arranged in a grid defined by the rows and
cols properties.

	PageLayout:
	Used to create simple multi-page layouts, in a way that
allows easy flipping from one page to another using
borders.

	ScatterLayout:
	Widgets are positioned similarly to a RelativeLayout, but
they can be translated, rotated and scaled.

	StackLayout:
	Widgets are stacked in a lr-tb (left to right then top to
bottom) or tb-lr order.

When you add a widget to a layout, the following properties are used to
determine the widget’s size and position, depending on the type of layout:

size_hint: defines the size of a widget as a fraction of the parents
size. Values are restricted to the range 0.0 - 1.0 i.e. 0.01 = 1/100th
of the parent size (1%) and 1. = same size (100%).

pos_hint: is used to place the widget relative to the parent.

The size_hint and pos_hint are used to calculate a widget’s size and
position only if the value(s) are not set to None. If you set these values
to None, the layout will not position/size the widget and you can specify
the values (x, y, width, height) directly in screen coordinates.

Drawing

Each widget has a canvas, i.e. a place to draw on. The canvas is a group of
drawing instructions that should be executed whenever there is a change to the
widget’s graphical representation.

You can add two types of instructions to the canvas: context instructions and
vertex instructions. You can add instructions either from Python code or from
the kv file (the preferred way).
If you add them via the kv file, the advantage is that they are automatically
updated when any property they depend on changes. In Python, you need to do
this yourself.

[image: ../_images/gs-drawing.png]
In both cases, the canvas of MyWidget is re-drawn whenever the position
or the size of the widget changes.

You can use the
canvas.before or
canvas.after groups to separate
your instructions based on when you want them to be executed.

For an in-depth look at how Kivy’s graphics are handled, look
here.

Packaging

	
	Create a package for Windows
	
	Requirements

	PyInstaller default hook

	
	Creating packages for macOS
	
	Using Buildozer

	Using PyInstaller and Homebrew

	
	Create a package for Android
	
	Packaging with python-for-android

	Packaging your application for the Kivy Launcher

	
	Create a package for iOS
	
	Compile the distribution

	Create an Xcode project

	Customize the Xcode project

	Known issues

	FAQ

Diving in

To get straight into kivy, take a look at Welcome to Kivy.

Kivy comes with a set of examples (Gallery of Examples)
in the kivy_installation/examples directory. You should try
modifying/improving/adapting them to your needs.

Browse our wiki [https://github.com/kivy/kivy/wiki] for info on related
projects, tutorials and snippets.

Understand the basics about Graphics.

Take a look at the built-in Widgets.

Follow the Programming Guide to get even more familiar with kivy.

See how to use different Modules in the modules section,
such as the Inspector for live inspection.

Learn how to handle custom Input management.

Familiarize yourself with the Kivy Framework.

Kivy is open source, so you can contribute. Take a look at the
Contributing section for guidelines.

Kivy Project

This part of the documentation explains the basic ideas behind Kivy’s design
and why you’d want to use it.

	Philosophy
	Why bother?

	Contributing
	Discussions

	Code of Conduct

	Feedback

	Reporting an Issue

	Code Contributions

	Documentation Contributions

	Unit tests contributions

	GSOC

	FAQ
	Technical FAQ

	Android FAQ

	Project FAQ

	Contact Us
	Issue Tracker

	Mail

	Discord

Philosophy

In case you are wondering what Kivy is all about and what sets it apart from
other solutions, this document is for you.

Why bother?

Why would you want to use Kivy? After all, there are many great toolkits
(or frameworks, or platforms) available out there – for free. You have Qt and
Flash, to name just two good choices for application development. Many of
these numerous solutions already support Multi-Touch, so what is it that makes
Kivy special and worth using?

Fresh

Kivy is made for today and tomorrow. Novel input methods such as Multi-Touch
have become increasingly important. We created Kivy from scratch, specifically
for this kind of interaction. That means we were able to rethink many things in
terms of human computer interaction, whereas older (not to mean ‘outdated’,
rather ‘well-established’) toolkits carry their legacy, which is often a burden.
We’re not trying to force this new approach to using a computer into the corset
of existing models (say single-pointer mouse interaction).
We want to let it flourish and let you explore the possibilities.
This is what really sets Kivy apart.

Fast

Kivy is fast. This applies to both application development and application
execution speeds. We have optimized Kivy in many ways. We implement
time-critical functionality on the C level to leverage the power of existing
compilers. More importantly, we also use intelligent algorithms to minimize
costly operations. We also use the GPU wherever it makes sense in our
context. The computational power of today’s graphics cards surpasses that of
today’s CPUs by far for some tasks and algorithms, especially drawing. That’s
why we try to let the GPU do as much of the work as possible, thus increasing
performance considerably.

Flexible

Kivy is flexible. This means it can be run on a variety of different devices,
including iOS and Android powered smartphones and tablets. We support all major
operating systems (Windows, Linux, macOS, BSD). Being flexible also means that
Kivy’s fast-paced development allows it to *adapt to new technologies quickly.
More than once have we added support for new external devices and software
protocols, sometimes even before they were released. Lastly, Kivy is also
flexible in that it is possible to use it in combination with a great number of
different third-party solutions. For example, on Windows we support WM_TOUCH,
which means that any device that has Windows 7 Pen & Touch drivers will just
work with Kivy. On macOS you can use Apple’s Multi-Touch capable devices, such
as trackpads and mice. On Linux and *BSD, you can use HID kernel input events.
In addition to that, we support TUIO (Tangible User Interface Objects) and a
number of other input sources.

Focused

Kivy is focused. You can write a simple application with a few lines of code.
Kivy programs are created using the Python programming language, which is
incredibly versatile and powerful, yet easy to use. In addition, we created our
own description language, the Kivy Language, for creating sophisticated user
interfaces. This language allows you to set up, connect and arrange your
application elements quickly. We feel that allowing you to focus on the
essence of your application is more important than forcing you to fiddle with
compiler settings. We took that burden off your shoulders.

Funded

Kivy is actively developed by professionals in their field. Kivy is a
community-influenced, professionally developed and commercially backed
solution. Some of our core developers develop Kivy for a living.
Kivy is here to stay. It’s not a small, vanishing student project.

Free

Kivy is free to use. You don’t have to pay for it. You don’t even have to pay
for it if you’re making money out of selling an application that uses Kivy.

Contributing

There are many ways in which you can contribute to Kivy.
Code patches are just one thing amongst others that you can submit to help the
project. We also welcome feedback, bug reports, feature requests, documentation
improvements, advertisement & advocating, testing, graphics contributions and
many other ideas. Just talk to us if you want to help, and we will help you
help us.

Discussions

Discussions around Kivy development happens on Github’s issues and pull
requests for specific things. For things that don’t fit in either, discussions
happen on the #dev Discord channel [https://chat.kivy.org/], and on the
kivy-dev google group [https://groups.google.com/forum/#!forum/kivy-dev].
Please come ask for guidance if you are unsure about how to contribute, or you
want confirmation about your ideas fitting in the project before working on
them. If you want to ask for — or contribute — support, you can join the
#support Discord channel [https://chat.kivy.org/],
and the kivy-users google group [https://groups.google.com/forum/#!forum/kivy-users].

Code of Conduct

In the interest of fostering an open and welcoming community, we as
contributors and maintainers need to ensure participation in our project and our
sister projects is a harassment-free and positive experience for everyone.

As such, it is vital that all interaction is conducted in a manner conveying
respect, open-mindedness and gratitude. For a more comprehensive discussion of
these guidelines, please refer to the Contributor Covenant [https://www.contributor-covenant.org/version/1/4/code-of-conduct.html]. This
document provides an accurate description of what is expected of you, both as a
core developer or a first time contributor.

Feedback

This is by far the easiest way to contribute something. If you’re using
Kivy for your own project, don’t hesitate sharing. It doesn’t have to be a
high-class enterprise app, obviously. It’s just incredibly motivating to
know that people use the things you develop and what it enables them to
do. If you have something that you would like to tell us, please don’t
hesitate. Screenshots and videos are also very welcome!
We’re also interested in the problems you had when getting started. Please
feel encouraged to report any obstacles you encountered such as missing
documentation, misleading directions or similar.
We are perfectionists, so even if it’s just a typo, let us know.

Reporting an Issue

If you found anything wrong, a crash, segfault, missing documentation, invalid
spelling or just weird examples, please take 2 minutes to report the issue.

	Move your logging level to debug by editing <user_directory>/.kivy/config.ini:

[kivy]
log_level = debug

	Execute your code again, and copy/paste the complete output to http://gist.github.com/,
including the log from Kivy and the python backtrace.

	Open https://github.com/kivy/kivy/issues/

	Set the title of your issue

	Explain exactly what to do to reproduce the issue and paste the link of the output
posted on http://gist.github.com/

	Validate the issue and you’re done!

If you are feeling up to it, you can also try to resolve the bug, and contribute by sending
us the patch :) Read the next section to find out how to do this.

Code Contributions

Code contributions (patches, new features) are the most obvious way to help with
the project’s development. Since this is so common we ask you to follow our
workflow to most efficiently work with us. Adhering to our workflow ensures that
your contribution won’t be forgotten or lost. Also, your name will always be
associated with the change you made, which basically means eternal fame in our
code history (you can opt-out if you don’t want that).

Coding style

	If you haven’t done it yet, read the
PEP8 [http://www.python.org/dev/peps/pep-0008/] about coding style in python.

	Activate the pep8 and other basic checks on git commits like this:

make hook

This will pass the code added to the git staging zone (about to be committed)
through a checker program when you do a commit, and ensure that you didn’t
introduce style errors. If you did, the commit will be rejected: please correct the
errors and try again.

The checker used is pre-commit [https://pre-commit.com/]. If you need to skip
a particular check see documentation [https://pre-commit.com/#temporarily-disabling-hooks],
TLDR being that putting SKIP=hookname in front of git commit will skip that hook, the
name of the offending hook is shown when it fails.

Performance

	take care of performance issues: read
Python performance tips [http://wiki.python.org/moin/PythonSpeed/PerformanceTips]

	cpu intensive parts of Kivy are written in cython: if you are doing a lot of
computation, consider using it too.

Git & GitHub

We use git as our version control system for our code base. If you have never
used git or a similar DVCS (or even any VCS) before, we strongly suggest you
take a look at the great documentation that is available for git online.
The Git Community Book [http://book.git-scm.com/] or the
Git Videos [https://git-scm.com/videos] are both great ways to learn git.
Trust us when we say that git is a great tool. It may seem daunting at first,
but after a while you’ll (hopefully) love it as much as we do. Teaching you git,
however, is well beyond the scope of this document.

Also, we use GitHub [http://github.com] to host our code. In the following we
will assume that you have a (free) GitHub account. While this part is optional,
it allows for a tight integration between your patches and our upstream code
base. If you don’t want to use GitHub, we assume you know what you are doing anyway.

Code Workflow

So here is the initial setup to begin with our workflow (you only need to do
this once to install Kivy). Basically you follow the installation
instructions from Development install, but you don’t clone our repository,
you fork it. Here are the steps:

	Log in to GitHub

	Create a fork of the Kivy repository [https://github.com/kivy/kivy] by
clicking the fork button.

	Clone your fork of our repository to your computer. Your fork will have
the git remote name ‘origin’ and you will be on branch ‘master’:

git clone https://github.com/username/kivy.git

	Compile and set up PYTHONPATH or install (see Development install).

	Install our pre-commit hook that ensures your code doesn’t violate our
styleguide by executing make hook from the root directory of your
clone. This will run our styleguide check whenever you do a commit,
and if there are violations in the parts that you changed, your commit
will be aborted. Fix & retry.

	Add the kivy repo as a remote source:

git remote add kivy https://github.com/kivy/kivy.git

Now, whenever you want to create a patch, you follow the following steps:

	See if there is a ticket in our bug tracker for the fix or feature and
announce that you’ll be working on it if it doesn’t yet have an assignee.

	Create a new, appropriately named branch in your local repository for
that specific feature or bugfix.
(Keeping a new branch per feature makes sure we can easily pull in your
changes without pulling any other stuff that is not supposed to be pulled.):

git checkout -b new_feature

	Modify the code to do what you want (e.g. fix it).

	Test the code. Try to do this even for small fixes. You never know
whether you have introduced some weird bug without testing.

	Do one or more minimal, atomic commits per fix or per feature.
Minimal/Atomic means keep the commit clean. Don’t commit other stuff that
doesn’t logically belong to this fix or feature. This is not about
creating one commit per line changed. Use git add -p if necessary.

	Give each commit an appropriate commit message, so that others who are
not familiar with the matter get a good idea of what you changed.

	Once you are satisfied with your changes, pull our upstream repository and
merge it with you local repository. We can pull your stuff, but since you know
exactly what’s changed, you should do the merge:

git pull kivy master

	Push your local branch into your remote repository on GitHub:

git push origin new_feature

	Send a Pull Request with a description of what you changed via the button
in the GitHub interface of your repository. (This is why we forked
initially. Your repository is linked against ours.)

Warning

If you change parts of the code base that require compilation, you
will have to recompile in order for your changes to take effect. The make
command will do that for you (see the Makefile if you want to know
what it does). If you need to clean your current directory from compiled
files, execute make clean. If you want to get rid of all files that are
not under version control, run make distclean
(Caution: If your changes are not under version control, this
command will delete them!)

Now we will receive your pull request. We will check whether your changes are
clean and make sense (if you talked to us before doing all of this we will have
told you whether it makes sense or not). If so, we will pull them and you will
get instant karma. Congratulations, you’re a hero!

Documentation Contributions

Documentation contributions generally follow the same workflow as code contributions,
but are just a bit more lax.

	Following the instructions above,

	Fork the repository.

	Clone your fork to your computer.

	Setup kivy repo as a remote source.

	Install python-sphinx. (See docs/README for assistance.)

	Use ReStructuredText_Markup [http://docutils.sourceforge.net/rst.html] to make changes to the HTML documentation in docs/sources.

To submit a documentation update, use the following steps:

	Create a new, appropriately named branch in your local repository:

git checkout -b my_docs_update

	Modify the documentation with your correction or improvement.

	Re-generate the HTML pages, and review your update:

make html

	Give each commit an appropriate commit message, so that others who are not familiar with
the matter get a good idea of what you changed.

	Keep each commit focused on a single related theme. Don’t commit other stuff that doesn’t
logically belong to this update.

	Push to your remote repository on GitHub:

git push

	Send a Pull Request with a description of what you changed via the button in the
GitHub interface of your repository.

We don’t ask you to go through all the hassle just to correct a single typo, but for more
complex contributions, please follow the suggested workflow.

Docstrings

Every module/class/method/function needs a docstring, so use the following keywords
when relevant:

	.. versionadded:: to mark the version in which the feature was added.

	.. versionchanged:: to mark the version in which the behaviour of the feature was
changed.

	.. note:: to add additional info about how to use the feature or related
feature.

	.. warning:: to indicate a potential issue the user might run into using
the feature.

Examples:

def my_new_feature(self, arg):
 """
 New feature is awesome

 .. versionadded:: 1.1.4

 .. note:: This new feature will likely blow your mind

 .. warning:: Please take a seat before trying this feature
 """

Will result in:

	def my_new_feature(self, arg):
	New feature is awesome

New in version 1.1.4.

Note

This new feature will likely blow your mind

Warning

Please take a seat before trying this feature

When referring to other parts of the api use:

	:mod:`~kivy.module` to refer to a module

	:class:`~kivy.module.Class` to refer to a class

	:meth:`~kivy.module.Class.method` to refer to a method

	:doc:`api-kivy.module` to refer to the documentation of a module (same
for a class and a method)

Obviously replacing module Class and method with their real name, and
using using ‘.’ to separate modules referring to imbricated modules, e.g:

:mod:`~kivy.uix.floatlayout`
:class:`~kivy.uix.floatlayout.FloatLayout`
:meth:`~kivy.core.window.WindowBase.toggle_fullscreen`
:doc:`/api-kivy.core.window`

Will result in:

floatlayout
FloatLayout
toggle_fullscreen()
Window

:doc: and :mod: are essentially the same, except for an anchor in the url
which makes :doc: preferred for the cleaner url.

To build your documentation, run:

make html

If you updated your kivy install, and have some trouble compiling docs, run:

make clean force html

The docs will be generated in docs/build/html. For more information on
docstring formatting, please refer to the official
Sphinx Documentation [http://sphinx-doc.org/].

Unit tests contributions

For the testing team, we have the document Unit tests that
explains how Kivy unit tests work and how you can create your own. Use the
same approach as the Code Workflow to submit new tests.

	Unit tests
	How it works

	Graphical unit tests

	Writing GL Unit tests

	Coverage reports

GSOC

	Google Summer of Code - 2017
	Introduction

	Requirements

	How to get started

	Project Ideas
	Beginner Projects

	Intermediate Projects

	Advanced Projects

	How to Contact devs

	How to be a good student

	What to expect if you are chosen

Unit tests

Tests are located in the kivy/tests folder. If you find a bug in Kivy, a good
thing to do can be to write a minimal case showing the issue and to ask core
devs if the behaviour shown is intended or a real bug. If you write your code
as a unittest [http://docs.python.org/2/library/unittest.html]
, it will prevent the bug from coming back unnoticed in the future, and will
make Kivy a better, stronger project. Writing a unittest may be a really good
way to get familiar with Kivy while doing something useful.

Unit tests are separated into two cases:

	Non graphical unit tests: these are standard unit tests that can run in a
console

	Graphical unit tests: these need a GL context, and if requested, work via
image comparison

To be able to run unit tests, you need to install pytest (https://pytest.org/),
and coverage (http://nedbatchelder.com/code/coverage/). You can use pip for
that:

sudo pip install pytest coverage

Then, in the kivy directory:

make test

How it works

All the tests are located in kivy/tests, and the filename starts with
test_<name>.py. Pytest will automatically gather all the files and classes
inside this folder, and use them to generate test cases.

To write a test, create a file that respects the previous naming, then
start with this template:

import unittest

class XXXTestCase(unittest.TestCase):

 def setUp(self):
 # import class and prepare everything here.
 pass

 def test_YYY(self):
 # place your test case here
 a = 1
 self.assertEqual(a, 1)

Replace XXX with an appropriate name that covers your tests cases, then
replace ‘YYY’ with the name of your test. If you have any doubts, check how
the other tests have been written.

Then, to execute them, just run:

make test

If you want to execute that file only, you can run:

pytest kivy/tests/test_yourtestcase.py

or include this simple unittest.main() call at the end of the file and run
the test with python test_yourtestcase.py:

if __name__ == '__main__':
 unittest.main()

Graphical unit tests

While simple unit tests are fine and useful to keep things granular, in certain
cases we need to test Kivy after the GL Window is created to interact with the
graphics, widgets and to test more advanced stuff such as widget, modules,
various cases of input and interaction with everything that becomes available
only after the Window is created and Kivy properly initialized.

These tests are executed the same way like the ordinary unit tests i.e. either
with pytest or via unittest.main().

Here are two similar examples with different approaches of running the app.
In the first one you are setting up the required stuff manually and the
tearDown() of the GraphicUnitTest may only attempt to clean it after you:

from kivy.tests.common import GraphicUnitTest

class MyTestCase(GraphicUnitTest):

 def test_runtouchapp(self):
 # non-integrated approach
 from kivy.app import runTouchApp
 from kivy.uix.button import Button

 button = Button()
 runTouchApp(button)

 # get your Window instance safely
 from kivy.base import EventLoop
 EventLoop.ensure_window()
 window = EventLoop.window

 # your asserts
 self.assertEqual(window.children[0], button)
 self.assertEqual(
 window.children[0].height,
 window.height
)

In the second test case both setUp() and tearDown() work together with
GraphicUnitTest.render(). This is the basic setup it does automatically:

	Window is sized to 320 x 240 px

	Only the default Config is used during the test, it’s restricted with the
KIVY_USE_DEFAULTCONFIG environment variable

	Any input (mouse/touch/…) is removed and if you need to test it, either
mock it or manually add it

	Window’s canvas is cleared before displaying any widget tree

Warning

Do NOT use absolute numbers in your tests to preserve the functionality
across the all resolutions. Instead, use e.g. relative position or size and
multiply it by the Window.size in your test.

from kivy.tests.common import GraphicUnitTest, UnitTestTouch

class MyTestCase(GraphicUnitTest):

 def test_render(self):
 from kivy.uix.button import Button

 # with GraphicUnitTest.render() you basically do this:
 # runTouchApp(Button()) + some setup before
 button = Button()
 self.render(button)

 # get your Window instance safely
 from kivy.base import EventLoop
 EventLoop.ensure_window()
 window = EventLoop.window

 touch = UnitTestTouch(
 *[s / 2.0 for s in window.size]
)

 # bind something to test the touch with
 button.bind(
 on_release=lambda instance: setattr(
 instance, 'test_released', True
)
)

 # then let's touch the Window's center
 touch.touch_down()
 touch.touch_up()
 self.assertTrue(button.test_released)

if __name__ == '__main__':
 import unittest
 unittest.main()

Note

Make sure you check the source of kivy.tests.common before writing
comprehensive test cases.

GL unit tests

GL unit test are more difficult. You must know that even if OpenGL is a
standard, the output/rendering is not. It depends on your GPU and the driver
used. For these tests, the goal is to save the output of the rendering at
frame X, and compare it to a reference image.

Currently, images are generated at 320x240 pixels, in png format.

Note

Currently, image comparison is done per-pixel. This means the reference
image that you generate will only be correct for your GPU/driver. If
somebody can implement image comparison with “delta” support, patches
are welcome :)

To execute GL unit tests, you need to create a directory:

mkdir kivy/tests/results
KIVY_UNITTEST_SCREENSHOTS=1 make test

The results directory will contain all the reference images and the
generated images. After the first execution, if the results directory is empty,
no comparison will be done. It will use the generated images as reference.
After the second execution, all the images will be compared to the reference
images.

A html file is available to show the comparison before/after the test, and a
snippet of the associated unit test. It will be generated at:

kivy/tests/build/index.html

Note

The build directory is cleaned after each call to make test. If you don’t
want that, just use pytest command.

Writing GL Unit tests

The idea is to create a root widget, as you would do in
build(), or in kivy.base.runTouchApp().
You’ll give that root widget to a rendering function which will capture the
output in X frames.

Here is an example:

from kivy.tests.common import GraphicUnitTest

class VertexInstructionTestCase(GraphicUnitTest):

 def test_ellipse(self):
 from kivy.uix.widget import Widget
 from kivy.graphics import Ellipse, Color
 r = self.render

 # create a root widget
 wid = Widget()

 # put some graphics instruction on it
 with wid.canvas:
 Color(1, 1, 1)
 self.e = Ellipse(pos=(100, 100), size=(200, 100))

 # render, and capture it directly
 r(wid)

 # as alternative, you can capture in 2 frames:
 r(wid, 2)

 # or in 10 frames
 r(wid, 10)

Each call to self.render (or r in our example) will generate an image named
as follows:

<classname>_<funcname>-<r-call-count>.png

r-call-count represents the number of times that self.render is called
inside the test function.

The reference images are named:

ref_<classname>_<funcname>-<r-call-count>.png

You can easily replace the reference image with a new one if you wish.

Coverage reports

Coverage is based on the execution of previous tests. Statistics on code
coverage are automatically calculated during execution. You can generate an html
report of the coverage with the command:

make cover

Then, open kivy/htmlcov/index.html with your favorite web browser.

Google Summer of Code - 2017

Introduction

Kivy is a cross-platform, business friendly, GPU accelerated open source
Python library for rapid development of applications that make use of
innovative user interfaces, such as multi-touch apps.

The Kivy Organization oversees several major projects:

	The Kivy [https://github.com/kivy/kivy] GUI Library

	The Python-For-Android [https://github.com/kivy/python-for-android]
compilation tool.

	The Kivy-iOS [https://github.com/kivy/kivy-ios] compilation tool.

	The PyJNIus [https://github.com/kivy/pyjnius] library for interfacing with
Java from Python.

	The PyOBJus [https://github.com/kivy/pyobjus] library for interfacing with
Objective-C from Python.

	The Plyer [https://github.com/kivy/plyer] platform-independent Python
wrapper for platform dependent APIs.

	Buildozer [https://github.com/kivy/buildozer] - A generic Python packager
for Android, iOS, and desktop.

	KivEnt [https://github.com/kivy/kivent] - A 2d Game Engine that provides
optimized methods of handling large amounts of dynamic visual data.

	Kivy Designer [https://github.com/kivy/kivy-designer] - A graphical GUI
designer for Kivy built in Kivy.

Altogether, these projects allow the user to create applications for every
major operating system that make use of any native APIs present. Our goal is to
enable development of Python applications that run everywhere off the same
codebase and make use of platform dependent APIs and features that users of
specific operating systems have come to expect.

Depending on which project you choose you may need to know Cython, OpenGL ES2,
Java, Objective-C, or C in addition to Python. We make heavy use of Cython and
OpenGL for computational and graphics performance where it matters, and the
other languages are typically involved in accessing OS or provider level APIs.

We are hoping to participate in Google Summer of Code 2017. This page showcases
some ideas for GSoC projects and corresponding guidelines for students
contributing to the Kivy Framework.

Requirements

It is assumed that the incoming student meets some basic requirements as
highlighted here:

	Intermediate level familiarity with Python.

	Comfortable with git and github (Kivy and its sister projects are all managed
on github) If you have never used github before you may be interested in this
tutorial [https://guides.github.com/activities/hello-world/].

	Comfortable with event driven programming.

	Has suitable tools/environment for Kivy or the sister project you are going
to work on. For example to be able to work on PyOBJus you would need access
to an iOS device, OS X with Xcode and a developer license, to work on PyJNIus
you would need an Android device, and to work on plyer you would need access
to hardware for both platforms.

Additional desired skills may be listed with specific projects.

Familiarize yourself with the
contribution guide [http://kivy.org/docs/contribute.html]
We can help you get up to speed, however students demonstrating ability in
advance will be given preference.

How to get started

For Kivy, the easiest way is to follow the installation instructions for the
development version for your specific platform:

http://kivy.org/docs/installation/installation.html#development-version

For the rest it’s usually sufficient to install the relevant project from git
and add it to your PYTHONPATH.

e.g. for PyJNIus:

git clone http://github.com/kivy/pyjnius
export PYTHONPATH=/path/to/pyjnius:$PYTHONPATH

Project Ideas

Here are some prospective ideas sourced from the Kivy development team, if
none of these projects interest you come talk to us in #kivy-dev about a
project idea of your own.

Beginner Projects

These projects should be suitable for anyone with a college level familiarity
with Python and require little knowledge of platform specifics.

Intermediate Projects

These projects may involve cursory level knowledge of several OS level details,
some OpenGL interaction, or other topics that may be a bit out of the
wheelhouse of the average Pythonista.

Plyer:

	Description:
	Plyer is a platform-independent Python API to use features
commonly found on the desktop and mobile platforms supported by
Kivy. The idea is to provide a stable API to the user for
accessing features of their desktop or mobile device.

The student would replace some .java code currently in the p4a
project to a more appropriate place in Plyer. In addition, the
student would work on improving access to platform specific
features through Plyer, including accessibility, Bluetooth Low Energy,
accessing and editing contacts, sharing, NFC, in-app browser,
Wi-Fi (enable, disable, access to Wi-Fi services (Wi-Fi direct,
network accessibility, current IP info on network etc.),
Camera capture (video), camera display, Google Play integration,
launch phone call interface, sms interface, geolocation,
interaction with notifications, internationalization (I18N),
and all the missing platform implementations from existing features.

Under the hood you’ll use PyJNIus on Android, PyOBJus on OS X and
iOS, ctypes on Windows, and native APIs on Linux. This probably
would also include improving PyOBJus and PyJNIus to handle
interfaces that they can’t right now.

	References:
	
	https://github.com/kivy/plyer

	https://github.com/kivy/pyjnius

	https://github.com/kivy/pyobjus

	https://github.com/kivy/python-for-android

	https://github.com/kivy/kivy-ios

	Expected outcome:
	A successful outcome would include moving the Java/PyOBJus code
from p4a/kivy-ios to plyer and implementing some or all
of the new facades to be decided with the student.

	Mentors: Akshay Arora

	Requirements: Access to Linux, Windows, OS X, iOS device,
Android device.

	Task level: Intermediate

	Desired Skills: Familiarity with PyJNIus, PyOBJus.

Font Reshaping and Font Fallback Support

	Description:
	Currently Kivy does not support reshaping for alphabets such as Arabic,
Persian, Thai, or Devanagari. The solution is to integrate a text shaping
and layout engine (Pango and Harfbuzz). You would need to ensure that
Pango and Harfbuzz can be compiled on every platform, and integrate it
as a core text provider.

The second part of the same project would involve font fallback support.
If a particular character/glyph is missing, currently we show a [] box.
The solution for this would involve either using an OS API if available
or maintaining a hashtable for the default fonts on each OS which can be
used for glyph fallback.

	References:
	
	http://www.pango.org

	https://www.freedesktop.org/wiki/Software/HarfBuzz/

	https://github.com/kivy/kivy/tree/master/kivy/core/text

	Expected outcome:
	Font fallback and text reshaping support in Kivy, compilation recipes for Python-For-Android and packaging on desktop platforms.

	Mentors: Akshay Arora, Jacob Kovac, Matthew Einhorn

	Requirements: Access to a desktop OS and ideally at least one mobile
platform

	Task level: Intermediate

	Desired Skills: Familiarity with text rendering, Pango, HarfBuzz
and Kivy’s provider abstraction.

Advanced Projects

These projects may involve very in-depth knowledge of Kivy’s existing
internals, the hairy details of cross-platform compilation, or other fairly
advanced topics. If you are comfortable with the internals of Python, working
with C code, and using Cython to build your own C extensions these projects
may appeal to you.

Kivent: Chipmunk 7 Integration

	Description:
	KivEnt is a modular entity-component based game engine built on top of
Kivy. KivEnt provides a highly performant approach to building games in
Python that avoids some of the worst overhead of Python using specialized
Cython constructs.

At the moment, KivEnt internally makes use of the cymunk library
(https://github.com/tito/cymunk) for physics simulation and collision
detection. Cymunk is based on Chipmunk2d 6.x, recently Chipmunk 7 has
released and brought many previously premium features into the core library.
In addition to the API changes present in the newest Chipmunk, the
KivEnt - Cymunk bridging does not make most efficient use of the KivEnt
API for handling C level objects and data. The student will be responsible
for creating a new wrapper over Chipmunk2d 7 that better matches KivEnt’s
approach to handling game data.

	References:
	
	http://chipmunk-physics.net/

	https://github.com/kivy/kivent

	Expected Outcome:
	A successful outcome involves a new kivent_tiled module being released for
the KivEnt game engine.

	Mentors: Jacob Kovac

	Requirements: Access to at least one Kivy platform.

	Task level: Advanced

	Desired Skills: Familiarity with Cython, Python, and game dev related
math concepts.

KV Compiler: A compiler for the KV language

	Description:
	The KV language is a fundamental component of Kivy. The KV language allows one
to describe a GUI; from the creation of a Widget tree to the actions that should be
taken in response value changes and events. In effect it is a concise way to create
rule bindings using the Kivy properties and events. Internally, python code that
reflects these rules are created and bound to the properties and events. Currently,
these bindings are not at all optimized because upon each widget creation all of
these rules are re-evaluated and bound. This process can be significantly optimized
by pre-compiling the kv code, especially the bindings. A compiler would also allow
us to update and fix some of the long-standing kv language issues.

Work on a kv-compiler has already progressed quite far, in fact a PR in the pre-alpha
stage, is currently open. However, it is out of sync with the current codebase due to
some unrelated kv changes in the meantime. Also, that PR would require a significant
re-write to make things more modular, self-contained, and extensible. So there is much
work still to be done on it.

Theming has also been a prepatual issue in Kivy, a KV compiler may help implement bindings
that facilitate theming.

	References:
	
	https://kivy.org/docs/guide/lang.html

	https://github.com/kivy/kivy/pull/3456

	https://github.com/kivy/kivy/wiki/KEP001:-Instantiate-things-other-than-widgets-from-kv

	https://github.com/kivy/kivy/issues/691

	https://github.com/kivy/kivy/issues/2727

	Expected Outcome:
	A successful outcome would be a compiler which compiles kv code into python
code. The compiler should be modular and extensible so that we can continue to
improve the kv language. The compiler should have the common debug/optimization
options. The compiled code should also be human readable so issues could be traced
back to the original kv code. The compiler should also be a drop in replacement for the
current KV runtime compiler, and would require extensive testing.

	Mentors: Matthew Einhorn

	Requirements: Access to at least one Kivy platform.

	Task level: Advanced

	Desired Skills: Familiarity with Cython, Python, and Kivy. Familiarity
with typical computer science concepts and data structures is also desired.

How to Contact devs

All communication must happen via public channels, private emails
and Discord private messages are discouraged.

Ask your questions on the Kivy Users forum https://groups.google.com/group/kivy-users
or send a mail at kivy-users@googlegroups.com

Make sure to join the kivy-dev user group too:
https://groups.google.com/forum/#!forum/kivy-dev.

You can also try to contact us on Discord, to get the Discord handles of
the devs mentioned above visit https://kivy.org/#aboutus.

Make sure to read the Discord rules [https://kivy.org/docs/contact.html] before
connecting. Connect to Discord [https://chat.kivy.org].

Most of our developers are located in Europe, India, and North America so keep
in mind typical waking hours for these areas.

How to be a good student

If you want to participate as a student and want to maximize your chances of
being accepted, start talking to us today and try fixing some smaller problems
to get used to our workflow. If we know you can work well with us, you will
have much better chances of being selected.

Here’s a checklist:

	Make sure to read through the website and at least skim the documentation.

	Look at the source code.

	Read our contribution guidelines.

	Make a contribution! Kivy would like to see how you engage with the
development process. Take a look at the issue tracker for a Kivy project
that interests you and submit a Pull Request. It can be a simple bug or a
documentation change. We are looking to get a feel for how you work, not
evaluating your capabilities. Don’t worry about trying to pick something
to impress us.

	Pick an idea that you think is interesting from the ideas list or come up
with your own idea.

	Do some research yourself. GSoC is about give and take, not just one
sided interaction. It is about you trying to achieve agreed upon goals with
our support. The main driving force in this should be, obviously, yourself.
Many students pop up and ask what they should do. You should base that
decision on your interests and your skills. Show us you’re serious about it
and take the initiative.

	Write a draft
proposal [https://wiki.python.org/moin/SummerOfCode/ApplicationTemplate2016]
about what you want to do. Include what you understand the current state of
the project to be, what you would like to improve, how, etc.

	Discuss that proposal with us in a timely manner. Get feedback.

	Be patient! Especially on Discord. We will try to get to you if we’re available.
If not, send an email and just wait. Most questions are already answered in
the docs or somewhere else and can be found with some research. Your
questions should reflect that you’ve actually thought through what you’re
asking and done some rudimentary research.

	Most of all don’t forget to have fun and interact with the community. The
community is as big a part of Open Source as the code itself.

What to expect if you are chosen

	All students should join the #support and the #dev Discord channels daily,
this is how the development team communicates both internally and with the
users.

	You and your mentors will agree on two week milestones for the duration of
the summer.

	Development will occur in your fork of the master branch of Kivy, we expect
you to submit at least one PR a week from your branch into a branch reserved
for you in the primary repo. This will be your forum for reporting progress
as well as documenting any struggles you may have encountered.

	Missing 2 weekly PR or 2 milestones will result in your failure unless there
have been extenuating circumstances. If something comes up, please inform
your mentors as soon as possible. If a milestone seems out of reach we will
work with you to reevaluate the goals.

	Your changes will be merged into master once the project has been completed
and we have thoroughly tested on every platform that is relevant.

FAQ

There are a number of questions that repeatedly need to be answered.
The following document tries to answer some of them.

Technical FAQ

Unable to get a Window, abort.

If Kivy cannot instantiate a Window core provider (mostly SDL2), you’ll see
this. The underlying issue depends on many things:

	Check your installation. Twice.

	Check that your graphics driver support OpenGL 2.1 at the minimum. Otherwise, Kivy can’t run.

	If you use windows and ANGLE (KIVY_GL_BACKEND=angle_sdl2), check that you have DirectX 9 support.

	If your platform doesn’t supports OpenGL, SDL2 cannot initialize OpenGL.

	Don’t mix the architecture of the dependencies (e.g. Python 64-bit and 32-bit extensions/SDL2)

	Don’t mix python installation: e.g. if you have Python and Anaconda installed, the Python actually run may be different than you think. Similarly, if you have multiple Python versions available on the PATH, they may clash.

	Check your PATH to ensure that other programs in it don’t provide the same dlls as Kivy/Python, or bad stuff can happen.

	This commonly happens if some other program that uses similar dependencies as Kivy adds itself to the PATH so that Kivy’s dependencies clash with theirs.

	Please read this [https://superuser.com/questions/284342/what-are-path-and-other-environment-variables-and-how-can-i-set-or-use-them] and this [https://www.digitalcitizen.life/simple-questions-what-are-environment-variables] for more details on PATH.

	The best tool to troubleshoot this is with Dependency Walker [http://www.dependencywalker.com/] explained here [https://www.thewindowsclub.com/dependency-walker-download] and here [https://kb.froglogic.com/display/KB/Analyzing+dependencies+with+Dependency+Walker].

	But ensure that you’re launching it from the identical environment that you start Python.

	Ensure you have all dependencies installed (like kivy_deps.sdl2).

	Maybe your drivers have some missing OpenGL symbols? Try to switch to another graphics backend with KIVY_GL_BACKEND.

	Maybe your Pycharm configuration is incorrect [https://stackoverflow.com/questions/49466785/kivy-error-python-2-7-sdl2-import-error].

Fatal Python error: (pygame parachute) Segmentation Fault

Most of time, this issue is due to the usage of old graphics drivers. Install the
latest graphics driver available for your graphics card, and it should be ok.

If not, this means you have probably triggered some OpenGL code without an
available OpenGL context. If you are loading images, atlases, using graphics
instructions, you must spawn a Window first:

method 1 (preferred)
from kivy.base import EventLoop
EventLoop.ensure_window()

method 2
from kivy.core.window import Window

If not, please report a detailed issue on github by following the instructions
in the Reporting an Issue section of the Contributing documentation.
This is very important for us because that kind of error can be very hard
to debug. Give us all the information you can give about your environment and
execution.

undefined symbol: glGenerateMipmap

You graphics card or its drivers might be too old. Update your graphics drivers to the
latest available version and retry.

ImportError: No module named event

If you use Kivy from our development version, you must compile it before
using it. In the kivy directory, do:

make force

Android FAQ

Crash on touch interaction on Android 2.3.x

There have been reports of crashes on Adreno 200/205 based devices.
Apps otherwise run fine but crash when interacted with/through the screen.

These reports also mentioned the issue being resolved when moving to an ICS or
higher ROM.

Is it possible to have a kiosk app on android 3.0 ?

Thomas Hansen have wrote a detailed answer on the kivy-users mailing list:

https://groups.google.com/d/msg/kivy-users/QKoCekAR1c0/yV-85Y_iAwoJ

Basically, you need to root the device, remove the SystemUI package, add some
lines to the xml configuration, and you’re done.

What’s the difference between python-for-android from Kivy and SL4A?

Despite having the same name, Kivy’s python-for-android is not related to the
python-for-android project from SL4A, Py4A, or android-python27. They are
distinctly different projects with different goals. You may be able to use
Py4A with Kivy, but no code or effort has been made to do so. The Kivy team
feels that our python-for-android is the best solution for us going forward,
and attempts to integrate with and support Py4A is not a good use of our time.

Project FAQ

Why do you use Python? Isn’t it slow?

Let us try to give a thorough answer; please bear with us.

Python is a very agile language that allows you to do many things
in a (by comparison) short time.
For many development scenarios, we strongly prefer writing our
application quickly in a high-level language such as Python, testing
it, then optionally optimizing it.

But what about speed?
If you compare execution speeds of implementations for a certain set of
algorithms (esp. number crunching) you will find that Python is a lot
slower than say, C++.
Now you may be even more convinced that it’s not a good idea in our
case to use Python. Drawing sophisticated graphics (and we are
not talking about your grandmother’s OpenGL here) is computationally
quite expensive and given that we often want to do that for rich user
experiences, that would be a fair argument.
But, in virtually every case your application ends up spending
most of the time (by far) executing the same part of the code.
In Kivy, for example, these parts are event dispatching and graphics
drawing. Now Python allows you to do something to make these parts
much faster.

By using Cython, you can compile your code down to the C level,
and from there your usual C compiler optimizes things. This is
a pretty pain free process and if you add some hints to your
code, the result becomes even faster. We are talking about a speed up
in performance by a factor of anything between 1x and up to more
than 1000x (greatly depends on your code). In Kivy, we did this for
you and implemented the portions of our code, where efficiency really
is critical, on the C level.

For graphics drawing, we also leverage today’s GPUs which are, for
some tasks such as graphics rasterization, much more efficient than a
CPU. Kivy does as much as is reasonable on the GPU to maximize
performance. If you use our Canvas API to do the drawing, there is
even a compiler that we invented which optimizes your drawing code
automatically. If you keep your drawing mostly on the GPU,
much of your program’s execution speed is not determined by the
programming language used, but by the graphics hardware you throw at
it.

We believe that these (and other) optimizations that Kivy does for you
already make most applications fast enough by far. Often you will even
want to limit the speed of the application in order not to waste
resources.
But even if this is not sufficient, you still have the option of using
Cython for your own code to greatly speed it up.

Trust us when we say that we have given this very careful thought.
We have performed many different benchmarks and come up with some
clever optimizations to make your application run smoothly.

Does Kivy support Python 3.x?

Yes! Kivy 2.2.0 officially supports Python versions 3.7 - 3.11.

As of version 2.0.0 Kivy dropped support for Python 2. You can still use older versions with
Python 2 support.

Python 3 is also supported by python-for-android and kivy-ios.

How is Kivy related to PyMT?

Our developers are professionals and are pretty savvy in their
area of expertise. However, before Kivy came around there was (and
still is) a project named PyMT that was led by our core developers.
We learned a great deal from that project during the time that we
developed it. In the more than two years of research and development
we found many interesting ways to improve the design of our
framework. We have performed numerous benchmarks and as it turns out,
to achieve the great speed and flexibility that Kivy has, we had to
rewrite quite a big portion of the codebase, making this a
backwards-incompatible but future-proof decision.
Most notable are the performance increases, which are just incredible.
Kivy starts and operates just so much faster, due to these heavy
optimizations.
We also had the opportunity to work with businesses and associations
using PyMT. We were able to test our product on a large diversity of
setups and made PyMT work on all of them. Writing a system such as
Kivy or PyMT is one thing. Making it work under all these different
conditions is another. We have a good background here, and brought our
knowledge to Kivy.

Furthermore, since some of our core developers decided to drop their full-time
jobs and turn to this project completely, it was decided that a more
professional foundation had to be laid. Kivy is that foundation. It is
supposed to be a stable and professional product.
Technically, Kivy is not really a successor to PyMT because there is
no easy migration path between them. However, the goal is the same:
Producing high-quality applications for novel user interfaces.
This is why we encourage everyone to base new projects on Kivy instead
of PyMT.
Active development of PyMT has stalled. Maintenance patches are still
accepted.

Do you accept patches?

Yes, we love patches. In order to ensure a smooth integration of your
precious changes however, please make sure to read our contribution
guidelines.
Obviously we don’t accept every patch. Your patch has to be consistent
with our styleguide and, more importantly, make sense.
It does make sense to talk to us before you come up with bigger
changes, especially new features.

Does the Kivy project participate in Google’s Summer of Code ?

Potential students ask whether we participate in GSoC.
The clear answer is: Indeed. :-)

If you want to participate as a student and want to maximize your
chances of being accepted, start talking to us today and try fixing
some smaller (or larger, if you can ;-) problems to get used to our
workflow. If we know you can work well with us, that’d be a big plus.

Here’s a checklist:

	Make sure to read through the website and at least skim the documentation.

	Look at the source code.

	Read our contribution guidelines.

	Pick an idea that you think is interesting from the ideas list (see link
above) or come up with your own idea.

	Do some research yourself. GSoC is not about us teaching you something
and you getting paid for that. It is about you trying to achieve agreed upon
goals by yourself with our support. The main driving force in this should be,
obviously, yourself. Many students come up and ask what they should
do. Well, we don’t know because we know neither your interests nor your
skills. Show us you’re serious about it and take initiative.

	Write a draft proposal about what you want to do. Include what you understand
the current state is (very roughly), what you would like to improve and how,
etc.

	Discuss that proposal with us in a timely manner. Get feedback.

	Be patient! Especially on Discord. We will try to get to you if we’re available.
If not, send an email and just wait. Most questions are already answered in
the docs or somewhere else and can be found with some research. If your
questions don’t reflect that you’ve actually thought through what you’re
asking, it might not be well received.

Good luck! :-)

Contact Us

You can contact us in several different ways:

Issue Tracker

If you have found an issue with the code or have a feature request, please see
our issue tracker [https://github.com/kivy/kivy/issues]. If there is no issue
yet that matches your inquiry, feel free to create a new one. Please make sure
you receive the mails that github sends if we comment on the issue in case we
need more information.
For bugs, please provide all the information necessary, like the operating
system you’re using, the full error message or any other logs, a description
of what you did to trigger the bug and what the actual bug was,
as well as anything else that might be of interest. Obviously, we can only help
if you tell us precisely what the actual problem is.

Mail

For users of our framework, there is a mailing list for support inquiries on the
kivy-users Google Group [https://groups.google.com/group/kivy-users]. Use
this list if you have issues with your Kivy-based app.
We also have a mailing list for matters that deal with development of the actual
Kivy framework code on the
kivy-dev Google Group [https://groups.google.com/group/kivy-dev].

Discord

Kivy on Discord at https://chat.kivy.org

Discord is great for real-time communication, but please make sure to wait after
you asked your question. If you just join, ask and quit we have no way of
knowing who you were and where we’re supposed to send our answer. Also, keep
in mind we’re mostly based in Europe, so take into account any timezone issues.
If you’re unlucky more than once, try the mailing list.

If you don’t have the Discord app, you can also use
Discord’s web client [https://chat.kivy.org], but please, don’t leave
too soon. Just make sure to ask on the support channels.

Please read our
Community Guidelines [https://github.com/kivy/kivy/wiki/Community-Guidelines/]
before asking for help on the mailing list or Discord channel.

Programming Guide

	Kivy Basics
	Installation of the Kivy environment

	Create an application

	Kivy App Life Cycle

	Running the application

	Customize the application

	Controlling the environment
	Path control

	Configuration

	Restrict core to specific implementation

	Metrics

	Graphics

	Event Loop

	Configure Kivy
	Locating the configuration file

	Local configuration

	Understanding config tokens

	Architectural Overview
	Core Providers and Input Providers

	Graphics

	Core

	UIX (Widgets & Layouts)

	Modules

	Input Events (Touches)

	Widgets and Event Dispatching

	Events and Properties
	Introduction to the Event Dispatcher

	Main loop

	Widget events

	Creating custom events

	Attaching callbacks

	Introduction to Properties

	Declaration of a Property

	Dispatching a Property event

	Compound Properties

	Input management
	Input architecture

	Motion event profiles

	Touch events

	Joystick events

	Widgets
	Introduction to Widget

	Manipulating the Widget tree

	Traversing the Tree

	Widgets Z Index

	Organize with Layouts

	Adding a Background to a Layout

	Nesting Layouts

	Size and position metrics

	Screen Separation with Screen Manager

	Graphics
	Introduction to Canvas

	Context instructions

	Drawing instructions

	Manipulating instructions

	Kv language
	Concept behind the language

	How to load KV

	Rule context

	Special syntax

	Instantiate children

	Event Bindings

	Extend canvas

	Referencing Widgets

	Accessing Widgets defined inside Kv lang in your Python code

	Dynamic Classes

	Re-using styles in multiple widgets

	Designing with the Kivy Language

	More documentation

	Integrating with other Frameworks
	Using Twisted inside Kivy

	Packaging your application
	Create a package for Windows

	Create a package for Android

	Kivy on Android

	Creating packages for macOS

	iOS Prerequisites

	Create a package for iOS

	Package licensing
	Dependencies

	Windows (PyInstaller)

	Linux

	Android

	macOS

	iOS

	Avoiding binaries

Kivy Basics

Installation of the Kivy environment

Kivy depends on many libraries, such as SDL2, gstreamer, PIL,
Cairo, and more. They are not all required, but depending on the
platform you’re working on, they can be a pain to install. To ease your
development process, we provide pre-packaged binaries for Windows, macOS and Linux.

Have a look at one of these pages for detailed installation instructions:

	Installation on Windows

	Installation on macOS

	Installation on Linux

	installation_bsd

	Installation on Raspberry Pi

Alternatively, instructions for the development version can be found here:

	Development install

Create an application

Creating a kivy application is as simple as:

	sub-classing the App class

	implementing its build() method so it returns a
Widget instance (the root of your widget tree)

	instantiating this class, and calling its run()
method.

Here is an example of a minimal application:

import kivy
kivy.require('2.1.0') # replace with your current kivy version !

from kivy.app import App
from kivy.uix.label import Label

class MyApp(App):

 def build(self):
 return Label(text='Hello world')

if __name__ == '__main__':
 MyApp().run()

You can save this to a text file, main.py for example, and run it.

Kivy App Life Cycle

First off, let’s get familiar with the Kivy app life cycle.

[image: ../_images/Kivy_App_Life_Cycle.png]
As you can see above, for all intents and purposes, our entry point into our App
is the run() method, and in our case that is “MyApp().run()”. We will get back
to this, but let’s start from the line:

from kivy.app import App

It’s required that the base Class of your App inherits from the App class.
It’s present in the kivy_installation_dir/kivy/app.py.

Note

Go ahead and open up that file if you want to delve deeper into what the
Kivy App class does. We encourage you to open the code and read through it.
Kivy is based on Python and uses Sphinx for documentation, so the
documentation for each class is in the actual file.

Similarly on line 5:

from kivy.uix.label import Label

One important thing to note here is the way packages/classes are laid out. The
uix module is the section that holds the user interface elements
like layouts and widgets.

Moving on to line 8:

class MyApp(App):

This is where we are defining the Base Class of our Kivy App. You should only
ever need to change the name of your app MyApp in this line.

Further on to line 10:

def build(self):

As highlighted by the image above, show casing the Kivy App Life Cycle, this
is the function where you should initialize and return your Root Widget. This
is what we do on line 11:

return Label(text='Hello world')

Here we initialize a Label with text ‘Hello World’ and return its instance.
This Label will be the Root Widget of this App.

Note

Python uses indentation to denote code blocks, therefore take note that in
the code provided above, at line 11 the class and function definition ends.

Now on to the portion that will make our app run at line 14 and 15:

if __name__ == '__main__':
 MyApp().run()

Here the class MyApp is initialized and its run() method called. This
initializes and starts our Kivy application.

Running the application

To run the application, follow the instructions for your operating system:

For Windows, Linux, macOS, or the RPi. From the terminal
where you installed Kivy simply run:

python main.py

For Android or iOS, your application needs some complementary files to be able to run.
See Create a package for Android or See Create a package for iOS for further reference.

A window should open, showing a single Label (with the Text ‘Hello World’) that
covers the entire window’s area. That’s all there is to it.

[image: ../_images/quickstart.png]

Customize the application

Lets extend this application a bit, say a simple UserName/Password page.

from kivy.app import App
from kivy.uix.gridlayout import GridLayout
from kivy.uix.label import Label
from kivy.uix.textinput import TextInput

class LoginScreen(GridLayout):

 def __init__(self, **kwargs):
 super(LoginScreen, self).__init__(**kwargs)
 self.cols = 2
 self.add_widget(Label(text='User Name'))
 self.username = TextInput(multiline=False)
 self.add_widget(self.username)
 self.add_widget(Label(text='password'))
 self.password = TextInput(password=True, multiline=False)
 self.add_widget(self.password)

class MyApp(App):

 def build(self):
 return LoginScreen()

if __name__ == '__main__':
 MyApp().run()

At line 2 we import a Gridlayout:

from kivy.uix.gridlayout import GridLayout

This class is used as a Base for our Root Widget (LoginScreen) defined
at line 7:

class LoginScreen(GridLayout):

At line 9 in the class LoginScreen, we override the method
__init__() so as to add widgets and to define their
behavior:

def __init__(self, **kwargs):
 super(LoginScreen, self).__init__(**kwargs)

One should not forget to call super in order to implement the functionality of
the original class being overloaded. Also note that it is good practice not to
omit the **kwargs while calling super, as they are sometimes used internally.

Moving on to Line 11 and beyond:

self.cols = 2
self.add_widget(Label(text='User Name'))
self.username = TextInput(multiline=False)
self.add_widget(self.username)
self.add_widget(Label(text='password'))
self.password = TextInput(password=True, multiline=False)
self.add_widget(self.password)

We ask the GridLayout to manage its children in two columns and add a
Label and a TextInput
for the username and password.

Running the above code will give you a window that should look like this:

[image: ../_images/guide_customize_step1.png]
Try re-sizing the window and you will see that the widgets on screen adjust
themselves according to the size of the window without you having to do
anything. This is because widgets use size hinting by default.

The code above doesn’t handle the input from the user, does no validation or
anything else. We will delve deeper into this and Widget
size and positioning in the coming sections.

Controlling the environment

Many environment variables are available to control the initialization and
behavior of Kivy.

For example, in order to restrict text rendering to the PIL implementation:

$ KIVY_TEXT=pil python main.py

Environment variables should be set before importing kivy:

import os
os.environ['KIVY_TEXT'] = 'pil'
import kivy

Path control

New in version 1.0.7.

You can control the default directories where config files, modules
and kivy data are located.

	KIVY_DATA_DIR
	Location of the Kivy data, defaults to <kivy path>/data

	KIVY_MODULES_DIR
	Location of the Kivy modules, defaults to <kivy path>/modules

	KIVY_HOME
	Location of the Kivy home. This directory is used for local configuration,
and must be in a writable location.

	Defaults to:
	
	Desktop: <user home>/.kivy

	Android: <android app path>/.kivy

	iOS: <user home>/Documents/.kivy

New in version 1.9.0.

	KIVY_SDL2_PATH
	If set, the SDL2 libraries and headers from this path are used when
compiling kivy instead of the ones installed system-wide.
To use the same libraries while running a kivy app, this path must be
added at the start of the PATH environment variable.

New in version 1.9.0.

Warning

This path is required for the compilation of Kivy. It is not
required for program execution.

	KIVY_SDL2_FRAMEWORKS_SEARCH_PATH
	If set, the SDL2 frameworks from this path are used when compiling kivy
instead of the ones installed system-wide.

That path is used only on macOS, and must contain the SDL2.framework,
SDL_image.framework, SDL_mixer.framework and SDL_ttf.framework.

New in version 2.1.0.

Warning

This path is required for the compilation of Kivy. It is not
required for program execution.

	KIVY_DEPS_ROOT
	If set, during build, Kivy will use this directory as the root one to
search for (only SDL ATM) dependencies. Please note that if KIVY_SDL2_PATH or
KIVY_SDL2_FRAMEWORKS_SEARCH_PATH are set, they will be used instead.

New in version 2.2.0.

Warning

This path is required for the compilation of Kivy. It is not
required for program execution.

Configuration

	KIVY_USE_DEFAULTCONFIG
	If this name is found in environ, Kivy will not read the user config file.

	KIVY_NO_CONFIG
	If set, no configuration file will be read or written to. This also applies
to the user configuration directory.

	KIVY_NO_FILELOG
	If set, logs will be not print to a file

	KIVY_NO_CONSOLELOG
	If set, logs will be not print to the console

	KIVY_NO_ARGS
	If set to one of (‘true’, ‘1’, ‘yes’), the argument passed in command line
will not be parsed and used by Kivy. Ie, you can safely make a script or an
app with your own arguments without requiring the – delimiter:

import os
os.environ["KIVY_NO_ARGS"] = "1"
import kivy

New in version 1.9.0.

	KCFG_section_key
	If a such format environment name is detected, it will be mapped
to the Config object. They are loaded only once when kivy is
imported. The behavior can be disabled using KIVY_NO_ENV_CONFIG.

import os
os.environ["KCFG_KIVY_LOG_LEVEL"] = "warning"
import kivy
during import it will map it to:
Config.set("kivy", "log_level", "warning")

New in version 1.11.0.

	KIVY_NO_ENV_CONFIG
	If set, no environment key will be mapped to configuration object.
If unset, any KCFG_section_key=value will be mapped to Config.

New in version 1.11.0.

Restrict core to specific implementation

kivy.core try to select the best implementation available for your
platform. For testing or custom installation, you might want to restrict the
selector to a specific implementation.

	KIVY_WINDOW
	Implementation to use for creating the Window

Values: sdl2, pygame, x11, egl_rpi

	KIVY_TEXT
	Implementation to use for rendering text

Values: sdl2, pil, pygame, sdlttf

	KIVY_VIDEO
	Implementation to use for rendering video

Values: gstplayer, ffpyplayer, ffmpeg, null

	KIVY_AUDIO
	Implementation to use for playing audio

Values: sdl2, gstplayer, ffpyplayer, pygame, avplayer

	KIVY_IMAGE
	Implementation to use for reading image

Values: sdl2, pil, pygame, imageio, tex, dds

Changed in version 2.0.0.

Removed GPL gif implementation

	KIVY_CAMERA
	Implementation to use for reading camera

Values: avfoundation, android, opencv

	KIVY_SPELLING
	Implementation to use for spelling

Values: enchant, osxappkit

	KIVY_CLIPBOARD
	Implementation to use for clipboard management

Values: sdl2, pygame, dummy, android

Metrics

	KIVY_DPI
	If set, the value will be used for Metrics.dpi.

New in version 1.4.0.

	KIVY_METRICS_DENSITY
	If set, the value will be used for Metrics.density.

New in version 1.5.0.

KIVY_METRICS_FONTSCALE

If set, the value will be used for Metrics.fontscale.

New in version 1.5.0.

Graphics

	KIVY_GL_BACKEND
	The OpenGL backend to use. See cgl.

	KIVY_GL_DEBUG
	Whether to log OpenGL calls. See cgl.

	KIVY_GRAPHICS
	Whether to use OpenGL ES2. See cgl.

	KIVY_GLES_LIMITS
	Whether the GLES2 restrictions are enforced (the default, or if set to
1). If set to false, Kivy will not be truly GLES2 compatible.

Following is a list of the potential incompatibilities that result
when set to true.

	Mesh indices

	If true, the number of indices in a mesh is limited
to 65535

	Texture blit

	When blitting to a texture, the data (color and
buffer) format must be the same format as the one
used at the texture creation. On desktop, the
conversion of different color is correctly handled
by the driver, while on Android, most of devices
fail to do it.
Ref: https://github.com/kivy/kivy/issues/1600

New in version 1.8.1.

	KIVY_BCM_DISPMANX_ID
	Change the default Raspberry Pi display to use when using the egl_rpi
window provider. The list of available value is accessible in
vc_dispmanx_types.h. Default value is 0:

	0: DISPMANX_ID_MAIN_LCD

	1: DISPMANX_ID_AUX_LCD

	2: DISPMANX_ID_HDMI

	3: DISPMANX_ID_SDTV

	4: DISPMANX_ID_FORCE_LCD

	5: DISPMANX_ID_FORCE_TV

	6: DISPMANX_ID_FORCE_OTHER

	KIVY_BCM_DISPMANX_LAYER
	Change the default Raspberry Pi dispmanx layer when using the egl_rpi
window provider. Default value is 0.

New in version 1.10.1.

Event Loop

	KIVY_EVENTLOOP
	Which async library should be used when the app is run in an asynchronous
manner. See kivy.app for example usage.

	'asyncio': When the app is run in an asynchronous manner and the standard
	library asyncio package should be used. The default if not set.

	'trio': When the app is run in an asynchronous manner and the trio
	package should be used.

New in version 2.0.0.

Configure Kivy

The configuration file for kivy is named config.ini, and adheres
to the standard INI [http://en.wikipedia.org/wiki/INI_file] format.

Locating the configuration file

The location of the configuration file is controlled by the
environment variable KIVY_HOME:

<KIVY_HOME>/config.ini

On desktop, this defaults to:

<HOME_DIRECTORY>/.kivy/config.ini

Therefore, if your user is named “tito”, the file will be here:

	Windows: C:\Users\tito\.kivy\config.ini

	macOS: /Users/tito/.kivy/config.ini

	Linux: /home/tito/.kivy/config.ini

On Android, this defaults to:

<ANDROID_APP_PATH>/.kivy/config.ini

If your app is named “org.kivy.launcher”, the file will be here:

/data/data/org.kivy.launcher/files/.kivy/config.ini

On iOS, this defaults to:

<HOME_DIRECTORY>/Documents/.kivy/config.ini

Local configuration

Sometimes it’s desired to change configuration only for certain applications
or during testing of a separate part of Kivy for example input providers.
To create a separate configuration file you can simply use these commands:

from kivy.config import Config

Config.read(<file>)
set config
Config.write()

When a local configuration of single .ini file isn’t enough, e.g. when
you want to have separate environment for garden, kivy logs and other things,
you’ll need to change the KIVY_HOME environment variable in your
application to get desired result:

import os
os.environ['KIVY_HOME'] = <folder>

or before each run of the application change it manually in the console:

	Windows:

set KIVY_HOME=<folder>

	Linux & OSX:

export KIVY_HOME=<folder>

After the change of KIVY_HOME, the folder will behave exactly the same
as the default .kivy/ folder mentioned above.

Understanding config tokens

All the configuration tokens are explained in the kivy.config
module.

Architectural Overview

We would like to take a moment to explain how we designed Kivy from a
software engineering point of view. This is key to understanding how
everything works together.
If you just look at the code, chances are you will get a rough idea
already, but since this approach certainly is daunting for most users,
this section explains the basic ideas of the implementation in more detail.
You can skip this section and refer to it later, but we suggest at least
skimming it for a rough overview.

Kivy consists of several building blocks that we will explain shortly. Here is a
graphical summary of the architecture:

[image: ../_images/architecture.png]

Core Providers and Input Providers

One idea that is key to understanding Kivy’s internals is that of modularity and
abstraction. We try to abstract basic tasks such as opening a window,
displaying images and text, playing audio, getting images from a camera,
spelling correction and so on. We call these core tasks.
This makes the API both easy to use and easy to extend. Most importantly, it
allows us to use – what we call – specific providers for the respective
scenarios in which your app is being run.
For example, on macOS, Linux, BSD Unix and Windows, there are different native
APIs for the different core tasks. A piece of code that uses one of these specific
APIs to talk to the operating system on one side and to Kivy on the other (acting
as an intermediate communication layer) is what we call a *core provider.
The advantage of using specialized core providers for each platform is that we
can fully leverage the functionality exposed by the operating system and act as
efficiently as possible. It also gives users a choice. Furthermore, by using
libraries that are shipped with any one platform, we effectively reduce the size
of the Kivy distribution and make packaging easier. This also makes it easier to port
Kivy to other platforms. The Android port benefited greatly from this.

We follow the same concept with input handling. An input provider is a piece
of code that adds support for a specific input device, such as Apple’s
trackpads, TUIO or a mouse emulator.
If you need to add support for a new input device, you can simply provide a new
class that reads your input data from your device and transforms them into Kivy
basic events.

Graphics

Kivy’s graphics API is our abstraction of OpenGL. On the lowest level,
Kivy issues hardware-accelerated drawing commands using OpenGL. Writing
OpenGL code however can be a bit confusing, especially to newcomers.
That’s why we provide the graphics API that lets you draw things using
simple metaphors that do not exist as such in OpenGL (e.g. Canvas,
Rectangle, etc.).

All of our widgets themselves use this graphics API, which is implemented
on the C level for performance reasons.

Another advantage of the graphics API is its ability to automatically
optimize the drawing commands that your code issues. This is especially
helpful if you’re not an expert at tuning OpenGL. This makes your drawing
code more efficient in many cases.

You can, of course, still use raw OpenGL commands if you prefer. The
version we target is OpenGL 2.0 ES (GLES2) on all devices, so if you want to
stay cross-platform compatible, we advise you to only use the GLES2 functions.

Core

The code in the core package provides commonly used features, such as:

	Clock
	You can use the clock to schedule timer events. Both one-shot timers
and periodic timers are supported.

	Cache
	If you need to cache something that you use often, you can use our
class for that instead of writing your own.

	Gesture Detection
	We ship a simple gesture recognizer that you can use to detect
various kinds of strokes, such as circles or rectangles. You can
train it to detect your own strokes.

	Kivy Language
	The kivy language is used to easily and efficiently describe user
interfaces.

	Properties
	These are not the normal properties that you may know from python.
They are our own property classes that link your widget code with
the user interface description.

UIX (Widgets & Layouts)

The UIX module contains commonly used widgets and layouts that you can
reuse to quickly create a user interface.

	Widgets
	Widgets are user interface elements that you add to your program
to provide some kind of functionality. They may or may not be
visible. Examples would be a file browser, buttons, sliders, lists
and so on. Widgets receive MotionEvents.

	Layouts
	You use layouts to arrange widgets. It is of course possible to
calculate your widgets’ positions yourself, but often it is more
convenient to use one of our ready made layouts. Examples would be
Grid Layouts or Box Layouts.
You can also nest layouts.

Modules

If you’ve ever used a modern web browser and customized it with some
add-ons then you already know the basic idea behind our module classes.
Modules can be used to inject functionality into Kivy programs, even if
the original author did not include it.

An example would be a module that always shows the FPS of the current
application and some graph depicting the FPS over time.

You can also write your own modules.

Input Events (Touches)

Kivy abstracts different input types and sources such as touches, mice,
TUIO or similar. What all of these input types have in common is that you
can associate a 2D onscreen-position with any individual input event. (There are
other input devices such as accelerometers where you cannot easily find a
2D position for e.g. a tilt of your device. This kind of input is handled
separately. In the following we describe the former types.)

All of these input types are represented by instances of the Touch()
class. (Note that this does not only refer to finger touches, but all the other
input types as well. We just called it Touch for the sake of simplicity.
Think of it of something that touches the user interface or your screen.)
A touch instance, or object, can be in one of three states. When a touch
enters one of these states, your program is informed that the event
occurred.
The three states a touch can be in are:

	Down
	A touch is down only once, at the very moment where it first
appears.

	Move
	A touch can be in this state for a potentially unlimited time.
A touch does not have to be in this state during its lifetime.
A ‘Move’ happens whenever the 2D position of a touch changes.

	Up
	A touch goes up at most once, or never.
In practice you will almost always receive an up event because
nobody is going to hold a finger on the screen for all eternity,
but it is not guaranteed. If you know the input sources your users
will be using, you will know whether or not you can rely on this
state being entered.

Widgets and Event Dispatching

The term widget is often used in GUI programming contexts to describe
some part of the program that the user interacts with.
In Kivy, a widget is an object that receives input events. It does not
necessarily have to have a visible representation on the screen.
All widgets are arranged in a widget tree (which is a tree data structure
as known from computer science classes): One widget can have any number of
child widgets or none. There is exactly one root widget at the top of the
tree that has no parent widget, and all other widgets are directly or
indirectly children of this widget (which is why it’s called the root).

When new input data is available, Kivy sends out one event per touch.
The root widget of the widget tree first receives the event.
Depending on the state of the touch, the on_touch_down,
on_touch_move or on_touch_up event is dispatched (with the touch as the
argument) to the root widget, which results in the root widget’s
corresponding on_touch_down, on_touch_move or on_touch_up event handler
being called.

Each widget (this includes the root widget) in the tree can choose to
either digest or pass the event on. If an event handler returns True,
it means that the event has been digested and handled properly. No further
processing will happen with that event. Otherwise, the event handler
passes the widget on to its own children by calling its superclass’s
implementation of the respective event handler. This goes all the way up
to the base Widget class, which – in its touch event handlers – does
nothing but pass the touches to its children:

This is analogous for move/up:
def on_touch_down(self, touch):
 for child in self.children[:]:
 if child.dispatch('on_touch_down', touch):
 return True

This really is much easier than it first seems. An example of how this can
be used to create nice applications quickly will be given in the following
section.

Often times you will want to restrict the area on the screen that a
widget watches for touches. You can use a widget’s collide_point() method
to achieve this. You simply pass it the touch’s position and it returns
True if the touch is within the ‘watched area’ or False otherwise. By
default, this checks the rectangular region on the screen that’s described
by the widget’s pos (for position; x & y) and size (width & height), but
you can override this behaviour in your own class.

Events and Properties

Events are an important part of Kivy programming. That may not be surprising to
those with GUI development experience, but it’s an important concept for
newcomers. Once you understand how events work and how to bind to them, you
will see them everywhere in Kivy. They make it easy to build whatever behavior
you want into Kivy.

The following illustration shows how events are handled in the Kivy framework.

[image: ../_images/Events.png]

Introduction to the Event Dispatcher

One of the most important base classes of the framework is the
EventDispatcher class. This class allows you to register
event types, and to dispatch them to interested parties (usually other event
dispatchers). The Widget,
Animation and Clock classes are
examples of event dispatchers.

EventDispatcher objects depend on the main loop to generate and
handle events.

Main loop

As outlined in the illustration above, Kivy has a main loop. This loop is
running during all of the application’s lifetime and only quits when exiting
the application.

Inside the loop, at every iteration, events are generated from user input,
hardware sensors or a couple of other sources, and frames are rendered to the
display.

Your application will specify callbacks (more on this later), which are called
by the main loop. If a callback takes too long or doesn’t quit at all, the main
loop is broken and your app doesn’t work properly anymore.

In Kivy applications, you have to avoid long/infinite loops or sleeping.
For example the following code does both:

while True:
 animate_something()
 time.sleep(.10)

When you run this, the program will never exit your loop, preventing Kivy from
doing all of the other things that need doing. As a result, all you’ll see is a
black window which you won’t be able to interact with. Instead, you need to
“schedule” your animate_something() function to be called repeatedly.

Scheduling a repetitive event

You can call a function or a method every X times per second using
schedule_interval(). Here is an example of calling a
function named my_callback 30 times per second:

def my_callback(dt):
 print('My callback is called', dt)
event = Clock.schedule_interval(my_callback, 1 / 30.)

You have multiple ways of unscheduling a previously scheduled event. One, is
to use cancel() or unschedule():

event.cancel()

or:

Clock.unschedule(event)

Alternatively, you can return False in your callback, and your event will be automatically
unscheduled:

count = 0
def my_callback(dt):
 global count
 count += 1
 if count == 10:
 print('Last call of my callback, bye bye !')
 return False
 print('My callback is called')
Clock.schedule_interval(my_callback, 1 / 30.)

Scheduling a one-time event

Using schedule_once(), you can call a function “later”,
like in the next frame, or in X seconds:

def my_callback(dt):
 print('My callback is called !')
Clock.schedule_once(my_callback, 1)

This will call my_callback in one second. The second argument is the amount
of time to wait before calling the function, in seconds. However, you can
achieve some other results with special values for the second argument:

	If X is greater than 0, the callback will be called in X seconds

	If X is 0, the callback will be called after the next frame

	If X is -1, the callback will be called before the next frame

The -1 is mostly used when you are already in a scheduled event, and if you
want to schedule a call BEFORE the next frame is happening.

A second method for repeating a function call is to first schedule a callback once
with schedule_once(), and a second call to this function
inside the callback itself:

def my_callback(dt):
 print('My callback is called !')
 Clock.schedule_once(my_callback, 1)
Clock.schedule_once(my_callback, 1)

Warning

While the main loop will try to keep to the schedule as requested, there is some
uncertainty as to when exactly a scheduled callback will be called. Sometimes
another callback or some other task in the application will take longer than
anticipated and thus the timing can be a little off.

In the latter solution to the repetitive callback problem, the next iteration will
be called at least one second after the last iteration ends. With
schedule_interval() however, the callback is called
every second.

Trigger events

Sometimes you may want to schedule a function to be called only once for the next
frame, preventing duplicate calls. You might be tempted to achieve that like so:

First, schedule once.
event = Clock.schedule_once(my_callback, 0)

Then, in another place you will have to unschedule first
to avoid duplicate call. Then you can schedule again.
Clock.unschedule(event)
event = Clock.schedule_once(my_callback, 0)

This way of programming a trigger is expensive, since you’ll always call
unschedule, even if the event has already completed. In addition, a new event is
created every time. Use a trigger instead:

trigger = Clock.create_trigger(my_callback)
later
trigger()

Each time you call trigger(), it will schedule a single call of your callback. If
it was already scheduled, it will not be rescheduled.

Widget events

A widget has 2 default types of events:

	Property event: if your widget changes its position or size, an event is fired.

	Widget-defined event: e.g. an event will be fired for a Button when it’s pressed or
released.

For a discussion on how widget touch events are managed and propagated, please refer
to the Widget touch event bubbling section.

Creating custom events

To create an event dispatcher with custom events, you need to register the name
of the event in the class and then create a method of the same name.

See the following example:

class MyEventDispatcher(EventDispatcher):
 def __init__(self, **kwargs):
 self.register_event_type('on_test')
 super(MyEventDispatcher, self).__init__(**kwargs)

 def do_something(self, value):
 # when do_something is called, the 'on_test' event will be
 # dispatched with the value
 self.dispatch('on_test', value)

 def on_test(self, *args):
 print("I am dispatched", args)

Attaching callbacks

To use events, you have to bind callbacks to them. When the event is
dispatched, your callbacks will be called with the parameters relevant to
that specific event.

A callback can be any python callable, but you need to ensure it accepts
the arguments that the event emits. For this, it’s usually safest to accept the
*args argument, which will catch all arguments in the args list.

Example:

def my_callback(value, *args):
 print("Hello, I got an event!", args)

ev = MyEventDispatcher()
ev.bind(on_test=my_callback)
ev.do_something('test')

Pleases refer to the kivy.event.EventDispatcher.bind() method
documentation for more examples on how to attach callbacks.

Introduction to Properties

Properties are an awesome way to define events and bind to them. Essentially,
they produce events such that when an attribute of your object changes,
all properties that reference that attribute are automatically updated.

There are different kinds of properties to describe the type of data you want to
handle.

	StringProperty

	NumericProperty

	BoundedNumericProperty

	ObjectProperty

	DictProperty

	ListProperty

	OptionProperty

	AliasProperty

	BooleanProperty

	ReferenceListProperty

Declaration of a Property

To declare properties, you must declare them at the class level. The class will then do
the work to instantiate the real attributes when your object is created. These properties
are not attributes: they are mechanisms for creating events based on your
attributes:

class MyWidget(Widget):

 text = StringProperty('')

When overriding __init__, always accept **kwargs and use super() to call
the parent’s __init__ method, passing in your class instance:

def __init__(self, **kwargs):
 super(MyWidget, self).__init__(**kwargs)

Dispatching a Property event

Kivy properties, by default, provide an on_<property_name> event. This event is
called when the value of the property is changed.

Note

If the new value for the property is equal to the current value, then the
on_<property_name> event will not be called.

For example, consider the following code:

 1 class CustomBtn(Widget):
 2
 3 pressed = ListProperty([0, 0])
 4
 5 def on_touch_down(self, touch):
 6 if self.collide_point(*touch.pos):
 7 self.pressed = touch.pos
 8 return True
 9 return super(CustomBtn, self).on_touch_down(touch)
10
11 def on_pressed(self, instance, pos):
12 print('pressed at {pos}'.format(pos=pos))

In the code above at line 3:

pressed = ListProperty([0, 0])

We define the pressed Property of type ListProperty,
giving it a default value of [0, 0]. From this point forward, the on_pressed
event will be called whenever the value of this property is changed.

At Line 5:

def on_touch_down(self, touch):
 if self.collide_point(*touch.pos):
 self.pressed = touch.pos
 return True
 return super(CustomBtn, self).on_touch_down(touch)

We override the on_touch_down() method of the Widget class. Here, we check
for collision of the touch with our widget.

If the touch falls inside of our widget, we change the value of pressed to touch.pos
and return True, indicating that we have consumed the touch and don’t want it to
propagate any further.

Finally, if the touch falls outside our widget, we call the original event
using super(…) and return the result. This allows the touch event propagation
to continue as it would normally have occurred.

Finally on line 11:

def on_pressed(self, instance, pos):
 print('pressed at {pos}'.format(pos=pos))

We define an on_pressed function that will be called by the property whenever the
property value is changed.

Note

This on_<prop_name> event is called within the class where the property is
defined. To monitor/observe any change to a property outside of the class
where it’s defined, you should bind to the property as shown below.

Binding to the property

How to monitor changes to a property when all you have access to is a widget
instance? You bind to the property:

your_widget_instance.bind(property_name=function_name)

For example, consider the following code:

 1 class RootWidget(BoxLayout):
 2
 3 def __init__(self, **kwargs):
 4 super(RootWidget, self).__init__(**kwargs)
 5 self.add_widget(Button(text='btn 1'))
 6 cb = CustomBtn()
 7 cb.bind(pressed=self.btn_pressed)
 8 self.add_widget(cb)
 9 self.add_widget(Button(text='btn 2'))
10
11 def btn_pressed(self, instance, pos):
12 print('pos: printed from root widget: {pos}'.format(pos=.pos))

If you run the code as is, you will notice two print statements in the console.
One from the on_pressed event that is called inside the CustomBtn class and
another from the btn_pressed function that we bind to the property change.

The reason that both functions are called is simple. Binding doesn’t mean
overriding. Having both of these functions is redundant and you should generally
only use one of the methods of listening/reacting to property changes.

You should also take note of the parameters that are passed to the
on_<property_name> event or the function bound to the property.

def btn_pressed(self, instance, pos):

The first parameter is self, which is the instance of the class where this
function is defined. You can use an in-line function as follows:

1 cb = CustomBtn()
2
3 def _local_func(instance, pos):
4 print('pos: printed from root widget: {pos}'.format(pos=pos))
5
6 cb.bind(pressed=_local_func)
7 self.add_widget(cb)

The first parameter would be the instance of the class the property is
defined.

The second parameter would be the value, which is the new value of the property.

Here is the complete example, derived from the snippets above, that you can
use to copy and paste into an editor to experiment.

 1 from kivy.app import App
 2 from kivy.uix.widget import Widget
 3 from kivy.uix.button import Button
 4 from kivy.uix.boxlayout import BoxLayout
 5 from kivy.properties import ListProperty
 6
 7 class RootWidget(BoxLayout):
 8
 9 def __init__(self, **kwargs):
10 super(RootWidget, self).__init__(**kwargs)
11 self.add_widget(Button(text='btn 1'))
12 cb = CustomBtn()
13 cb.bind(pressed=self.btn_pressed)
14 self.add_widget(cb)
15 self.add_widget(Button(text='btn 2'))
16
17 def btn_pressed(self, instance, pos):
18 print('pos: printed from root widget: {pos}'.format(pos=pos))
19
20 class CustomBtn(Widget):
21
22 pressed = ListProperty([0, 0])
23
24 def on_touch_down(self, touch):
25 if self.collide_point(*touch.pos):
26 self.pressed = touch.pos
27 # we consumed the touch. return False here to propagate
28 # the touch further to the children.
29 return True
30 return super(CustomBtn, self).on_touch_down(touch)
31
32 def on_pressed(self, instance, pos):
33 print('pressed at {pos}'.format(pos=pos))
34
35 class TestApp(App):
36
37 def build(self):
38 return RootWidget()
39
40
41 if __name__ == '__main__':
42 TestApp().run()

Running the code above will give you the following output:

[image: ../_images/property_events_binding.png]
Our CustomBtn has no visual representation and thus appears black. You can
touch/click on the black area to see the output on your console.

Compound Properties

When defining an AliasProperty, you normally define
a getter and a setter function yourself. Here, it falls on to you to define
when the getter and the setter functions are called using the bind argument.

Consider the following code.

 1 cursor_pos = AliasProperty(_get_cursor_pos, None,
 2 bind=('cursor', 'padding', 'pos', 'size',
 3 'focus', 'scroll_x', 'scroll_y',
 4 'line_height', 'line_spacing'),
 5 cache=True)
 6 '''Current position of the cursor, in (x, y).
 7
 8 :attr:`cursor_pos` is an :class:`~kivy.properties.AliasProperty`,
 9 read-only.
10 '''

Here cursor_pos is a AliasProperty which uses the
getter _get_cursor_pos with the setter part set to None, implying this
is a read only Property.

The bind argument at the end defines that on_cursor_pos event is dispatched
when any of the properties used in the bind= argument change.

Input management

Input architecture

Kivy is able to handle most types of input: mouse, touchscreen, accelerometer,
gyroscope, etc. It handles the native multitouch protocols on the following
platforms: Tuio, WM_Touch, MacMultitouchSupport, MT Protocol A/B and Android.

The global architecture can be viewed as:

Input providers -> Motion event -> Post processing -> Dispatch to Window

The class of all input events is the
MotionEvent. It generates 2 kinds of
events:

	Touch events: a motion event that contains at least an X and Y position.
All the touch events are dispatched across the Widget tree.

	No-touch events: all the rest. For example, the accelerometer is a
continuous event, without position. It never starts or stops. These events
are not dispatched across the Widget tree.

A Motion event is generated by an Input Provider.
An Input Provider is responsible for reading the input event from the operating
system, the network or even from another application. Several input providers
exist, such as:

	TuioMotionEventProvider: create a
UDP server and listen for TUIO/OSC messages.

	WM_MotionEventProvider: use the
windows API for reading multitouch information and sending it to Kivy.

	ProbeSysfsHardwareProbe:
In Linux, iterate over all the hardware connected to the computer, and
attaches a multitouch input provider for each multitouch device found.

	and much more!

When you write an application, you don’t need to create an input provider. Kivy
tries to automatically detect available hardware. However, if you want to
support custom hardware, you will need to configure kivy to make it work.

Before the newly-created Motion Event is passed to the user, Kivy applies
post-processing to the input. Every motion event is analyzed to detect and
correct faulty input, as well as make meaningful interpretations like:

	Double/triple-tap detection, according to a distance and time threshold

	Making events more accurate when the hardware is not accurate

	Reducing the amount of generated events if the native touch hardware is
sending events with nearly the same position

After processing, the motion event is dispatched to the Window. As explained
previously, not all events are dispatched to the whole widget tree: the window
filters them. For a given event:

	if it’s only a motion event, it will be dispatched to
on_motion()

	if it’s a touch event, the (x,y) position of the touch (0-1 range) will be
scaled to the Window size (width/height), and dispatched to:

	on_touch_down()

	on_touch_move()

	on_touch_up()

Motion event profiles

Depending on your hardware and the input providers used, more information may be
made available to you. For example, a touch input has an (x,y) position, but
might also have pressure information, blob size, an acceleration vector, etc.

A profile is a string that indicates what features are available inside the
motion event. Let’s imagine that you are in an on_touch_move method:

def on_touch_move(self, touch):
 print(touch.profile)
 return super(..., self).on_touch_move(touch)

The print could output:

['pos', 'angle']

Warning

Many people mix up the profile’s name and the name of the corresponding
property. Just because 'angle' is in the available profile doesn’t
mean that the touch event object will have an angle property.

For the 'pos' profile, the properties pos, x, and y will be
available. With the 'angle' profile, the property a will be available.
As we said, for touch events 'pos' is a mandatory profile, but not
'angle'. You can extend your interaction by checking if the 'angle'
profile exists:

def on_touch_move(self, touch):
 print('The touch is at position', touch.pos)
 if 'angle' in touch.profile:
 print('The touch angle is', touch.a)

You can find a list of available profiles in the
motionevent documentation.

Touch events

A touch event is a specialized MotionEvent
where the property is_touch
evaluates to True. For all touch events, you automatically have the X and Y
positions available, scaled to the Window width and height. In other words, all
touch events have the 'pos' profile.

Touch event basics

By default, touch events are dispatched to all currently displayed widgets.
This means widgets receive the touch event whether it occurs within their
physical area or not.

This can be counter intuitive if you have experience with other GUI toolkits.
These typically divide the screen into geometric areas and only dispatch
touch or mouse events to the widget if the coordinate lies within the
widgets area.

This requirement becomes very restrictive when working with touch input.
Swipes, pinches and long presses may well originate from outside of the widget
that wants to know about them and react to them.

In order to provide the maximum flexibility, Kivy dispatches the events to
all the widgets and lets them decide how to react to them. If you only want
to respond to touch events inside the widget, you simply check:

def on_touch_down(self, touch):
 if self.collide_point(*touch.pos):
 # The touch has occurred inside the widgets area. Do stuff!
 pass

Coordinates

You must take care of matrix transformation in your touch as soon as you use
a widget with matrix transformation. Some widgets such as
Scatter have their own matrix transformation,
meaning the touch must be multiplied by the scatter
matrix to be able to correctly dispatch touch positions to the Scatter’s
children.

	Get coordinate from parent space to local space:
to_local()

	Get coordinate from local space to parent space:
to_parent()

	Get coordinate from local space to window space:
to_window()

	Get coordinate from window space to local space:
to_widget()

You must use one of them to scale coordinates correctly to the context.
Let’s look the scatter implementation:

def on_touch_down(self, touch):
 # push the current coordinate, to be able to restore it later
 touch.push()

 # transform the touch coordinate to local space
 touch.apply_transform_2d(self.to_local)

 # dispatch the touch as usual to children
 # the coordinate in the touch is now in local space
 ret = super(..., self).on_touch_down(touch)

 # whatever the result, don't forget to pop your transformation
 # after the call, so the coordinate will be back in parent space
 touch.pop()

 # return the result (depending what you want.)
 return ret

Touch shapes

If the touch has a shape, it will be reflected in the ‘shape’ property. Right
now, only a ShapeRect can be exposed:

from kivy.input.shape import ShapeRect

def on_touch_move(self, touch):
 if isinstance(touch.shape, ShapeRect):
 print('My touch have a rectangle shape of size',
 (touch.shape.width, touch.shape.height))
 # ...

Double tap

A double tap is the action of tapping twice within a time and a distance.
It’s calculated by the doubletap post-processing module. You can test if the
current touch is one of a double tap or not:

def on_touch_down(self, touch):
 if touch.is_double_tap:
 print('Touch is a double tap !')
 print(' - interval is', touch.double_tap_time)
 print(' - distance between previous is', touch.double_tap_distance)
 # ...

Triple tap

A triple tap is the action of tapping thrice within a time and a distance.
It’s calculated by the tripletap post-processing module. You can test if the
current touch is one of a triple tap or not:

def on_touch_down(self, touch):
 if touch.is_triple_tap:
 print('Touch is a triple tap !')
 print(' - interval is', touch.triple_tap_time)
 print(' - distance between previous is', touch.triple_tap_distance)
 # ...

Grabbing touch events

It’s possible for the parent widget to dispatch a touch event to a child
widget from within on_touch_down, but not from on_touch_move or
on_touch_up. This can happen in certain scenarios, like when a touch
movement is outside the bounding box of the parent, so the parent decides not to
notify its children of the movement.

But you might want to do something in on_touch_up. Say you started something in
the on_touch_down event, like playing a sound, and you’d like to finish things
on the on_touch_up event. Grabbing is what you need.

When you grab a touch, you will always receive the move and up event. But there
are some limitations to grabbing:

	You will receive the event at least twice: one time from your parent (the
normal event), and one time from the window (grab).

	You might receive an event with a grabbed touch, but not from you: it can be
because the parent has sent the touch to its children while it was in
the grabbed state.

Here is an example of how to use grabbing:

def on_touch_down(self, touch):
 if self.collide_point(*touch.pos):

 # if the touch collides with our widget, let's grab it
 touch.grab(self)

 # and accept the touch.
 return True

def on_touch_up(self, touch):
 # here, you don't check if the touch collides or things like that.
 # you just need to check if it's a grabbed touch event
 if touch.grab_current is self:

 # ok, the current touch is dispatched for us.
 # do something interesting here
 print('Hello world!')

 # don't forget to ungrab ourself, or you might have side effects
 touch.ungrab(self)

 # and accept the last up
 return True

Touch Event Management

In order to see how touch events are controlled and propagated between
widgets, please refer to the
Widget touch event bubbling section.

Joystick events

A joystick input represents raw values received directly from physical
or virtual controllers through the SDL2 provider via these events:

	SDL_JOYAXISMOTION

	SDL_JOYHATMOTION

	SDL_JOYBALLMOTION

	SDL_JOYBUTTONDOWN

	SDL_JOYBUTTONUP

Every motion event has a minimum, maximum and default value which
can reach:

	Event

	Minimum

	Maximum

	Default

	on_joy_axis

	-32767

	32767

	0

	on_joy_hat

	(-1, -1)

	(1, 1)

	(0, 0)

	on_joy_ball

	Unknown

	Unknown

	Unknown

Button events, on the other hand represent basically only a state of each
button i.e. up and down, therefore no such values are present.

	on_joy_button_up

	on_joy_button_down

Joystick event basics

Unlike touch events, joystick events are dispatched directly to the Window,
which means there’s only a single value passed for e.g. a specified axis,
not multiple ones. This makes things harder if you want to separate input
to different widgets, yet not impossible. You can use Multiple dropfile example [https://github.com/kivy/kivy/blob/master/examples/miscellaneous/multiple_dropfile.py] as an
inspiration.

To get a joystick event, you first need to bind some function to the Window
joystick event like this:

Window.bind(on_joy_axis=self.on_joy_axis)

Then you need to fetch the parameters specified in
Window for each event you use, for example:

def on_joy_axis(self, win, stickid, axisid, value):
 print(win, stickid, axisid, value)

A variable stickid is an id of a controller that sent the value, axisid is
an id of an axis to which the value belongs.

Joystick input

Kivy should be able to fetch input from any device specified as gamepad,
joystick or basically any other type of game controller recognized by the SDL2
provider. To make things easier, here are layouts of some common controllers
together with ids for each part.

Xbox 360

	[image: xbox_ctr]

	#

	ID

	#

	ID

	1

	axis 1

	2

	axis 0

	3

	hat Y

	4

	hat X

	5

	axis 4

	6

	axis 3

	7

	axis 2

	8

	axis 5

	9

	button 4

	10

	button 5

	X

	button 2

	Y

	button 3

	A

	button 0

	B

	button 1

	back

	button 6

	start

	button 7

	center

	button 10

	
	

Joystick debugging

Mostly you’d want to debug your application with multiple controllers, or
test it against _other_ types of controllers (e.g. different brands).
As an alternative you might want to use some of the available
controller emulators, such as vJoy [http://vjoystick.sourceforge.net].

Widgets

Introduction to Widget

A Widget is the base building block of GUI interfaces in Kivy.
It provides a Canvas that can be used to draw on screen. It receives events
and reacts to them. For a in-depth explanation about the Widget class,
look at the module documentation.

Manipulating the Widget tree

Widgets in Kivy are organized in trees. Your
application has a root widget, which usually has children that can have
children of their own. Children of a widget are represented as the children
attribute, a Kivy ListProperty.

The widget tree can be manipulated with the following methods:

	add_widget(): add a widget as a child

	remove_widget(): remove a widget from the
children list

	clear_widgets(): remove all children from a
widget

For example, if you want to add a button inside a BoxLayout, you can do:

layout = BoxLayout(padding=10)
button = Button(text='My first button')
layout.add_widget(button)

The button is added to layout: the button’s parent property will be set to layout;
the layout will have the button added to its children list. To remove the button
from the layout:

layout.remove_widget(button)

With removal, the button’s parent property will be set to None, and the layout
will have button removed from its children list.

If you want to clear all the children inside a widget, use
clear_widgets() method:

layout.clear_widgets()

Warning

Never manipulate the children list yourself, unless you really know what you
are doing. The widget tree is associated with a graphic tree. For example, if you
add a widget into the children list without adding its canvas to the
graphics tree, the widget will be a child, yes, but nothing will be drawn
on the screen. Moreover, you might have issues on further calls of
add_widget, remove_widget and clear_widgets.

Traversing the Tree

The Widget class instance’s children list property
contains all the children. You can easily traverse the tree by doing:

root = BoxLayout()
... add widgets to root ...
for child in root.children:
 print(child)

However, this must be used carefully. If you intend to modify the children list
with one of the methods shown in the previous section, you must use a copy of
the list like this:

for child in root.children[:]:
 # manipulate the tree. For example here, remove all widgets that have a
 # width < 100
 if child.width < 100:
 root.remove_widget(child)

Widgets don’t influence the size/pos of their children by default. The
pos attribute is the absolute position in screen co-ordinates (unless, you
use the relativelayout. More on that later) and size, is an absolute size.

Widgets Z Index

The order of widget drawing is based on the widget’s position in
the widget tree. The add_widget
method takes an index parameter which can be used to specify its position in
the widget tree:

root.add_widget(widget, index)

The lower indexed widgets will be drawn above those with a higher index. Keep
in mind that the default for index is 0, so widgets added later
are drawn on top of the others unless specified otherwise.

Organize with Layouts

layout is a special kind of widget that controls the size and position of
its children. There are different kinds of layouts, allowing for different
automatic organization of their children. Layouts use size_hint and pos_hint
properties to determine the size and pos of their children.

[image: ../_images/boxlayout.gif]
[image: ../_images/gridlayout.gif]
[image: ../_images/stacklayout.gif]
[image: ../_images/anchorlayout.gif]
[image: ../_images/floatlayout.gif]
BoxLayout:
Arranges widgets in an adjacent manner (either vertically or horizontally) manner,
to fill all the space. The size_hint property of children can be used to change
proportions allowed to each child, or set fixed size for some of them.

GridLayout:
Arranges widgets in a grid. You must specify at least one dimension of the
grid so kivy can compute the size of the elements and how to arrange them.

StackLayout:
Arranges widgets adjacent to one another, but with a set size in one of the
dimensions, without trying to make them fit within the entire space. This is
useful to display children of the same predefined size.

AnchorLayout:
A simple layout only caring about children positions. It allows putting the
children at a position relative to a border of the layout.
size_hint is not honored.

FloatLayout:
Allows placing children with arbitrary locations and size, either absolute or
relative to the layout size. Default size_hint (1, 1) will make every child
the same size as the whole layout, so you probably want to change this value
if you have more than one child. You can set size_hint to (None, None) to use
absolute size with size. This widget honors pos_hint also, which as a dict
setting position relative to layout position.

RelativeLayout:
Behaves just like FloatLayout, except children positions are relative to layout
position, not the screen.

Examine the documentation of the individual layouts for a more in-depth
understanding.

size_hint and pos_hint:

	floatlayout

	boxlayout

	gridlayout

	stacklayout

	relativelayout

	anchorlayout

size_hint is a ReferenceListProperty of
size_hint_x and size_hint_y. It accepts values from 0 to 1 or None
and defaults to (1, 1). This signifies that if the widget is in a layout,
the layout will allocate it as much place as possible in both directions
(relative to the layouts size).

Setting size_hint to (0.5, 0.8), for example, will make the widget 50% the
width and 80% the height of available size for the Widget inside a layout.

Consider the following example:

BoxLayout:
 Button:
 text: 'Button 1'
 # default size_hint is 1, 1, we don't need to specify it explicitly
 # however it's provided here to make things clear
 size_hint: 1, 1

Now load kivy catalog by typing the following, but replacing $KIVYDIR
with the directory of your installation (discoverable via
os.path.dirname(kivy.__file__)):

cd $KIVYDIR/examples/demo/kivycatalog
python main.py

A new window will appear. Click in the area below the ‘Welcome’ Spinner on the
left and replace the text there with your kv code from above.

[image: ../_images/size_hint%5BB%5D.jpg]
As you can see from the image above, the Button takes up 100% of the layout
size.

Changing the size_hint_x/size_hint_y to .5 will make the Widget take 50%
of the layout width/height.

[image: ../_images/size_hint%5Bb_%5D.jpg]
You can see here that, although we specify size_hint_x and size_hint_y both
to be .5, only size_hint_y seems to be honored. That is because boxlayout
controls the size_hint_y when orientation is vertical and size_hint_x
when orientation is ‘horizontal’. The controlled dimension’s size is calculated depending
upon the total no. of children in the boxlayout. In this example, one child has
size_hint_y controlled (.5/.5 = 1). Thus, the widget takes 100% of the parent
layout’s height.

Let’s add another Button to the layout and see what happens.

[image: ../_images/size_hint%5Bbb%5D.jpg]
boxlayout by its very nature divides the available space between its
children equally. In our example, the proportion is 50-50, because we have two
children. Let’s use size_hint on one of the children and see the results.

[image: ../_images/size_hint%5BoB%5D.jpg]
If a child specifies size_hint, this specifies how much space the Widget
will take out of the size given to it by the boxlayout. In our example, the
first Button specifies .5 for size_hint_x. The space for the widget is
calculated like so:

first child's size_hint divided by
first child's size_hint + second child's size_hint + ...n(no of children)

.5/(.5+1) = .333...

The rest of the BoxLayout’s width is divided among the rest of the children.
In our example, this means the second Button takes up 66.66% of the layout
width.

Experiment with size_hint to get comfortable with it.

If you want to control the absolute size of a Widget, you can set
size_hint_x/size_hint_y or both to None so that the widget’s width and or
height attributes will be honored.

pos_hint is a dict, which defaults to empty. As for size_hint, layouts honor
pos_hint differently, but generally you can add values to any of the pos
attributes (x, y, right, top, center_x, center_y) to have the
Widget positioned relative to its parent.

Let’s experiment with the following code in kivycatalog to understand pos_hint
visually:

FloatLayout:
 Button:
 text: "We Will"
 pos: 100, 100
 size_hint: .2, .4
 Button:
 text: "Wee Wiill"
 pos: 200, 200
 size_hint: .4, .2

 Button:
 text: "ROCK YOU!!"
 pos_hint: {'x': .3, 'y': .6}
 size_hint: .5, .2

This gives us:

[image: ../_images/pos_hint.jpg]
As with size_hint, you should experiment with pos_hint to
understand the effect it has on the widget positions.

Adding a Background to a Layout

One of the frequently asked questions about layouts is::

"How to add a background image/color/video/... to a Layout"

Layouts by their nature have no visual representation: they have no canvas
instructions by default. However you can add canvas instructions to a layout
instance easily, as with adding a colored background:

In Python:

from kivy.graphics import Color, Rectangle

with layout_instance.canvas.before:
 Color(0, 1, 0, 1) # green; colors range from 0-1 instead of 0-255
 self.rect = Rectangle(size=layout_instance.size,
 pos=layout_instance.pos)

Unfortunately, this will only draw a rectangle at the layout’s initial position
and size. To make sure the rect is drawn inside the layout, when the layout
size/pos changes, we need to listen to any changes and update the rectangles
size and pos. We can do that as follows:

with layout_instance.canvas.before:
 Color(0, 1, 0, 1) # green; colors range from 0-1 instead of 0-255
 self.rect = Rectangle(size=layout_instance.size,
 pos=layout_instance.pos)

def update_rect(instance, value):
 instance.rect.pos = instance.pos
 instance.rect.size = instance.size

listen to size and position changes
layout_instance.bind(pos=update_rect, size=update_rect)

In kv:

FloatLayout:
 canvas.before:
 Color:
 rgba: 0, 1, 0, 1
 Rectangle:
 # self here refers to the widget i.e FloatLayout
 pos: self.pos
 size: self.size

The kv declaration sets an implicit binding: the last two kv lines ensure that
the pos and size values of the rectangle will update when the pos of the
floatlayout changes.

Now we put the snippets above into the shell of Kivy App.

Pure Python way:

from kivy.app import App
from kivy.graphics import Color, Rectangle
from kivy.uix.floatlayout import FloatLayout
from kivy.uix.button import Button

class RootWidget(FloatLayout):

 def __init__(self, **kwargs):
 # make sure we aren't overriding any important functionality
 super(RootWidget, self).__init__(**kwargs)

 # let's add a Widget to this layout
 self.add_widget(
 Button(
 text="Hello World",
 size_hint=(.5, .5),
 pos_hint={'center_x': .5, 'center_y': .5}))

class MainApp(App):

 def build(self):
 self.root = root = RootWidget()
 root.bind(size=self._update_rect, pos=self._update_rect)

 with root.canvas.before:
 Color(0, 1, 0, 1) # green; colors range from 0-1 not 0-255
 self.rect = Rectangle(size=root.size, pos=root.pos)
 return root

 def _update_rect(self, instance, value):
 self.rect.pos = instance.pos
 self.rect.size = instance.size

if __name__ == '__main__':
 MainApp().run()

Using the kv Language:

from kivy.app import App
from kivy.lang import Builder

root = Builder.load_string('''
FloatLayout:
 canvas.before:
 Color:
 rgba: 0, 1, 0, 1
 Rectangle:
 # self here refers to the widget i.e FloatLayout
 pos: self.pos
 size: self.size
 Button:
 text: 'Hello World!!'
 size_hint: .5, .5
 pos_hint: {'center_x':.5, 'center_y': .5}
''')

class MainApp(App):

 def build(self):
 return root

if __name__ == '__main__':
 MainApp().run()

Both of the Apps should look something like this:

[image: ../_images/layout_background.png]

Add a color to the background of a custom layouts rule/class

The way we add background to the layout’s instance can quickly become
cumbersome if we need to use multiple layouts. To help with this, you can
subclass the Layout and create your own layout that adds a background.

Using Python:

from kivy.app import App
from kivy.graphics import Color, Rectangle
from kivy.uix.boxlayout import BoxLayout
from kivy.uix.floatlayout import FloatLayout
from kivy.uix.image import AsyncImage

class RootWidget(BoxLayout):
 pass

class CustomLayout(FloatLayout):

 def __init__(self, **kwargs):
 # make sure we aren't overriding any important functionality
 super(CustomLayout, self).__init__(**kwargs)

 with self.canvas.before:
 Color(0, 1, 0, 1) # green; colors range from 0-1 instead of 0-255
 self.rect = Rectangle(size=self.size, pos=self.pos)

 self.bind(size=self._update_rect, pos=self._update_rect)

 def _update_rect(self, instance, value):
 self.rect.pos = instance.pos
 self.rect.size = instance.size

class MainApp(App):

 def build(self):
 root = RootWidget()
 c = CustomLayout()
 root.add_widget(c)
 c.add_widget(
 AsyncImage(
 source="http://www.everythingzoomer.com/wp-content/uploads/2013/01/Monday-joke-289x277.jpg",
 size_hint= (1, .5),
 pos_hint={'center_x':.5, 'center_y':.5}))
 root.add_widget(AsyncImage(source='http://www.stuffistumbledupon.com/wp-content/uploads/2012/05/Have-you-seen-this-dog-because-its-awesome-meme-puppy-doggy.jpg'))
 c = CustomLayout()
 c.add_widget(
 AsyncImage(
 source="http://www.stuffistumbledupon.com/wp-content/uploads/2012/04/Get-a-Girlfriend-Meme-empty-wallet.jpg",
 size_hint= (1, .5),
 pos_hint={'center_x':.5, 'center_y':.5}))
 root.add_widget(c)
 return root

if __name__ == '__main__':
 MainApp().run()

Using the kv Language:

from kivy.app import App
from kivy.uix.floatlayout import FloatLayout
from kivy.uix.boxlayout import BoxLayout
from kivy.lang import Builder

Builder.load_string('''
<CustomLayout>
 canvas.before:
 Color:
 rgba: 0, 1, 0, 1
 Rectangle:
 pos: self.pos
 size: self.size

<RootWidget>
 CustomLayout:
 AsyncImage:
 source: 'http://www.everythingzoomer.com/wp-content/uploads/2013/01/Monday-joke-289x277.jpg'
 size_hint: 1, .5
 pos_hint: {'center_x':.5, 'center_y': .5}
 AsyncImage:
 source: 'http://www.stuffistumbledupon.com/wp-content/uploads/2012/05/Have-you-seen-this-dog-because-its-awesome-meme-puppy-doggy.jpg'
 CustomLayout
 AsyncImage:
 source: 'http://www.stuffistumbledupon.com/wp-content/uploads/2012/04/Get-a-Girlfriend-Meme-empty-wallet.jpg'
 size_hint: 1, .5
 pos_hint: {'center_x':.5, 'center_y': .5}
''')

class RootWidget(BoxLayout):
 pass

class CustomLayout(FloatLayout):
 pass

class MainApp(App):

 def build(self):
 return RootWidget()

if __name__ == '__main__':
 MainApp().run()

Both of the Apps should look something like this:

[image: ../_images/custom_layout_background.png]
Defining the background in the custom layout class, assures that it will be used
in every instance of CustomLayout.

Now, to add an image or color to the background of a built-in Kivy layout,
globally, we need to override the kv rule for the layout in question.
Consider GridLayout:

<GridLayout>
 canvas.before:
 Color:
 rgba: 0, 1, 0, 1
 BorderImage:
 source: '../examples/widgets/sequenced_images/data/images/button_white.png'
 pos: self.pos
 size: self.size

Then, when we put this snippet into a Kivy app:

from kivy.app import App
from kivy.uix.floatlayout import FloatLayout
from kivy.lang import Builder

Builder.load_string('''
<GridLayout>
 canvas.before:
 BorderImage:
 # BorderImage behaves like the CSS BorderImage
 border: 10, 10, 10, 10
 source: '../examples/widgets/sequenced_images/data/images/button_white.png'
 pos: self.pos
 size: self.size

<RootWidget>
 GridLayout:
 size_hint: .9, .9
 pos_hint: {'center_x': .5, 'center_y': .5}
 rows:1
 Label:
 text: "I don't suffer from insanity, I enjoy every minute of it"
 text_size: self.width-20, self.height-20
 valign: 'top'
 Label:
 text: "When I was born I was so surprised; I didn't speak for a year and a half."
 text_size: self.width-20, self.height-20
 valign: 'middle'
 halign: 'center'
 Label:
 text: "A consultant is someone who takes a subject you understand and makes it sound confusing"
 text_size: self.width-20, self.height-20
 valign: 'bottom'
 halign: 'justify'
''')

class RootWidget(FloatLayout):
 pass

class MainApp(App):

 def build(self):
 return RootWidget()

if __name__ == '__main__':
 MainApp().run()

The result should look something like this:

[image: ../_images/global_background.png]
As we are overriding the rule of the class GridLayout, any use of this
class in our app will display that image.

How about an Animated background?

You can set the drawing instructions like Rectangle/BorderImage/Ellipse/… to
use a particular texture:

Rectangle:
 texture: reference to a texture

We use this to display an animated background:

from kivy.app import App
from kivy.uix.floatlayout import FloatLayout
from kivy.uix.gridlayout import GridLayout
from kivy.uix.image import Image
from kivy.properties import ObjectProperty
from kivy.lang import Builder

Builder.load_string('''
<CustomLayout>
 canvas.before:
 BorderImage:
 # BorderImage behaves like the CSS BorderImage
 border: 10, 10, 10, 10
 texture: self.background_image.texture
 pos: self.pos
 size: self.size

<RootWidget>
 CustomLayout:
 size_hint: .9, .9
 pos_hint: {'center_x': .5, 'center_y': .5}
 rows:1
 Label:
 text: "I don't suffer from insanity, I enjoy every minute of it"
 text_size: self.width-20, self.height-20
 valign: 'top'
 Label:
 text: "When I was born I was so surprised; I didn't speak for a year and a half."
 text_size: self.width-20, self.height-20
 valign: 'middle'
 halign: 'center'
 Label:
 text: "A consultant is someone who takes a subject you understand and makes it sound confusing"
 text_size: self.width-20, self.height-20
 valign: 'bottom'
 halign: 'justify'
''')

class CustomLayout(GridLayout):

 background_image = ObjectProperty(
 Image(
 source='../examples/widgets/sequenced_images/data/images/button_white_animated.zip',
 anim_delay=.1))

class RootWidget(FloatLayout):
 pass

class MainApp(App):

 def build(self):
 return RootWidget()

if __name__ == '__main__':
 MainApp().run()

To try to understand what is happening here, start from line 13:

texture: self.background_image.texture

This specifies that the texture property of BorderImage will be updated
whenever the texture property of background_image updates. We define the
background_image property at line 40:

background_image = ObjectProperty(...

This sets up background_image as an ObjectProperty in which we add an Image
widget. An image widget has a texture property; where you see
self.background_image.texture, this sets a reference, texture, to this property.
The Image widget supports animation: the texture of the image is updated whenever
the animation changes, and the texture of BorderImage instruction is updated in
the process.

You can also just blit custom data to the texture. For details, look at the
documentation of Texture.

Nesting Layouts

Yes! It is quite fun to see how extensible the process can be.

Size and position metrics

Kivy’s default unit for length is the pixel, all sizes and positions are
expressed in it by default. You can express them in other units, which is
useful to achieve better consistency across devices (they get converted to the
size in pixels automatically).

Available units are pt, mm, cm, inch, dp and sp. You can learn about
their usage in the metrics documentation.

You can also experiment with the screen usage to simulate various devices
screens for your application.

Screen Separation with Screen Manager

If your application is composed of various screens, you likely want an easy
way to navigate from one Screen to another. Fortunately, there is the
ScreenManager class, that allows you to define screens separately, and to set
the TransitionBase from one to another.

Graphics

Introduction to Canvas

A Widgets graphical representation is rendered using a canvas, which you can see
as both an unlimited drawing board or as a set of drawing instructions. There
are numerous instructions you can apply (add) to your canvas, but there are two
main variations:

	context instructions

	vertex instructions

Context instructions don’t draw anything, but they change the results of the
vertex instructions.

Canvasses can contain two subsets of instructions. They are the
canvas.before and the canvas.after instruction groups. The instructions in these
groups will be executed before and after the canvas group
respectively. This means that they will appear under (be executed before) and
above (be executed after) them.
Those groups are not created until the user accesses them.

To add a canvas instruction to a widget, you use the canvas context:

class MyWidget(Widget):
 def __init__(self, **kwargs):
 super(MyWidget, self).__init__(**kwargs)
 with self.canvas:
 # add your instruction for main canvas here

 with self.canvas.before:
 # you can use this to add instructions rendered before

 with self.canvas.after:
 # you can use this to add instructions rendered after

Context instructions

Context instructions manipulate the opengl context. You can rotate, translate,
and scale your canvas. You can also attach a texture or change the drawing color. This one
is the most commonly used, but others are really useful too:

with self.canvas.before:
 Color(1, 0, .4, mode='rgb')

Drawing instructions

Drawing instructions range from very simple ones, like drawing a line or a
polygon, to more complex ones, like meshes or bezier curves:

with self.canvas:
 # draw a line using the default color
 Line(points=(x1, y1, x2, y2, x3, y3))

 # lets draw a semi-transparent red square
 Color(1, 0, 0, .5, mode='rgba')
 Rectangle(pos=self.pos, size=self.size)

Manipulating instructions

Sometimes you want to update or remove the instructions you have added to a
canvas. This can be done in various ways depending on your needs:

You can keep a reference to your instructions and update them:

class MyWidget(Widget):
 def __init__(self, **kwargs):
 super(MyWidget, self).__init__(**kwargs)
 with self.canvas:
 self.rect = Rectangle(pos=self.pos, size=self.size)

 self.bind(pos=self.update_rect)
 self.bind(size=self.update_rect)

 def update_rect(self, *args):
 self.rect.pos = self.pos
 self.rect.size = self.size

Or you can clean your canvas and start fresh:

class MyWidget(Widget):
 def __init__(self, **kwargs):
 super(MyWidget, self).__init__(**kwargs)
 self.draw_my_stuff()

 self.bind(pos=self.draw_my_stuff)
 self.bind(size=self.draw_my_stuff)

 def draw_my_stuff(self, *args):
 self.canvas.clear()

 with self.canvas:
 self.rect = Rectangle(pos=self.pos, size=self.size)

Note that updating the instructions is considered the best practice as it
involves less overhead and avoids creating new instructions.

Kv language

Concept behind the language

As your application grows more complex, it’s common that the construction of
widget trees and explicit declaration of bindings becomes verbose and hard to
maintain. The KV Language is an attempt to overcome these shortcomings.

The KV language, sometimes called kvlang or the kivy language, allows you to
create your widget tree in a declarative way and to bind widget properties
to each other or to callbacks in a natural manner. It allows for very fast
prototypes and agile changes to your UI. It also facilitates separating
the logic of your application and its User Interface.

How to load KV

There are two ways to load Kv code into your application:

	By name convention:

Kivy looks for a Kv file with the same name as your App class in
lowercase, minus “App” if it ends with ‘App’ e.g:

MyApp -> my.kv

If this file defines a Root Widget it will be attached to the App’s root
attribute and used as the base of the application widget tree.

	Builder:
You can tell Kivy to directly load a string or a file. If this string or file
defines a root widget, it will be returned by the method:

Builder.load_file('path/to/file.kv')

or:

Builder.load_string(kv_string)

Rule context

A Kv source constitutes of rules which are used to describe the content
of a Widget. You can have one root rule, and any number of class or
template rules.

The root rule is declared by declaring the class of your root widget, without
any indentation, followed by : and will be set as the root attribute of the
App instance:

Widget:

A class rule, declared by the name of a widget class between < > and
followed by :, defines the appearance and behavior of any instance of that
class:

<MyWidget>:

Rules use indentation for delimitation, like Python. Indentation should be
four spaces per level, like the Python style guide
recommends [https://www.python.org/dev/peps/pep-0008/#indentation].

There are three keywords specific to the Kv language:

	app: always refers to the instance of your application.

	root: refers to the base widget/template in the current rule

	self: always refer to the current widget

Special syntax

There is a special syntax to define values for the whole Kv context.

To access Python modules and classes from kv, use #:import

#:import name x.y.z
#:import isdir os.path.isdir
#:import np numpy

is equivalent to:

from x.y import z as name
from os.path import isdir
import numpy as np

in Python.

To set a global value, use #:set

#:set name value

is equivalent to:

name = value

in Python.

Instantiate children

To declare a widget instance of some class as a child widget, just
declare that child inside the rule:

MyRootWidget:
 BoxLayout:
 Button:
 Button:

The example above defines that our root widget, an instance of MyRootWidget,
has a child that is an instance of the
BoxLayout, and that BoxLayout further has two
children, instances of the Button class.

The Python equivalent of this code might be:

root = MyRootWidget()
box = BoxLayout()
box.add_widget(Button())
box.add_widget(Button())
root.add_widget(box)

Which you may find less nice, both to read and to write.

Of course, in Python, you can pass keyword arguments to your widgets at
creation to specify their behaviour. For example, to set the number of columns
of a gridlayout, we would do:

grid = GridLayout(cols=3)

To do the same thing in kv, you can set properties of the child widget directly
in the rule:

GridLayout:
 cols: 3

The value is evaluated as a Python expression, and all the properties used in
the expression will be observed, that means that if you had something like this
in Python (this assume self is a widget with a data
ListProperty):

grid = GridLayout(cols=len(self.data))
self.bind(data=grid.setter('cols'))

To have your display updated when your data change, you can now have just:

GridLayout:
 cols: len(root.data)

Note

Widget names should start with upper case letters while property names
should start with lower case ones. Following the PEP8 Naming Conventions [https://www.python.org/dev/peps/pep-0008/#naming-conventions]
is encouraged.

Event Bindings

You can bind to events in Kv using the “:” syntax, that is, associating a
callback to an event:

Widget:
 on_size: my_callback()

You can pass the values dispatched by the signal using the args keyword:

TextInput:
 on_text: app.search(args[1])

More complex expressions can be used, like:

pos: self.center_x - self.texture_size[0] / 2., self.center_y - self.texture_size[1] / 2.

This expression listens for a change in center_x, center_y,
and texture_size. If one of them changes, the expression will be
re-evaluated to update the pos field.

You can also handle on_ events inside your kv language.
For example the TextInput class has a focus property whose auto-generated
on_focus event can be accessed inside the kv language like so:

TextInput:
 on_focus: print(args)

Extend canvas

Kv lang can be used to define the canvas instructions of your widget like this:

MyWidget:
 canvas:
 Color:
 rgba: 1, .3, .8, .5
 Line:
 points: zip(self.data.x, self.data.y)

And they get updated when properties values change.

Of course you can use canvas.before and canvas.after.

Referencing Widgets

In a widget tree there is often a need to access/reference other widgets.
The Kv Language provides a way to do this using id’s. Think of them as class
level variables that can only be used in the Kv language. Consider the
following:

<MyFirstWidget>:
 Button:
 id: f_but
 TextInput:
 text: f_but.state

<MySecondWidget>:
 Button:
 id: s_but
 TextInput:
 text: s_but.state

An id is limited in scope to the rule it is declared in, so in the
code above s_but can not be accessed outside the <MySecondWidget>
rule.

Warning

When assigning a value to id, remember that the value isn’t
a string. There are no quotes: good -> id: value, bad -> id: 'value'

An id is a weakref to the widget and not the widget itself. As a
consequence, storing the id is not sufficient to keep the widget from being
garbage collected. To demonstrate:

<MyWidget>:
 label_widget: label_widget
 Button:
 text: 'Add Button'
 on_press: root.add_widget(label_widget)
 Button:
 text: 'Remove Button'
 on_press: root.remove_widget(label_widget)
 Label:
 id: label_widget
 text: 'widget'

Although a reference to label_widget is stored in MyWidget, it is not
sufficient to keep the object alive once other references have been removed
because it’s only a weakref.
Therefore, after the remove button is clicked (which removes
any direct reference to the widget) and the window is resized (which calls the
garbage collector resulting in the deletion of label_widget), when the add
button is clicked to add the widget back, a ReferenceError: weakly-referenced
object no longer exists will be thrown.

To keep the widget alive, a direct reference to the label_widget widget
must be kept. This is achieved using id.__self__ or label_widget.__self__
in this case. The correct way to do this would be:

<MyWidget>:
 label_widget: label_widget.__self__

Accessing Widgets defined inside Kv lang in your Python code

Consider the code below in my.kv:

<MyFirstWidget>:
 # both these variables can be the same name and this doesn't lead to
 # an issue with uniqueness as the id is only accessible in kv.
 txt_inpt: txt_inpt
 Button:
 id: f_but
 TextInput:
 id: txt_inpt
 text: f_but.state
 on_text: root.check_status(f_but)

In myapp.py:

...
class MyFirstWidget(BoxLayout):

 txt_inpt = ObjectProperty(None)

 def check_status(self, btn):
 print('button state is: {state}'.format(state=btn.state))
 print('text input text is: {txt}'.format(txt=self.txt_inpt))
...

txt_inpt is defined as a ObjectProperty initialized
to None inside the Class.

txt_inpt = ObjectProperty(None)

At this point self.txt_inpt is None. In Kv lang this property is updated to
hold the instance of the TextInput referenced by the id
txt_inpt.:

txt_inpt: txt_inpt

From this point onwards, self.txt_inpt holds a reference to the widget
identified by the id txt_input and can be used anywhere in the class, as in
the function check_status. In contrast to this method you could also just pass
the id to the function that needs to use it, like in case of f_but in the
code above.

There is a simpler way to access objects with id tags in Kv using the
ids lookup object. You can do this as follows:

<Marvel>
 Label:
 id: loki
 text: 'loki: I AM YOUR GOD!'
 Button:
 id: hulk
 text: "press to smash loki"
 on_release: root.hulk_smash()

In your Python code:

class Marvel(BoxLayout):

 def hulk_smash(self):
 self.ids.hulk.text = "hulk: puny god!"
 self.ids["loki"].text = "loki: >_<!!!" # alternative syntax

When your kv file is parsed, kivy collects all the widgets tagged with id’s
and places them in this self.ids dictionary type property. That means you
can also iterate over these widgets and access them dictionary style:

for key, val in self.ids.items():
 print("key={0}, val={1}".format(key, val))

Note

Although the self.ids method is very concise, it is generally regarded as
‘best practice’ to use the ObjectProperty. This creates a direct reference,
provides faster access and is more explicit.

Dynamic Classes

Consider the code below:

<MyWidget>:
 Button:
 text: "Hello world, watch this text wrap inside the button"
 text_size: self.size
 font_size: '25sp'
 markup: True
 Button:
 text: "Even absolute is relative to itself"
 text_size: self.size
 font_size: '25sp'
 markup: True
 Button:
 text: "Repeating the same thing over and over in a comp = fail"
 text_size: self.size
 font_size: '25sp'
 markup: True
 Button:

Instead of having to repeat the same values for every button, we can just use a
template instead, like so:

<MyBigButton@Button>:
 text_size: self.size
 font_size: '25sp'
 markup: True

<MyWidget>:
 MyBigButton:
 text: "Hello world, watch this text wrap inside the button"
 MyBigButton:
 text: "Even absolute is relative to itself"
 MyBigButton:
 text: "repeating the same thing over and over in a comp = fail"
 MyBigButton:

This class, created just by the declaration of this rule, inherits from the
Button class and allows us to change default values and create bindings for all
its instances without adding any new code on the Python side.

Re-using styles in multiple widgets

Consider the code below in my.kv:

<MyFirstWidget>:
 Button:
 on_press: root.text(txt_inpt.text)
 TextInput:
 id: txt_inpt

<MySecondWidget>:
 Button:
 on_press: root.text(txt_inpt.text)
 TextInput:
 id: txt_inpt

In myapp.py:

class MyFirstWidget(BoxLayout):

 def text(self, val):
 print('text input text is: {txt}'.format(txt=val))

class MySecondWidget(BoxLayout):

 writing = StringProperty('')

 def text(self, val):
 self.writing = val

Because both classes share the same .kv style, this design can be simplified
if we reuse that style for both widgets. You can do this in .kv as follows.
In my.kv:

<MyFirstWidget,MySecondWidget>:
 Button:
 on_press: root.text(txt_inpt.text)
 TextInput:
 id: txt_inpt

By separating the class names with a comma, all the classes listed in the
declaration will have the same kv properties.

Designing with the Kivy Language

One of the aims of the Kivy language is to
separate the concerns [https://en.wikipedia.org/wiki/Separation_of_concerns]
of presentation and logic. The presentation (layout) side is addressed by your
.kv file and the logic by your .py file.

The code goes in py files

Let’s start with a little example: a Python file named main.py:

import kivy
kivy.require('1.0.5')

from kivy.uix.floatlayout import FloatLayout
from kivy.app import App
from kivy.properties import ObjectProperty, StringProperty

class Controller(FloatLayout):
 '''Create a controller that receives a custom widget from the kv lang file.

 Add an action to be called from the kv lang file.
 '''
 label_wid = ObjectProperty()
 info = StringProperty()

 def do_action(self):
 self.label_wid.text = 'My label after button press'
 self.info = 'New info text'

class ControllerApp(App):

 def build(self):
 return Controller(info='Hello world')

if __name__ == '__main__':
 ControllerApp().run()

In this example, we are creating a Controller class with 2 properties:

	info for receiving some text

	label_wid for receiving the label widget

In addition, we are creating a do_action() method that will use both of
these properties. It will change the info text and change text in the
label_wid widget.

The layout goes in controller.kv

Executing this application without a corresponding .kv file will work, but
nothing will be shown on the screen. This is expected, because the
Controller class has no widgets in it, it’s just a FloatLayout. We can
create the UI around the Controller class in a file named controller.kv,
which will be loaded when we run the ControllerApp. How this is done and
what files are loaded is described in the kivy.app.App.load_kv() method.

#:kivy 1.0

<Controller>:
 label_wid: my_custom_label

 BoxLayout:
 orientation: 'vertical'
 padding: 20

 Button:
 text: 'My controller info is: ' + root.info
 on_press: root.do_action()

 Label:
 id: my_custom_label
 text: 'My label before button press'

One label and one button in a vertical BoxLayout. Seems very simple. There
are 3 things going on here:

	Using data from the Controller. As soon as the info property is
changed in the controller, the expression text: 'My controller info
is: ' + root.info will automatically be re-evaluated, changing the text
in the Button.

	Giving data to the Controller. The expression id: my_custom_label
is assigning the created Label the id of my_custom_label. Then,
using my_custom_label in the expression label_wid:
my_custom_label gives the instance of that Label widget to your
Controller.

	Creating a custom callback in the Button using the Controller’s
on_press method.

	root and self are reserved keywords, usable anywhere.
root represents the top widget in the rule and self represents
the current widget.

	You can use any id declared in the rule the same as root and
self. For example, you could do this in the on_press():

Button:
 on_press: root.do_action(); my_custom_label.font_size = 18

And that’s that. Now when we run main.py, controller.kv will be loaded so
that the Button and Label will show up and respond to our touch events.

More documentation

For a full description of the different components of the KV language,
advanced usage and limitations, see the documentation for lang

Integrating with other Frameworks

New in version 1.0.8.

Using Twisted inside Kivy

Note

You can use the kivy.support.install_twisted_reactor function to
install a twisted reactor that will run inside the kivy event loop.

Any arguments or keyword arguments passed to this function will be
passed on the threadedselect reactors interleave function. These
are the arguments one would usually pass to twisted’s reactor.startRunning

Warning

Unlike the default twisted reactor, the installed reactor will not handle
any signals unless you set the ‘installSignalHandlers’ keyword argument
to 1 explicitly. This is done to allow kivy to handle the signals as
usual, unless you specifically want the twisted reactor to handle the
signals (e.g. SIGINT).

The kivy examples include a small example of a twisted server and client.
The server app has a simple twisted server running and logs any messages.
The client app can send messages to the server and will print its message
and the response it got. The examples are based mostly on the simple Echo
example from the twisted docs, which you can find here:

	https://twistedmatrix.com/documents/current/core/examples/

To try the example, run echo_server_app.py first, and then launch
echo_client_app.py. The server will reply with simple echo messages to
anything the client app sends when you hit enter after typing something
in the textbox.

Server App

install_twisted_rector must be called before importing and using the reactor
from kivy.support import install_twisted_reactor

install_twisted_reactor()

from twisted.internet import reactor
from twisted.internet import protocol

class EchoServer(protocol.Protocol):
 def dataReceived(self, data):
 response = self.factory.app.handle_message(data)
 if response:
 self.transport.write(response)

class EchoServerFactory(protocol.Factory):
 protocol = EchoServer

 def __init__(self, app):
 self.app = app

from kivy.app import App
from kivy.uix.label import Label

class TwistedServerApp(App):
 label = None

 def build(self):
 self.label = Label(text="server started\n")
 reactor.listenTCP(8000, EchoServerFactory(self))
 return self.label

 def handle_message(self, msg):
 msg = msg.decode('utf-8')
 self.label.text = "received: {}\n".format(msg)

 if msg == "ping":
 msg = "Pong"
 if msg == "plop":
 msg = "Kivy Rocks!!!"
 self.label.text += "responded: {}\n".format(msg)
 return msg.encode('utf-8')

if __name__ == '__main__':
 TwistedServerApp().run()

Client App

install_twisted_rector must be called before importing the reactor
from __future__ import unicode_literals

from kivy.support import install_twisted_reactor

install_twisted_reactor()

A Simple Client that send messages to the Echo Server
from twisted.internet import reactor, protocol

class EchoClient(protocol.Protocol):
 def connectionMade(self):
 self.factory.app.on_connection(self.transport)

 def dataReceived(self, data):
 self.factory.app.print_message(data.decode('utf-8'))

class EchoClientFactory(protocol.ClientFactory):
 protocol = EchoClient

 def __init__(self, app):
 self.app = app

 def startedConnecting(self, connector):
 self.app.print_message('Started to connect.')

 def clientConnectionLost(self, connector, reason):
 self.app.print_message('Lost connection.')

 def clientConnectionFailed(self, connector, reason):
 self.app.print_message('Connection failed.')

from kivy.app import App
from kivy.uix.label import Label
from kivy.uix.textinput import TextInput
from kivy.uix.boxlayout import BoxLayout

A simple kivy App, with a textbox to enter messages, and
a large label to display all the messages received from
the server
class TwistedClientApp(App):
 connection = None
 textbox = None
 label = None

 def build(self):
 root = self.setup_gui()
 self.connect_to_server()
 return root

 def setup_gui(self):
 self.textbox = TextInput(size_hint_y=.1, multiline=False)
 self.textbox.bind(on_text_validate=self.send_message)
 self.label = Label(text='connecting...\n')
 layout = BoxLayout(orientation='vertical')
 layout.add_widget(self.label)
 layout.add_widget(self.textbox)
 return layout

 def connect_to_server(self):
 reactor.connectTCP('localhost', 8000, EchoClientFactory(self))

 def on_connection(self, connection):
 self.print_message("Connected successfully!")
 self.connection = connection

 def send_message(self, *args):
 msg = self.textbox.text
 if msg and self.connection:
 self.connection.write(msg.encode('utf-8'))
 self.textbox.text = ""

 def print_message(self, msg):
 self.label.text += "{}\n".format(msg)

if __name__ == '__main__':
 TwistedClientApp().run()

Packaging your application

	Create a package for Windows
	Requirements

	PyInstaller default hook

	Packaging a simple app

	Single File Application

	Bundling Data Files

	Packaging a video app with gstreamer

	Overwriting the default hook

	Including/excluding video and audio and reducing app size

	Alternate installations

	Create a package for Android
	Buildozer

	Packaging with python-for-android

	Packaging your application for the Kivy Launcher

	Release on the market

	Targeting Android

	Kivy on Android
	Package for Android

	Debugging your application on the Android platform

	Using Android APIs

	Status of the Project and Tested Devices

	Creating packages for macOS
	Using the Kivy SDK

	Using Buildozer

	Using PyInstaller and Homebrew

	Using PyInstaller without Homebrew

	iOS Prerequisites
	Getting started

	Homebrew

	Create a package for iOS
	Prerequisites

	Compile the distribution

	Create an Xcode project

	Update the Xcode project

	Customize the Xcode project

	Known issues

	FAQ

Create a package for Windows

Note

This document only applies for kivy 1.9.1 and greater.

Packaging your application for the Windows platform can only be done inside the
Windows OS. The following process has been tested on Windows with the Kivy
wheels installation, see at the end for alternate installations.

The package will be either 32 or 64 bits depending on which version of Python
you ran it with.

Requirements

	Latest Kivy (installed as described in Installation on Windows).

	PyInstaller 3.1+ (pip install --upgrade pyinstaller).

PyInstaller default hook

This section applies to PyInstaller (>= 3.1) that includes the kivy hooks.
To overwrite the default hook the
following examples need to be slightly modified. See Overwriting the default hook.

Packaging a simple app

For this example, we’ll package the touchtracer example project and embed
a custom icon. The location of the kivy examples is, when using the wheels,
installed to python\\share\\kivy-examples and when using the github source
code installed as kivy\\examples. We’ll just refer to the full path leading
to the examples as examples-path. The touchtracer example is in
examples-path\\demo\\touchtracer and the main file is named main.py.

	Open your command line shell and ensure that python is on the path (i.e.
python works).

	Create a folder into which the packaged app will be created. For example
create a TouchApp folder and change to that directory [http://www.computerhope.com/cdhlp.htm] with e.g. cd TouchApp.
Then type:

python -m PyInstaller --name touchtracer examples-path\demo\touchtracer\main.py

You can also add an icon.ico file to the application folder in order to
create an icon for the executable. If you don’t have a .ico file available,
you can convert your icon.png file to ico using the web app
ConvertICO [http://www.convertico.com]. Save the icon.ico in the
touchtracer directory and type:

python -m PyInstaller --name touchtracer --icon examples-path\demo\touchtracer\icon.ico examples-path\demo\touchtracer\main.py

For more options, please consult the
PyInstaller Manual [https://pyinstaller.readthedocs.io/en/stable/].

	The spec file will be touchtracer.spec located in TouchApp. Now we
need to edit the spec file to add the dependencies hooks to correctly build
the exe. Open the spec file with your favorite editor and add these lines
at the beginning of the spec (assuming sdl2 is used, the default now):

from kivy_deps import sdl2, glew

Then, find COLLECT() and add the data for touchtracer
(touchtracer.kv, particle.png, …): Change the line to add a Tree()
object, e.g. Tree('examples-path\\demo\\touchtracer\\'). This Tree will
search and add every file found in the touchtracer directory to your final
package.

To add the dependencies, before the first keyword argument in COLLECT add a
Tree object for every path of the dependencies. E.g.
*[Tree(p) for p in (sdl2.dep_bins + glew.dep_bins)] so it’ll look
something like:

coll = COLLECT(exe, Tree('examples-path\\demo\\touchtracer\\'),
 a.binaries,
 a.zipfiles,
 a.datas,
 *[Tree(p) for p in (sdl2.dep_bins + glew.dep_bins)],
 strip=False,
 upx=True,
 name='touchtracer')

	Now we build the spec file in TouchApp with:

python -m PyInstaller touchtracer.spec

	The compiled package will be in the TouchApp\dist\touchtracer directory.

Single File Application

Next, we will modify the example above to package the touchtracer example project as a single file application. Following the same steps as above, instead issue the following command:

python -m PyInstaller --onefile --name touchtracer examples-path\demo\touchtracer\main.py

	As before, this will generate touchtracer.spec, which we will edit to add the dependencies. In this instance, edit the arguments to the EXE command so that it will look something like this:

exe = EXE(pyz, Tree('examples-path\\demo\\touchtracer\\'),
 a.scripts,
 a.binaries,
 a.zipfiles,
 a.datas,
 *[Tree(p) for p in (sdl2.dep_bins + glew.dep_bins)],
 upx=True,
 name='touchtracer')

	Now you can build the spec file as before with:

python -m PyInstaller touchtracer.spec

	The compiled package will be in the TouchApp\dist directory and will consist of a single executable file.

Bundling Data Files

We will again modify the previous example to include bundled data files. PyInstaller allows inclusion of outside data files (such as images, databases, etc) that the project needs to run. When running an app on Windows, the executable extracts to a temporary folder which the Kivy project doesn’t know about, so it can’t locate these data files. We can fix that with a few lines.

	First, follow PyInstaller documentation on how to include data files in your application.

	Modify your main python code to include the following imports (if it doesn’t have them already):

import os, sys
from kivy.resources import resource_add_path, resource_find

	Modify your main python code to include the following (using the touchtracer app as an example):

if __name__ == '__main__':
 if hasattr(sys, '_MEIPASS'):
 resource_add_path(os.path.join(sys._MEIPASS))
 TouchtracerApp().run()

	Finally, follow the steps for bundling your application above.

Packaging a video app with gstreamer

Following we’ll slightly modify the example above to package a app that uses
gstreamer for video. We’ll use the videoplayer example found at
examples-path\widgets\videoplayer.py. Create a folder somewhere called
VideoPlayer and on the command line change your current directory to that
folder and do:

python -m PyInstaller --name gstvideo examples-path\widgets\videoplayer.py

to create the gstvideo.spec file. Edit as above and this time include the
gstreamer dependency as well:

from kivy_deps import sdl2, glew, gstreamer

and add the Tree() to include the video files, e.g.
Tree('examples-path\\widgets') as well as the gstreamer dependencies so it
should look something like:

coll = COLLECT(exe, Tree('examples-path\\widgets'),
 a.binaries,
 a.zipfiles,
 a.datas,
 *[Tree(p) for p in (sdl2.dep_bins + glew.dep_bins + gstreamer.dep_bins)],
 strip=False,
 upx=True,
 name='gstvideo')

Then build the spec file in VideoPlayer with:

python -m PyInstaller gstvideo.spec

and you should find gstvideo.exe in VideoPlayer\dist\gstvideo,
which when run will play a video.

Note

If you’re using Pygame and need PyGame in your packaging app, you’ll have
to add the following code to your spec file due to kivy issue #1638. After
the imports add the following:

def getResource(identifier, *args, **kwargs):
 if identifier == 'pygame_icon.tiff':
 raise IOError()
 return _original_getResource(identifier, *args, **kwargs)

import pygame.pkgdata
_original_getResource = pygame.pkgdata.getResource
pygame.pkgdata.getResource = getResource

Overwriting the default hook

Including/excluding video and audio and reducing app size

PyInstaller includes a hook for kivy that by default adds all the core
modules used by kivy, e.g. audio, video, spelling etc (you still need to
package the gstreamer dlls manually with Tree() - see the example above)
and their dependencies. If the hook is not installed or to reduce app size some
of these modules may be excluded, e.g. if no audio/video is used, with
an alternative hook.

Kivy provides the alternate hook at
hookspath(). In addition, if and
only if PyInstaller doesn’t have the default hooks
runtime_hooks() must also be
provided. When overwriting the hook, the latter one typically is not required
to be overwritten.

The alternate hookspath() hook
does not include any of the kivy providers. To add them, they have to be added
with
get_deps_minimal() or
get_deps_all(). See
their documentation and pyinstaller_hooks for more
details. But essentially,
get_deps_all() add all the
providers like in the default hook while
get_deps_minimal() only adds
those that are loaded when the app is run. Each method provides a list of
hidden kivy imports and excluded imports that can be passed on to Analysis.

One can also generate a alternate hook which literally lists every kivy
provider module and those not required can be commented out. See
pyinstaller_hooks.

To use the the alternate hooks with the examples above modify as following to
add the hooks with hookspath() and runtime_hooks (if required)
and **get_deps_minimal() or **get_deps_all() to specify the providers.

For example, add the import statement:

from kivy.tools.packaging.pyinstaller_hooks import get_deps_minimal, get_deps_all, hookspath, runtime_hooks

and then modify Analysis as follows:

a = Analysis(['examples-path\\demo\\touchtracer\\main.py'],
 ...
 hookspath=hookspath(),
 runtime_hooks=runtime_hooks(),
 ...
 **get_deps_all())

to include everything like the default hook. Or:

a = Analysis(['examples-path\\demo\\touchtracer\\main.py'],
 ...
 hookspath=hookspath(),
 runtime_hooks=runtime_hooks(),
 ...
 **get_deps_minimal(video=None, audio=None))

e.g. to exclude the audio and video providers and for the other core modules
only use those loaded.

The key points is to provide the alternate
hookspath() which does not list
by default all the kivy providers and instead manually to hiddenimports
add the required providers while removing the undesired ones (audio and
video in this example) with
get_deps_minimal().

Alternate installations

The previous examples used e.g.
*[Tree(p) for p in (sdl2.dep_bins + glew.dep_bins + gstreamer.dep_bins)],
to make PyInstaller add all the dlls used by these dependencies. If kivy
was not installed using the wheels method these commands will not work and e.g.
kivy_deps.sdl2 will fail to import. Instead, one must find the location
of these dlls and manually pass them to the Tree class in a similar fashion
as the example.

Create a package for Android

You can create a package for android using the python-for-android [https://github.com/kivy/python-for-android] project. This page explains how
to download and use it directly on your own machine (see
Packaging your application into APK or AAB) or
use the Buildozer tool to automate the entire process. You can also see
Packaging your application for the Kivy Launcher to run kivy
programs without compiling them.

For new users, we recommend using Buildozer as the easiest way
to make a full APK or AAB. You can also run your Kivy app without a
compilation step with the Kivy Launcher app.

Kivy applications can be released on an Android market such as the Play store, with a few extra
steps to create a fully signed AAB (Android App Bundle).

The Kivy project includes tools for accessing Android APIs to
accomplish vibration, sensor access, texting etc. These, along with
information on debugging on the device, are documented at the
main Android page.

Buildozer

Buildozer is a tool that automates the entire build process. It
downloads and sets up all the prerequisites for python-for-android,
including the android SDK and NDK, then builds an apk that can be
automatically pushed to the device.

Buildozer currently works only in Linux and macOS (You can still use
it on Windows via WSL), and can significantly simplify the apk build.

Please find the installation instructions here [https://buildozer.readthedocs.io/en/latest/installation.html]

Including the “Targeting Android” section.

Afterwards, navigate to your project directory and run:

buildozer init

This creates a buildozer.spec file controlling your build
configuration. You should edit it appropriately with your app name
etc. You can set variables to control most or all of the parameters
passed to python-for-android.

Finally, plug in your android device and run:

buildozer android debug deploy run

to build, push and automatically run the apk on your device.

Buildozer has many available options and tools to help you, the steps
above are just the simplest way to build and run your
APK. The full documentation is available here [http://buildozer.readthedocs.org/en/latest/]. You can also check
the Buildozer README at https://github.com/kivy/buildozer.

Packaging with python-for-android

You can also package directly with python-for-android, which can give
you more control but requires you to manually download parts of the
Android toolchain.

See the python-for-android documentation [https://python-for-android.readthedocs.io/en/latest/quickstart/]
for full details.

Packaging your application for the Kivy Launcher

The Kivy launcher is an Android application that runs any Kivy examples
stored on your SD Card.
To install the Kivy launcher, you must:

	Go on Google Play Store and search for Kivy Launcher from kivy org

	Click on Install

	Select your phone… And you’re done!

If you don’t have access to the Google Play Store on your phone/tablet,
you can download and install the APK manually from
https://github.com/kivy/kivy-launcher/releases

Once the Kivy launcher is installed, you can put your Kivy
applications in the Kivy directory in your external storage directory
(often available at /sdcard even in devices where this memory
is internal), e.g.

/sdcard/kivy/<yourapplication>

<yourapplication> should be a directory containing:

Your main application file:
main.py
Some info Kivy requires about your app on android:
android.txt

The file android.txt must contain:

title=<Application Title>
author=<Your Name>
orientation=<portrait|landscape>

These options are just a very basic configuration. If you create your
own APK using the tools above, you can choose many other settings.

Installation of Examples

Kivy comes with many examples, and these can be a great place to start
trying the Kivy launcher. You can run them as below:

#. Download the `Kivy demos for Android <https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/kivy/kivydemo-for-android.zip>`_
#. Unzip the contents and go to the folder `kivydemo-for-android`
#. Copy all the the subfolders here to

/sdcard/kivy

	Run the launcher and select one of the Pictures, Showcase, Touchtracer, Cymunk or other demos…

Release on the market

If you have built your own APK with Buildozer or with
python-for-android, you can create a release version that may be
released on the Play store or other Android markets.

To do this, you must run Buildozer with the release parameter
(e.g. buildozer android release), or if using
python-for-android use the --release option to build.py. This
creates a release AAB in the bin directory, which you must
properly sign and zipalign.
The procedure for doing this is described in the Android documentation
at https://developer.android.com/studio/publish/app-signing.html#signing-manually -
all the necessary tools come with the Android SDK.

Targeting Android

Kivy is designed to operate identically across platforms and as a result, makes
some clear design decisions. It includes its own set of widgets and by default,
builds an APK or AAB with all the required core dependencies and libraries.

It is possible to target specific Android features, both directly and
in a (somewhat) cross-platform way. See the Using Android APIs section
of the Kivy on Android documentation for more details.

Kivy on Android

You can run Kivy applications on Android, on (more or less) any device
with OpenGL ES 2.0 (Android 2.2 minimum). This is standard on modern
devices; Google reports the requirement is met by 99.9% of devices [https://developer.android.com/about/dashboards/index.html].

Kivy APKs are normal Android apps that you can distribute like any
other, including on stores like the Google Play Store. They behave
properly when paused or restarted, may utilise Android services and
have access to most of the normal java API as described below.

Follow the instructions below to learn how to package your app
for Android, debug your code on the
device, and use Android APIs such as for vibration and reading sensors.

Package for Android

The Kivy project provides all the necessary tools to package your app
on Android, including building your own standalone APK or AAB that may be
distributed on a market like the Google Play Store.
This is covered fully in the Create a package for Android documentation.

Debugging your application on the Android platform

You can view the normal output of your code (stdout, stderr), as well
as the normal Kivy logs, through the Android logcat stream. This is
accessed through adb, provided by the Android SDK [http://developer.android.com/sdk/index.html]. You may need to
enable adb in your device’s developer options, then connect your device
to your computer and run:

adb logcat

You’ll see all the logs including your stdout/stderr and Kivy
logger.

If you packaged your app with Buildozer, the adb tool may not be in
your $PATH and the above command may not work. You can instead run:

buildozer android logcat

to run the version installed by Buildozer, or
find the SDK tools at
$HOME/.buildozer/android/platform.

You can also run and debug your application using the Kivy Launcher.
If you run your application this way, you will find log files inside the
“/.kivy/logs” sub-folder within your application folder.

Using Android APIs

Although Kivy is a Python framework, the Kivy project maintains tools
to easily use the normal java APIs, for everything from vibration to
sensors to sending messages through SMS or email.

For new users, we recommend using Plyer. For more advanced
access or for APIs not currently wrapped, you can use Pyjnius
directly. Kivy also supplies an android module for basic Android functionality.

User contributed Android code and examples are available on the
Kivy wiki [https://github.com/kivy/kivy/wiki#mobiles].

Plyer

Plyer [https://github.com/kivy/plyer] is a pythonic,
platform-independent API to use features commonly found on various
platforms, particularly mobile ones. The idea is that your app can
call simply call a Plyer function, such as to present a notification
to the user, and Plyer will take care of doing so in the right way
regardless of the platform or operating system. Internally, Plyer uses
Pyjnius (on Android), Pyobjus (on iOS) and some platform specific APIs
on desktop platforms.

For instance, the following code would make your Android device
vibrate, or raise a NotImplementedError that you can handle
appropriately on other platforms such as desktops that don’t have
appropriate hardware::

from plyer import vibrator
vibrator.vibrate(10) # vibrate for 10 seconds

Plyer’s list of supported APIs is growing quite quickly, you can see
the full list in the Plyer README [https://github.com/kivy/plyer].

Pyjnius

Pyjnius is a Python module that lets you access java classes directly
from Python, automatically converting arguments to the right type, and
letting you easily convert the java results to Python.

Pyjnius can be obtained from github [https://github.com/kivy/pyjnius], and has its own documentation [http://pyjnius.readthedocs.org/en/latest/].

Here is a simple example showing Pyjnius’ ability to access
the normal Android vibration API, the same result of the plyer code
above:

'autoclass' takes a java class and gives it a Python wrapper
from jnius import autoclass

Context is a normal java class in the Android API
Context = autoclass('android.content.Context')

PythonActivity is provided by the Kivy bootstrap app in python-for-android
PythonActivity = autoclass('org.renpy.android.PythonActivity')

The PythonActivity stores a reference to the currently running activity
We need this to access the vibrator service
activity = PythonActivity.mActivity

This is almost identical to the java code for the vibrator
vibrator = activity.getSystemService(Context.VIBRATOR_SERVICE)

vibrator.vibrate(10000) # The value is in milliseconds - this is 10s

This code directly follows the java API functions to call the
vibrator, with Pyjnius automatically translating the api to Python
code and our calls back to the equivalent java. It is much more
verbose and java-like than Plyer’s version, for no benefit in this
case, though Plyer does not wrap every API available to Pyjnius.

Pyjnius also has powerful abilities to implement java interfaces,
which is important for wrapping some APIs, but these are not
documented here - you can see Pyjnius’ own documentation [http://pyjnius.readthedocs.org/en/latest/].

Android module

Python-for-android includes a python module (actually cython wrapping
java) to access a limited set of Android APIs. This has been largely
superseded by the more flexible Pyjnius and Plyer as above, but may
still occasionally be useful. The available functions are given in the
python-for-android documentation [http://python-for-android.readthedocs.org/en/latest/].

This includes code for billing/IAP and creating/accessing Android
services, which is not yet available in the other tools above.

Status of the Project and Tested Devices

These sections previously described the existence of Kivy’s Android
build tools, with their limitations and some devices that were known
to work.

The Android tools are now quite stable, and should work with
practically any device; our minimum requirements are OpenGL ES
2.0 and Android 2.2. These are very common now - Kivy has
even been run on an Android smartwatch!

As Kivy works fine on most devices, the list of supported
phones/tablets has been retired - all Android devices are likely to
work if they meet the conditions above.

Creating packages for macOS

Note

This guide describes multiple ways for packaging Kivy applications.
Packaging using the Kivy SDK is recommended for general use.

Using the Kivy SDK

Note

These instructions apply only from Kivy v2.0.0 onwards.

Note

Kivy.app is built with MACOSX_DEPLOYMENT_TARGET=10.9.

We provide a Kivy DMG with all dependencies bundled in a virtual environment,
including a Python interpreter that can be used as a base to package kivy apps.

This is the safest approach because it packages the binaries without references to
any binaries on the system on which the app is packaged. Because all references are
to frameworks included in the dmg or to binaries with the dmg. As opposed to
e.g. pyinstaller which copies binaries from your local python installation.

You can find complete instructions to build and package apps with Kivy.app, starting either
with Kivy.app or building from scratch, in the readme
of the kivy-sdk-packager repo [https://github.com/kivy/kivy-sdk-packager/tree/master/osx].

Using Buildozer

pip install git+http://github.com/kivy/buildozer
cd /to/where/I/Want/to/package
buildozer init

Edit the buildozer.spec and add the details for your app.
Dependencies can be added to the requirements= section.

By default the kivy version specified in the requirements is ignored.

If you have a Kivy.app at /Applications/Kivy.app then that is used,
for packaging. Otherwise the latest build from kivy.org using Kivy
master will be downloaded and used.

When you’re ready to package your macOS app just run:

buildozer osx debug

Once the app is packaged, you might want to remove unneeded
packages, just reduce the package to its minimal state that
is needed for the app to run.

That’s it. Enjoy!

Buildozer right now uses the Kivy SDK to package your app.
If you want to control more details about your app than buildozer
currently offers then you can use the SDK directly, as detailed in the
section below.

Using PyInstaller and Homebrew

Note

Package your app on the oldest macOS version you want to support.

Complete guide

	Install Homebrew [http://brew.sh]

	Install Python:

$ brew install python

Note

To use Python 3, brew install python3 and replace pip with
pip3 in the guide below.

	(Re)install your dependencies with --build-from-source to make sure they can
be used on other machines:

$ brew reinstall --build-from-source sdl2 sdl2_image sdl2_ttf sdl2_mixer

Note

If your project depends on GStreamer or other additional libraries
(re)install them with --build-from-source as described
below.

	Install Cython and Kivy:

$ pip install Cython==0.29.33
$ pip install -U kivy

	Install PyInstaller:

$ pip install -U pyinstaller

	Package your app using the path to your main.py:

$ pyinstaller -y --clean --windowed --name touchtracer \
 --exclude-module _tkinter \
 --exclude-module Tkinter \
 --exclude-module enchant \
 --exclude-module twisted \
 /usr/local/share/kivy-examples/demo/touchtracer/main.py

Note

This will not yet copy additional image or sound files. You would need to
adapt the created .spec file for that.

Editing the spec file

The specs file is named touchtracer.spec and is located in the directory
where you ran the pyinstaller command.

You need to change the COLLECT() call to add the data of touchtracer
(touchtracer.kv, particle.png, …). Change the line to add a Tree()
object. This Tree will search and add every file found in the touchtracer
directory to your final package. Your COLLECT section should look something
like this:

coll = COLLECT(exe, Tree('/usr/local/share/kivy-examples/demo/touchtracer/'),
 a.binaries,
 a.zipfiles,
 a.datas,
 strip=None,
 upx=True,
 name='touchtracer')

This will add the required hooks so that PyInstaller gets the required Kivy
files. We are done. Your spec is ready to be executed.

Build the spec and create a DMG

	Open a console.

	Go to the PyInstaller directory, and build the spec:

$ pyinstaller -y --clean --windowed touchtracer.spec

	Run:

$ pushd dist
$ hdiutil create ./Touchtracer.dmg -srcfolder touchtracer.app -ov
$ popd

	You will now have a Touchtracer.dmg available in the dist directory.

Additional Libraries

GStreamer

If your project depends on GStreamer:

$ brew reinstall --build-from-source gstreamer gst-plugins-{base,good,bad,ugly}

Note

If your Project needs Ogg Vorbis support be sure to add the
--with-libvorbis option to the command above.

If you are using Python from Homebrew you will also need the following step
until this pull request [https://github.com/Homebrew/homebrew/pull/46097]
gets merged:

$ brew reinstall --with-python --build-from-source https://github.com/cbenhagen/homebrew/raw/patch-3/Library/Formula/gst-python.rb

Using PyInstaller without Homebrew

First install Kivy and its dependencies without using Homebrew as mentioned here
http://kivy.org/docs/installation/installation.html#development-version.

Once you have kivy and its deps installed, you need to install PyInstaller.

Let’s assume we use a folder like testpackaging:

cd testpackaging
git clone http://github.com/pyinstaller/pyinstaller

Create a file named touchtracer.spec in this directory and add the following
code to it:

-*- mode: python -*-

block_cipher = None
from kivy.tools.packaging.pyinstaller_hooks import get_deps_all, hookspath, runtime_hooks

a = Analysis(['/path/to/yout/folder/containing/examples/demo/touchtracer/main.py'],
 pathex=['/path/to/yout/folder/containing/testpackaging'],
 binaries=None,
 win_no_prefer_redirects=False,
 win_private_assemblies=False,
 cipher=block_cipher,
 hookspath=hookspath(),
 runtime_hooks=runtime_hooks(),
 **get_deps_all())
pyz = PYZ(a.pure, a.zipped_data,
 cipher=block_cipher)
exe = EXE(pyz,
 a.scripts,
 exclude_binaries=True,
 name='touchtracer',
 debug=False,
 strip=False,
 upx=True,
 console=False)
coll = COLLECT(exe, Tree('../kivy/examples/demo/touchtracer/'),
 Tree('/Library/Frameworks/SDL2_ttf.framework/Versions/A/Frameworks/FreeType.framework'),
 a.binaries,
 a.zipfiles,
 a.datas,
 strip=False,
 upx=True,
 name='touchtracer')
app = BUNDLE(coll,
 name='touchtracer.app',
 icon=None,
 bundle_identifier=None)

Change the paths with your relevant paths:

a = Analysis(['/path/to/yout/folder/containing/examples/demo/touchtracer/main.py'],
 pathex=['/path/to/yout/folder/containing/testpackaging'],
...
...
coll = COLLECT(exe, Tree('../kivy/examples/demo/touchtracer/'),

Then run the following command:

pyinstaller/pyinstaller.py touchtracer.spec

Replace touchtracer with your app where appropriate.
This will give you a <yourapp>.app in the dist/ folder.

iOS Prerequisites

The following guide assumes:

	Xcode 13.2.1 or above

	macOS 11.6 or above

Your experience may vary with different versions.

Getting started

In order to submit any application to the iTunes store, you will need an
iOS Developer License [https://developer.apple.com/programs/ios/]. For
testing, you can use a physical device or the Xcode iOS emulator.

Please note that in order to test on the device, you need to register these
devices and install your “provisioning profile” on them. Please refer to the
Apple’s
Getting started [https://help.apple.com/developer-account/]
guide for more information.

Homebrew

We use the Homebrew [https://brew.sh/] package manager for macOS to install
some of the dependencies and tools used by Kivy. It’s a really helpful tool
and is an Open Source project hosted on
Github [https://github.com/Homebrew].

Due to the nature of package management (complications with versions and
Operating Systems), this process can be error prone and cause
failures in the build process. The Missing requirement: <pkg> is not
installed! message is typically such an error.

The first thing is to ensure you have run the following commands:

$ brew install autoconf automake libtool pkg-config
$ brew link libtool
$ pip install Cython==0.29.33

If you still receive build errors, check your Homebrew is in a healthy state:

brew doctor

For further help, please refer to the
Homebrew docs [https://docs.brew.sh].

The last, final and desperate step to get things working might be to remove
Homebrew altogether, get the latest version, install that and then re-install
the dependencies.

How do I uninstall Homebrew? [https://docs.brew.sh/FAQ#how-do-i-uninstall-homebrew]

Create a package for iOS

The overall process for creating a package for iOS can be explained in 4 steps:

	Compile the distribution (python + modules for iOS)

	Create an Xcode project (and link your source code)

	Update the Xcode project

	Customize the Xcode project

Prerequisites

You need to install some dependencies, like Cython, autotools, etc. We
encourage you to use Homebrew [https://brew.sh] to install
those dependencies:

$ brew install autoconf automake libtool pkg-config
$ brew link libtool
$ pip install Cython==0.29.33

For more detail, see iOS Prerequisites.
Just ensure that everything is ok before starting the second step!

Compile the distribution

Open a terminal, and type:

$ pip install kivy-ios
$ toolchain build kivy

If you experience any issues, please refer to our
user group [https://groups.google.com/forum/#!forum/kivy-users] or the
kivy-ios project page [https://github.com/kivy/kivy-ios].

Create an Xcode project

Before proceeding to the next step, ensure your application entry point is a file
named main.py.

We provide a script that creates an initial Xcode project to start with. In the
command line below, replace title with your project name. It must be a
name without any spaces or illegal characters:

$ toolchain create <title> <app_directory>
$ toolchain create Touchtracer ~/code/kivy/examples/demo/touchtracer

Note

You must use a fully qualified path to your application directory.

A directory named <title>-ios will be created, with an Xcode project in it.
You can open the Xcode project:

$ open touchtracer-ios/touchtracer.xcodeproj

Then click on Play, and enjoy.

Note

Everytime you press Play, your application directory will be synced to
the <title>-ios/YourApp directory. Don’t make changes in the -ios
directory directly.

Update the Xcode project

Let’s say you want to add numpy to your project but you did not compile it
prior to creating your XCode project. First, ensure it is built:

$ toolchain build numpy

Then, update your Xcode project:

$ toolchain update touchtracer-ios

All the libraries / frameworks necessary to run all the compiled recipes will be
added to your Xcode project.

Customize the Xcode project

There are various ways to customize and configure your app. Please refer
to the kivy-ios [http://www.github.com/kivy/kivy-ios] documentation
for more information.

Known issues

All known issues with packaging for iOS are currently tracked on our
issues [https://github.com/kivy/kivy-ios/issues] page. If you encounter
an issue specific to packaging for iOS that isn’t listed there, please feel
free to file a new issue, and we will get back to you on it.

While most are too technical to be written here, one important known issue is
that removing some libraries (e.g. SDL_Mixer for audio) is currently not
possible because the kivy project requires it. We will fix this and others
in future versions.

FAQ

Application quit abnormally!

In debug mode, all the print statements are sent to the Xcode console.
Looking and grep’ing these logs is highly encouraged. You’ll probably find
that you missed to build/install a required dependency. Not your case?
Feel free to ask on our Discord support channels.

How can Apple accept a python app?

We managed to merge the app binary with all the libraries into a single binary,
called libpython. This means all binary modules are loaded beforehand, so
nothing is dynamically loaded.

Have you already submitted a Kivy application to the App store?

Yes, absolutely. Kivy Apps in the Apple App Store [https://github.com/kivy/kivy/wiki/List-of-Kivy-Projects#kivy-apps-in-the-apple-app-store].

Package licensing

Warning

This is not a legally authoritative guide! The Kivy organisation,
authors and contributors take no responsibility for any lack of knowledge,
information or advice presented here. The guide is merely informative and is
meant to protect inexperienced users.

Your code alone may not require including licensing information or copyright
notices of other included software, but binaries are something else. When a
binary (.exe, .app, .apk, …) is created, it includes Kivy, its dependencies
and other packages that your application uses.

Some of them are licensed in a way that requires including a copyright notice
somewhere in your app (or more). Before
distributing any of the binaries, please check all the created files that
don’t belong to your source (.dll, .pyd, .so, …) and include the appropriate
copyright notices if required by the license the files belong to. This way you
may satisfy licensing requirements of the Kivy deps.

Dependencies

All of the dependencies will be used at least partially on each platform Kivy
supports. You therefore need to comply to their licenses, which mostly requires
only pasting a copyright notice in your app and not pretending you wrote the
code.

	docutils [https://docutils.sourceforge.io/COPYING.html]

	`pygments https://github.com/pygments/pygments/blob/master/LICENSE`_

	sdl2 [https://www.libsdl.org/license.php]

	glew [http://glew.sourceforge.net/glew.txt]

	gstreamer [https://github.com/GStreamer/gstreamer/blob/master/COPYING]
(if used)

	image & audio libraries(e.g. SDL_mixer has them [https://github.com/libsdl-org/SDL_mixer/tree/master/external])

You’ll probably need to check image and audio libraries manually (most begin
with lib). The LICENSE* files that belong to them should be included by
PyInstaller, but are not included by python-for-android and you need to find
them.

Windows (PyInstaller)

To access some Windows API features, Kivy uses the pypiwin32 [https://pypi.python.org/pypi/pypiwin32] package. This
package is released under the
PSF license [https://opensource.org/licenses/Python-2.0].

Visual Studio Redistributables

Python compiled with Visual Studio (official) includes files from Microsoft and
you are only allowed to redistribute them under specific conditions listed in
the CRTlicense. You need to include the names of the files and a reworded
version of Py2 CRT license [https://hg.python.org/sandbox/2.7/file/tip/Tools/msi/crtlicense.txt] or Py3 CRT license [https://hg.python.org/cpython/file/tip/Tools/msi/exe/crtlicense.txt] (depending which interpreter you use) and
present these to the end-user of your application in order to satisfy their
requirements.

	List of redistributables [https://msdn.microsoft.com/en-us/library/8kche8ah(v=vs.90).aspx]

Other libraries

	zlib [https://github.com/madler/zlib/blob/master/README]

Note

Please add the attributions for other libraries that you
don’t use directly but are present after packaging with e.g. PyInstaller
on Windows.

Linux

Linux has many distributions which means there’s no correct guide for all of
the distributions. This applies to the RPi too. However, it can be
simplified in two ways depending on how you create a package (also with
PyInstaller): with or without including binaries.

If the binaries are included, you should check every file (e.g. .so) that’s
not your source and find the license it belongs to. According to that license,
you’ll probably need to put an attribution into your application or possibly
more, depending on the requirements of that license.

If the binaries are not included (which allows packaging your app as e.g. a
.deb package), there’s a situation bad for your user. It’s up to you to decide whether you
satisfy the conditions of other licenses and, for example, include copyright
attributions into your app or not.

Android

As APK or AAB are just an archive of files: you can extract files from them and (as in
Windows redistributables) check all the files.

private.tar contains all the included files. Most
of them are related to Kivy, Python or your source, but those that aren’t need
checking.

apk: APK/assets/private.tar

aab: AAB/base/assets/private.tar

There are other included libraries, included either by Kivy directly or through
SDL2, that are located in APK/lib/* or AAB/base/lib/*. Most of them are related
to dependencies or are produced by python-for-android and are part of its source
(and licensing).

Warning

libpybundle.so is actually a tarball that contains python modules and site-packages.
You’ll probably want to inspect it for licensing purposes via tar -xvf libpybundle.so.

macOS

Missing.

iOS

Missing.

Avoiding binaries

There might be a way how to avoid this licensing process by avoiding creating
a distribution with third-party stuff completely. With Python you can create
a module, which is only your code with __main__.py + setup.py that only
lists required dependencies.

This way, you can still distribute your app - your code - and you might not
need to care about other licenses. The combination of your code and the
dependencies could be specified as a “usage” rather than a “distribution”. The
responsibility of satisfying licenses, however, most likely transfers to your
user, who needs to assemble the environment to even run the module. If you care
about your users, you might want to slow down a little and read more about the
consequences [http://programmers.stackexchange.com/a/234295].

Tutorials

	Pong Game Tutorial
	Introduction

	Getting Started

	Add Simple Graphics

	Add the Ball

	Adding Ball Animation

	Connect Input Events

	Where To Go Now?

	A Simple Paint App
	Basic Considerations

	Paint Widget

	Crash Course
	Basic Info

Pong Game Tutorial

Introduction

Welcome to the Pong tutorial

This tutorial will teach you how to write pong using Kivy. We’ll start with
a basic application like the one described in the Create an application and turn
it into a playable pong game, describing each step along the way.

[image: ../_images/pong.jpg]
Here is a check list before starting this tutorial:

	You have a working Kivy installation. See the Installing Kivy
section for detailed descriptions

	You know how to run a basic Kivy application. See Create an application
if you don’t.

If you have read the programming guide, and understand both basic Widget
concepts (A Simple Paint App) and basic concepts of the kv language
(Kv language), you can probably skip the first 2
steps and go straight to step 3.

Note

You can find the entire source code–and source code files for each step–in
the Kivy examples directory under tutorials/pong/.

Ready? Sweet, let’s get started!

Getting Started

Getting Started

Let’s start by getting a really simple Kivy app up and running. Create a
directory for the game and a file named main.py

 1from kivy.app import App
 2from kivy.uix.widget import Widget
 3
 4
 5class PongGame(Widget):
 6 pass
 7
 8
 9class PongApp(App):
10 def build(self):
11 return PongGame()
12
13
14if __name__ == '__main__':
15 PongApp().run()

Go ahead and run the application. It should just show a black window at this
point. What we’ve done is create a very simple Kivy App,
which creates an instance of our PongGame Widget class and returns it as
the root element for the applications UI, which you should imagine at this
point as a hierarchical tree of Widgets. Kivy places this widget-tree in the
default Window. In the next step, we will draw the
Pong background and scores by defining how the PongGame widget looks.

Add Simple Graphics

Creation of pong.kv

We will use a .kv file to define the look and feel of the PongGame class.
Since our App class is called PongApp, we can simply create a file
called pong.kv in the same directory that will be automatically loaded
when the application is run. So create a new file called ``pong.kv`` and add
the following contents.

 1#:kivy 1.0.9
 2
 3<PongGame>:
 4 canvas:
 5 Rectangle:
 6 pos: self.center_x - 5, 0
 7 size: 10, self.height
 8
 9 Label:
10 font_size: 70
11 center_x: root.width / 4
12 top: root.top - 50
13 text: "0"
14
15 Label:
16 font_size: 70
17 center_x: root.width * 3 / 4
18 top: root.top - 50
19 text: "0"

Note

COMMON ERROR: The name of the kv file, e.g. pong.kv, must match the name of the app,
e.g. PongApp (the part before the App ending).

If you run the app now, you should see a vertical bar in the middle, and two
zeros where the player scores will be displayed.

Explaining the Kv File Syntax

Before going on to the next step, you might want to take a closer look at
the contents of the kv file we just created and figure out what is going on.
If you understand what’s happening, you can probably skip ahead to the next
step.

On the very first line we have:

#:kivy 1.0.9

This first line is required in every kv file. It should start with #:kivy
followed by a space and the Kivy version it is intended for (so Kivy can make
sure you have at least the required version, or handle backwards compatibility
later on).

After that, we begin defining rules that are applied to all PongGame
instances:

<PongGame>:
 ...

Like Python, kv files use indentation to define nested blocks. A block defined
with a class name inside the < and > characters is a
Widget rule. It will be applied to any instance of
the named class. If you replaced PongGame with Widget in our example, all
Widget instances would have the vertical line and the two Label widgets inside
them because it would define these rules for all Widget instances.

Inside a rule section, you can add various blocks to define the style and
contents of the widgets they will be applied to. You can:

	set property values

	add child widgets

	define a canvas section in which you can add Graphics instructions that
define how the widget is rendered.

The first block inside the <PongGame> rule we have is a canvas block:

1<PongGame>:
2 canvas:
3 Rectangle:
4 pos: self.center_x - 5, 0
5 size: 10, self.height

So this canvas block says that the PongGame widget should draw some
graphics primitives. In this case, we add a rectangle to the canvas. We set
the pos of the rectangle to be 5 pixels left of the horizontal center of
the widget, and 0 for y. The size of the rectangle is set to 10 pixels
in width, and the widget’s height in height. The nice thing about defining the
graphics like this, is that the rendered rectangle will be automatically
updated when the properties of any widgets used in the value expression change.

Note

Try to resize the application window and notice what happens. That’s
right, the entire UI resizes automatically. The standard behaviour of the
Window is to resize an element based on its property size_hint. The
default widget size_hint is (1,1), meaning it will be stretched 100% in both
x-direction and y-direction and hence fill the available space.
Since the pos and size of the rectangle and center_x and top of the score
labels were defined within
the context of the PongGame class, these properties will automatically
update when the corresponding widget properties change. Using the Kv
language gives you automatic property binding. :)

The last two sections we add look pretty similar. Each of them adds a Label
widget as a child widget to the PongGame widget. For now, the text on
both of them is just set to “0”. We’ll hook that up to the actual
score once we have the logic implemented, but the labels already
look good since we set a bigger font_size, and positioned them relatively
to the root widget. The root keyword can be used inside the child block to
refer back to the parent/root widget the rule applies to (PongGame in this
case):

 1<PongGame>:
 2 # ...
 3
 4 Label:
 5 font_size: 70
 6 center_x: root.width / 4
 7 top: root.top - 50
 8 text: "0"
 9
10 Label:
11 font_size: 70
12 center_x: root.width * 3 / 4
13 top: root.top - 50
14 text: "0"

Add the Ball

Add the Ball

Ok, so we have a basic pong arena to play in, but we still need the players and
a ball to hit around. Let’s start with the ball. We’ll add a new PongBall
class to create a widget that will be our ball and make it bounce around.

PongBall Class

Here is the Python code for the PongBall class:

 1class PongBall(Widget):
 2
 3 # velocity of the ball on x and y axis
 4 velocity_x = NumericProperty(0)
 5 velocity_y = NumericProperty(0)
 6
 7 # referencelist property so we can use ball.velocity as
 8 # a shorthand, just like e.g. w.pos for w.x and w.y
 9 velocity = ReferenceListProperty(velocity_x, velocity_y)
10
11 # ``move`` function will move the ball one step. This
12 # will be called in equal intervals to animate the ball
13 def move(self):
14 self.pos = Vector(*self.velocity) + self.pos

And here is the kv rule used to draw the ball as a white circle:

1<PongBall>:
2 size: 50, 50
3 canvas:
4 Ellipse:
5 pos: self.pos
6 size: self.size

To make it all work, you also have to add the imports for the
Properties Property classes used and the
Vector.

Here is the entire updated python code and kv file for this step:

	main.py:
	 1from kivy.app import App
 2from kivy.uix.widget import Widget
 3from kivy.properties import NumericProperty, ReferenceListProperty
 4from kivy.vector import Vector
 5
 6
 7class PongBall(Widget):
 8 velocity_x = NumericProperty(0)
 9 velocity_y = NumericProperty(0)
10 velocity = ReferenceListProperty(velocity_x, velocity_y)
11
12 def move(self):
13 self.pos = Vector(*self.velocity) + self.pos
14
15
16class PongGame(Widget):
17 pass
18
19
20class PongApp(App):
21 def build(self):
22 return PongGame()
23
24
25if __name__ == '__main__':
26 PongApp().run()

	pong.kv:
	 1#:kivy 1.0.9
 2
 3<PongBall>:
 4 size: 50, 50
 5 canvas:
 6 Ellipse:
 7 pos: self.pos
 8 size: self.size
 9
10<PongGame>:
11 canvas:
12 Rectangle:
13 pos: self.center_x - 5, 0
14 size: 10, self.height
15
16 Label:
17 font_size: 70
18 center_x: root.width / 4
19 top: root.top - 50
20 text: "0"
21
22 Label:
23 font_size: 70
24 center_x: root.width * 3 / 4
25 top: root.top - 50
26 text: "0"
27
28 PongBall:
29 center: self.parent.center
30

Note that not only a <PongBall> widget rule has been added, but also a
child widget PongBall in the <PongGame> widget rule.

Adding Ball Animation

Making the ball move

Cool, so now we have a ball, and it even has a move function… but it’s not
moving yet. Let’s fix that.

Scheduling Functions on the Clock

We need the move method of our ball to be called regularly. Luckily, Kivy
makes this pretty easy by letting us schedule any function we want using the
Clock and specifying the interval:

Clock.schedule_interval(game.update, 1.0/60.0)

This line for example, would cause the update function of the game object to
be called once every 60th of a second (60 times per second).

Object Properties/References

We have another problem though. We’d like to make sure the PongBall has its
move function called regularly, but in our code we don’t have any references
to the ball object since we just added it via the kv file
inside the kv rule for the PongGame class. The only reference to our
game is the one we return in the applications build method.

Since we’re going to have to do more than just move the ball (e.g.
bounce it off the walls and later the players racket), we’ll probably need
an update method for our PongGame class anyway. Furthermore, given that
we have a reference to the game object already, we can easily schedule its new
update method when the application gets built:

 1class PongGame(Widget):
 2
 3 def update(self, dt):
 4 # call ball.move and other stuff
 5 pass
 6
 7class PongApp(App):
 8
 9 def build(self):
10 game = PongGame()
11 Clock.schedule_interval(game.update, 1.0/60.0)
12 return game

However, that still doesn’t change the fact that we don’t have a reference to the
PongBall child widget created by the kv rule. To fix this, we can add an
ObjectProperty
to the PongGame class, and hook it up to the widget created in
the kv rule. Once that’s done, we can easily reference the ball property
inside the update method and even make it bounce off the edges:

 1class PongGame(Widget):
 2 ball = ObjectProperty(None)
 3
 4 def update(self, dt):
 5 self.ball.move()
 6
 7 # bounce off top and bottom
 8 if (self.ball.y < 0) or (self.ball.top > self.height):
 9 self.ball.velocity_y *= -1
10
11 # bounce off left and right
12 if (self.ball.x < 0) or (self.ball.right > self.width):
13 self.ball.velocity_x *= -1

Don’t forget to hook it up in the kv file, by giving the child widget an id
and setting the PongGame’s ball ObjectProperty to that id:

1<PongGame>:
2 ball: pong_ball
3
4 # ... (canvas and Labels)
5
6 PongBall:
7 id: pong_ball
8 center: self.parent.center

Note

At this point everything is hooked up for the ball to bounce around. If
you’re coding along as we go, you might be wondering why the ball isn’t
moving anywhere. The ball’s velocity is set to 0 on both x and y.
In the code listing below, a serve_ball method is
added to the PongGame class and called in the app’s build method. It sets a
random x and y velocity for the ball, and also resets the position, so we
can use it later to reset the ball when a player has scored a point.

Here is the entire code for this step:

	main.py:
	 1from kivy.app import App
 2from kivy.uix.widget import Widget
 3from kivy.properties import (
 4 NumericProperty, ReferenceListProperty, ObjectProperty
 5)
 6from kivy.vector import Vector
 7from kivy.clock import Clock
 8from random import randint
 9
10
11class PongBall(Widget):
12 velocity_x = NumericProperty(0)
13 velocity_y = NumericProperty(0)
14 velocity = ReferenceListProperty(velocity_x, velocity_y)
15
16 def move(self):
17 self.pos = Vector(*self.velocity) + self.pos
18
19
20class PongGame(Widget):
21 ball = ObjectProperty(None)
22
23 def serve_ball(self):
24 self.ball.center = self.center
25 self.ball.velocity = Vector(4, 0).rotate(randint(0, 360))
26
27 def update(self, dt):
28 self.ball.move()
29
30 # bounce off top and bottom
31 if (self.ball.y < 0) or (self.ball.top > self.height):
32 self.ball.velocity_y *= -1
33
34 # bounce off left and right
35 if (self.ball.x < 0) or (self.ball.right > self.width):
36 self.ball.velocity_x *= -1
37
38
39class PongApp(App):
40 def build(self):
41 game = PongGame()
42 game.serve_ball()
43 Clock.schedule_interval(game.update, 1.0 / 60.0)
44 return game
45
46
47if __name__ == '__main__':
48 PongApp().run()

	pong.kv:
	 1#:kivy 1.0.9
 2
 3<PongBall>:
 4 size: 50, 50
 5 canvas:
 6 Ellipse:
 7 pos: self.pos
 8 size: self.size
 9
10<PongGame>:
11 ball: pong_ball
12
13 canvas:
14 Rectangle:
15 pos: self.center_x - 5, 0
16 size: 10, self.height
17
18 Label:
19 font_size: 70
20 center_x: root.width / 4
21 top: root.top - 50
22 text: "0"
23
24 Label:
25 font_size: 70
26 center_x: root.width * 3 / 4
27 top: root.top - 50
28 text: "0"
29
30 PongBall:
31 id: pong_ball
32 center: self.parent.center
33

Connect Input Events

Adding Players and reacting to touch input

Sweet, our ball is bouncing around. The only things missing now are the movable
player rackets and keeping track of the score. We won’t go over all the
details of creating the class and kv rules again, since those concepts were
already covered in the previous steps. Instead, let’s focus on how to move the
Player widgets in response to user input. You can get the whole code and kv
rules for the PongPaddle class at the end of this section.

In Kivy, a widget can react to input by implementing the
on_touch_down, the
on_touch_move and the
on_touch_up
methods. By default, the Widget class
implements these methods by just calling the corresponding method on all its
child widgets to pass on the event until one of the children returns True.

Pong is pretty simple. The rackets just need to move up and down. In fact it’s
so simple, we don’t even really need to have the player widgets handle the
events themselves. We’ll just implement the on_touch_move function for the
PongGame class and have it set the position of the left or right player based
on whether the touch occurred on the left or right side of the screen.

Check the on_touch_move handler:

1def on_touch_move(self, touch):
2 if touch.x < self.width/3:
3 self.player1.center_y = touch.y
4 if touch.x > self.width - self.width/3:
5 self.player2.center_y = touch.y

We’ll keep the score for each player in a
NumericProperty. The score labels of the PongGame
are kept updated by changing the NumericProperty score, which in turn
updates the PongGame child labels text property. This binding
occurs because Kivy properties automatically bind to any references
in their corresponding kv files. When the ball
escapes out of the sides, we’ll update the score and serve the ball
again by changing the update method in the PongGame class. The PongPaddle
class also implements a bounce_ball method, so that the ball bounces
differently based on where it hits the racket. Here is the code for the
PongPaddle class:

1class PongPaddle(Widget):
2
3 score = NumericProperty(0)
4
5 def bounce_ball(self, ball):
6 if self.collide_widget(ball):
7 speedup = 1.1
8 offset = 0.02 * Vector(0, ball.center_y-self.center_y)
9 ball.velocity = speedup * (offset - ball.velocity)

Note

This algorithm for ball bouncing is very simple, but will have strange behavior
if the ball hits the paddle from the side or bottom…this is something you could
try to fix yourself if you like.

And here it is in context. Pretty much done:

	main.py:
	 1from kivy.app import App
 2from kivy.uix.widget import Widget
 3from kivy.properties import (
 4 NumericProperty, ReferenceListProperty, ObjectProperty
 5)
 6from kivy.vector import Vector
 7from kivy.clock import Clock
 8
 9
10class PongPaddle(Widget):
11 score = NumericProperty(0)
12
13 def bounce_ball(self, ball):
14 if self.collide_widget(ball):
15 vx, vy = ball.velocity
16 offset = (ball.center_y - self.center_y) / (self.height / 2)
17 bounced = Vector(-1 * vx, vy)
18 vel = bounced * 1.1
19 ball.velocity = vel.x, vel.y + offset
20
21
22class PongBall(Widget):
23 velocity_x = NumericProperty(0)
24 velocity_y = NumericProperty(0)
25 velocity = ReferenceListProperty(velocity_x, velocity_y)
26
27 def move(self):
28 self.pos = Vector(*self.velocity) + self.pos
29
30
31class PongGame(Widget):
32 ball = ObjectProperty(None)
33 player1 = ObjectProperty(None)
34 player2 = ObjectProperty(None)
35
36 def serve_ball(self, vel=(4, 0)):
37 self.ball.center = self.center
38 self.ball.velocity = vel
39
40 def update(self, dt):
41 self.ball.move()
42
43 # bounce off paddles
44 self.player1.bounce_ball(self.ball)
45 self.player2.bounce_ball(self.ball)
46
47 # bounce ball off bottom or top
48 if (self.ball.y < self.y) or (self.ball.top > self.top):
49 self.ball.velocity_y *= -1
50
51 # went off to a side to score point?
52 if self.ball.x < self.x:
53 self.player2.score += 1
54 self.serve_ball(vel=(4, 0))
55 if self.ball.right > self.width:
56 self.player1.score += 1
57 self.serve_ball(vel=(-4, 0))
58
59 def on_touch_move(self, touch):
60 if touch.x < self.width / 3:
61 self.player1.center_y = touch.y
62 if touch.x > self.width - self.width / 3:
63 self.player2.center_y = touch.y
64
65
66class PongApp(App):
67 def build(self):
68 game = PongGame()
69 game.serve_ball()
70 Clock.schedule_interval(game.update, 1.0 / 60.0)
71 return game
72
73
74if __name__ == '__main__':
75 PongApp().run()

pong.kv:

 1#:kivy 1.0.9
 2
 3<PongBall>:
 4 size: 50, 50
 5 canvas:
 6 Ellipse:
 7 pos: self.pos
 8 size: self.size
 9
10<PongPaddle>:
11 size: 25, 200
12 canvas:
13 Rectangle:
14 pos: self.pos
15 size: self.size
16
17<PongGame>:
18 ball: pong_ball
19 player1: player_left
20 player2: player_right
21
22 canvas:
23 Rectangle:
24 pos: self.center_x - 5, 0
25 size: 10, self.height
26
27 Label:
28 font_size: 70
29 center_x: root.width / 4
30 top: root.top - 50
31 text: str(root.player1.score)
32
33 Label:
34 font_size: 70
35 center_x: root.width * 3 / 4
36 top: root.top - 50
37 text: str(root.player2.score)
38
39 PongBall:
40 id: pong_ball
41 center: self.parent.center
42
43 PongPaddle:
44 id: player_left
45 x: root.x
46 center_y: root.center_y
47
48 PongPaddle:
49 id: player_right
50 x: root.width - self.width
51 center_y: root.center_y
52

Where To Go Now?

Have some fun

Well, the pong game is pretty much complete. If you understood all of the
things that are covered in this tutorial, give yourself a pat on the back and
think about how you could improve the game. Here are a few ideas of things
you could do:

	Add some nicer graphics / images. (Hint: check out the
source property on
the graphics instructions like circle or
Rectangle, to set an image as the
texture.)

	Make the game end after a certain score. Maybe once a player has 10
points, you can display a large “PLAYER 1 WINS” label and/or add a main menu
to start, pause and reset the game. (Hint: check out the
Button and
Label
classes, and figure out how to use their add_widget and remove_widget
functions to add or remove widgets dynamically.)

	Make it a 4 player Pong Game. Most tablets have Multi-Touch support, so
wouldn’t it be cool to have a player on each side and have four
people play at the same time?

	Fix the simplistic collision check so hitting the ball with an end of
the paddle results in a more realistic bounce.

Note

You can find the entire source code–and source code files for each step–in
the Kivy examples directory under tutorials/pong/.

A Simple Paint App

In the following tutorial, you will be guided through the creation of your
first widget. This provides powerful and important knowledge when
programming Kivy applications, as it lets you create completely new user
interfaces with custom elements for your specific purpose.

Basic Considerations

When creating an application, you have to ask yourself three important questions:

	What data does my application process?

	How do I visually represent that data?

	How does the user interact with that data?

If you want to write a very simple line drawing application for example, you
most likely want the user to just draw on the screen with his/her fingers.
That’s how the user interacts with your application. While doing so,
your application would memorize the positions where the user’s finger were,
so that you can later draw lines between those positions. So the points
where the fingers were would be your data and the lines that you draw
between them would be your visual representation.

In Kivy, an application’s user interface is composed of Widgets. Everything
that you see on the screen is somehow drawn by a widget. Often you would
like to be able to reuse code that you already wrote in a different
context, which is why widgets typically represent one specific instance
that answers the three questions above. A widget encapsulates data,
defines the user’s interaction with that data and draws its visual
representation.
You can build anything from simple to complex user interfaces by
nesting widgets. There are many widgets built in, such as buttons, sliders
and other common stuff. In many cases, however, you need a custom widget
that is beyond the scope of what is shipped with Kivy (e.g. a
medical visualization widget).

So keep these three questions in mind when you design your widgets. Try to
write them in a minimal and reusable manner (i.e. a widget does exactly
what its supposed to do and nothing more. If you need more, write more
widgets or compose other widgets of smaller widgets. We try to adhere to the
Single Responsibility Principle [http://en.wikipedia.org/wiki/Single_responsibility_principle]).

Paint Widget

We’re sure one of your childhood dreams has always been creating your own
multitouch paint program. Allow us to help you achieve that. In the
following sections you will successively learn how to write a program like
that using Kivy. Make sure that you have read and understood
Create an application. You have? Great! Let’s get started!

Initial Structure

Let’s start by writing the very basic code structure that we need. By the way,
all the different pieces of code that are used in this section are also
available in the examples/guide/firstwidget directory that comes with Kivy,
so you don’t need to copy & paste it all the time.
Here is the basic code skeleton that we will need:

 1from kivy.app import App
 2from kivy.uix.widget import Widget
 3
 4
 5class MyPaintWidget(Widget):
 6 pass
 7
 8
 9class MyPaintApp(App):
10 def build(self):
11 return MyPaintWidget()
12
13
14if __name__ == '__main__':
15 MyPaintApp().run()

This is actually really simple. Save it as paint.py.
If you run it, you should only see a black screen.
As you can see, instead of using a built-in widget such as a Button (see
Create an application), we are going to write our own widget to do the drawing.
We do that by creating a class that inherits from
Widget (line 5-6) and although that class does nothing
yet, we can still treat it like a normal Kivy widget (line 11).
The if __name__ ... construct (line 14) is a Python mechanism that prevents
you from executing the code in the if-statement when importing from the file,
i.e. if you write import paint, it won’t do something unexpected but
just nicely provide the classes defined in the file.

Note

You may be wondering why you have to import App and Widget separately,
instead of doing something like from kivy import *. While shorter,
this would have the disadvantage of polluting your namespace [http://en.wikipedia.org/wiki/Namespace_%28computer_science%29#Python]
and make the start of the application potentially much slower.
It can also introduce ambiguity into class and variable naming,
so is generally frowned upon in the Python community. The way we do it is
faster and cleaner.

Adding Behaviour

Let’s now add some actual behaviour to the widget, i.e. make it react to user
input. Change the code like so:

 1from kivy.app import App
 2from kivy.uix.widget import Widget
 3
 4
 5class MyPaintWidget(Widget):
 6 def on_touch_down(self, touch):
 7 print(touch)
 8
 9
10class MyPaintApp(App):
11 def build(self):
12 return MyPaintWidget()
13
14
15if __name__ == '__main__':
16 MyPaintApp().run()

This is just to show how easy it is to react to user input. When a
MotionEvent (i.e. a touch, click, etc.) occurs,
we simply print the information about the touch object to the console.
You won’t see anything on the screen, but if you observe the command-line from
which you are running the program, you will see a message for every touch.
This also demonstrates that a widget does not have to
have a visual representation.

Now that’s not really an overwhelming user experience. Let’s add some code
that actually draws something into our window:

 1from kivy.app import App
 2from kivy.uix.widget import Widget
 3from kivy.graphics import Color, Ellipse
 4
 5
 6class MyPaintWidget(Widget):
 7
 8 def on_touch_down(self, touch):
 9 with self.canvas:
10 Color(1, 1, 0)
11 d = 30.
12 Ellipse(pos=(touch.x - d / 2, touch.y - d / 2), size=(d, d))
13
14
15class MyPaintApp(App):
16
17 def build(self):
18 return MyPaintWidget()
19
20
21if __name__ == '__main__':
22 MyPaintApp().run()

[image: ../_images/guide-3.jpg]
If you run your code with these modifications, you will see that every time
you touch, there will be a small yellow circle drawn where you touched.
How does it work?

	Line 9: We use Python’s with statement with the widget’s
Canvas object. This is like an
area in which the widget can draw things to represent itself on the
screen. By using the with statement with it, all successive
drawing commands that are properly indented will modify this canvas.
The with statement also makes sure that after our drawing,
internal state can be cleaned up properly.

	Line 10: You might have guessed it already: This sets the
Color for successive
drawing operations to yellow (default color format is RGB, so (1, 1, 0) is
yellow). This is true until another
Color is set.
Think of this as dipping your brushes in that color, which you can
then use to draw on a canvas until you dip the brushes into another color.

	Line 11: We specify the diameter for the circle that we are about to
draw. Using a variable for that is preferable since we need to refer
to that value multiple times and we don’t want to have to change it
in several places if we want the circle bigger or smaller.

	Line 12: To draw a circle, we simply draw an
Ellipse with equal width
and height. Since we want the circle to be drawn where the user
touches, we pass the touch’s position to the ellipse.
Note that we need to shift the ellipse by -d/2 in the x and y
directions (i.e. left and downwards) because the position specifies the
bottom left corner of the ellipse’s bounding box, and we want it to be
centered around our touch.

That was easy, wasn’t it?
It gets better! Update the code to look like this:

 1from kivy.app import App
 2from kivy.uix.widget import Widget
 3from kivy.graphics import Color, Ellipse, Line
 4
 5
 6class MyPaintWidget(Widget):
 7
 8 def on_touch_down(self, touch):
 9 with self.canvas:
10 Color(1, 1, 0)
11 d = 30.
12 Ellipse(pos=(touch.x - d / 2, touch.y - d / 2), size=(d, d))
13 touch.ud['line'] = Line(points=(touch.x, touch.y))
14
15 def on_touch_move(self, touch):
16 touch.ud['line'].points += [touch.x, touch.y]
17
18
19class MyPaintApp(App):
20
21 def build(self):
22 return MyPaintWidget()
23
24
25if __name__ == '__main__':
26 MyPaintApp().run()

[image: ../_images/guide-4.jpg]

	This is what has changed:
	
	Line 3: We now not only import the
Ellipse drawing instruction,
but also the Line
drawing instruction. If you look at the documentation for
Line, you will see that
it accepts a points argument that has to be a list of 2D point
coordinates, like (x1, y1, x2, y2, ..., xN, yN).

	Line 13: This is where it gets interesting. touch.ud is a Python
dictionary (type <dict>) that allows us to store custom attributes
for a touch.

	Line 13: We make use of the Line instruction that we imported and
set a Line up for drawing. Since this is done in on_touch_down,
there will be a new line for every new touch. By creating the line
inside the with block, the canvas automatically knows about the
line and will draw it. We just want to modify the line later, so we
store a reference to it in the touch.ud dictionary under the
arbitrarily chosen but aptly named key ‘line’.
We pass the line that we’re creating the initial touch position
because that’s where our line will begin.

	Lines 15: We add a new method to our widget. This is similar to the
on_touch_down method, but instead of being called when a new
touch occurs, this method is being called when an existing touch
(for which on_touch_down was already called) moves, i.e. its
position changes. Note that this is the same
MotionEvent object with updated
attributes. This is something we found incredibly handy and you will
shortly see why.

	Line 16: Remember: This is the same touch object that we got in
on_touch_down, so we can simply access the data we stored away
in the touch.ud dictionary!
To the line we set up for this touch earlier, we now add the current
position of the touch as a new point. We know that we need to extend
the line because this happens in on_touch_move, which is only
called when the touch has moved, which is exactly why we want to
update the line.
Storing the line in the touch.ud makes it a whole lot
easier for us as we don’t have to maintain our own touch-to-line
bookkeeping.

So far so good. This isn’t exactly beautiful yet, though. It looks a bit
like spaghetti bolognese. How about giving each touch its own color?
Great, let’s do it:

 1from random import random
 2from kivy.app import App
 3from kivy.uix.widget import Widget
 4from kivy.graphics import Color, Ellipse, Line
 5
 6
 7class MyPaintWidget(Widget):
 8
 9 def on_touch_down(self, touch):
10 color = (random(), random(), random())
11 with self.canvas:
12 Color(*color)
13 d = 30.
14 Ellipse(pos=(touch.x - d / 2, touch.y - d / 2), size=(d, d))
15 touch.ud['line'] = Line(points=(touch.x, touch.y))
16
17 def on_touch_move(self, touch):
18 touch.ud['line'].points += [touch.x, touch.y]
19
20
21class MyPaintApp(App):
22
23 def build(self):
24 return MyPaintWidget()
25
26
27if __name__ == '__main__':
28 MyPaintApp().run()

[image: ../_images/guide-5.jpg]
Here are the changes:

	Line 1: We import Python’s random() function that will give us
random values in the range of [0., 1.).

	Line 10: In this case we simply create a new tuple of 3 random
float values that will represent a random RGB color. Since we do
this in on_touch_down, every new touch will get its own color.
Don’t get confused by the use of
tuples [http://docs.python.org/2/tutorial/datastructures.html#tuples-and-sequences].
We’re just binding the tuple to color for use as a shortcut
within this method because we’re lazy.

	Line 12: As before, we set the color for the canvas. Only this time
we use the random values we generated and feed them to the color
class using Python’s tuple unpacking syntax (since the Color class
expects three individual color components instead of just 1. If we
were to pass the tuple directly, that would be just 1 value being
passed, regardless of the fact that the tuple itself contains 3
values).

This looks a lot nicer already! With a lot of skill and patience, you
might even be able to create a nice little drawing!

Note

Since by default the Color
instructions assume RGB mode and we’re feeding a tuple with three
random float values to it, it might very well happen that we end up
with a lot of dark or even black colors if we are unlucky. That would
be bad because by default the background color is dark as well, so you
wouldn’t be able to (easily) see the lines you draw.
There is a nice trick to prevent this: Instead of creating a tuple with
three random values, create a tuple like this: (random(), 1., 1.).
Then, when passing it to the color instruction, set the mode to HSV
color space: Color(*color, mode='hsv'). This way you will have a
smaller number of possible colors, but the colors that you get will
always be equally bright: only the hue changes.

Bonus Points

At this point, we could say we are done. The widget does what it’s
supposed to do: it traces the touches and draws lines. It even draws
circles at the positions where a line begins.

But what if the user wants to start a new drawing? With the current code,
the only way to clear the window would be to restart the entire application.
Luckily, we can do better. Let us add a Clear button that erases all the
lines and circles that have been drawn so far.
There are two options now:

	We could either create the button as a child of our widget. That would
imply that if you create more than one widget, every widget gets its own
button. If you’re not careful, this will also allow users to draw on top
of the button, which might not be what you want.

	Or we set up the button only once, initially, in our app class and
when it’s pressed we clear the widget.

For our simple example, it doesn’t really matter that much. For larger
applications you should give some thought to who does what in your app.
We’ll go with the second option here so that you see how you can build up
your application’s widget tree in your app class’s build()
method. We’ll also change to the HSV color space (see preceding note):

 1from random import random
 2from kivy.app import App
 3from kivy.uix.widget import Widget
 4from kivy.uix.button import Button
 5from kivy.graphics import Color, Ellipse, Line
 6
 7
 8class MyPaintWidget(Widget):
 9
10 def on_touch_down(self, touch):
11 color = (random(), 1, 1)
12 with self.canvas:
13 Color(*color, mode='hsv')
14 d = 30.
15 Ellipse(pos=(touch.x - d / 2, touch.y - d / 2), size=(d, d))
16 touch.ud['line'] = Line(points=(touch.x, touch.y))
17
18 def on_touch_move(self, touch):
19 touch.ud['line'].points += [touch.x, touch.y]
20
21
22class MyPaintApp(App):
23
24 def build(self):
25 parent = Widget()
26 self.painter = MyPaintWidget()
27 clearbtn = Button(text='Clear')
28 clearbtn.bind(on_release=self.clear_canvas)
29 parent.add_widget(self.painter)
30 parent.add_widget(clearbtn)
31 return parent
32
33 def clear_canvas(self, obj):
34 self.painter.canvas.clear()
35
36
37if __name__ == '__main__':
38 MyPaintApp().run()

[image: ../_images/guide-6.jpg]
Here’s what happens:

	Line 4: We added an import statement to be able to use the
Button class.

	Line 25: We create a dummy Widget() object as a parent for both
our painting widget and the button we’re about to add. This is just
a poor-man’s approach to setting up a widget tree hierarchy. We
could just as well use a layout or do some other fancy stuff.
Again: this widget does absolutely nothing except holding the two
widgets we will now add to it as children.

	Line 26: We create our MyPaintWidget() as usual, only this time
we don’t return it directly but bind it to a variable name.

	Line 27: We create a button widget. It will have a label on it that
displays the text ‘Clear’.

	Line 28: We then bind the button’s on_release event (which is fired when
the button is pressed and then released) to the
callback function [http://en.wikipedia.org/wiki/Callback_function#Python]
clear_canvas defined on below on Lines 33 & 34.

	Line 29 & 30: We set up the widget hierarchy by making both the
painter and the clearbtn children of the dummy parent widget.
That means painter and clearbtn are now siblings in the usual computer
science tree terminology.

	Line 33 & 34: Up to now, the button did nothing. It was there,
visible, and you could press it, but nothing would happen.
We change that here: we create a small, throw-away function that is
going to be our
callback function [http://en.wikipedia.org/wiki/Callback_function#Python]
when the button is pressed. The function just clears the painter’s
canvas’ contents, making it black again.

Note

The Kivy Widget class, by design, is kept simple. There are no general
properties such as background color and border color. Instead, the examples
and documentation illustrate how to easily handle such simple things
yourself, as we have done here, setting the color for the canvas, and
drawing the shape. From a simple start, you can move to more elaborate
customization. Higher-level built-in widgets, deriving from Widget, such
as Button, do have convenience properties such as background_color, but
these vary by widget. Use the API docs to see what is offered by a widget,
and subclass if you need to add more functionality.

Congratulations! You’ve written your first Kivy widget. Obviously this was
just a quick introduction. There is much more to discover. We suggest
taking a short break to let what you just learned sink in. Maybe draw some
nice pictures to relax? If you feel like you’ve understood everything and
are ready for more, we encourage you to read on.

Crash Course

The Kivy Crash Course is a series of YouTube video tutorials by
Kivy core developer inclement [https://github.com/inclement]. They provide
a simple walkthrough in Kivy for users who know how to code in Python and is
friendly to Python beginners. After the Pong and Paint
tutorials, this set of videos covers basic features and techniques that can be
used to create your app quicker, keeping your code elegant and eye-friendly.

Basic Info

The Crash Course primarily consists of a series of YouTube videos, each roughly
10 minutes long. There are also articles describing some of the videos and the
code used in the videos.

Topics covered by the Crash Course include:

	Use of the basic Kivy widgets such as the Label, Button, Scatter and
TextInput

	Building an app for android with python-for-android’s old
toolchain [https://github.com/kivy/python-for-android/tree/old_toolchain]

	Binding functions to events

	Using changes in variables on the go

	Smart user interface (Kv language [https://kivy.org/docs/guide/lang.html])

	Properties

	Canvas and drawing

	Label with scrolling

	Positioning and layouts

	Animation and Clock

	Accessing android API (pyjnius [https://github.com/kivy/pyjnius],
plyer [https://github.com/kivy/plyer])

	Settings panel (and building your own options)

	ScreenManager

Links:

	Videos [https://www.youtube.com/watch?v=F7UKmK9eQLY&list=PLdNh1e1kmiPP4YApJm8ENK2yMlwF1_edq]

	Articles [http://inclem.net/pages/kivy-crash-course]

	Code [https://github.com/inclement/kivycrashcourse]

API Reference

The API reference is a lexicographic list of all the different classes,
methods and features that Kivy offers.

	Kivy framework

	Low level Metrics

	Animation

	Application

	Atlas

	Kivy Base

	Cache manager

	Clock object

	Compatibility module for Python 2.7 and >= 3.4

	Configuration object

	Context

	Core Abstraction

	Audio

	Camera

	Clipboard

	OpenGL

	Image

	Spelling

	Text

	Text Markup

	Text layout

	Video

	Window

	Kivy module for binary dependencies.

	Effects

	Damped scroll effect

	Kinetic effect

	Opacity scroll effect

	Scroll effect

	Event dispatcher

	Event Manager

	Factory object

	Garden

	Geometry utilities

	Gesture recognition

	Graphics

	BoxShadow

	CGL: standard C interface for OpenGL

	Graphics compiler

	Context management

	Context instructions

	Framebuffer

	GL instructions

	Canvas

	OpenGL

	OpenGL utilities

	Scissor Instructions

	Shader

	Stencil instructions

	SVG

	Tesselator

	Texture

	Transformation

	Input management

	Motion Event Factory

	Motion Event

	Input Postprocessing

	Calibration

	Dejitter

	Double Tap

	Ignore list

	Retain Touch

	Triple Tap

	Motion Event Provider

	Providers

	Android Joystick Input Provider

	Native support for HID input from the linux kernel

	Leap Motion - finger only

	Native support of Wacom tablet from linuxwacom driver

	Native support of MultitouchSupport framework for MacBook (MaxOSX platform)

	Mouse provider implementation

	Native support for Multitouch devices on Linux, using libmtdev.

	Auto Create Input Provider Config Entry for Available MT Hardware (linux only).

	TUIO Input Provider

	Common definitions for a Windows provider

	Input recorder

	Motion Event Shape

	Interactive launcher

	Kivy Language

	Builder

	Parser

	External libraries

	DDS File library

	GstPlayer

	Python mtdev

	Asynchronous data loader

	Kivy Logging

	Metrics

	Modules

	Console

	Inspector

	JoyCursor

	Keybinding

	Monitor module

	Recorder module

	Screen

	Touchring

	Web Debugger

	Multistroke gesture recognizer

	Network support

	UrlRequest

	Parser utilities

	Properties

	Resources management

	Storage

	Dictionary store

	JSON store

	Redis Store

	Support

	Tools

	Packaging

	Widgets

	Accordion

	Action Bar

	Anchor Layout

	Behaviors

	Button Behavior

	Code Navigation Behavior

	Compound Selection Behavior

	Cover Behavior

	Drag Behavior

	Emacs Behavior

	Focus Behavior

	Kivy Namespaces

	ToggleButton Behavior

	Touch Ripple

	Box Layout

	Bubble

	Button

	Camera

	Carousel

	CheckBox

	Code Input

	Color Picker

	Drop-Down List

	EffectWidget

	FileChooser

	Float Layout

	Gesture Surface

	Grid Layout

	Image

	Label

	Layout

	ModalView

	PageLayout

	Popup

	Progress Bar

	RecycleBoxLayout

	RecycleGridLayout

	RecycleLayout

	RecycleView

	RecycleView Data Model

	RecycleView Layouts

	RecycleView Views

	Relative Layout

	reStructuredText renderer

	Sandbox

	Scatter

	Scatter Layout

	Screen Manager

	ScrollView

	Settings

	Slider

	Spinner

	Splitter

	Stack Layout

	Stencil View

	Switch

	TabbedPanel

	Text Input

	Toggle button

	Tree View

	Video

	Video player

	VKeyboard

	Widget class

	Utils

	Vector

	Weak Method

	Weak Proxy

Kivy framework

Kivy is an open source library for developing multi-touch applications. It is
cross-platform (Linux/OSX/Windows/Android/iOS) and released under
the terms of the MIT License [https://en.wikipedia.org/wiki/MIT_License].

It comes with native support for many multi-touch input devices, a growing
library of multi-touch aware widgets and hardware accelerated OpenGL drawing.
Kivy is designed to let you focus on building custom and highly interactive
applications as quickly and easily as possible.

With Kivy, you can take full advantage of the dynamic nature of Python. There
are thousands of high-quality, free libraries that can be integrated in your
application. At the same time, performance-critical parts are implemented
using Cython [http://cython.org/].

See http://kivy.org for more information.

	
kivy.kivy_base_dir = '/home/docs/checkouts/readthedocs.org/user_builds/kivy/envs/master/lib/python3.7/site-packages/kivy'

	Kivy directory

	
kivy.kivy_config_fn = ''

	Kivy configuration filename

	
kivy.kivy_configure()

	Call post-configuration of Kivy.
This function must be called if you create the window yourself.

	
kivy.kivy_data_dir = '/home/docs/checkouts/readthedocs.org/user_builds/kivy/envs/master/lib/python3.7/site-packages/kivy/data'

	Kivy data directory

	
kivy.kivy_examples_dir = '/home/docs/checkouts/readthedocs.org/user_builds/kivy/envs/master/share/kivy-examples'

	Kivy examples directory

	
kivy.kivy_home_dir = ''

	Kivy user-home storage directory

	
kivy.kivy_icons_dir = '/home/docs/checkouts/readthedocs.org/user_builds/kivy/envs/master/lib/python3.7/site-packages/kivy/data/icons/'

	Kivy icons config path (don’t remove the last ‘’)

	
kivy.kivy_options = {'audio': ('gstplayer', 'pygame', 'ffpyplayer', 'sdl2', 'avplayer'), 'camera': ('opencv', 'gi', 'avfoundation', 'android', 'picamera'), 'clipboard': ('android', 'winctypes', 'xsel', 'xclip', 'dbusklipper', 'nspaste', 'sdl2', 'pygame', 'dummy', 'gtk3'), 'image': ('tex', 'imageio', 'dds', 'sdl2', 'pygame', 'pil', 'ffpy', 'gif'), 'spelling': ('enchant', 'osxappkit'), 'text': ('pil', 'sdl2', 'pygame', 'sdlttf'), 'video': ('gstplayer', 'ffmpeg', 'ffpyplayer', 'null'), 'window': ('egl_rpi', 'sdl2', 'pygame', 'sdl', 'x11')}

	Global settings options for kivy

	
kivy.kivy_register_post_configuration(callback)

	Register a function to be called when kivy_configure() is called.

Warning

Internal use only.

	
kivy.kivy_shader_dir = '/home/docs/checkouts/readthedocs.org/user_builds/kivy/envs/master/lib/python3.7/site-packages/kivy/data/glsl'

	Kivy glsl shader directory

	
kivy.kivy_usermodules_dir = ''

	Kivy user modules directory

	
kivy.parse_kivy_version(version)

	Parses the kivy version as described in require() into a 3-tuple
of ([x, y, z], ‘rc|a|b|dev|post’, ‘N’) where N is the tag revision. The
last two elements may be None.

	
kivy.require(version)

	Require can be used to check the minimum version required to run a Kivy
application. For example, you can start your application code like this:

import kivy
kivy.require('1.0.1')

If a user attempts to run your application with a version of Kivy that is
older than the specified version, an Exception is raised.

The Kivy version string is built like this:

X.Y.Z[tag[tagrevision]]

X is the major version
Y is the minor version
Z is the bugfixes revision

The tag is optional, but may be one of ‘.dev’, ‘.post’, ‘a’, ‘b’, or ‘rc’.
The tagrevision is the revision number of the tag.

Warning

You must not ask for a version with a tag, except -dev. Asking for a
‘dev’ version will just warn the user if the current Kivy
version is not a -dev, but it will never raise an exception.
You must not ask for a version with a tagrevision.

	Animation
	Simple animation

	Multiple properties and transitions

	Sequential animation

	Parallel animation

	Repeating animation

	Animation
	Animation.animated_properties

	Animation.cancel()

	Animation.cancel_all()

	Animation.cancel_property()

	Animation.duration

	Animation.have_properties_to_animate()

	Animation.start()

	Animation.stop()

	Animation.stop_all()

	Animation.stop_property()

	Animation.transition

	AnimationTransition
	AnimationTransition.in_back()

	AnimationTransition.in_bounce()

	AnimationTransition.in_circ()

	AnimationTransition.in_cubic()

	AnimationTransition.in_elastic()

	AnimationTransition.in_expo()

	AnimationTransition.in_out_back()

	AnimationTransition.in_out_bounce()

	AnimationTransition.in_out_circ()

	AnimationTransition.in_out_cubic()

	AnimationTransition.in_out_elastic()

	AnimationTransition.in_out_expo()

	AnimationTransition.in_out_quad()

	AnimationTransition.in_out_quart()

	AnimationTransition.in_out_quint()

	AnimationTransition.in_out_sine()

	AnimationTransition.in_quad()

	AnimationTransition.in_quart()

	AnimationTransition.in_quint()

	AnimationTransition.in_sine()

	AnimationTransition.linear()

	AnimationTransition.out_back()

	AnimationTransition.out_bounce()

	AnimationTransition.out_circ()

	AnimationTransition.out_cubic()

	AnimationTransition.out_elastic()

	AnimationTransition.out_expo()

	AnimationTransition.out_quad()

	AnimationTransition.out_quart()

	AnimationTransition.out_quint()

	AnimationTransition.out_sine()

	Application
	Creating an Application
	Method using build() override

	Method using kv file

	Application configuration
	Use the configuration file

	Create a settings panel

	Profiling with on_start and on_stop

	Customising layout

	Pause mode

	Asynchronous app
	Background

	Async configuration

	Interacting with Kivy app from other coroutines

	App
	App.async_run()

	App.build()

	App.build_config()

	App.build_settings()

	App.close_settings()

	App.config

	App.create_settings()

	App.destroy_settings()

	App.directory

	App.display_settings()

	App.get_application_config()

	App.get_application_icon()

	App.get_application_name()

	App.get_running_app()

	App.icon

	App.kv_directory

	App.kv_file

	App.load_config()

	App.load_kv()

	App.name

	App.on_config_change()

	App.on_pause()

	App.on_resume()

	App.on_start()

	App.on_stop()

	App.open_settings()

	App.options

	App.pause()

	App.root

	App.root_window

	App.run()

	App.settings_cls

	App.stop()

	App.title

	App.use_kivy_settings

	App.user_data_dir

	async_runTouchApp()

	runTouchApp()

	stopTouchApp()

	Asynchronous data loader
	Tweaking the asynchronous loader

	LoaderBase
	LoaderBase.error_image

	LoaderBase.image()

	LoaderBase.loading_image

	LoaderBase.max_upload_per_frame

	LoaderBase.num_workers

	LoaderBase.pause()

	LoaderBase.resume()

	LoaderBase.run()

	LoaderBase.start()

	LoaderBase.stop()

	ProxyImage

	Atlas
	Definition of .atlas files

	How to create an Atlas

	How to use an Atlas

	Manual usage of the Atlas

	Atlas
	Atlas.create()

	Atlas.filename

	Atlas.original_textures

	Atlas.textures

	Cache manager
	Cache
	Cache.append()

	Cache.get()

	Cache.get_lastaccess()

	Cache.get_timestamp()

	Cache.print_usage()

	Cache.register()

	Cache.remove()

	Clock object
	Schedule before frame

	Triggered Events

	Unscheduling

	Clock Lifecycle

	Exception Handling

	Scheduling from __del__

	Threading and Callback Order

	Advanced Clock Details
	Default Clock

	Interruptible Clock

	Free Clock

	Free Only Clock

	Summary

	Async clock support

	Clock

	ClockBase
	ClockBase.usleep()

	ClockBaseBehavior
	ClockBaseBehavior.MIN_SLEEP

	ClockBaseBehavior.async_idle()

	ClockBaseBehavior.async_tick()

	ClockBaseBehavior.frames

	ClockBaseBehavior.frames_displayed

	ClockBaseBehavior.frametime

	ClockBaseBehavior.get_boottime()

	ClockBaseBehavior.get_fps()

	ClockBaseBehavior.get_rfps()

	ClockBaseBehavior.get_time()

	ClockBaseBehavior.idle()

	ClockBaseBehavior.init_async_lib()

	ClockBaseBehavior.post_idle()

	ClockBaseBehavior.pre_idle()

	ClockBaseBehavior.tick()

	ClockBaseBehavior.tick_draw()

	ClockBaseBehavior.time()

	ClockBaseBehavior.usleep()

	ClockBaseFreeInterruptAll

	ClockBaseFreeInterruptOnly
	ClockBaseFreeInterruptOnly.async_idle()

	ClockBaseFreeInterruptOnly.idle()

	ClockBaseInterrupt

	ClockBaseInterruptBehavior
	ClockBaseInterruptBehavior.async_idle()

	ClockBaseInterruptBehavior.idle()

	ClockBaseInterruptBehavior.init_async_lib()

	ClockBaseInterruptBehavior.usleep()

	ClockBaseInterruptFreeBehavior

	ClockEvent
	ClockEvent.callback

	ClockEvent.cancel()

	ClockEvent.cid

	ClockEvent.clock

	ClockEvent.clock_ended_callback

	ClockEvent.get_callback()

	ClockEvent.get_clock_ended_callback()

	ClockEvent.is_triggered

	ClockEvent.loop

	ClockEvent.next

	ClockEvent.prev

	ClockEvent.release()

	ClockEvent.release_ref

	ClockEvent.tick()

	ClockEvent.timeout

	ClockEvent.weak_callback

	ClockEvent.weak_clock_ended_callback

	ClockNotRunningError

	CyClockBase
	CyClockBase.clock_resolution

	CyClockBase.create_lifecycle_aware_trigger()

	CyClockBase.create_trigger()

	CyClockBase.get_before_frame_events()

	CyClockBase.get_events()

	CyClockBase.get_min_timeout()

	CyClockBase.get_resolution()

	CyClockBase.handle_exception()

	CyClockBase.has_ended

	CyClockBase.has_started

	CyClockBase.max_iteration

	CyClockBase.on_schedule()

	CyClockBase.schedule_del_safe()

	CyClockBase.schedule_interval()

	CyClockBase.schedule_lifecycle_aware_del_safe()

	CyClockBase.schedule_once()

	CyClockBase.start_clock()

	CyClockBase.stop_clock()

	CyClockBase.unschedule()

	CyClockBaseFree
	CyClockBaseFree.create_lifecycle_aware_trigger()

	CyClockBaseFree.create_lifecycle_aware_trigger_free()

	CyClockBaseFree.create_trigger()

	CyClockBaseFree.create_trigger_free()

	CyClockBaseFree.get_min_free_timeout()

	CyClockBaseFree.schedule_interval()

	CyClockBaseFree.schedule_interval_free()

	CyClockBaseFree.schedule_once()

	CyClockBaseFree.schedule_once_free()

	FreeClockEvent
	FreeClockEvent.free

	mainthread()

	triggered()

	Compatibility module for Python 2.7 and >= 3.4
	PY2

	clock()

	isclose()

	string_types

	Configuration object
	Applying configurations

	Usage of the Config object

	Changing configuration with environment variables

	Available configuration tokens

	Config

	ConfigParser
	ConfigParser.add_callback()

	ConfigParser.adddefaultsection()

	ConfigParser.get()

	ConfigParser.get_configparser()

	ConfigParser.getdefault()

	ConfigParser.getdefaultint()

	ConfigParser.name

	ConfigParser.read()

	ConfigParser.remove_callback()

	ConfigParser.set()

	ConfigParser.setall()

	ConfigParser.setdefault()

	ConfigParser.setdefaults()

	ConfigParser.update_config()

	ConfigParser.write()

	Context
	Context
	Context.pop()

	get_current_context()

	register_context()

	Event dispatcher
	EventDispatcher
	EventDispatcher.apply_property()

	EventDispatcher.bind()

	EventDispatcher.create_property()

	EventDispatcher.dispatch()

	EventDispatcher.dispatch_children()

	EventDispatcher.dispatch_generic()

	EventDispatcher.events()

	EventDispatcher.fbind()

	EventDispatcher.funbind()

	EventDispatcher.get_property_observers()

	EventDispatcher.getter()

	EventDispatcher.is_event_type()

	EventDispatcher.properties()

	EventDispatcher.property()

	EventDispatcher.proxy_ref

	EventDispatcher.register_event_type()

	EventDispatcher.setter()

	EventDispatcher.unbind()

	EventDispatcher.unbind_uid()

	EventDispatcher.unregister_event_type()

	EventDispatcher.unregister_event_types()

	ObjectWithUid

	Observable
	Observable.bind()

	Observable.fbind()

	Observable.funbind()

	Observable.unbind()

	Observable.unbind_uid()

	Factory object
	Factory

	FactoryException

	Geometry utilities
	circumcircle()

	minimum_bounding_circle()

	Gesture recognition
	Gesture
	Gesture.add_stroke()

	Gesture.dot_product()

	Gesture.get_rigid_rotation()

	Gesture.get_score()

	Gesture.normalize()

	GestureDatabase
	GestureDatabase.add_gesture()

	GestureDatabase.find()

	GestureDatabase.gesture_to_str()

	GestureDatabase.str_to_gesture()

	GestureStroke
	GestureStroke.add_point()

	GestureStroke.center_stroke()

	GestureStroke.normalize_stroke()

	GestureStroke.points_distance()

	GestureStroke.scale_stroke()

	GestureStroke.stroke_length()

	Interactive launcher
	Creating an InteractiveLauncher

	Interactive Development

	Directly Pausing the Application

	Adding Attributes Dynamically
	TODO

	InteractiveLauncher

	SafeMembrane
	SafeMembrane.safeIn()

	SafeMembrane.safeOut()

	Kivy Base
	EventLoop

	EventLoopBase
	EventLoopBase.add_event_listener()

	EventLoopBase.add_input_provider()

	EventLoopBase.add_postproc_module()

	EventLoopBase.async_idle()

	EventLoopBase.close()

	EventLoopBase.dispatch_input()

	EventLoopBase.ensure_window()

	EventLoopBase.exit()

	EventLoopBase.idle()

	EventLoopBase.on_pause()

	EventLoopBase.on_start()

	EventLoopBase.on_stop()

	EventLoopBase.post_dispatch_input()

	EventLoopBase.remove_android_splash()

	EventLoopBase.remove_event_listener()

	EventLoopBase.remove_input_provider()

	EventLoopBase.remove_postproc_module()

	EventLoopBase.run()

	EventLoopBase.set_window()

	EventLoopBase.start()

	EventLoopBase.stop()

	EventLoopBase.touches

	ExceptionHandler
	ExceptionHandler.handle_exception()

	ExceptionManager

	ExceptionManagerBase
	ExceptionManagerBase.PASS

	ExceptionManagerBase.RAISE

	ExceptionManagerBase.add_handler()

	ExceptionManagerBase.handle_exception()

	ExceptionManagerBase.remove_handler()

	async_runTouchApp()

	runTouchApp()

	stopTouchApp()

	Kivy Logging
	Logger object
	Example Usage

	Interaction with other logging

	Logger Configuration
	Kivy Log Mode
	KIVY Mode (default)

	PYTHON Mode

	MIXED Mode

	Config Files

	Logger History

	ColonSplittingLogRecord

	ColoredLogRecord

	ConsoleHandler
	ConsoleHandler.filter()

	FileHandler
	FileHandler.emit()

	FileHandler.purge_logs()

	KivyFormatter
	KivyFormatter.format()

	LoggerHistory
	LoggerHistory.emit()

	LoggerHistory.flush()

	ProcessingStream

	UncoloredLogRecord

	add_kivy_handlers()

	is_color_terminal()

	Low level Metrics

	Metrics
	Dimensions

	Examples

	Manual control of metrics

	Metrics

	MetricsBase
	MetricsBase.cm

	MetricsBase.density

	MetricsBase.dp

	MetricsBase.dpi

	MetricsBase.dpi_rounded

	MetricsBase.fontscale

	MetricsBase.inch

	MetricsBase.mm

	MetricsBase.pt

	MetricsBase.reset_dpi()

	MetricsBase.reset_metrics()

	MetricsBase.sp

	cm()

	dp()

	dpi2px()

	inch()

	mm()

	pt()

	sp()

	Multistroke gesture recognizer
	Conceptual Overview

	Usage examples

	Algorithm details

	Candidate
	Candidate.add_stroke()

	Candidate.get_angle_similarity()

	Candidate.get_protractor_vector()

	Candidate.get_start_unit_vector()

	Candidate.prepare()

	MultistrokeGesture
	MultistrokeGesture.add_stroke()

	MultistrokeGesture.get_distance()

	MultistrokeGesture.match_candidate()

	MultistrokeGesture.permute()

	ProgressTracker
	ProgressTracker.best

	ProgressTracker.progress

	ProgressTracker.stop()

	Recognizer
	Recognizer.add_gesture()

	Recognizer.export_gesture()

	Recognizer.filter()

	Recognizer.import_gesture()

	Recognizer.parse_gesture()

	Recognizer.prepare_templates()

	Recognizer.recognize()

	Recognizer.transfer_gesture()

	UnistrokeTemplate
	UnistrokeTemplate.add_point()

	UnistrokeTemplate.prepare()

	Parser utilities
	parse_bool()

	parse_color()

	parse_filename()

	parse_float

	parse_float4()

	parse_int

	parse_int2()

	parse_string()

	Properties
	Comparison Python vs. Kivy
	Basic example

	Depth being tracked

	Value checking

	Error Handling

	Keyword arguments and __init__()

	Conclusion

	Observe Property changes
	Observe using bind()

	Observe using ‘on_<propname>’

	Binding to properties of properties.

	AliasProperty
	AliasProperty.get()

	AliasProperty.link_deps()

	AliasProperty.link_eagerly()

	AliasProperty.rebind

	AliasProperty.set()

	AliasProperty.trigger_change()

	BooleanProperty

	BoundedNumericProperty
	BoundedNumericProperty.bounds

	BoundedNumericProperty.get_max()

	BoundedNumericProperty.get_min()

	BoundedNumericProperty.set_max()

	BoundedNumericProperty.set_min()

	ColorProperty

	ConfigParserProperty
	ConfigParserProperty.link_deps()

	ConfigParserProperty.set()

	ConfigParserProperty.set_config()

	DictProperty
	DictProperty.link()

	DictProperty.rebind

	DictProperty.set()

	ListProperty
	ListProperty.link()

	ListProperty.set()

	NumericProperty
	NumericProperty.get_format()

	ObjectProperty
	ObjectProperty.rebind

	OptionProperty
	OptionProperty.options

	Property
	Property.bind()

	Property.defaultvalue

	Property.dispatch()

	Property.get()

	Property.link()

	Property.link_deps()

	Property.link_eagerly()

	Property.set()

	Property.set_name()

	Property.unbind()

	Property.unbind_uid()

	ReferenceListProperty
	ReferenceListProperty.get()

	ReferenceListProperty.link()

	ReferenceListProperty.link_deps()

	ReferenceListProperty.set()

	ReferenceListProperty.setitem()

	ReferenceListProperty.trigger_change()

	StringProperty

	VariableListProperty
	VariableListProperty.length

	VariableListProperty.link()

	Resources management
	Resource lookup

	Customizing Kivy

	resource_add_path()

	resource_find()

	resource_remove_path()

	Support
	install_android()

	install_gobject_iteration()

	install_twisted_reactor()

	uninstall_twisted_reactor()

	Utils
	QueryDict

	SafeList
	SafeList.clear()

	boundary()

	deprecated()

	difference()

	escape_markup()

	get_color_from_hex()

	get_hex_from_color()

	get_random_color()

	interpolate()

	intersection()

	is_color_transparent()

	platform

	reify

	rgba()

	strtotuple()

	Vector
	Optimized usage

	Vector operators

	Vector
	Vector.angle()

	Vector.distance()

	Vector.distance2()

	Vector.dot()

	Vector.in_bbox()

	Vector.length()

	Vector.length2()

	Vector.line_intersection()

	Vector.normalize()

	Vector.rotate()

	Vector.segment_intersection()

	Vector.x

	Vector.y

	Weak Method
	WeakMethod
	WeakMethod.is_dead()

	Weak Proxy
	WeakProxy

Animation

Animation and AnimationTransition are used to animate
Widget properties. You must specify at least a
property name and target value. To use an Animation, follow these steps:

	Setup an Animation object

	Use the Animation object on a Widget

Simple animation

To animate a Widget’s x or y position, simply specify the target x/y values
where you want the widget positioned at the end of the animation:

anim = Animation(x=100, y=100)
anim.start(widget)

The animation will last for 1 second unless duration is specified.
When anim.start() is called, the Widget will move smoothly from the current
x/y position to (100, 100).

Multiple properties and transitions

You can animate multiple properties and use built-in or custom transition
functions using transition (or the t= shortcut). For example,
to animate the position and size using the ‘in_quad’ transition:

anim = Animation(x=50, size=(80, 80), t='in_quad')
anim.start(widget)

Note that the t= parameter can be the string name of a method in the
AnimationTransition class or your own animation function.

Sequential animation

To join animations sequentially, use the ‘+’ operator. The following example
will animate to x=50 over 1 second, then animate the size to (80, 80) over the
next two seconds:

anim = Animation(x=50) + Animation(size=(80, 80), duration=2.)
anim.start(widget)

Parallel animation

To join animations in parallel, use the ‘&’ operator. The following example
will animate the position to (80, 10) over 1 second, whilst in parallel
animating the size to (800, 800):

anim = Animation(pos=(80, 10))
anim &= Animation(size=(800, 800), duration=2.)
anim.start(widget)

Keep in mind that creating overlapping animations on the same property may have
unexpected results. If you want to apply multiple animations to the same
property, you should either schedule them sequentially (via the ‘+’ operator or
using the on_complete callback) or cancel previous animations using the
cancel_all method.

Repeating animation

New in version 1.8.0.

Note

This is currently only implemented for ‘Sequence’ animations.

To set an animation to repeat, simply set the Sequence.repeat
property to True:

anim = Animation(...) + Animation(...)
anim.repeat = True
anim.start(widget)

For flow control of animations such as stopping and cancelling, use the methods
already in place in the animation module.

	
class kivy.animation.Animation(**kw)

	Bases: kivy.event.EventDispatcher

Create an animation definition that can be used to animate a Widget.

	Parameters:

	
	duration or d: float, defaults to 1.
	Duration of the animation, in seconds.

	transition or t: str or func
	Transition function for animate properties. It can be the name of a
method from AnimationTransition.

	step or s: float
	Step in milliseconds of the animation. Defaults to 0, which means
the animation is updated for every frame.

To update the animation less often, set the step value to a float.
For example, if you want to animate at 30 FPS, use s=1/30.

	Events:

	
	on_start: animation, widget
	Fired when the animation is started on a widget.

	on_complete: animation, widget
	Fired when the animation is completed or stopped on a widget.

	on_progress: animation, widget, progression
	Fired when the progression of the animation is changing.

Changed in version 1.4.0: Added s/step parameter.

Changed in version 1.10.0: The default value of the step parameter was changed from 1/60. to 0.

	
property animated_properties

	Return the properties used to animate.

	
cancel(widget)

	Cancel the animation previously applied to a widget. Same
effect as stop, except the on_complete event will
not be triggered!

New in version 1.4.0.

	
static cancel_all(widget, *largs)

	Cancel all animations that concern a specific widget / list of
properties. See cancel.

Example:

anim = Animation(x=50)
anim.start(widget)

and later
Animation.cancel_all(widget, 'x')

New in version 1.4.0.

Changed in version 2.1.0: If the parameter widget is None, all animated widgets will be
the target and cancelled. If largs is also given, animation of
these properties will be canceled for all animated widgets.

	
cancel_property(widget, prop)

	Even if an animation is running, remove a property. It will not be
animated further. If it was the only/last property being animated,
the animation will be canceled (see cancel)

New in version 1.4.0.

	
property duration

	Return the duration of the animation.

	
have_properties_to_animate(widget)

	Return True if a widget still has properties to animate.

New in version 1.8.0.

	
start(widget)

	Start the animation on a widget.

	
stop(widget)

	Stop the animation previously applied to a widget, triggering the
on_complete event.

	
static stop_all(widget, *largs)

	Stop all animations that concern a specific widget / list of
properties.

Example:

anim = Animation(x=50)
anim.start(widget)

and later
Animation.stop_all(widget, 'x')

	
stop_property(widget, prop)

	Even if an animation is running, remove a property. It will not be
animated further. If it was the only/last property being animated,
the animation will be stopped (see stop).

	
property transition

	Return the transition of the animation.

	
class kivy.animation.AnimationTransition

	Bases: builtins.object

Collection of animation functions to be used with the Animation object.
Easing Functions ported to Kivy from the Clutter Project
https://developer.gnome.org/clutter/stable/ClutterAlpha.html

The progress parameter in each animation function is in the range 0-1.

	
static in_back(progress)

	[image: _images/anim_in_back.png]

	
static in_bounce(progress)

	[image: _images/anim_in_bounce.png]

	
static in_circ(progress)

	[image: _images/anim_in_circ.png]

	
static in_cubic(progress)

	[image: _images/anim_in_cubic.png]

	
static in_elastic(progress)

	[image: _images/anim_in_elastic.png]

	
static in_expo(progress)

	[image: _images/anim_in_expo.png]

	
static in_out_back(progress)

	[image: _images/anim_in_out_back.png]

	
static in_out_bounce(progress)

	[image: _images/anim_in_out_bounce.png]

	
static in_out_circ(progress)

	[image: _images/anim_in_out_circ.png]

	
static in_out_cubic(progress)

	[image: _images/anim_in_out_cubic.png]

	
static in_out_elastic(progress)

	[image: _images/anim_in_out_elastic.png]

	
static in_out_expo(progress)

	[image: _images/anim_in_out_expo.png]

	
static in_out_quad(progress)

	[image: _images/anim_in_out_quad.png]

	
static in_out_quart(progress)

	[image: _images/anim_in_out_quart.png]

	
static in_out_quint(progress)

	[image: _images/anim_in_out_quint.png]

	
static in_out_sine(progress)

	[image: _images/anim_in_out_sine.png]

	
static in_quad(progress)

	[image: _images/anim_in_quad.png]

	
static in_quart(progress)

	[image: _images/anim_in_quart.png]

	
static in_quint(progress)

	[image: _images/anim_in_quint.png]

	
static in_sine(progress)

	[image: _images/anim_in_sine.png]

	
static linear(progress)

	[image: _images/anim_linear.png]

	
static out_back(progress)

	[image: _images/anim_out_back.png]

	
static out_bounce(progress)

	[image: _images/anim_out_bounce.png]

	
static out_circ(progress)

	[image: _images/anim_out_circ.png]

	
static out_cubic(progress)

	[image: _images/anim_out_cubic.png]

	
static out_elastic(progress)

	[image: _images/anim_out_elastic.png]

	
static out_expo(progress)

	[image: _images/anim_out_expo.png]

	
static out_quad(progress)

	[image: _images/anim_out_quad.png]

	
static out_quart(progress)

	[image: _images/anim_out_quart.png]

	
static out_quint(progress)

	[image: _images/anim_out_quint.png]

	
static out_sine(progress)

	[image: _images/anim_out_sine.png]

Application

The App class is the base for creating Kivy applications.
Think of it as your main entry point into the Kivy run loop. In most
cases, you subclass this class and make your own app. You create an
instance of your specific app class and then, when you are ready to
start the application’s life cycle, you call your instance’s
App.run() method.

Creating an Application

Method using build() override

To initialize your app with a widget tree, override the build()
method in your app class and return the widget tree you constructed.

Here’s an example of a very simple application that just shows a button:

'''
Application example using build() + return
==

An application can be built if you return a widget on build(), or if you set
self.root.
'''

import kivy
kivy.require('1.0.7')

from kivy.app import App
from kivy.uix.button import Button

class TestApp(App):

 def build(self):
 # return a Button() as a root widget
 return Button(text='hello world')

if __name__ == '__main__':
 TestApp().run()

The file is also available in the examples folder at
kivy/examples/application/app_with_build.py.

Here, no widget tree was constructed (or if you will, a tree with only
the root node).

Method using kv file

You can also use the Kivy Language for creating applications. The
.kv can contain rules and root widget definitions at the same time. Here
is the same example as the Button one in a kv file.

Contents of ‘test.kv’:

#:kivy 1.0

Button:
 text: 'Hello from test.kv'

Contents of ‘main.py’:

'''
Application built from a .kv file
==================================

This shows how to implicitly use a .kv file for your application. You
should see a full screen button labelled "Hello from test.kv".

After Kivy instantiates a subclass of App, it implicitly searches for a .kv
file. The file test.kv is selected because the name of the subclass of App is
TestApp, which implies that kivy should try to load "test.kv". That file
contains a root Widget.
'''

import kivy
kivy.require('1.0.7')

from kivy.app import App

class TestApp(App):
 pass

if __name__ == '__main__':
 TestApp().run()

See kivy/examples/application/app_with_kv.py.

The relationship between main.py and test.kv is explained in
App.load_kv().

Application configuration

Use the configuration file

Your application might need its own configuration file. The
App class handles ‘ini’ files automatically if you add
the section key-value pair to the App.build_config() method using the
config parameter (an instance of ConfigParser):

class TestApp(App):
 def build_config(self, config):
 config.setdefaults('section1', {
 'key1': 'value1',
 'key2': '42'
 })

As soon as you add one section to the config, a file is created on the
disk (see get_application_config for its location) and
named based your class name. “TestApp” will give a config file named
“test.ini” with the content:

[section1]
key1 = value1
key2 = 42

The “test.ini” will be automatically loaded at runtime and you can access the
configuration in your App.build() method:

class TestApp(App):
 def build_config(self, config):
 config.setdefaults('section1', {
 'key1': 'value1',
 'key2': '42'
 })

 def build(self):
 config = self.config
 return Label(text='key1 is %s and key2 is %d' % (
 config.get('section1', 'key1'),
 config.getint('section1', 'key2')))

Create a settings panel

Your application can have a settings panel to let your user configure some of
your config tokens. Here is an example done in the KinectViewer example
(available in the examples directory):

[image: _images/app-settings.jpg]

You can add your own panels of settings by extending
the App.build_settings() method.
Check the Settings about how to create a panel,
because you need a JSON file / data first.

Let’s take as an example the previous snippet of TestApp with custom
config. We could create a JSON like this:

[
 { "type": "title",
 "title": "Test application" },

 { "type": "options",
 "title": "My first key",
 "desc": "Description of my first key",
 "section": "section1",
 "key": "key1",
 "options": ["value1", "value2", "another value"] },

 { "type": "numeric",
 "title": "My second key",
 "desc": "Description of my second key",
 "section": "section1",
 "key": "key2" }
]

Then, we can create a panel using this JSON to automatically create all the
options and link them to our App.config ConfigParser instance:

class TestApp(App):
 # ...
 def build_settings(self, settings):
 jsondata = """... put the json data here ..."""
 settings.add_json_panel('Test application',
 self.config, data=jsondata)

That’s all! Now you can press F1 (default keystroke) to toggle the
settings panel or press the “settings” key on your android device. You
can manually call App.open_settings() and
App.close_settings() if you want to handle this manually. Every
change in the panel is automatically saved in the config file.

You can also use App.build_settings() to modify properties of
the settings panel. For instance, the default panel has a sidebar for
switching between json panels whose width defaults to 200dp. If you’d
prefer this to be narrower, you could add:

settings.interface.menu.width = dp(100)

to your build_settings() method.

You might want to know when a config value has been changed by the
user in order to adapt or reload your UI. You can then overload the
on_config_change() method:

class TestApp(App):
 # ...
 def on_config_change(self, config, section, key, value):
 if config is self.config:
 token = (section, key)
 if token == ('section1', 'key1'):
 print('Our key1 has been changed to', value)
 elif token == ('section1', 'key2'):
 print('Our key2 has been changed to', value)

The Kivy configuration panel is added by default to the settings
instance. If you don’t want this panel, you can declare your Application as
follows:

class TestApp(App):
 use_kivy_settings = False
 # ...

This only removes the Kivy panel but does not stop the settings instance
from appearing. If you want to prevent the settings instance from appearing
altogether, you can do this:

class TestApp(App):
 def open_settings(self, *largs):
 pass

New in version 1.0.7.

Profiling with on_start and on_stop

It is often useful to profile python code in order to discover locations to
optimise. The standard library profilers
(http://docs.python.org/2/library/profile.html) provides multiple options for
profiling code. For profiling the entire program, the natural
approaches of using profile as a module or profile’s run method does not work
with Kivy. It is however, possible to use App.on_start() and
App.on_stop() methods:

import cProfile

class MyApp(App):
 def on_start(self):
 self.profile = cProfile.Profile()
 self.profile.enable()

 def on_stop(self):
 self.profile.disable()
 self.profile.dump_stats('myapp.profile')

This will create a file called myapp.profile when you exit your app.

Customising layout

You can choose different settings widget layouts by setting
App.settings_cls. By default, this is a
Settings class which provides the pictured
sidebar layout, but you could set it to any of the other layouts
provided in kivy.uix.settings or create your own. See the
module documentation for kivy.uix.settings for more
information.

You can customise how the settings panel is displayed by
overriding App.display_settings() which is called before
displaying the settings panel on the screen. By default, it
simply draws the panel on top of the window, but you could modify it
to (for instance) show the settings in a
Popup or add it to your app’s
ScreenManager if you are using
one. If you do so, you should also modify App.close_settings()
to exit the panel appropriately. For instance, to have the settings
panel appear in a popup you can do:

def display_settings(self, settings):
 try:
 p = self.settings_popup
 except AttributeError:
 self.settings_popup = Popup(content=settings,
 title='Settings',
 size_hint=(0.8, 0.8))
 p = self.settings_popup
 if p.content is not settings:
 p.content = settings
 p.open()

def close_settings(self, *args):
 try:
 p = self.settings_popup
 p.dismiss()
 except AttributeError:
 pass # Settings popup doesn't exist

Finally, if you want to replace the current settings panel widget, you
can remove the internal references to it using
App.destroy_settings(). If you have modified
App.display_settings(), you should be careful to detect if the
settings panel has been replaced.

Pause mode

New in version 1.1.0.

On tablets and phones, the user can switch at any moment to another
application. By default, your application will close and the
App.on_stop() event will be fired.

If you support Pause mode, when switching to another application, your
application will wait indefinitely until the user
switches back to your application. There is an issue with OpenGL on Android
devices: it is not guaranteed that the OpenGL ES Context will be restored when
your app resumes. The mechanism for restoring all the OpenGL data is not yet
implemented in Kivy.

The currently implemented Pause mechanism is:

	Kivy checks every frame if Pause mode is activated by the Operating
System due to the user switching to another application, a phone
shutdown or any other reason.

	App.on_pause() is called:

	If False is returned or App.on_pause() has no return statement,
then App.on_stop() is called.

	If True is returned or App.on_pause() is not defined, the
application will sleep until the OS resumes our App.

	When the app is resumed, App.on_resume() is called.

	If our app memory has been reclaimed by the OS, then nothing will be
called.

Here is a simple example of how on_pause() should be used:

class TestApp(App):

 def on_pause(self):
 # Here you can save data if needed
 return True

 def on_resume(self):
 # Here you can check if any data needs replacing (usually nothing)
 pass

Warning

Both on_pause and on_stop must save important data because after
on_pause is called, on_resume may not be called at all.

Asynchronous app

In addition to running an app normally,
Kivy can be run within an async event loop such as provided by the standard
library asyncio package or the trio package (highly recommended).

Background

Normally, when a Kivy app is run, it blocks the thread that runs it until the
app exits. Internally, at each clock iteration it executes all the app
callbacks, handles graphics and input, and idles by sleeping for any remaining
time.

To be able to run asynchronously, the Kivy app may not sleep, but instead must
release control of the running context to the asynchronous event loop running
the Kivy app. We do this when idling by calling the appropriate functions of
the async package being used instead of sleeping.

Async configuration

To run a Kivy app asynchronously, either the async_runTouchApp() or
App.async_run() coroutine must be scheduled to run in the event loop of
the async library being used.

The environmental variable KIVY_EVENTLOOP or the async_lib parameter in
async_runTouchApp() and App.async_run() set the async
library that Kivy uses internally when the app is run with
async_runTouchApp() and App.async_run(). It can be set to one of
“asyncio” when the standard library asyncio is used, or “trio” if the
trio library is used. If the environment variable is not set and async_lib
is not provided, the stdlib asyncio is used.

init_async_lib() can also be directly
called to set the async library to use, but it may only be called before the
app has begun running with async_runTouchApp() or App.async_run().

To run the app asynchronously, one schedules async_runTouchApp()
or App.async_run() to run within the given library’s async event loop as
in the examples shown below. Kivy is then treated as just another coroutine
that the given library runs in its event loop. Internally, Kivy will use the
specified async library’s API, so KIVY_EVENTLOOP or async_lib must
match the async library that is running Kivy.

For a fuller basic and more advanced examples, see the demo apps in
examples/async.

Asyncio example
~~~~~~~~~~~~~–

import asyncio

from kivy.app import async_runTouchApp
from kivy.uix.label import Label


loop = asyncio.get_event_loop()
loop.run_until_complete(
    async_runTouchApp(Label(text='Hello, World!'), async_lib='asyncio'))
loop.close()





Trio example
~~~~~~~~~~–

import trio

from kivy.app import async_runTouchApp
from kivy.uix.label import Label

from functools import partial

use functools.partial() to pass keyword arguments:
async_runTouchApp_func = partial(async_runTouchApp, async_lib='trio')

trio.run(async_runTouchApp_func, Label(text='Hello, World!'))

Interacting with Kivy app from other coroutines

It is fully safe to interact with any kivy object from other coroutines
running within the same async event loop. This is because they are all running
from the same thread and the other coroutines are only executed when Kivy
is idling.

Similarly, the kivy callbacks may safely interact with objects from other
coroutines running in the same event loop. Normal single threaded rules apply
to both case.

New in version 2.0.0.

	
class kivy.app.App(**kwargs)

	Bases: kivy.event.EventDispatcher

Application class, see module documentation for more information.

	Events:

	
	on_start:
	Fired when the application is being started (before the
runTouchApp() call.

	on_stop:
	Fired when the application stops.

	on_pause:
	Fired when the application is paused by the OS.

	on_resume:
	Fired when the application is resumed from pause by the OS. Beware:
you have no guarantee that this event will be fired after the
on_pause event has been called.

Changed in version 1.7.0: Parameter kv_file added.

Changed in version 1.8.0: Parameters kv_file and kv_directory are now properties of App.

	
async async_run(async_lib=None)

	Identical to run(), but is a coroutine and can be
scheduled in a running async event loop.

See kivy.app for example usage.

New in version 2.0.0.

	
build()

	Initializes the application; it will be called only once.
If this method returns a widget (tree), it will be used as the root
widget and added to the window.

	Returns:

	None or a root Widget instance
if no self.root exists.

	
build_config(config)

	
New in version 1.0.7.

This method is called before the application is initialized to
construct your ConfigParser object. This
is where you can put any default section / key / value for your
config. If anything is set, the configuration will be
automatically saved in the file returned by
get_application_config().

	Parameters:

	
	config: ConfigParser
	Use this to add default section / key / value items

	
build_settings(settings)

	
New in version 1.0.7.

This method is called when the user (or you) want to show the
application settings. It is called once when the settings panel
is first opened, after which the panel is cached. It may be
called again if the cached settings panel is removed by
destroy_settings().

You can use this method to add settings panels and to
customise the settings widget e.g. by changing the sidebar
width. See the module documentation for full details.

	Parameters:

	
	settings: Settings
	Settings instance for adding panels

	
close_settings(*largs)

	Close the previously opened settings panel.

	Returns:

	True if the settings has been closed.

	
config

	Returns an instance of the ConfigParser for
the application configuration. You can use this to query some config
tokens in the build() method.

	
create_settings()

	Create the settings panel. This method will normally
be called only one time per
application life-time and the result is cached internally,
but it may be called again if the cached panel is removed
by destroy_settings().

By default, it will build a settings panel according to
settings_cls, call build_settings(), add a Kivy panel if
use_kivy_settings is True, and bind to
on_close/on_config_change.

If you want to plug your own way of doing settings, without the Kivy
panel or close/config change events, this is the method you want to
overload.

New in version 1.8.0.

	
destroy_settings()

	
New in version 1.8.0.

Dereferences the current settings panel if one
exists. This means that when App.open_settings() is next
run, a new panel will be created and displayed. It doesn’t
affect any of the contents of the panel, but lets you (for
instance) refresh the settings panel layout if you have
changed the settings widget in response to a screen size
change.

If you have modified open_settings() or
display_settings(), you should be careful to
correctly detect if the previous settings widget has been
destroyed.

	
property directory

	
New in version 1.0.7.

Return the directory where the application lives.

	
display_settings(settings)

	
New in version 1.8.0.

Display the settings panel. By default, the panel is drawn directly
on top of the window. You can define other behaviour by overriding
this method, such as adding it to a ScreenManager or Popup.

You should return True if the display is successful, otherwise False.

	Parameters:

	
	settings: Settings
	You can modify this object in order to modify the settings
display.

	
get_application_config(defaultpath='%(appdir)s/%(appname)s.ini')

	Return the filename of your application configuration. Depending
on the platform, the application file will be stored in
different locations:

	on iOS: <appdir>/Documents/.<appname>.ini

	on Android: <user_data_dir>/.<appname>.ini

	otherwise: <appdir>/<appname>.ini

When you are distributing your application on Desktops, please
note that if the application is meant to be installed
system-wide, the user might not have write-access to the
application directory. If you want to store user settings, you
should overload this method and change the default behavior to
save the configuration file in the user directory.

class TestApp(App):
 def get_application_config(self):
 return super(TestApp, self).get_application_config(
 '~/.%(appname)s.ini')

Some notes:

	The tilda ‘~’ will be expanded to the user directory.

	%(appdir)s will be replaced with the application directory

	%(appname)s will be replaced with the application name

New in version 1.0.7.

Changed in version 1.4.0: Customized the defaultpath for iOS and Android platforms. Added a
defaultpath parameter for desktop OS’s (not applicable to iOS
and Android.)

Changed in version 1.11.0: Changed the Android version to make use of the
user_data_dir and added a missing dot to the iOS
config file name.

	
get_application_icon()

	Return the icon of the application.

	
get_application_name()

	Return the name of the application.

	
static get_running_app()

	Return the currently running application instance.

New in version 1.1.0.

	
icon

	Icon of your application.
The icon can be located in the same directory as your main file. You can
set this as follows:

class MyApp(App):
 def build(self):
 self.icon = 'myicon.png'

New in version 1.0.5.

Changed in version 1.8.0: icon is now a StringProperty. Don’t set the
icon in the class as previously stated in the documentation.

Note

For Kivy prior to 1.8.0, you need to set this as follows:

class MyApp(App):
 icon = 'customicon.png'

Recommended 256x256 or 1024x1024? for GNU/Linux and Mac OSX
32x32 for Windows7 or less. <= 256x256 for windows 8
256x256 does work (on Windows 8 at least), but is scaled
down and doesn’t look as good as a 32x32 icon.

	
kv_directory

	Path of the directory where application kv is stored, defaults to None

New in version 1.8.0.

If a kv_directory is set, it will be used to get the initial kv file. By
default, the file is assumed to be in the same directory as the current App
definition file.

	
kv_file

	Filename of the Kv file to load, defaults to None.

New in version 1.8.0.

If a kv_file is set, it will be loaded when the application starts. The
loading of the “default” kv file will be prevented.

	
load_config()

	(internal) This function is used for returning a ConfigParser with
the application configuration. It’s doing 3 things:

	Creating an instance of a ConfigParser

	Loading the default configuration by calling
build_config(), then

	If it exists, it loads the application configuration file,
otherwise it creates one.

	Returns:

	ConfigParser instance

	
load_kv(filename=None)

	This method is invoked the first time the app is being run if no
widget tree has been constructed before for this app.
This method then looks for a matching kv file in the same directory as
the file that contains the application class.

For example, say you have a file named main.py that contains:

class ShowcaseApp(App):
 pass

This method will search for a file named showcase.kv in
the directory that contains main.py. The name of the kv file has to be
the lowercase name of the class, without the ‘App’ postfix at the end
if it exists.

You can define rules and a root widget in your kv file:

<ClassName>: # this is a rule
 ...

ClassName: # this is a root widget
 ...

There must be only one root widget. See the Kivy Language
documentation for more information on how to create kv files. If your
kv file contains a root widget, it will be used as self.root, the root
widget for the application.

Note

This function is called from run(), therefore, any widget
whose styling is defined in this kv file and is created before
run() is called (e.g. in __init__), won’t have its styling
applied. Note that build() is called after load_kv
has been called.

	
property name

	
New in version 1.0.7.

Return the name of the application based on the class name.

	
on_config_change(config, section, key, value)

	Event handler fired when a configuration token has been changed by
the settings page.

Changed in version 1.10.1: Added corresponding on_config_change event.

	
on_pause()

	Event handler called when Pause mode is requested. You should
return True if your app can go into Pause mode, otherwise
return False and your application will be stopped.

You cannot control when the application is going to go into this mode.
It’s determined by the Operating System and mostly used for mobile
devices (android/ios) and for resizing.

The default return value is True.

New in version 1.1.0.

Changed in version 1.10.0: The default return value is now True.

	
on_resume()

	Event handler called when your application is resuming from
the Pause mode.

New in version 1.1.0.

Warning

When resuming, the OpenGL Context might have been damaged / freed.
This is where you can reconstruct some of your OpenGL state
e.g. FBO content.

	
on_start()

	Event handler for the on_start event which is fired after
initialization (after build() has been called) but before the
application has started running.

	
on_stop()

	Event handler for the on_stop event which is fired when the
application has finished running (i.e. the window is about to be
closed).

	
open_settings(*largs)

	Open the application settings panel. It will be created the very
first time, or recreated if the previously cached panel has been
removed by destroy_settings(). The settings panel will be
displayed with the
display_settings() method, which by default adds the
settings panel to the Window attached to your application. You
should override that method if you want to display the
settings panel differently.

	Returns:

	True if the settings has been opened.

	
options

	Options passed to the __init__ of the App

	
pause(*largs)

	Pause the application.

On Android set OS state to pause, Kivy app state follows.
No functionality on other OS.
.. versionadded:: 2.2.0

	
root

	The root widget returned by the build() method or by the
load_kv() method if the kv file contains a root widget.

	
property root_window

	
New in version 1.9.0.

Returns the root window instance used by run().

	
run()

	Launches the app in standalone mode.

	
settings_cls

	
New in version 1.8.0.

The class used to construct the settings panel and
the instance passed to build_config(). You should
use either Settings or one of the provided
subclasses with different layouts
(SettingsWithSidebar,
SettingsWithSpinner,
SettingsWithTabbedPanel,
SettingsWithNoMenu). You can also create your
own Settings subclass. See the documentation
of Settings for more information.

settings_cls is an ObjectProperty
and defaults to SettingsWithSpinner which
displays settings panels with a spinner to switch between them. If you set
a string, the Factory will be used to resolve the
class.

	
stop(*largs)

	Stop the application.

If you use this method, the whole application will stop by issuing
a call to stopTouchApp().
Except on Android, set Android state to stop, Kivy state then follows.

	
title

	Title of your application. You can set this as follows:

class MyApp(App):
 def build(self):
 self.title = 'Hello world'

New in version 1.0.5.

Changed in version 1.8.0: title is now a StringProperty. Don’t
set the title in the class as previously stated in the documentation.

Note

For Kivy < 1.8.0, you can set this as follows:

class MyApp(App):
 title = 'Custom title'

If you want to dynamically change the title, you can do:

from kivy.base import EventLoop
EventLoop.window.title = 'New title'

	
use_kivy_settings = True

	
New in version 1.0.7.

If True, the application settings will also include the Kivy settings. If
you don’t want the user to change any kivy settings from your settings UI,
change this to False.

	
property user_data_dir

	
New in version 1.7.0.

Returns the path to the directory in the users file system which the
application can use to store additional data.

Different platforms have different conventions with regards to where
the user can store data such as preferences, saved games and settings.
This function implements these conventions. The <app_name> directory
is created when the property is called, unless it already exists.

On iOS, ~/Documents/<app_name> is returned (which is inside the
app’s sandbox).

On Windows, %APPDATA%/<app_name> is returned.

On OS X, ~/Library/Application Support/<app_name> is returned.

On Linux, $XDG_CONFIG_HOME/<app_name> is returned.

On Android, Context.GetFilesDir [https://developer.android.com/reference/android/content/Context.html#getFilesDir()] is returned.

Changed in version 1.11.0: On Android, this function previously returned
/sdcard/<app_name>. This folder became read-only by default
in Android API 26 and the user_data_dir has therefore been moved
to a writeable location.

	
async kivy.app.async_runTouchApp(widget=None, embedded=False, async_lib=None)

	Identical to runTouchApp() but instead it is a coroutine
that can be run in an existing async event loop.

async_lib is the async library to use. See kivy.app for details
and example usage.

New in version 2.0.0.

	
kivy.app.runTouchApp(widget=None, embedded=False)

	Static main function that starts the application loop.
You can access some magic via the following arguments:

See kivy.app for example usage.

	Parameters:

	
	<empty>
	To make dispatching work, you need at least one
input listener. If not, application will leave.
(MTWindow act as an input listener)

	widget
	If you pass only a widget, a MTWindow will be created
and your widget will be added to the window as the root
widget.

	embedded
	No event dispatching is done. This will be your job.

	widget + embedded
	No event dispatching is done. This will be your job but
we try to get the window (must be created by you beforehand)
and add the widget to it. Very useful for embedding Kivy
in another toolkit. (like Qt, check kivy-designed)

	
kivy.app.stopTouchApp()

	Stop the current application by leaving the main loop.

See kivy.app for example usage.

Asynchronous data loader

This is the Asynchronous Loader. You can use it to load an image
and use it, even if data are not yet available. You must specify a default
loading image when using the loader:

from kivy.loader import Loader
image = Loader.image('mysprite.png')

You can also load an image from a url:

image = Loader.image('http://mysite.com/test.png')

If you want to change the default loading image, you can do:

Loader.loading_image = Image('another_loading.png')

Tweaking the asynchronous loader

New in version 1.6.0.

You can tweak the loader to provide a better user experience or more
performance, depending of the images you are going to load. Take a look at the
parameters:

	Loader.num_workers - define the number of threads to start for
loading images.

	Loader.max_upload_per_frame - define the maximum image uploads in
GPU to do per frame.

	
class kivy.loader.LoaderBase

	Bases: builtins.object

Common base for the Loader and specific implementations.
By default, the Loader will be the best available loader implementation.

The _update() function is called every 1 / 25.s or each frame if we have
less than 25 FPS.

	
property error_image

	Image used for error.
You can change it by doing:

Loader.error_image = 'error.png'

Changed in version 1.6.0: Not readonly anymore.

	
image(filename, load_callback=None, post_callback=None, **kwargs)

	Load a image using the Loader. A ProxyImage is returned with a
loading image. You can use it as follows:

from kivy.app import App
from kivy.uix.image import Image
from kivy.loader import Loader

class TestApp(App):
 def _image_loaded(self, proxyImage):
 if proxyImage.image.texture:
 self.image.texture = proxyImage.image.texture

 def build(self):
 proxyImage = Loader.image("myPic.jpg")
 proxyImage.bind(on_load=self._image_loaded)
 self.image = Image()
 return self.image

TestApp().run()

In order to cancel all background loading, call Loader.stop().

	
property loading_image

	Image used for loading.
You can change it by doing:

Loader.loading_image = 'loading.png'

Changed in version 1.6.0: Not readonly anymore.

	
property max_upload_per_frame

	The number of images to upload per frame. By default, we’ll
upload only 2 images to the GPU per frame. If you are uploading many
small images, you can easily increase this parameter to 10 or more.
If you are loading multiple full HD images, the upload time may have
consequences and block the application. If you want a
smooth experience, use the default.

As a matter of fact, a Full-HD RGB image will take ~6MB in memory,
so it may take time. If you have activated mipmap=True too, then the
GPU must calculate the mipmap of these big images too, in real time.
Then it may be best to reduce the max_upload_per_frame to 1
or 2. If you want to get rid of that (or reduce it a lot), take a
look at the DDS format.

New in version 1.6.0.

	
property num_workers

	Number of workers to use while loading (used only if the loader
implementation supports it). This setting impacts the loader only on
initialization. Once the loader is started, the setting has no impact:

from kivy.loader import Loader
Loader.num_workers = 4

The default value is 2 for giving a smooth user experience. You could
increase the number of workers, then all the images will be loaded faster,
but the user will not been able to use the application while loading.
Prior to 1.6.0, the default number was 20, and loading many full-hd images
was completely blocking the application.

New in version 1.6.0.

	
pause()

	Pause the loader, can be useful during interactions.

New in version 1.6.0.

	
resume()

	Resume the loader, after a pause().

New in version 1.6.0.

	
run(*largs)

	Main loop for the loader.

	
start()

	Start the loader thread/process.

	
stop()

	Stop the loader thread/process.

	
class kivy.loader.ProxyImage(arg, **kwargs)

	Bases: kivy.core.image.Image

Image returned by the Loader.image() function.

	Properties:

	
	loaded: bool, defaults to False
	This value may be True if the image is already cached.

	Events:

	
	on_load
	Fired when the image is loaded or changed.

	on_error
	Fired when the image cannot be loaded.
error: Exception data that occurred

Atlas

New in version 1.1.0.

Atlas manages texture atlases: packing multiple textures into
one. With it, you reduce the number of images loaded and speedup the
application loading. This module contains both the Atlas class and command line
processing for creating an atlas from a set of individual PNG files. The
command line section requires the Pillow library, or the defunct Python Imaging
Library (PIL), to be installed.

	An Atlas is composed of 2 or more files:
	
	a json file (.atlas) that contains the image file names and texture
locations of the atlas.

	one or multiple image files containing textures referenced by the .atlas
file.

Definition of .atlas files

A file with <basename>.atlas is a json file formatted like this:

{
 "<basename>-<index>.png": {
 "id1": [<x>, <y>, <width>, <height>],
 "id2": [<x>, <y>, <width>, <height>],
 # ...
 },
 # ...
}

Example from the Kivy data/images/defaulttheme.atlas:

{
 "defaulttheme-0.png": {
 "progressbar_background": [431, 224, 59, 24],
 "image-missing": [253, 344, 48, 48],
 "filechooser_selected": [1, 207, 118, 118],
 "bubble_btn": [83, 174, 32, 32],
 # ... and more ...
 }
}

In this example, “defaulttheme-0.png” is a large image, with the pixels in the
rectangle from (431, 224) to (431 + 59, 224 + 24) usable as
atlas://data/images/defaulttheme/progressbar_background in
any image parameter.

How to create an Atlas

Warning

The atlas creation requires the Pillow library (or the defunct Imaging/PIL
library). This requirement will be removed in the future when the Kivy core
Image is able to support loading, blitting, and saving operations.

You can directly use this module to create atlas files with this command:

$ python -m kivy.atlas <basename> <size> <list of images...>

Let’s say you have a list of images that you want to put into an Atlas. The
directory is named images with lots of 64x64 png files inside:

$ ls
images
$ cd images
$ ls
bubble.png bubble-red.png button.png button-down.png

You can combine all the png’s into one and generate the atlas file with:

$ python -m kivy.atlas myatlas 256x256 *.png
Atlas created at myatlas.atlas
1 image has been created
$ ls
bubble.png bubble-red.png button.png button-down.png myatlas.atlas
myatlas-0.png

As you can see, we get 2 new files: myatlas.atlas and myatlas-0.png.
myatlas-0.png is a new 256x256 .png composed of all your images. If the
size you specify is not large enough to fit all of the source images, more
atlas images will be created as required e.g. myatlas-1.png,
myatlas-2.png etc.

Note

When using this script, the ids referenced in the atlas are the base names
of the images without the extension. So, if you are going to name a file
../images/button.png, the id for this image will be button.

If you need path information included, you should include use_path as
follows:

$ python -m kivy.atlas -- --use_path myatlas 256 *.png

In which case the id for ../images/button.png will be images_button

How to use an Atlas

Usually, you would specify the images by supplying the path:

a = Button(background_normal='images/button.png',
 background_down='images/button_down.png')

In our previous example, we have created the atlas containing both images and
put them in images/myatlas.atlas. You can use url notation to reference
them:

a = Button(background_normal='atlas://images/myatlas/button',
 background_down='atlas://images/myatlas/button_down')

In other words, the path to the images is replaced by:

atlas://path/to/myatlas/id
will search for the ``path/to/myatlas.atlas`` and get the image ``id``

Note

In the atlas url, there is no need to add the .atlas extension. It will
be automatically append to the filename.

Manual usage of the Atlas

>>> from kivy.atlas import Atlas
>>> atlas = Atlas('path/to/myatlas.atlas')
>>> print(atlas.textures.keys())
['bubble', 'bubble-red', 'button', 'button-down']
>>> print(atlas['button'])
<kivy.graphics.texture.TextureRegion object at 0x2404d10>

	
class kivy.atlas.Atlas(filename)

	Bases: kivy.event.EventDispatcher

Manage texture atlas. See module documentation for more information.

	
static create(outname, filenames, size, padding=2, use_path=False)

	This method can be used to create an atlas manually from a set of
images.

	Parameters:

	
	outname: str
	Basename to use for .atlas creation and -<idx>.png
associated images.

	filenames: list
	List of filenames to put in the atlas.

	size: int or list (width, height)
	Size of the atlas image. If the size is not large enough to
fit all of the source images, more atlas images will created
as required.

	padding: int, defaults to 2
	Padding to put around each image.

Be careful. If you’re using a padding < 2, you might have
issues with the borders of the images. Because of the OpenGL
linearization, it might use the pixels of the adjacent image.

If you’re using a padding >= 2, we’ll automatically generate a
“border” of 1px around your image. If you look at
the result, don’t be scared if the image inside is not
exactly the same as yours :).

	use_path: bool, defaults to False
	If True, the relative path of the source png
file names will be included in the atlas ids rather
that just in the file names. Leading dots and slashes will be
excluded and all other slashes in the path will be replaced
with underscores. For example, if use_path is False
(the default) and the file name is
../data/tiles/green_grass.png, the id will be
green_grass. If use_path is True, it will be
data_tiles_green_grass.

Changed in version 1.8.0: Parameter use_path added

	
filename

	Filename of the current Atlas.

filename is an AliasProperty and defaults
to None.

	
original_textures

	List of original atlas textures (which contain the textures).

original_textures is a ListProperty and
defaults to [].

New in version 1.9.1.

	
textures

	List of available textures within the atlas.

textures is a DictProperty and defaults
to {}.

Cache manager

The cache manager can be used to store python objects attached to a unique
key. The cache can be controlled in two ways: with a object limit or a
timeout.

For example, we can create a new cache with a limit of 10 objects and a
timeout of 5 seconds:

register a new Cache
Cache.register('mycache', limit=10, timeout=5)

create an object + id
key = 'objectid'
instance = Label(text=text)
Cache.append('mycache', key, instance)

retrieve the cached object
instance = Cache.get('mycache', key)

If the instance is NULL, the cache may have trashed it because you’ve
not used the label for 5 seconds and you’ve reach the limit.

	
class kivy.cache.Cache

	Bases: builtins.object

See module documentation for more information.

	
static append(category, key, obj, timeout=None)

	Add a new object to the cache.

	Parameters:

	
	category: str
	Identifier of the category.

	key: str
	Unique identifier of the object to store.

	obj: object
	Object to store in cache.

	timeout: double (optional)
	Time after which to delete the object if it has not been used.
If None, no timeout is applied.

	Raises:

	ValueError: If None is used as key.

Changed in version 2.0.0: Raises ValueError if None is used as key.

	
static get(category, key, default=None)

	Get a object from the cache.

	Parameters:

	
	category: str
	Identifier of the category.

	key: str
	Unique identifier of the object in the store.

	default: anything, defaults to None
	Default value to be returned if the key is not found.

	
static get_lastaccess(category, key, default=None)

	Get the objects last access time in the cache.

	Parameters:

	
	category: str
	Identifier of the category.

	key: str
	Unique identifier of the object in the store.

	default: anything, defaults to None
	Default value to be returned if the key is not found.

	
static get_timestamp(category, key, default=None)

	Get the object timestamp in the cache.

	Parameters:

	
	category: str
	Identifier of the category.

	key: str
	Unique identifier of the object in the store.

	default: anything, defaults to None
	Default value to be returned if the key is not found.

	
static print_usage()

	Print the cache usage to the console.

	
static register(category, limit=None, timeout=None)

	Register a new category in the cache with the specified limit.

	Parameters:

	
	category: str
	Identifier of the category.

	limit: int (optional)
	Maximum number of objects allowed in the cache.
If None, no limit is applied.

	timeout: double (optional)
	Time after which to delete the object if it has not been used.
If None, no timeout is applied.

	
static remove(category, key=None)

	Purge the cache.

	Parameters:

	
	category: str
	Identifier of the category.

	key: str (optional)
	Unique identifier of the object in the store. If this
argument is not supplied, the entire category will be purged.

Clock object

The Clock object allows you to schedule a function call in the
future; once or repeatedly at specified intervals. You can get the time
elapsed between the scheduling and the calling of the callback via the
dt argument:

dt means delta-time
def my_callback(dt):
 pass

call my_callback every 0.5 seconds
Clock.schedule_interval(my_callback, 0.5)

call my_callback in 5 seconds
Clock.schedule_once(my_callback, 5)

call my_callback as soon as possible (usually next frame.)
Clock.schedule_once(my_callback)

Note

If the callback returns False, the schedule will be canceled and won’t
repeat.

If you want to schedule a function to call with default arguments, you can use
the functools.partial [http://docs.python.org/library/functools.html#functools.partial] python
module:

from functools import partial

def my_callback(value, key, *largs):
 pass

Clock.schedule_interval(partial(my_callback, 'my value', 'my key'), 0.5)

Conversely, if you want to schedule a function that doesn’t accept the dt
argument, you can use a lambda [http://docs.python.org/2/reference/expressions.html#lambda] expression
to write a short function that does accept dt. For Example:

def no_args_func():
 print("I accept no arguments, so don't schedule me in the clock")

Clock.schedule_once(lambda dt: no_args_func(), 0.5)

Note

You cannot unschedule an anonymous function unless you keep a
reference to it. It’s better to add *args to your function
definition so that it can be called with an arbitrary number of
parameters.

Important

The class method callback is weak-referenced: you are responsible for
keeping a reference to your original object/callback. If you don’t keep a
reference, the ClockBase will never execute your callback. For
example:

class Foo(object):
 def start(self):
 Clock.schedule_interval(self.callback, 0.5)

 def callback(self, dt):
 print('In callback')

A Foo object is created and the method start is called.
Because no reference is kept to the instance returned from Foo(),
the object will be collected by the Python Garbage Collector and
your callback will be never called.
Foo().start()

So you should do the following and keep a reference to the instance
of foo until you don't need it anymore!
foo = Foo()
foo.start()

Schedule before frame

New in version 1.0.5.

Sometimes you need to schedule a callback BEFORE the next frame. Starting
from 1.0.5, you can use a timeout of -1:

Clock.schedule_once(my_callback, 0) # call after the next frame
Clock.schedule_once(my_callback, -1) # call before the next frame

The Clock will execute all the callbacks with a timeout of -1 before the
next frame even if you add a new callback with -1 from a running
callback. However, Clock has an iteration limit for these
callbacks: it defaults to 10.

If you schedule a callback that schedules a callback that schedules a … etc
more than 10 times, it will leave the loop and send a warning to the console,
then continue after the next frame. This is implemented to prevent bugs from
hanging or crashing the application.

If you need to increase the limit, set the max_iteration property:

from kivy.clock import Clock
Clock.max_iteration = 20

Triggered Events

New in version 1.0.5.

CyClockBase.create_trigger() is an advanced method way to defer a
callback. It functions exactly like CyClockBase.schedule_once() and
CyClockBase.schedule_interval() except that it doesn’t immediately
schedule the callback. Instead, one schedules the callback using the
ClockEvent returned by it. This ensures that you can call the event
multiple times but it won’t be scheduled more than once. This is not the case
with CyClockBase.schedule_once():

will run the callback twice before the next frame
Clock.schedule_once(my_callback)
Clock.schedule_once(my_callback)

will run the callback once before the next frame
event = Clock.create_trigger(my_callback)
event()
event()

will also run the callback only once before the next frame
event = Clock.schedule_once(my_callback) # now it's already scheduled
event() # won't be scheduled again
event()

In addition, it is more convenient to create and bind to
the triggered event than using CyClockBase.schedule_once() in a
function:

from kivy.clock import Clock
from kivy.uix.widget import Widget

class Sample(Widget):
 def __init__(self, **kwargs):
 self._trigger = Clock.create_trigger(self.cb)
 super(Sample, self).__init__(**kwargs)
 self.bind(x=self._trigger, y=self._trigger)

 def cb(self, *largs):
 pass

Even if x and y changes within one frame, the callback is only run once.

Unscheduling

An event scheduled with CyClockBase.schedule_once(),
CyClockBase.schedule_interval(), or with
CyClockBase.create_trigger() and then triggered can be unscheduled in
multiple ways. E.g:

def my_callback(dt):
 pass

call my_callback every 0.5 seconds
event = Clock.schedule_interval(my_callback, 0.5)

call my_callback in 5 seconds
event2 = Clock.schedule_once(my_callback, 5)

event_trig = Clock.create_trigger(my_callback, 5)
event_trig()

unschedule using cancel
event.cancel()

unschedule using Clock.unschedule
Clock.unschedule(event2)

unschedule using Clock.unschedule with the callback
NOT RECOMMENDED
Clock.unschedule(my_callback)

The best way to unschedule a callback is with ClockEvent.cancel().
CyClockBase.unschedule() is mainly an alias for that for that function.
However, if the original callback itself is passed to
CyClockBase.unschedule(), it’ll unschedule all instances of that
callback (provided all is True, the default, otherwise only the first match
is removed).

Calling CyClockBase.unschedule() on the original callback is highly
discouraged because it’s significantly slower than when using the event.

Clock Lifecycle

Kivy’s clock has a lifecycle. By default, scheduling a callback after the Clock
has ended will not raise an error, even though the callback may never be
called. That’s because most callbacks are like services, e.g. responding to a
user button press - if the app is running the callbacks need to service the app
and respond to the input, but once the app has stopped or is stopping, we can
safely not process these events.

Other events always need to be processed. E.g. another thread may request a
callback in kivy’s thread and then process some result. If the event is not
processed in Kivy’s thread because the app stopped, the second thread may
block forever hanging the application as it exits.

Consequently, we provide a API
(CyClockBase.create_lifecycle_aware_trigger()) for scheduling callbacks
that raise a ClockNotRunningError if the clock has stopped. If the
scheduling succeeded it guarantees that one of its callbacks will be called.
I.e. the new CyClockBase.create_lifecycle_aware_trigger() accepts an
additional clock_ended_callback parameter. Normally, callback will be
called when the event is processed. But, if the clock is stopped before it can
be processed, if the application exited normally (and the app was started) and
the event wasn’t canceled, and the callbacks are not garbage collected, then
clock_ended_callback will be called instead when the clock is stopped.

That is, given these conditions, if ClockNotRunningError was not
raised when the event was scheduled, then one of these callbacks will be
called - either callback if the event executed normally, or
clock_ended_callback if the clock is stopped while the event is scheduled.

By default, events can be scheduled before the clock is started because it is
assumed the clock will eventually be started when the app starts. I.e.
calling CyClockBase.create_lifecycle_aware_trigger() before the clock
and application starts will succeed. But if the app never actually starts, then
neither of the callbacks may be executed.

New in version 2.0.0: The lifecycle was added in 2.0.0

Exception Handling

Kivy provides a exception handling manager,
ExceptionManager, to handle its internal exceptions
including exceptions raised by clock callbacks, without crashing the
application. By default when an exception is raised, the app will crash.
But, if a handler is registered with the exception manager and the handler
handles the exception, the app will not crash and will continue as normal.:

from kivy.base import ExceptionHandler, ExceptionManager
class MyHandler(ExceptionHandler):
 def handle_exception(self, inst):
 if isinstance(inst, ValueError):
 Logger.exception('ValueError caught by MyHandler')
 return ExceptionManager.PASS
 return ExceptionManager.RAISE

ExceptionManager.add_handler(MyHandler())

Then, all ValueError exceptions will be logged to the console and ignored.
Similarly, if a scheduled clock callback raises a ValueError, other clock
events will still be processed normally.

If an event’s callback raises an exception, before the exception handler is
executed, the callback is immediately canceled.

It still is possible for the app to be corrupted if kivy itself is the source
of the exception. I.e. even with a handler that ignores exceptions and doesn’t
crash, the app may be in a corrupted state if the error originates from within
Kivy itself. However, the exception handler can help protect the app from
crashing and can help protect against user callbacks crashing the app.

Changed in version 2.0.0: Prior to Kivy 2.0.0, an exception raised in a event’s callback would
cause the clock to crash and subsequent events may or may not be executed.
Even if the exception was handled by an
ExceptionHandler, there was no guarantee that some
scheduled events would not be skipped.

From 2.0.0 onward, if a event’s exception is handled by an
ExceptionHandler, other events will be shielded from
the exception and will execute normally.

Scheduling from __del__

It is not safe to schedule Clock events from a object’s __del__ or
__dealloc__ method. If you must schedule a Clock call from this method, use
CyClockBase.schedule_del_safe() or
CyClockBase.schedule_lifecycle_aware_del_safe() instead.

Threading and Callback Order

Beginning with 1.10.0, all the events scheduled for the same frame, e.g.
all the events scheduled in the same frame with a timeout of 0,
well be executed in the order they were scheduled.

Also, all the scheduling and canceling methods are fully thread safe and
can be safely used from external threads.

As a a consequence, calling CyClockBase.unschedule() with the original
callback is now significantly slower and highly discouraged. Instead, the
returned events should be used to cancel. As a tradeoff, all the other methods
are now significantly faster than before.

Advanced Clock Details

The following section goes into the internal kivy clock details as well
as the various clock options. It is meant only for advanced users.

Fundamentally, the Kivy clock attempts to execute any scheduled callback
rhythmically as determined by the specified fps (frame per second, see
maxfps in config). That is, ideally, given e.g. a desired fps
of 30, the clock will execute the callbacks at intervals of 1 / 30 seconds, or
every 33.33 ms. All the callbacks in a frame are given the same timestamp,
i.e. the dt passed to the callback are all the same and it’s the difference
in time between the start of this and the previous frame.

Because of inherent indeterminism, the frames do not actually occur exactly
at intervals of the fps and dt may be under or over the desired fps.
Also, once the timeout is “close enough” to the desired timeout, as determined
internally, Kivy will execute the callback in the current frame even when the
“actual time” has not elapsed the timeout amount.

Kivy offers now, since 1.10.0, multiple clocks with different behaviors.

Default Clock

The default clock (default) behaves as described above. When a callback
with a timeout of zero or non-zero is scheduled, they are executed at the frame
that is near the timeout, which is a function of the fps. So a timeout of zero
would still result in a delay of one frame or about 1 / fps, typically a bit
less but sometimes more depending on the CPU usage of the other events
scheduled for that frame.

In a test using a fps of 30, a callback with a timeout of 0, 0.001, and 0.05,
resulted in a mean callback delay of 0.02487, 0.02488, and 0.05011 seconds,
respectively. When tested with a fps of 600 the delay for 0.05 was similar,
except the standard deviation was reduced resulting in overall better accuracy.

Interruptible Clock

The default clock suffers from the quantization problem, as frames occur only
on intervals and any scheduled timeouts will not be able to occur during an
interval. For example, with the timeout of 0.05, while the mean was 0.05011,
its values ranged between 0.02548 - 0.07348 and a standard deviation of 0.002.
Also, there’s the minimum timeout of about 0.02487.

The interruptible clock (interrupt) will execute timeouts even during a
frame. So a timeout of zero will execute as quickly as possible and similarly
a non-zero timeout will be executed even during the interval.

This clock, and all the clocks described after this have an option,
ClockBaseInterruptBehavior.interupt_next_only. When True, any of the
behavior new behavior will only apply to the callbacks with a timeout of
zero. Non-zero timeouts will behave like in the default clock. E.g. for this
clock when True, only zero timeouts will execute during the the interval.

In a test using a fps of 30, a callback with a timeout of 0, 0.001, and 0.05,
resulted in a mean callback delay of 0.00013, 0.00013, and 0.04120 seconds,
respectively when ClockBaseInterruptBehavior.interupt_next_only was
False. Also, compared to the default clock the standard deviation was reduced.
When ClockBaseInterruptBehavior.interupt_next_only was True, the values
were 0.00010, 0.02414, and 0.05034, respectively.

Free Clock

The interruptible clock may not be ideal for all cases because all the events
are executed during the intervals and events are not executed anymore
rhythmically as multiples of the fps. For example, there may not be any benefit
for the graphics to update in a sub-interval, so the additional accuracy
wastes CPU.

The Free clock (free_all) solves this by having Clock.xxx_free versions
of all the Clock scheduling methods. By free, we mean the event is free from
the fps because it’s not fps limited. E.g.
CyClockBaseFree.create_trigger_free() corresponds to
CyClockBase.create_trigger(). Only when an event scheduled using the
Clock.xxx_free methods is present will the clock interrupt and execute
the events during the interval. So, if no free event is present the clock
behaves like the default clock, otherwise it behaves like the interrupt
clock.

In a test using a fps of 30, a callback with a timeout of 0s, 0.001s, and
0.05s, resulted in a mean callback delay of 0.00012s, 0.00017s, and 0.04121s
seconds, respectively when it was a free event and 0.02403s, 0.02405s, and
0.04829s, respectively when it wasn’t.

Free Only Clock

The Free clock executes all events when a free event was scheduled. This
results in normal events also being execute in the middle of the interval
when a free event is scheduled. For example, above, when a free event was
absent, a normal event with a 0.001s timeout was delayed for 0.02405s. However,
if a free event happened to be also scheduled, the normal event was only
delayed 0.00014s, which may be undesirable.

The Free only clock (free_only) solves it by only executing free events
during the interval and normal events are always executed like with the
default clock. For example, in the presence of a free event, a normal event
with a timeout of 0.001s still had a delay of 0.02406. So this clock,
treats free and normal events independently, with normal events always being
fps limited, but never the free events.

Summary

The kivy clock type to use can be set with the kivy_clock option the
config. If KIVY_CLOCK is present in the environment it
overwrites the config selection. Its possible values are as follows:

	When kivy_clock is default, the normal clock, ClockBase,
which limits callbacks to the maxfps quantization - is used.

	When kivy_clock is interrupt, a interruptible clock,
ClockBaseInterrupt, which doesn’t limit any callbacks to the
maxfps - is used. Callbacks will be executed at any time.

	When kivy_clock is free_all, a interruptible clock,
ClockBaseFreeInterruptAll, which doesn’t limit any callbacks to the
maxfps in the presence of free events, but in their absence it limits events
to the fps quantization interval - is used.

	When kivy_clock is free_only, a interruptible clock,
ClockBaseFreeInterruptAll, which treats free and normal events
independently; normal events are fps limited while free events are not - is
used.

Async clock support

New in version 2.0.0.

Experimental async support has been added in 2.0.0. The Clock now has a
ClockBaseBehavior.async_tick() and ClockBaseBehavior.async_idle()
coroutine method which is used by the kivy EventLoop when the kivy EventLoop is
executed in a asynchronous manner. When used, the kivy clock does not
block while idling.

The async library to use is selected with the KIVY_EVENTLOOP environmental
variable or by calling init_async_lib()
directly. The library can be one of “asyncio” when the standard library
asyncio should be used, or “trio” if the trio library
should be used. If not set it defaults to “asyncio”.

See app for example usage.

	
kivy.clock.Clock: ClockBase = None

	The kivy Clock instance. See module documentation for details.

	
class kivy.clock.ClockBase(**kwargs)

	Bases: kivy.clock.ClockBaseBehavior, kivy._clock.CyClockBase

The default kivy clock. See module for details.

	
usleep(microseconds)

	Sleeps for the number of microseconds.

	
class kivy.clock.ClockBaseBehavior(async_lib='asyncio', **kwargs)

	Bases: builtins.object

The base of the kivy clock.

	Parameters:

	
	async_lib: string
	The async library to use when the clock is run asynchronously.
Can be one of, “asyncio” when the standard library asyncio
should be used, or “trio” if the trio library should be used.

It defaults to ‘asyncio’ or the value in the environmental
variable KIVY_EVENTLOOP if set. init_async_lib() can also
be called directly to set the library.

	
MIN_SLEEP = 0.005

	The minimum time to sleep. If the remaining time is less than this,
the event loop will continue.

	
async async_idle()

	(internal) async version of idle().

	
async async_tick()

	async version of tick().

	
property frames

	Number of internal frames (not necessarily drawn) from the start of
the clock.

New in version 1.8.0.

	
property frames_displayed

	Number of displayed frames from the start of the clock.

	
property frametime

	Time spent between the last frame and the current frame
(in seconds).

New in version 1.8.0.

	
get_boottime()

	Get the time in seconds from the application start.

	
get_fps()

	Get the current average FPS calculated by the clock.

	
get_rfps()

	Get the current “real” FPS calculated by the clock.
This counter reflects the real framerate displayed on the screen.

In contrast to get_fps(), this function returns a counter of the
number of frames, not the average of frames per second.

	
get_time()

	Get the last tick made by the clock.

	
idle()

	(internal) waits here until the next frame.

	
init_async_lib(lib)

	Manually sets the async library to use internally, when running in
a asynchronous manner.

This can be called anytime before the kivy event loop has started,
but not once the kivy App is running.

	Parameters:

	
	lib: string
	The async library to use when the clock is run asynchronously.
Can be one of, “asyncio” when the standard library asyncio
should be used, or “trio” if the trio library should be used.

	
post_idle(ts, current)

	Called after idle() by tick().

	
pre_idle()

	Called before idle() by tick().

	
tick()

	Advance the clock to the next step. Must be called every frame.
The default clock has a tick() function called by the core Kivy
framework.

	
tick_draw()

	Tick the drawing counter.

	
static time()

	Proxy method for clock().

	
usleep(microseconds)

	Sleeps for the number of microseconds.

	
class kivy.clock.ClockBaseFreeInterruptAll(**kwargs)

	Bases: kivy.clock.ClockBaseInterruptFreeBehavior, kivy._clock.CyClockBaseFree

The free_all kivy clock. See module for details.

	
class kivy.clock.ClockBaseFreeInterruptOnly(**kwargs)

	Bases: kivy.clock.ClockBaseInterruptFreeBehavior, kivy._clock.CyClockBaseFree

The free_only kivy clock. See module for details.

	
async async_idle()

	(internal) async version of idle().

	
idle()

	(internal) waits here until the next frame.

	
class kivy.clock.ClockBaseInterrupt(interupt_next_only=False, **kwargs)

	Bases: kivy.clock.ClockBaseInterruptBehavior, kivy._clock.CyClockBase

The interrupt kivy clock. See module for details.

	
class kivy.clock.ClockBaseInterruptBehavior(interupt_next_only=False, **kwargs)

	Bases: kivy.clock.ClockBaseBehavior

A kivy clock which can be interrupted during a frame to execute events.

	
async async_idle()

	(internal) async version of idle().

	
idle()

	(internal) waits here until the next frame.

	
init_async_lib(lib)

	Manually sets the async library to use internally, when running in
a asynchronous manner.

This can be called anytime before the kivy event loop has started,
but not once the kivy App is running.

	Parameters:

	
	lib: string
	The async library to use when the clock is run asynchronously.
Can be one of, “asyncio” when the standard library asyncio
should be used, or “trio” if the trio library should be used.

	
usleep(microseconds)

	Sleeps for the number of microseconds.

	
class kivy.clock.ClockBaseInterruptFreeBehavior(**kwargs)

	Bases: kivy.clock.ClockBaseInterruptBehavior

A base class for the clock that interrupts the sleep interval for
free events.

	
class kivy.clock.ClockEvent(CyClockBase clock, int loop, callback, double timeout, double starttime, cid=None, int trigger=False, clock_ended_callback=None, release_ref=True, **kwargs)

	Bases: builtins.object

This class is never created by the user; instead, kivy creates and returns
an instance of this class when scheduling a callback.

An event can be triggered (scheduled) by calling it. If it’s already
scheduled, nothing will happen, otherwise it’ll be scheduled. E.g.:

event = Clock.schedule_once(my_callback, .5)
event() # nothing will happen since it's already scheduled.
event.cancel() # cancel it
event() # now it's scheduled again.

	
callback

	callback: object

	
cancel()

	Cancels the callback if it was scheduled to be called. If not
scheduled, nothing happens.

	
cid

	cid: object

	
clock

	clock: kivy._clock.CyClockBase
The CyClockBase instance associated with the event.

	
clock_ended_callback

	clock_ended_callback: object
A Optional callback for this event, which if provided is called by the clock

when the clock is stopped and the event was not ticked.

	
get_callback()

	Returns the callback associated with the event. Callbacks get stored
with a indirect ref so that it doesn’t keep objects alive. If the callback
is dead, None is returned.

	
get_clock_ended_callback()

	Returns the clock_ended_callback associated with the event.
Callbacks get stored with a indirect ref so that it doesn’t keep
objects alive. If the callback is dead or wasn’t provided,
None is returned.

	
is_triggered

	Returns whether the event is scheduled to have its callback executed by
the kivy thread.

	
loop

	loop: ‘int’
Whether this event repeats at intervals of timeout.

	
next

	next: kivy._clock.ClockEvent
The next ClockEvent in order they were scheduled.

	
prev

	prev: kivy._clock.ClockEvent
The previous ClockEvent in order they were scheduled.

	
release()

	(internal method) Converts the callback into a indirect ref.

	
release_ref

	release_ref: ‘int’
If True, the event should never release the reference to the callbacks.

If False, a weakref may be created instead.

	
tick(double curtime)

	(internal method) Processes the event for the kivy thread.

	
timeout

	timeout: ‘double’
The duration after scheduling when the callback should be executed.

	
weak_callback

	weak_callback: object

	
weak_clock_ended_callback

	weak_clock_ended_callback: object

	
exception kivy.clock.ClockNotRunningError

	Bases: RuntimeError

Raised by the kivy Clock when scheduling an event if the
Kivy Clock has already finished (stop_clock was
called).

	
class kivy.clock.CyClockBase(**kwargs)

	Bases: builtins.object

	
clock_resolution

	clock_resolution: ‘double’
If the remaining time until the event timeout is less than clock_resolution,

the clock will execute the callback even if it hasn’t exactly timed out.

If -1, the default, the resolution will be computed from config’s maxfps.
Otherwise, the provided value is used. Defaults to -1.

	
create_lifecycle_aware_trigger(callback, clock_ended_callback, timeout=0, interval=False, release_ref=True) → ClockEvent

	Create a Trigger event similarly to create_trigger(), but the event
is sensitive to the clock’s state.

If this event is triggered after the clock has stopped (stop_clock()), then a
ClockNotRunningError will be raised. If the error is not raised,
then either callback or clock_ended_callback will be
called. callback will be called when the event
is normally executed. If the clock is stopped before it can be executed,
provided the app exited normally without crashing and the event wasn’t manually
canceled, and the callbacks are not garbage collected then
clock_ended_callback will be called instead when the clock is stopped.

	Parameters:

	
	callback: callable
	The callback to execute from kivy. It takes a single parameter - the
current elapsed kivy time.

	clock_ended_callback: callable
	A callback that will be called if the clock is stopped
while the event is still scheduled to be called. The callback takes
a single parameter - the event object. When the event is successfully
scheduled, if the app exited normally and the event wasn’t canceled,
and the callbacks are not garbage collected - it is guaranteed that
either callback or clock_ended_callback would have been called.

	timeout: float
	How long to wait before calling the callback.

	interval: bool
	Whether the callback should be called once (False) or repeatedly
with a period of timeout (True) like schedule_interval().

	release_ref: bool
	If True, the default, then if callback or clock_ended_callback
is a class method and the object has no references to it, then
the object may be garbage collected and the callbacks won’t be called.
If False, the clock keeps a reference to the object preventing it
from being garbage collected - so it will be called.

	Returns:

	A ClockEvent instance. To schedule the callback of this
instance, you can call it.

New in version 2.0.0.

	
create_trigger(callback, timeout=0, interval=False, release_ref=True) → ClockEvent

	Create a Trigger event. It is thread safe but not __del__ or
__dealloc__ safe (see schedule_del_safe()).
Check module documentation for more information.

To cancel the event before it is executed, call ClockEvent.cancel()
on the returned event.
To schedule it again, simply call the event (event()) and it’ll be safely
rescheduled if it isn’t already scheduled.

	Parameters:

	
	callback: callable
	The callback to execute from kivy. It takes a single parameter - the
current elapsed kivy time.

	timeout: float
	How long to wait before calling the callback.

	interval: bool
	Whether the callback should be called once (False) or repeatedly
with a period of timeout (True) like schedule_interval().

	release_ref: bool
	If True, the default, then if callback
is a class method and the object has no references to it, then
the object may be garbage collected and the callbacks won’t be called.
If False, the clock keeps a reference to the object preventing it
from being garbage collected - so it will be called.

	Returns:

	A ClockEvent instance. To schedule the callback of this
instance, you can call it.

New in version 1.0.5.

Changed in version 1.10.0: interval has been added.

Changed in version 2.0.0: release_ref has been added.

	
get_before_frame_events()

	Returns the list of ClockEvent instances that are scheduled
to be called before the next frame (-1 timeout).

New in version 2.1.0.

	
get_events()

	Returns the list of ClockEvent instances currently scheduled.

	
get_min_timeout()

	Returns the remaining time since the start of the current frame
for the event with the smallest timeout.

	
get_resolution()

	Returns the minimum resolution the clock has. It’s a function of
clock_resolution and maxfps provided at the config.

	
handle_exception(e)

	Provides an opportunity to handle an event’s exception.

If desired, the exception is handled, otherwise it should be raised
again. By default it is raised again.

	Parameters:

	e – The exception to be handled.

New in version 2.0.0.

	
has_ended

	has_ended: ‘int’

	
has_started

	has_started: ‘int’

	
max_iteration

	max_iteration: ‘int’
The maximum number of callback iterations at the end of the frame, before the next

frame. If more iterations occur, a warning is issued.

	
on_schedule(event)

	Function that is called internally every time an event is triggered
for this clock. It takes the event as a parameter.

The order of on_schedule calls are not guaranteed to be in the same
order that the events are scheduled. Similarly, it is possible that the
event being scheduled was canceled before this is called on the event.
That’s because on_schedule() may be called from different threads.

	
schedule_del_safe(callback)

	Schedule a callback that is thread safe and __del__ or
__dealloc__ safe.

It’s unsafe to call various kinds of code from __del__ or
__dealloc__ methods because they can be executed at any time. Most
Kivy’s Clock methods are unsafe to call the Clock from these methods. Instead,
use this method, which is thread safe and __del__ or __dealloc__
safe, to schedule the callback in the kivy thread. It’ll be executed
in order after the normal events are processed.

	Parameters:

	
	callback: Callable
	The callback the execute from kivy. It takes no parameters and
cannot be canceled.

New in version 1.11.0.

	
schedule_interval(callback, timeout) → ClockEvent

	Schedule an event to be called every <timeout> seconds.
See create_trigger() for advanced scheduling and more details.

To cancel the event before it is executed, call ClockEvent.cancel()
on the returned event.
If the callback is a class method, a weakref to the object is created and it
may be garbage collected if there’s no other reference to the object.

	Returns:

	A ClockEvent instance. As opposed to
create_trigger() which only creates the trigger event, this
method also schedules it.

	
schedule_lifecycle_aware_del_safe(callback, clock_ended_callback)

	Schedule a callback that is thread safe and __del__ or
__dealloc__ safe similarly to schedule_del_safe(), but the callback
is sensitive to the clock’s state.

If this event is triggered after the clock has stopped (stop_clock()), then a
ClockNotRunningError will be raised. If the error is not raised,
then either callback or clock_ended_callback will be
called. callback will be called when the callback
is normally executed. If the clock is stopped before it can be executed,
provided the app exited normally without crashing then
clock_ended_callback will be called instead when the clock is stopped.

	Parameters:

	
	callback: Callable
	The callback the execute from kivy. It takes no parameters and
cannot be canceled.

	clock_ended_callback: callable
	A callback that will be called if the clock is stopped
while the callback is still scheduled to be called. The callback takes
a single parameter - the callback. If the
app exited normally, it is guaranteed that either callback
or clock_ended_callback would have been called.

New in version 2.0.0.

	
schedule_once(callback, timeout=0) → ClockEvent

	Schedule an event in <timeout> seconds. If <timeout> is unspecified
or 0, the callback will be called after the next frame is rendered.
See create_trigger() for advanced scheduling and more details.

To cancel the event before it is executed, call ClockEvent.cancel()
on the returned event.
If the callback is a class method, a weakref to the object is created and it
may be garbage collected if there’s no other reference to the object.

	Returns:

	A ClockEvent instance. As opposed to
create_trigger() which only creates the trigger event, this
method also schedules it.

Changed in version 1.0.5: If the timeout is -1, the callback will be called before the next
frame (at tick_draw()).

	
start_clock()

	Must be called to start the clock.

Once stop_clock() is called, it cannot be started again.

	
stop_clock()

	Stops the clock and cleans up.

This must be called to process the lifecycle_aware callbacks etc.

	
unschedule(callback, all=True)

	Remove a previously scheduled event.

An ClockEvent can also be canceled directly by calling
ClockEvent.cancel().

	Parameters:

	
	callback: ClockEvent or a callable.
	If it’s a ClockEvent instance, then the callback
associated with this event will be canceled if it is
scheduled.

If it’s a callable, then the callable will be unscheduled if it
was scheduled.

Warning

Passing the callback function rather than the returned
ClockEvent will result in a significantly slower
unscheduling.

	all: bool
	If True and if callback is a callable, all instances of this
callable will be unscheduled (i.e. if this callable was
scheduled multiple times). Defaults to True.

Changed in version 1.9.0: The all parameter was added. Before, it behaved as if all was
True.

	
class kivy.clock.CyClockBaseFree

	Bases: kivy._clock.CyClockBase

A clock class that supports scheduling free events in addition to normal
events.

Each of the create_trigger(),
schedule_once(), and schedule_interval()
methods, which create a normal event, have a corresponding method
for creating a free event.

	
create_lifecycle_aware_trigger(callback, clock_ended_callback, timeout=0, interval=False, release_ref=True) → FreeClockEvent

	

	
create_lifecycle_aware_trigger_free(callback, clock_ended_callback, timeout=0, interval=False, release_ref=True) → FreeClockEvent

	Similar to create_lifecycle_aware_trigger(), but instead creates
a free event.

	
create_trigger(callback, timeout=0, interval=False, release_ref=True) → FreeClockEvent

	

	
create_trigger_free(callback, timeout=0, interval=False, release_ref=True) → FreeClockEvent

	Similar to create_trigger(), but instead creates
a free event.

	
get_min_free_timeout()

	Returns the remaining time since the start of the current frame
for the free event with the smallest timeout.

	
schedule_interval(callback, timeout) → FreeClockEvent

	

	
schedule_interval_free(callback, timeout) → FreeClockEvent

	Similar to schedule_interval(), but instead creates
a free event.

	
schedule_once(callback, timeout=0) → FreeClockEvent

	

	
schedule_once_free(callback, timeout=0) → FreeClockEvent

	Similar to schedule_once(), but instead creates
a free event.

	
class kivy.clock.FreeClockEvent(free, *largs, **kwargs)

	Bases: kivy._clock.ClockEvent

CyClockBaseFree. It stores whether the event was scheduled as a
free event.

	
free

	free: ‘int’
Whether this event was scheduled as a free event.

	
kivy.clock.mainthread(func)

	Decorator that will schedule the call of the function for the next
available frame in the mainthread. It can be useful when you use
UrlRequest or when you do Thread
programming: you cannot do any OpenGL-related work in a thread.

Please note that this method will return directly and no result can be
returned:

@mainthread
def callback(self, *args):
 print('The request succeeded!',
 'This callback is called in the main thread.')

self.req = UrlRequest(url='http://...', on_success=callback)

New in version 1.8.0.

	
kivy.clock.triggered(timeout=0, interval=False)

	Decorator that will trigger the call of the function at the specified
timeout, through the method CyClockBase.create_trigger(). Subsequent
calls to the decorated function (while the timeout is active) are ignored.

It can be helpful when an expensive function (i.e. call to a server) can be
triggered by different methods. Setting a proper timeout will delay the
calling and only one of them will be triggered.

@triggered(timeout, interval=False)
def callback(id):

print(‘The callback has been called with id=%d’ % id)

>> callback(id=1)
>> callback(id=2)
The callback has been called with id=2

The decorated callback can also be unscheduled using:

>> callback.cancel()

New in version 1.10.1.

Compatibility module for Python 2.7 and >= 3.4

This module provides a set of utility types and functions for optimization and
to aid in writing Python 2/3 compatible code.

	
kivy.compat.PY2 = False

	False, because we don’t support Python 2 anymore.

	
kivy.compat.clock() → float

	A clock with the highest available resolution on your current Operating
System.

	
kivy.compat.isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)

	Determine whether two floating point numbers are close in value.

	rel_tol
	maximum difference for being considered “close”, relative to the
magnitude of the input values

	abs_tol
	maximum difference for being considered “close”, regardless of the
magnitude of the input values

Return True if a is close in value to b, and False otherwise.

For the values to be considered close, the difference between them
must be smaller than at least one of the tolerances.

-inf, inf and NaN behave similarly to the IEEE 754 Standard. That
is, NaN is not close to anything, even itself. inf and -inf are
only close to themselves.

	
kivy.compat.string_types

	A utility type for detecting string in a Python 2/3 friendly way. For
example:

if isinstance(s, string_types):
 print("It's a string or unicode type")
else:
 print("It's something else.")

Configuration object

The Config object is an instance of a modified Python ConfigParser.
See the ConfigParser documentation [http://docs.python.org/library/configparser.html] for more information.

Kivy has a configuration file which determines the default settings. In
order to change these settings, you can alter this file manually or use
the Config object. Please see the Configure Kivy section for more
information.

Applying configurations

Configuration options control the initialization of the App.
In order to avoid situations where the config settings do not work or are not
applied before window creation (like setting an initial window size),
Config.set should be used before
importing any other Kivy modules. Ideally, this means setting them right at
the start of your main.py script.

Alternatively, you can save these settings permanently using
Config.set then
Config.write. In this case, you will need to
restart the app for the changes to take effect. Note that this approach will
effect all Kivy apps system wide.

Please note that no underscores (_) are allowed in the section name.

Usage of the Config object

To read a configuration token from a particular section:

>>> from kivy.config import Config
>>> Config.getint('kivy', 'show_fps')
0

Change the configuration and save it:

>>> Config.set('postproc', 'retain_time', '50')
>>> Config.write()

For information on configuring your App, please see the
Application configuration section.

Changed in version 1.7.1: The ConfigParser should work correctly with utf-8 now. The values are
converted from ascii to unicode only when needed. The method get() returns
utf-8 strings.

Changing configuration with environment variables

Since 1.11.0, it is now possible to change the configuration using
environment variables. They take precedence on the loaded config.ini.
The format is:

KCFG_<section>_<key> = <value>

For example:

KCFG_GRAPHICS_FULLSCREEN=auto …
KCFG_KIVY_LOG_LEVEL=warning …

Or in your file before any kivy import:

import os
os.environ[“KCFG_KIVY_LOG_LEVEL”] = “warning”

If you don’t want to map any environment variables, you can disable
the behavior:

os.environ["KIVY_NO_ENV_CONFIG"] = "1"

Available configuration tokens

	kivy:

	
	default_font: list
	Default fonts used for widgets displaying any text. It defaults to
[‘Roboto’, ‘data/fonts/Roboto-Regular.ttf’,
‘data/fonts/Roboto-Italic.ttf’, ‘data/fonts/Roboto-Bold.ttf’,
‘data/fonts/Roboto-BoldItalic.ttf’].

	desktop: int, 0 or 1
	This option controls desktop OS specific features, such as enabling
drag-able scroll-bar in scroll views, disabling of bubbles in
TextInput etc. 0 is disabled, 1 is enabled.

	exit_on_escape: int, 0 or 1
	Enables exiting kivy when escape is pressed.
0 is disabled, 1 is enabled.

	pause_on_minimize: int, 0 or 1
	If set to 1, the main loop is paused and the on_pause event
is dispatched when the window is minimized. This option is intended
for desktop use only. Defaults to 0.

	keyboard_layout: string
	Identifier of the layout to use.

	keyboard_mode: string
	Specifies the keyboard mode to use. If can be one of the following:

	‘’ - Let Kivy choose the best option for your current platform.

	‘system’ - real keyboard.

	‘dock’ - one virtual keyboard docked to a screen side.

	‘multi’ - one virtual keyboard for every widget request.

	‘systemanddock’ - virtual docked keyboard plus input from real
keyboard.

	‘systemandmulti’ - analogous.

	kivy_clock: one of default, interrupt, free_all, free_only
	The clock type to use with kivy. See kivy.clock.

	log_dir: string
	Path of log directory.

	log_enable: int, 0 or 1
	Activate file logging. 0 is disabled, 1 is enabled.

Note

Logging output can also be controlled by the environment variables
KIVY_LOG_MODE, KIVY_NO_FILELOG and KIVY_NO_CONSOLELOG.
More information is provided in the kivy.logger module.

	log_level: string, one of ‘trace’, ‘debug’, ‘info’, ‘warning’, ‘error’ or ‘critical’
	Set the minimum log level to use.

	log_name: string
	Format string to use for the filename of log file.

	log_maxfiles: int
	Keep log_maxfiles recent logfiles while purging the log directory. Set
‘log_maxfiles’ to -1 to disable logfile purging (eg keep all logfiles).

Note

You end up with ‘log_maxfiles + 1’ logfiles because the logger
adds a new one after purging.

	window_icon: string
	Path of the window icon. Use this if you want to replace the default
pygame icon.

	postproc:

	
	double_tap_distance: float
	Maximum distance allowed for a double tap, normalized inside the range
0 - 1000.

	double_tap_time: int
	Time allowed for the detection of double tap, in milliseconds.

	ignore: list of tuples
	List of regions where new touches are ignored.
This configuration token can be used to resolve hotspot problems
with DIY hardware. The format of the list must be:

ignore = [(xmin, ymin, xmax, ymax), ...]

All the values must be inside the range 0 - 1.

	jitter_distance: int
	Maximum distance for jitter detection, normalized inside the range 0
- 1000.

	jitter_ignore_devices: string, separated with commas
	List of devices to ignore from jitter detection.

	retain_distance: int
	If the touch moves more than is indicated by retain_distance, it will
not be retained. Argument should be an int between 0 and 1000.

	retain_time: int
	Time allowed for a retain touch, in milliseconds.

	triple_tap_distance: float
	Maximum distance allowed for a triple tap, normalized inside the range
0 - 1000.

	triple_tap_time: int
	Time allowed for the detection of triple tap, in milliseconds.

	graphics:

	
	borderless: int, one of 0 or 1
	If set to 1, removes the window border/decoration. Window resizing
must also be disabled to hide the resizing border.

	custom_titlebar: int, one of 0 or 1
	If set to 1, removes the window border and allows user to set a Widget
as a titlebar
see set_custom_titlebar()
for detailed usage

	custom_titlebar_border: int, defaults to 5
	sets the how many pixles off the border should be used as the
rezising frame

	window_state: string , one of ‘visible’, ‘hidden’, ‘maximized’
	
or ‘minimized’

Sets the window state, defaults to ‘visible’. This option is available
only for the SDL2 window provider and it should be used on desktop
OSes.

	fbo: string, one of ‘hardware’, ‘software’ or ‘force-hardware’
	Selects the FBO backend to use.

	fullscreen: int or string, one of 0, 1, ‘fake’ or ‘auto’
	Activate fullscreen. If set to 1, a resolution of width
times height pixels will be used.
If set to auto, your current display’s resolution will be
used instead. This is most likely what you want.
If you want to place the window in another display,
use fake, or set the borderless option from the graphics section,
then adjust width, height, top and left.

	height: int
	Height of the Window, not used if
fullscreen is set to auto.

	left: int
	Left position of the Window.

	maxfps: int, defaults to 60
	Maximum FPS allowed.

Warning

Setting maxfps to 0 will lead to max CPU usage.

	‘multisamples’: int, defaults to 2
	Sets the MultiSample Anti-Aliasing (MSAA) [http://en.wikipedia.org/wiki/Multisample_anti-aliasing] level.
Increasing this value results in smoother graphics but at the cost of
processing time.

Note

This feature is limited by device hardware support and will have no
effect on devices which do not support the level of MSAA requested.

	position: string, one of ‘auto’ or ‘custom’
	Position of the window on your display. If auto is used, you have no
control of the initial position: top and left are ignored.

	show_cursor: int, one of 0 or 1
	Set whether or not the cursor is shown on the window.

	top: int
	Top position of the Window.

	resizable: int, one of 0 or 1
	If 0, the window will have a fixed size. If 1, the window will be
resizable.

	rotation: int, one of 0, 90, 180 or 270
	Rotation of the Window.

	width: int
	Width of the Window, not used if
fullscreen is set to auto.

	minimum_width: int
	Minimum width to restrict the window to. (sdl2 only)

	minimum_height: int
	Minimum height to restrict the window to. (sdl2 only)

	min_state_time: float, defaults to .035
	Minimum time for widgets to display a given visual state.
This attrib is currently used by widgets like
DropDown &
ButtonBehavior to
make sure they display their current visual state for the given
time.

	always_on_top: int, one of 0 or 1, defaults to 0
	When enabled, the window will be brought to the front and will keep
the window above the rest. Only works for the sdl2 window provider.
0 is disabled, 1 is enabled.

	show_taskbar_icon: int, one of 0 or 1, defaults to 1
	Determines whether the app’s icon will be added to the taskbar. Only
applicable for the SDL2 window provider.
0 means the icon will not be shown in the taskbar and 1 means
it will.

	allow_screensaver: int, one of 0 or 1, defaults to 1
	Allow the device to show a screen saver, or to go to sleep
on mobile devices. Only works for the sdl2 window provider.

	vsync: none, empty value, or integers
	Whether vsync is enabled, currently only used with sdl2 window.
Possible values are none or empty value – leaves it unchanged,
0 – disables vsync, 1 or larger – sets vsync interval,
-1 sets adaptive vsync. It falls back to 1 if setting to 2+
or -1 failed. See SDL_GL_SetSwapInterval.

	verify_gl_main_thread: int, 1 or 0, defaults to 1
	Whether to check if code that changes any gl instructions is
running outside the main thread and then raise an error.

	input:

	You can create new input devices using this syntax:

example of input provider instance
yourid = providerid,parameters

example for tuio provider
default = tuio,127.0.0.1:3333
mytable = tuio,192.168.0.1:3334

See also

Check the providers in kivy.input.providers for the syntax to
use inside the configuration file.

	widgets:

	
	scroll_distance: int
	Default value of the
scroll_distance
property used by the ScrollView widget.
Check the widget documentation for more information.

	scroll_friction: float
	Default value of the
scroll_friction
property used by the ScrollView widget.
Check the widget documentation for more information.

Deprecated since version 1.7.0: Please use
effect_cls instead.

	scroll_timeout: int
	Default value of the
scroll_timeout
property used by the ScrollView widget.
Check the widget documentation for more information.

	scroll_stoptime: int
	Default value of the
scroll_stoptime
property used by the ScrollView widget.
Check the widget documentation for more information.

Deprecated since version 1.7.0: Please use
effect_cls instead.

	scroll_moves: int
	Default value of the
scroll_moves
property used by the ScrollView widget.
Check the widget documentation for more information.

Deprecated since version 1.7.0: Please use
effect_cls instead.

	modules:

	You can activate modules with this syntax:

modulename =

Anything after the = will be passed to the module as arguments.
Check the specific module’s documentation for a list of accepted
arguments.

New in version 2.2.0: always_on_top have been added to the graphics section.
show_taskbar_icon have been added to the graphics section.

Changed in version 2.2.0: implementation has been added to the network section.

Changed in version 2.1.0: vsync has been added to the graphics section.
verify_gl_main_thread has been added to the graphics section.

Changed in version 1.10.0: min_state_time and allow_screensaver have been added
to the graphics section.
kivy_clock has been added to the kivy section.
default_font has beed added to the kivy section.
useragent has been added to the network section.

Changed in version 1.9.0: borderless and window_state have been added to the graphics section.
The fake setting of the fullscreen option has been deprecated,
use the borderless option instead.
pause_on_minimize has been added to the kivy section.

Changed in version 1.8.0: systemanddock and systemandmulti has been added as possible values for
keyboard_mode in the kivy section. exit_on_escape has been added
to the kivy section.

Changed in version 1.2.0: resizable has been added to graphics section.

Changed in version 1.1.0: tuio no longer listens by default. Window icons are not copied to
user directory anymore. You can still set a new window icon by using the
window_icon config setting.

Changed in version 1.0.8: scroll_timeout, scroll_distance and scroll_friction have been added.
list_friction, list_trigger_distance and list_friction_bound
have been removed. keyboard_type and keyboard_layout have been
removed from the widget. keyboard_mode and keyboard_layout have
been added to the kivy section.

	
kivy.config.Config = None

	The default Kivy configuration object. This is a ConfigParser
instance with the name set to ‘kivy’.

Config = ConfigParser(name='kivy')

	
class kivy.config.ConfigParser(name='', **kwargs)

	Bases: configparser.RawConfigParser, builtins.object

Enhanced ConfigParser class that supports the addition of default
sections and default values.

By default, the kivy ConfigParser instance, Config,
is named ‘kivy’ and the ConfigParser instance used by the
App.build_settings method is named
‘app’.

	Parameters:

	
	name: string
	The name of the instance. See name. Defaults to ‘’.

Changed in version 1.9.0: Each ConfigParser can now be named. You can get the
ConfigParser associated with a name using get_configparser().
In addition, you can now control the config values with
ConfigParserProperty.

New in version 1.0.7.

	
add_callback(callback, section=None, key=None)

	Add a callback to be called when a specific section or key has
changed. If you don’t specify a section or key, it will call the
callback for all section/key changes.

Callbacks will receive 3 arguments: the section, key and value.

New in version 1.4.1.

	
adddefaultsection(section)

	Add a section if the section is missing.

	
get(section, option, **kwargs)

	Get an option value for a given section.

If `vars’ is provided, it must be a dictionary. The option is looked up
in `vars’ (if provided), `section’, and in `DEFAULTSECT’ in that order.
If the key is not found and `fallback’ is provided, it is used as
a fallback value. `None’ can be provided as a `fallback’ value.

If interpolation is enabled and the optional argument `raw’ is False,
all interpolations are expanded in the return values.

Arguments `raw’, `vars’, and `fallback’ are keyword only.

The section DEFAULT is special.

	
static get_configparser(name)

	Returns the ConfigParser instance whose name is name, or
None if not found.

	Parameters:

	
	name: string
	The name of the ConfigParser instance to return.

	
getdefault(section, option, defaultvalue)

	Get the value of an option in the specified section. If not found,
it will return the default value.

	
getdefaultint(section, option, defaultvalue)

	Get the value of an option in the specified section. If not found,
it will return the default value. The value will always be
returned as an integer.

New in version 1.6.0.

	
property name

	The name associated with this ConfigParser instance, if not ‘’.
Defaults to ‘’. It can be safely changed dynamically or set to ‘’.

When a ConfigParser is given a name, that config object can be
retrieved using get_configparser(). In addition, that config
instance can also be used with a
ConfigParserProperty instance that set its
config value to this name.

Setting more than one ConfigParser with the same name will raise a
ValueError.

	
read(filename)

	Read only one filename. In contrast to the original ConfigParser of
Python, this one is able to read only one file at a time. The last
read file will be used for the write() method.

Changed in version 1.9.0: read() now calls the callbacks if read changed any values.

	
remove_callback(callback, section=None, key=None)

	Removes a callback added with add_callback().
remove_callback() must be called with the same parameters as
add_callback().

Raises a ValueError if not found.

New in version 1.9.0.

	
set(section, option, value)

	Functions similarly to PythonConfigParser’s set method, except that
the value is implicitly converted to a string.

	
setall(section, keyvalues)

	Sets multiple key-value pairs in a section. keyvalues should be a
dictionary containing the key-value pairs to be set.

	
setdefault(section, option, value)

	Set the default value for an option in the specified section.

	
setdefaults(section, keyvalues)

	Set multiple key-value defaults in a section. keyvalues should be
a dictionary containing the new key-value defaults.

	
update_config(filename, overwrite=False)

	Upgrade the configuration based on a new default config file.
Overwrite any existing values if overwrite is True.

	
write()

	Write the configuration to the last file opened using the
read() method.

Return True if the write finished successfully, False otherwise.

Context

New in version 1.8.0.

Warning

This is experimental and subject to change as long as this warning notice
is present.

Kivy has a few “global” instances that are used directly by many pieces of the
framework: Cache, Builder, Clock.

TODO: document this module.

	
class kivy.context.Context(init=False)

	Bases: builtins.dict

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised

	
kivy.context.get_current_context()

	Return the current context.

	
kivy.context.register_context(name, cls, *args, **kwargs)

	Register a new context.

Event dispatcher

All objects that produce events in Kivy implement the EventDispatcher
which provides a consistent interface for registering and manipulating event
handlers.

Changed in version 1.0.9: Property discovery and methods have been moved from the
Widget to the EventDispatcher.

	
class kivy.event.EventDispatcher(**kwargs)

	Bases: kivy.event.ObjectWithUid

See the module docstring for usage.

	
apply_property(**kwargs)

	Adds properties at runtime to the class. The function accepts
keyword arguments of the form prop_name=prop, where prop is a
Property instance and prop_name is the name of the attribute
of the property.

New in version 1.9.1.

Warning

This method is not recommended for common usage because you should
declare the properties in your class instead of using this method.

For example:

>>> print(wid.property('sticks', quiet=True))
None
>>> wid.apply_property(sticks=ObjectProperty(55, max=10))
>>> print(wid.property('sticks', quiet=True))
<kivy.properties.ObjectProperty object at 0x04303130>

	
bind(**kwargs)

	Bind an event type or a property to a callback.

Usage:

With properties
def my_x_callback(obj, value):
 print('on object', obj, 'x changed to', value)
def my_width_callback(obj, value):
 print('on object', obj, 'width changed to', value)
self.bind(x=my_x_callback, width=my_width_callback)

With event
def my_press_callback(obj):
 print('event on object', obj)
self.bind(on_press=my_press_callback)

In general, property callbacks are called with 2 arguments (the
object and the property’s new value) and event callbacks with
one argument (the object). The example above illustrates this.

The following example demonstrates various ways of using the bind
function in a complete application:

from kivy.uix.boxlayout import BoxLayout
from kivy.app import App
from kivy.uix.button import Button
from functools import partial

class DemoBox(BoxLayout):
 """
 This class demonstrates various techniques that can be used for binding to
 events. Although parts could me made more optimal, advanced Python concepts
 are avoided for the sake of readability and clarity.
 """
 def __init__(self, **kwargs):
 super(DemoBox, self).__init__(**kwargs)
 self.orientation = "vertical"

 # We start with binding to a normal event. The only argument
 # passed to the callback is the object which we have bound to.
 btn = Button(text="Normal binding to event")
 btn.bind(on_press=self.on_event)

 # Next, we bind to a standard property change event. This typically
 # passes 2 arguments: the object and the value
 btn2 = Button(text="Normal binding to a property change")
 btn2.bind(state=self.on_property)

 # Here we use anonymous functions (a.k.a lambdas) to perform binding.
 # Their advantage is that you can avoid declaring new functions i.e.
 # they offer a concise way to "redirect" callbacks.
 btn3 = Button(text="Using anonymous functions.")
 btn3.bind(on_press=lambda x: self.on_event(None))

 # You can also declare a function that accepts a variable number of
 # positional and keyword arguments and use introspection to determine
 # what is being passed in. This is very handy for debugging as well
 # as function re-use. Here, we use standard event binding to a function
 # that accepts optional positional and keyword arguments.
 btn4 = Button(text="Use a flexible function")
 btn4.bind(on_press=self.on_anything)

 # Lastly, we show how to use partial functions. They are sometimes
 # difficult to grasp, but provide a very flexible and powerful way to
 # reuse functions.
 btn5 = Button(text="Using partial functions. For hardcores.")
 btn5.bind(on_press=partial(self.on_anything, "1", "2", monthy="python"))

 for but in [btn, btn2, btn3, btn4, btn5]:
 self.add_widget(but)

 def on_event(self, obj):
 print("Typical event from", obj)

 def on_property(self, obj, value):
 print("Typical property change from", obj, "to", value)

 def on_anything(self, *args, **kwargs):
 print('The flexible function has *args of', str(args),
 "and **kwargs of", str(kwargs))

class DemoApp(App):
 def build(self):
 return DemoBox()

if __name__ == "__main__":
 DemoApp().run()

If a callback has already been bound to a given event or property,
it won’t be added again.

When binding a method to an event or property, a
kivy.weakmethod.WeakMethod of the callback is saved. That is,
rather than storing a regular reference, it stores both a weak
reference to the instance (see Python’s weakref).

This has two consequences.

The first is that the binding will not prevent garbage collection of
the method’s object. The client must maintain a reference to the instance for
the desired lifetime. The callback reference is silently removed if it
becomes invalid.

The second is that when using a decorated method e.g.:

@my_decorator
def callback(self, *args):
 pass

the decorator (my_decorator here) must use wraps [https://docs.python.org/3/library/functools.html#functools.wraps] internally.

	
create_property(unicode name, value=None, default_value=True, *largs, **kwargs)

	Create a new property at runtime.

New in version 1.0.9.

Changed in version 1.8.0: value parameter added, can be used to set the default value of the
property. Also, the type of the value is used to specialize the
created property.

Changed in version 1.9.0: In the past, if value was of type bool, a NumericProperty
would be created, now a BooleanProperty is created.

Also, now and positional and keyword arguments are passed to the
property when created.

Changed in version 2.0.0: default_value has been added.

Warning

This function is designed for the Kivy language, don’t use it in
your code. You should declare the property in your class instead of
using this method.

	Parameters:

	
	name: string
	Name of the property

	value: object, optional
	Default value of the property. Type is also used for creating
more appropriate property types. Defaults to None.

	default_value: bool, True by default
	If True, value will be the default for the property. Otherwise,
the property will be initialized with the the property type’s
normal default value, and subsequently set to value.

>>> mywidget = Widget()
>>> mywidget.create_property('custom')
>>> mywidget.custom = True
>>> print(mywidget.custom)
True

	
dispatch(event_type, *largs, **kwargs)

	Dispatch an event across all the handlers added in bind/fbind().
As soon as a handler returns True, the dispatching stops.

The function collects all the positional and keyword arguments and
passes them on to the handlers.

Note

The handlers are called in reverse order than they were registered
with bind().

	Parameters:

	
	event_type: str
	the event name to dispatch.

Changed in version 1.9.0: Keyword arguments collection and forwarding was added. Before, only
positional arguments would be collected and forwarded.

	
dispatch_children(event_type, *largs, **kwargs)

	

	
dispatch_generic(event_type, *largs, **kwargs)

	

	
events()

	Return all the events in the class. Can be used for introspection.

New in version 1.8.0.

	
fbind(name, func, *largs, **kwargs)

	A method for advanced, and typically faster binding. This method is
different than bind() and is meant for more advanced users and
internal usage. It can be used as long as the following points are heeded.

	As opposed to bind(), it does not check that this function and
largs/kwargs has not been bound before to this name. So binding
the same callback multiple times will just keep adding it.

	Although bind() creates a WeakMethod of the callback when
binding to an event or property, this method stores the callback
directly, unless a keyword argument ref with value True is provided
and then a WeakMethod is saved.
This is useful when there’s no risk of a memory leak by storing the
callback directly.

	This method returns a unique positive number if name was found and
bound, and 0, otherwise. It does not raise an exception, like
bind() if the property name is not found. If not zero,
the uid returned is unique to this name and callback and can be
used with unbind_uid() for unbinding.

When binding a callback with largs and/or kwargs, funbind()
must be used for unbinding. If no largs and kwargs are provided,
unbind() may be used as well. unbind_uid() can be used in
either case.

This method passes on any caught positional and/or keyword arguments to
the callback, removing the need to call partial. When calling the
callback the expended largs are passed on followed by instance/value
(just instance for kwargs) followed by expended kwargs.

Following is an example of usage similar to the example in
bind():

class DemoBox(BoxLayout):

 def __init__(self, **kwargs):
 super(DemoBox, self).__init__(**kwargs)
 self.orientation = "vertical"

 btn = Button(text="Normal binding to event")
 btn.fbind('on_press', self.on_event)

 btn2 = Button(text="Normal binding to a property change")
 btn2.fbind('state', self.on_property)

 btn3 = Button(text="A: Using function with args.")
 btn3.fbind('on_press', self.on_event_with_args, 'right',
 tree='birch', food='apple')

 btn4 = Button(text="Unbind A.")
 btn4.fbind('on_press', self.unbind_a, btn3)

 btn5 = Button(text="Use a flexible function")
 btn5.fbind('on_press', self.on_anything)

 btn6 = Button(text="B: Using flexible functions with args. For hardcores.")
 btn6.fbind('on_press', self.on_anything, "1", "2", monthy="python")

 btn7 = Button(text="Force dispatch B with different params")
 btn7.fbind('on_press', btn6.dispatch, 'on_press', 6, 7, monthy="other python")

 for but in [btn, btn2, btn3, btn4, btn5, btn6, btn7]:
 self.add_widget(but)

 def on_event(self, obj):
 print("Typical event from", obj)

 def on_event_with_args(self, side, obj, tree=None, food=None):
 print("Event with args", obj, side, tree, food)

 def on_property(self, obj, value):
 print("Typical property change from", obj, "to", value)

 def on_anything(self, *args, **kwargs):
 print('The flexible function has *args of', str(args),
 "and **kwargs of", str(kwargs))
 return True

 def unbind_a(self, btn, event):
 btn.funbind('on_press', self.on_event_with_args, 'right',
 tree='birch', food='apple')

Note

Since the kv lang uses this method to bind, one has to implement
this method, instead of bind() when creating a non
EventDispatcher based class used with the kv lang. See
Observable for an example.

New in version 1.9.0.

Changed in version 1.9.1: The ref keyword argument has been added.

	
funbind(name, func, *largs, **kwargs)

	Similar to fbind().

When unbinding, unbind() will unbind all callbacks that match the
callback, while this method will only unbind the first.

To unbind, the same positional and keyword arguments passed to
fbind() must be passed on to funbind.

Note

It is safe to use funbind() to unbind a function bound with
bind() as long as no keyword and positional arguments are
provided to funbind().

New in version 1.9.0.

	
get_property_observers(name, args=False)

	Returns a list of methods that are bound to the property/event
passed as the name argument:

widget_instance.get_property_observers('on_release')

	Parameters:

	
	name: str
	The name of the event or property.

	args: bool
	Whether to return the bound args. To keep compatibility,
only the callback functions and not their provided args will
be returned in the list when args is False.

If True, each element in the list is a 5-tuple of
(callback, largs, kwargs, is_ref, uid), where is_ref indicates
whether callback is a weakref, and uid is the uid given by
fbind(), or None if bind() was used. Defaults to False.

	Returns:

	The list of bound callbacks. See args for details.

New in version 1.8.0.

Changed in version 1.9.0: args has been added.

	
getter(name)

	Return the getter of a property.

New in version 1.0.9.

	
is_event_type(event_type)

	Return True if the event_type is already registered.

New in version 1.0.4.

	
properties() → dict

	Return all the properties in the class in a dictionary of
key/property class. Can be used for introspection.

New in version 1.0.9.

	
property(name, quiet=False)

	Get a property instance from the property name. If quiet is True,
None is returned instead of raising an exception when name is not a
property. Defaults to False.

New in version 1.0.9.

	Returns:

	A Property derived instance
corresponding to the name.

Changed in version 1.9.0: quiet was added.

	
proxy_ref

	Returns a WeakProxy reference to the
EventDispatcher.

New in version 1.9.0.

Changed in version 2.0.0: Previously it just returned itself, now it actually returns a
WeakProxy.

	
register_event_type(event_type)

	Register an event type with the dispatcher.

Registering event types allows the dispatcher to validate event handler
names as they are attached and to search attached objects for suitable
handlers. Each event type declaration must:

	start with the prefix on_.

	have a default handler in the class.

Example of creating a custom event:

class MyWidget(Widget):
 def __init__(self, **kwargs):
 super(MyWidget, self).__init__(**kwargs)
 self.register_event_type('on_swipe')

 def on_swipe(self):
 pass

def on_swipe_callback(*largs):
 print('my swipe is called', largs)
w = MyWidget()
w.dispatch('on_swipe')

	
setter(name)

	Return the setter of a property. Use: instance.setter(‘name’).
The setter is a convenient callback function useful if you want
to directly bind one property to another.
It returns a partial function that will accept
(obj, value) args and results in the property ‘name’ of instance
being set to value.

New in version 1.0.9.

For example, to bind number2 to number1 in python you would do:

class ExampleWidget(Widget):
 number1 = NumericProperty(None)
 number2 = NumericProperty(None)

 def __init__(self, **kwargs):
 super(ExampleWidget, self).__init__(**kwargs)
 self.bind(number1=self.setter('number2'))

This is equivalent to kv binding:

<ExampleWidget>:
 number2: self.number1

	
unbind(**kwargs)

	Unbind properties from callback functions with similar usage as
bind().

If a callback has been bound to a given event or property multiple
times, only the first occurrence will be unbound.

Note

It is safe to use unbind() on a function bound with fbind()
as long as that function was originally bound without any keyword and
positional arguments. Otherwise, the function will fail to be unbound
and you should use funbind() instead.

	
unbind_uid(name, uid)

	Uses the uid returned by fbind() to unbind the callback.

This method is much more efficient than funbind(). If uid
evaluates to False (e.g. 0) a ValueError is raised. Also, only
callbacks bound with fbind() can be unbound with this method.

Since each call to fbind() will generate a unique uid,
only one callback will be removed. If uid is not found among the
callbacks, no error is raised.

E.g.:

btn6 = Button(text="B: Using flexible functions with args. For hardcores.")
uid = btn6.fbind('on_press', self.on_anything, "1", "2", monthy="python")
if not uid:
 raise Exception('Binding failed').
...
btn6.unbind_uid('on_press', uid)

New in version 1.9.0.

	
unregister_event_type(event_type)

	Unregister an event type in the dispatcher.

Changed in version 2.1.0: Method renamed from unregister_event_types to
unregister_event_type.

	
unregister_event_types(self, event_type)

	

	
class kivy.event.ObjectWithUid

	Bases: builtins.object

(internal) This class assists in providing unique identifiers for class
instances. It is not intended for direct usage.

	
class kivy.event.Observable

	Bases: kivy.event.ObjectWithUid

Observable is a stub class defining the methods required
for binding. EventDispatcher is (the) one example of a class that
implements the binding interface. See EventDispatcher for details.

New in version 1.9.0.

	
bind(**kwargs)

	

	
fbind(name, func, *largs, **kwargs)

	See EventDispatcher.fbind().

Note

To keep backward compatibility with derived classes which may have
inherited from Observable before, the
fbind() method was added. The default implementation
of fbind() is to create a partial
function that it passes to bind while saving the uid and largs/kwargs.
However, funbind() (and unbind_uid()) are fairly
inefficient since we have to first lookup this partial function
using the largs/kwargs or uid and then call unbind() on
the returned function. It is recommended to overwrite
these methods in derived classes to bind directly for
better performance.

Similarly to EventDispatcher.fbind(), this method returns
0 on failure and a positive unique uid on success. This uid can be
used with unbind_uid().

	
funbind(name, func, *largs, **kwargs)

	See fbind() and EventDispatcher.funbind().

	
unbind(**kwargs)

	

	
unbind_uid(name, uid)

	See fbind() and EventDispatcher.unbind_uid().

Factory object

The factory can be used to automatically register any class or module
and instantiate classes from it anywhere in your project. It is an
implementation of the
Factory Pattern [http://en.wikipedia.org/wiki/Factory_pattern].

The class list and available modules are automatically generated by setup.py.

Example for registering a class/module:

>>> from kivy.factory import Factory
>>> Factory.register('Widget', module='kivy.uix.widget')
>>> Factory.register('Vector', module='kivy.vector')

Example of using the Factory:

>>> from kivy.factory import Factory
>>> widget = Factory.Widget(pos=(456,456))
>>> vector = Factory.Vector(9, 2)

Example using a class name:

>>> from kivy.factory import Factory
>>> Factory.register('MyWidget', cls=MyWidget)

By default, the first classname you register via the factory is permanent.
If you wish to change the registered class, you need to unregister the
classname before you re-assign it:

>>> from kivy.factory import Factory
>>> Factory.register('MyWidget', cls=MyWidget)
>>> widget = Factory.MyWidget()
>>> Factory.unregister('MyWidget')
>>> Factory.register('MyWidget', cls=CustomWidget)
>>> customWidget = Factory.MyWidget()

	
kivy.factory.Factory: FactoryBase = <kivy.factory.FactoryBase object>

	Factory instance to use for getting new classes

	
exception kivy.factory.FactoryException

	Bases: Exception

Geometry utilities

This module contains some helper functions for geometric calculations.

	
kivy.geometry.circumcircle(a, b, c)

	Computes the circumcircle of a triangle defined by a, b, c.
See: http://en.wikipedia.org/wiki/Circumscribed_circle

	Parameters:

	
	a: iterable containing at least 2 values (for x and y)
	The 1st point of the triangle.

	b: iterable containing at least 2 values (for x and y)
	The 2nd point of the triangle.

	c: iterable containing at least 2 values (for x and y)
	The 3rd point of the triangle.

	Return:

	
	A tuple that defines the circle :
	
	The first element in the returned tuple is the center as (x, y)

	The second is the radius (float)

	
kivy.geometry.minimum_bounding_circle(points)

	Returns the minimum bounding circle for a set of points.

For a description of the problem being solved, see the Smallest Circle
Problem [http://en.wikipedia.org/wiki/Smallest_circle_problem].

The function uses Applet’s Algorithm, the runtime is O(h^3, *n),
where h is the number of points in the convex hull of the set of points.
But it runs in linear time in almost all real world cases.
See: http://tinyurl.com/6e4n5yb

	Parameters:

	
	points: iterable
	A list of points (2 tuple with x,y coordinates)

	Return:

	
	A tuple that defines the circle:
	
	The first element in the returned tuple is the center (x, y)

	The second the radius (float)

Gesture recognition

This class allows you to easily create new
gestures and compare them:

from kivy.gesture import Gesture, GestureDatabase

Create a gesture
g = Gesture()
g.add_stroke(point_list=[(1,1), (3,4), (2,1)])
g.normalize()

Add it to the database
gdb = GestureDatabase()
gdb.add_gesture(g)

And for the next gesture, try to find it!
g2 = Gesture()
...
gdb.find(g2)

Warning

You don’t really want to do this: it’s more of an example of how
to construct gestures dynamically. Typically, you would
need a lot more points, so it’s better to record gestures in a file and
reload them to compare later. Look in the examples/gestures directory for
an example of how to do that.

	
class kivy.gesture.Gesture(tolerance=None)

	Bases: builtins.object

A python implementation of a gesture recognition algorithm by
Oleg Dopertchouk: http://www.gamedev.net/reference/articles/article2039.asp

Implemented by Jeiel Aranal (chemikhazi@gmail.com),
released into the public domain.

	
add_stroke(point_list=None)

	Adds a stroke to the gesture and returns the Stroke instance.
Optional point_list argument is a list of the mouse points for
the stroke.

	
dot_product(comparison_gesture)

	Calculates the dot product of the gesture with another gesture.

	
get_rigid_rotation(dstpts)

	Extract the rotation to apply to a group of points to minimize the
distance to a second group of points. The two groups of points are
assumed to be centered. This is a simple version that just picks
an angle based on the first point of the gesture.

	
get_score(comparison_gesture, rotation_invariant=True)

	Returns the matching score of the gesture against another gesture.

	
normalize(stroke_samples=32)

	Runs the gesture normalization algorithm and calculates the dot
product with self.

	
class kivy.gesture.GestureDatabase

	Bases: builtins.object

Class to handle a gesture database.

	
add_gesture(gesture)

	Add a new gesture to the database.

	
find(gesture, minscore=0.9, rotation_invariant=True)

	Find a matching gesture in the database.

	
gesture_to_str(gesture)

	Convert a gesture into a unique string.

	
str_to_gesture(data)

	Convert a unique string to a gesture.

	
class kivy.gesture.GestureStroke

	Bases: builtins.object

Gestures can be made up of multiple strokes.

	
add_point(x=x_pos, y=y_pos)

	Adds a point to the stroke.

	
center_stroke(offset_x, offset_y)

	Centers the stroke by offsetting the points.

	
normalize_stroke(sample_points=32)

	Normalizes strokes so that every stroke has a standard number of
points. Returns True if stroke is normalized, False if it can’t be
normalized. sample_points controls the resolution of the stroke.

	
points_distance(point1=GesturePoint, point2=GesturePoint)

	Returns the distance between two GesturePoints.

	
scale_stroke(scale_factor=float)

	Scales the stroke down by scale_factor.

	
stroke_length(point_list=None)

	Finds the length of the stroke. If a point list is given,
finds the length of that list.

Interactive launcher

New in version 1.3.0.

Deprecated since version 1.10.0: The interactive launcher has been deprecated.

The InteractiveLauncher provides a user-friendly python shell
interface to an App so that it can be prototyped and debugged
interactively.

Note

The Kivy API intends for some functions to only be run once or before the
main EventLoop has started. Methods that can normally be called during the
course of an application will work as intended, but specifically overriding
methods such as on_touch() dynamically leads to trouble.

Creating an InteractiveLauncher

Take your existing subclass of App (this can be production code) and
pass an instance to the InteractiveLauncher constructor.

from kivy.interactive import InteractiveLauncher
from kivy.app import App
from kivy.uix.button import Button

class MyApp(App):
 def build(self):
 return Button(text='Hello Shell')

launcher = InteractiveLauncher(MyApp())
launcher.run()

After pressing enter, the script will return. This allows the interpreter to
continue running. Inspection or modification of the App can be done
safely through the InteractiveLauncher instance or the provided
SafeMembrane class instances.

Note

If you want to test this example, start Python without any file to have
already an interpreter, and copy/paste all the lines. You’ll still have the
interpreter at the end + the kivy application running.

Interactive Development

IPython provides a fast way to learn the Kivy API. The App instance
and all of its attributes, including methods and the entire widget tree,
can be quickly listed by using the ‘.’ operator and pressing ‘tab’. Try this
code in an Ipython shell.

from kivy.interactive import InteractiveLauncher
from kivy.app import App
from kivy.uix.widget import Widget
from kivy.graphics import Color, Ellipse

class MyPaintWidget(Widget):
 def on_touch_down(self, touch):
 with self.canvas:
 Color(1, 1, 0)
 d = 30.
 Ellipse(pos=(touch.x - d/2, touch.y - d/2), size=(d, d))

class TestApp(App):
 def build(self):
 return Widget()

i = InteractiveLauncher(TestApp())
i.run()
i. # press 'tab' to list attributes of the app
i.root. # press 'tab' to list attributes of the root widget

App is boring. Attach a new widget!
i.root.add_widget(MyPaintWidget())

i.safeIn()
The application is now blocked.
Click on the screen several times.
i.safeOut()
The clicks will show up now

Erase artwork and start over
i.root.canvas.clear()

Note

All of the proxies used in the module store their referent in the
_ref attribute, which can be accessed directly if needed, such as
for getting doc strings. help() and type() will access the
proxy, not its referent.

Directly Pausing the Application

Both the InteractiveLauncher and SafeMembrane hold internal
references to the EventLoop’s ‘safe’ and ‘confirmed’
threading.Event objects. You can use their safing methods to control
the application manually.

SafeMembrane.safeIn() will cause the application to pause and
SafeMembrane.safeOut() will allow a paused application
to continue running. This is potentially useful for scripting actions into
functions that need the screen to update etc.

Note

The pausing is implemented via the
Clocks'
schedule_once() method
and occurs before the start of each frame.

Adding Attributes Dynamically

Note

This module uses threading and object proxies to encapsulate the running
App. Deadlocks and memory corruption can occur if making direct
references inside the thread without going through the provided proxy(s).

The InteractiveLauncher can have attributes added to it exactly like a
normal object and if these were created from outside the membrane, they will
not be threadsafe because the external references to them in the python
interpreter do not go through InteractiveLauncher’s membrane behavior,
inherited from SafeMembrane.

To threadsafe these external references, simply assign them to
SafeMembrane instances of themselves like so:

from kivy.interactive import SafeMembrane

interactiveLauncher.attribute = myNewObject
myNewObject is unsafe
myNewObject = SafeMembrane(myNewObject)
myNewObject is now safe. Call at will.
myNewObject.method()

TODO

Unit tests, examples, and a better explanation of which methods are safe in a
running application would be nice. All three would be excellent.

Could be re-written with a context-manager style i.e.

with safe:
 foo()

Any use cases besides compacting code?

	
class kivy.interactive.InteractiveLauncher(app=None, *args, **kwargs)

	Bases: kivy.interactive.SafeMembrane

Proxy to an application instance that launches it in a thread and
then returns and acts as a proxy to the application in the thread.

	
class kivy.interactive.SafeMembrane(ob, *args, **kwargs)

	Bases: builtins.object

This help is for a proxy object. Did you want help on the proxy’s referent
instead? Try using help(<instance>._ref)

The SafeMembrane is a threadsafe proxy that also returns attributes as new
thread-safe objects
and makes thread-safe method calls, preventing thread-unsafe objects
from leaking into the user’s environment.

	
safeIn()

	Provides a thread-safe entry point for interactive launching.

	
safeOut()

	Provides a thread-safe exit point for interactive launching.

Kivy Base

This module contains the Kivy core functionality and is not intended for end
users. Feel free to look through it, but bare in mind that calling any of
these methods directly may result in an unpredictable behavior as the calls
access directly the event loop of an application.

	
kivy.base.EventLoop = <kivy.base.EventLoopBase object>

	EventLoop instance

	
class kivy.base.EventLoopBase

	Bases: kivy.event.EventDispatcher

Main event loop. This loop handles the updating of input and
dispatching events.

	
add_event_listener(listener)

	Add a new event listener for getting touch events.

	
add_input_provider(provider, auto_remove=False)

	Add a new input provider to listen for touch events.

	
add_postproc_module(mod)

	Add a postproc input module (DoubleTap, TripleTap, DeJitter
RetainTouch are defaults).

	
async async_idle()

	Identical to idle(), but instead used when running
within an async event loop.

	
close()

	Exit from the main loop and stop all configured
input providers.

	
dispatch_input()

	Called by EventLoopBase.idle() to read events from input
providers, pass events to postproc, and dispatch final events.

	
ensure_window()

	Ensure that we have a window.

	
exit()

	Close the main loop and close the window.

	
idle()

	This function is called after every frame. By default:

	it “ticks” the clock to the next frame.

	it reads all input and dispatches events.

	it dispatches on_update, on_draw and on_flip events to the
window.

	
on_pause()

	Event handler for on_pause which will be fired when
the event loop is paused.

	
on_start()

	Event handler for on_start which will be fired right
after all input providers have been started.

	
on_stop()

	Event handler for on_stop events which will be fired right
after all input providers have been stopped.

	
post_dispatch_input(etype, me)

	This function is called by EventLoopBase.dispatch_input()
when we want to dispatch an input event. The event is dispatched to
all listeners and if grabbed, it’s dispatched to grabbed widgets.

	
remove_android_splash(*args)

	Remove android presplash in SDL2 bootstrap.

	
remove_event_listener(listener)

	Remove an event listener from the list.

	
remove_input_provider(provider)

	Remove an input provider.

Changed in version 2.1.0: Provider will be also removed if it exist in auto-remove list.

	
remove_postproc_module(mod)

	Remove a postproc module.

	
run()

	Main loop

	
set_window(window)

	Set the window used for the event loop.

	
start()

	Must be called before EventLoopBase.run(). This starts all
configured input providers.

Changed in version 2.1.0: Method can be called multiple times, but event loop will start only
once.

	
stop()

	Stop all input providers and call callbacks registered using
EventLoop.add_stop_callback().

Changed in version 2.1.0: Method can be called multiple times, but event loop will stop only
once.

	
property touches

	Return the list of all touches currently in down or move states.

	
class kivy.base.ExceptionHandler

	Bases: builtins.object

Base handler that catches exceptions in runTouchApp().
You can subclass and extend it as follows:

class E(ExceptionHandler):
 def handle_exception(self, inst):
 Logger.exception('Exception caught by ExceptionHandler')
 return ExceptionManager.PASS

ExceptionManager.add_handler(E())

Then, all exceptions will be set to PASS, and logged to the console!

	
handle_exception(exception)

	Called by ExceptionManagerBase to handle a exception.

Defaults to returning ExceptionManager.RAISE that re-raises the
exception. Return ExceptionManager.PASS to indicate that the
exception was handled and should be ignored.

This may be called multiple times with the same exception, if
ExceptionManager.RAISE is returned as the exception bubbles
through multiple kivy exception handling levels.

	
kivy.base.ExceptionManager: ExceptionManagerBase = <kivy.base.ExceptionManagerBase object>

	The ExceptionManagerBase instance that handles kivy exceptions.

	
class kivy.base.ExceptionManagerBase

	Bases: builtins.object

ExceptionManager manages exceptions handlers.

	
PASS = 1

	The exception should be ignored as it was handled by the handler.

	
RAISE = 0

	The exception should be re-raised.

	
add_handler(cls)

	Add a new exception handler to the stack.

	
handle_exception(inst)

	Called when an exception occurred in the runTouchApp()
main loop.

	
remove_handler(cls)

	Remove the exception handler from the stack.

	
async kivy.base.async_runTouchApp(widget=None, embedded=False, async_lib=None)

	Identical to runTouchApp() but instead it is a coroutine
that can be run in an existing async event loop.

async_lib is the async library to use. See kivy.app for details
and example usage.

New in version 2.0.0.

	
kivy.base.runTouchApp(widget=None, embedded=False)

	Static main function that starts the application loop.
You can access some magic via the following arguments:

See kivy.app for example usage.

	Parameters:

	
	<empty>
	To make dispatching work, you need at least one
input listener. If not, application will leave.
(MTWindow act as an input listener)

	widget
	If you pass only a widget, a MTWindow will be created
and your widget will be added to the window as the root
widget.

	embedded
	No event dispatching is done. This will be your job.

	widget + embedded
	No event dispatching is done. This will be your job but
we try to get the window (must be created by you beforehand)
and add the widget to it. Very useful for embedding Kivy
in another toolkit. (like Qt, check kivy-designed)

	
kivy.base.stopTouchApp()

	Stop the current application by leaving the main loop.

See kivy.app for example usage.

Kivy Logging

By default, Kivy provides a logging system based on the standard Python
logging [https://docs.python.org/3/library/logging.html] module with
several additional features designed to be more convenient. These features
include:

	simplied usage (single instance, simple configuration, works by default)

	color-coded output on supported terminals

	output to stderr by default

	message categorization via colon separation

	access to log history even if logging is disabled

	built-in handling of various cross-platform considerations

	any stray output written to sys.stderr is captured, and stored in the log
file as a warning.

These features are configurable via the Config file or environment variables -
including falling back to only using the standard Python system.

Logger object

The Kivy Logger class provides a singleton logging.logger instance.

As well as the standard logging levels (debug, info,
warning, error and critical), an additional trace level is
available.

Example Usage

Use the Logger as you would a standard Python logger.

from kivy.logger import Logger

Logger.info('title: This is a info message.')
Logger.debug('title: This is a debug message.')

try:
 raise Exception('bleh')
except Exception:
 Logger.exception('Something happened!')

The message passed to the logger is split into two parts separated by a colon
(:). The first part is used as a title and the second part is used as the
message. This way, you can “categorize” your messages easily.

Logger.info('Application: This is a test')

will appear as

[INFO] [Application] This is a test

You can change the logging level at any time using the setLevel method.

from kivy.logger import Logger, LOG_LEVELS

Logger.setLevel(LOG_LEVELS["debug"])

Changed in version 2.2.0.

Interaction with other logging

The Kivy logging system will, by default, present all log messages sent from
any logger - e.g. from third-party libraries.

Additional handlers may be added.

Warning

Handlers that output to sys.stderr may cause loops, as stderr
output is reported as a warning log message.

Logger Configuration

Kivy Log Mode

At the highest level, Kivy’s logging system is controlled by an environment
variable KIVY_LOG_MODE. It may be given any of three values:
KIVY, PYTHON, MIXED

KIVY Mode (default)

In KIVY mode, all Kivy handlers are attached to the root logger, so all log
messages in the system are output to the Kivy log files and to the console. Any
stray output to sys.stderr is logged as a warning.

If you are writing an entire Kivy app from scratch, this is the most convenient
mode.

PYTHON Mode

In PYTHON mode, no handlers are added, and sys.stderr output is not
captured. It is left to the client to add appropriate handlers. (If none are
added, the logging module will output them to stderr.)

Messages logged with Logger will be propagated to the root logger, from a
logger named kivy.

If the Kivy app is part of a much larger project which has its own logging
regimen, this is the mode that gives most control.

The kivy.logger file contains a number of logging.handler,
logging.formatter, and other helper classes to allow
users to adopt the features of Kivy logging that they like, including the
stderr redirection.

MIXED Mode

In MIXED mode, handlers are added to the Kivy’s Logger object directly,
and propagation is turned off. sys.stderr is not redirected.

Messages logged with Kivy’s Logger will appear in the Kivy log file and
output to the Console.

However, messages logged with other Python loggers will not be handled by Kivy
handlers. The client will need to add their own.

If you like the features of Kivy Logger, but are writing a Kivy app that
relies on third-party libraries that don’t use colon-separation of categorise
or depend on the display of the logger name, this mode provides a compromise.

Again, the kivy.logger file contains re-usable logging features that can be
used to get the best of both systems.

Config Files

In KIVY and MIXED modes, the logger handlers can be controlled via the
Kivy configuration file:

[kivy]
log_level = info
log_enable = 1
log_dir = logs
log_name = kivy_%y-%m-%d_%_.txt
log_maxfiles = 100

More information about the allowed values are described in the
kivy.config module.

In addition, the environment variables KIVY_NO_FILELOG and
KIVY_NO_CONSOLELOG can be used to turn off the installation of the
corresponding handlers.

Logger History

Even if the logger is not enabled, you still have access to the last 100
LogRecords:

from kivy.logger import LoggerHistory

print(LoggerHistory.history)

	
class kivy.logger.ColonSplittingLogRecord(logrecord)

	Bases: logging.LogRecord

Clones an existing logRecord, but reformats the message field
if it contains a colon.

New in version 2.2.0.

	
class kivy.logger.ColoredLogRecord(logrecord)

	Bases: logging.LogRecord

Clones an existing logRecord, but reformats the levelname to add
color, and the message to add bolding (where indicated by $BOLD
and $RESET in the message).

New in version 2.2.0.

	
class kivy.logger.ConsoleHandler(stream=None)

	Bases: logging.StreamHandler

Emits records to a stream (by default, stderr).

However, if the msg starts with “stderr:” it is not formatted, but
written straight to the stream.

New in version 2.2.0.

	
filter(record)

	Determine if a record is loggable by consulting all the filters.

The default is to allow the record to be logged; any filter can veto
this and the record is then dropped. Returns a zero value if a record
is to be dropped, else non-zero.

Changed in version 3.2: Allow filters to be just callables.

	
class kivy.logger.FileHandler(level=0)

	Bases: logging.Handler

	
emit(message)

	Do whatever it takes to actually log the specified logging record.

This version is intended to be implemented by subclasses and so
raises a NotImplementedError.

	
purge_logs()

	Purge logs which exceed the maximum amount of log files,
starting with the oldest creation timestamp (or edit-timestamp on Linux)

	
class kivy.logger.KivyFormatter(*args, use_color=True, **kwargs)

	Bases: logging.Formatter

Split out first field in message marked with a colon,
and either apply terminal color codes to the record, or strip
out color markup if colored logging is not available.

New in version 2.2.0.

	
format(record)

	Format the specified record as text.

The record’s attribute dictionary is used as the operand to a
string formatting operation which yields the returned string.
Before formatting the dictionary, a couple of preparatory steps
are carried out. The message attribute of the record is computed
using LogRecord.getMessage(). If the formatting string uses the
time (as determined by a call to usesTime(), formatTime() is
called to format the event time. If there is exception information,
it is formatted using formatException() and appended to the message.

	
class kivy.logger.LoggerHistory(level=0)

	Bases: logging.Handler

	
emit(message)

	Do whatever it takes to actually log the specified logging record.

This version is intended to be implemented by subclasses and so
raises a NotImplementedError.

	
flush()

	Ensure all logging output has been flushed.

This version does nothing and is intended to be implemented by
subclasses.

	
class kivy.logger.ProcessingStream(channel, func)

	Bases: builtins.object

Stream-like object that takes each completed line written to it,
adds a given prefix, and applies the given function to it.

New in version 2.2.0.

	
class kivy.logger.UncoloredLogRecord(logrecord)

	Bases: logging.LogRecord

Clones an existing logRecord, but reformats the message
to remove $BOLD/$RESET markup.

New in version 2.2.0.

	
kivy.logger.add_kivy_handlers(logger)

	Add Kivy-specific handlers to a logger.

New in version 2.2.0.

	
kivy.logger.is_color_terminal()

	Detect whether the environment supports color codes in output.

New in version 2.2.0.

Low level Metrics

Metrics

New in version 1.5.0.

A screen is defined by its physical size, density and resolution. These
factors are essential for creating UI’s with correct size everywhere.

In Kivy, all the graphics pipelines work with pixels. But using pixels as a
measurement unit is problematic because sizes change according to the
screen.

Dimensions

If you want to design your UI for different screen sizes, you will want better
measurement units to work with. Kivy provides some more scalable alternatives.

	Units:

	
	pt
	Points - 1/72 of an inch based on the physical size of the screen.
Prefer to use sp instead of pt.

	mm
	Millimeters - Based on the physical size of the screen.

	cm
	Centimeters - Based on the physical size of the screen.

	in
	Inches - Based on the physical size of the screen.

	dp
	Density-independent Pixels - An abstract unit that is based on the
physical density of the screen. With a density of
1, 1dp is equal to 1px. When running on a higher density screen, the
number of pixels used to draw 1dp is scaled up a factor appropriate to
the screen’s dpi, and the inverse for a lower dpi.
The ratio of dp-to-pixels will change with the screen density, but not
necessarily in direct proportion. Using the dp unit is a simple
solution to making the view dimensions in your layout resize
properly for different screen densities. In others words, it
provides consistency for the real-world size of your UI across
different devices.

	sp
	Scale-independent Pixels - This is like the dp unit, but it is also
scaled by the user’s font size preference. We recommend you use this
unit when specifying font sizes, so the font size will be adjusted to
both the screen density and the user’s preference.

Examples

Here is an example of creating a label with a sp font_size and setting the
height manually with a 10dp margin:

#:kivy 1.5.0
<MyWidget>:
 Label:
 text: 'Hello world'
 font_size: '15sp'
 size_hint_y: None
 height: self.texture_size[1] + dp(10)

Manual control of metrics

The metrics cannot be changed at runtime. Once a value has been converted to
pixels, you can’t retrieve the original value anymore. This stems from the fact
that the DPI and density of a device cannot be changed at runtime.

We provide some environment variables to control metrics:

	KIVY_METRICS_DENSITY: if set, this value will be used for
density instead of the systems one. On android,
the value varies between 0.75, 1, 1.5 and 2.

	KIVY_METRICS_FONTSCALE: if set, this value will be used for
fontscale instead of the systems one. On android, the
value varies between 0.8 and 1.2.

	KIVY_DPI: if set, this value will be used for dpi.
Please
note that setting the DPI will not impact the dp/sp notation because these
are based on the screen density.

For example, if you want to simulate a high-density screen (like the HTC One
X):

KIVY_DPI=320 KIVY_METRICS_DENSITY=2 python main.py --size 1280x720

Or a medium-density (like Motorola Droid 2):

KIVY_DPI=240 KIVY_METRICS_DENSITY=1.5 python main.py --size 854x480

You can also simulate an alternative user preference for fontscale as follows:

KIVY_METRICS_FONTSCALE=1.2 python main.py

	
kivy.metrics.Metrics: MetricsBase = <kivy.metrics.MetricsBase object>

	The metrics object storing the window scaling factors.

New in version 1.7.0.

Changed in version 2.1.0: Metrics is now a Context registered variable (like e.g.
Clock).

	
class kivy.metrics.MetricsBase(**kwargs)

	Bases: kivy.event.EventDispatcher

Class that contains the default attributes for Metrics. Don’t use this
class directly, but use the Metrics instance.

	
cm: float

	The scaling factor that converts from centimeters to pixels.

cm is a AliasProperty containing the
factor. E.g in KV: width: self.texture_size[0] + 10 * Metrics.cm will
update width when cm changes from a screen configuration change.

	
density: float

	The density of the screen.

This value is 1 by default on desktops but varies on android depending on
the screen.

density is a AliasProperty and can be
set to change the value. But, the density is reloaded and reset if
we got it from the Window and the Window density changed.

	
dp: float

	The scaling factor that converts from density-independent pixels to
pixels.

dp is a AliasProperty containing the
factor. E.g in KV: width: self.texture_size[0] + 10 * Metrics.dp will
update width when dp changes from a screen configuration change.

	
dpi: float

	The DPI of the screen.

Depending on the platform, the DPI can be taken from the Window provider
(Desktop mainly) or from a platform-specific module (like android/ios).

dpi is a AliasProperty and can be
set to change the value. But, the density is reloaded and reset if
we got it from the Window and the Window dpi changed.

	
dpi_rounded: int

	Return the dpi of the screen, rounded to the nearest of 120,
160, 240 or 320.

dpi_rounded is a AliasProperty and
updates when dpi changes.

	
fontscale: float

	The fontscale user preference.

This value is 1 by default but can vary between 0.8 and 1.2.

fontscale is a AliasProperty and can be
set to change the value.

	
inch: float

	The scaling factor that converts from inches to pixels.

inch is a AliasProperty containing the
factor. E.g in KV: width: self.texture_size[0] + 10 * Metrics.inch will
update width when inch changes from a screen configuration change.

	
mm: float

	The scaling factor that converts from millimeters to pixels.

mm is a AliasProperty containing the
factor. E.g in KV: width: self.texture_size[0] + 10 * Metrics.mm will
update width when mm changes from a screen configuration change.

	
pt: float

	The scaling factor that converts from points to pixels.

pt is a AliasProperty containing the
factor. E.g in KV: width: self.texture_size[0] + 10 * Metrics.pt will
update width when pt changes from a screen configuration change.

	
reset_dpi(*args)

	Resets the dpi (and possibly density) to the platform values,
overwriting any manually set values.

	
reset_metrics()

	Resets the dpi/density/fontscale to the platform values, overwriting
any manually set values.

	
sp: float

	The scaling factor that converts from scale-independent pixels to
pixels.

sp is a AliasProperty containing the
factor. E.g in KV: width: self.texture_size[0] + 10 * Metrics.sp will
update width when sp changes from a screen configuration change.

	
kivy.metrics.cm(value) → float

	Convert from centimeters to pixels

	
kivy.metrics.dp(value) → float

	Convert from density-independent pixels to pixels

	
kivy.metrics.dpi2px(value, unicode ext) → float

	Converts the value according to the ext.

	
kivy.metrics.inch(value) → float

	Convert from inches to pixels

	
kivy.metrics.mm(value) → float

	Convert from millimeters to pixels

	
kivy.metrics.pt(value) → float

	Convert from points to pixels

	
kivy.metrics.sp(value) → float

	Convert from scale-independent pixels to pixels

Multistroke gesture recognizer

New in version 1.9.0.

Warning

This is experimental and subject to change as long as this warning notice
is present.

See kivy/examples/demo/multistroke/main.py for a complete application
example.

Conceptual Overview

This module implements the Protractor gesture recognition algorithm.

Recognizer is the search/database API similar to
GestureDatabase. It maintains a list of
MultistrokeGesture objects and allows you to search for a
user-input gestures among them.

ProgressTracker tracks the progress of a Recognizer.recognize()
call. It can be used to interact with the running recognizer task, for example
forcing it to stop half-way, or analyzing results as they arrive.

MultistrokeGesture represents a gesture in the gesture database
(Recognizer.db). It is a container for UnistrokeTemplate
objects, and implements the heap permute algorithm to automatically generate
all possible stroke orders (if desired).

UnistrokeTemplate represents a single stroke path. It’s typically
instantiated automatically by MultistrokeGesture, but sometimes you
may need to create them manually.

Candidate represents a user-input gesture that is used to search
the gesture database for matches. It is normally instantiated automatically
by calling Recognizer.recognize().

Usage examples

See kivy/examples/demo/multistroke/main.py for a complete application
example.

You can bind to events on Recognizer to track the state of all
calls to Recognizer.recognize(). The callback function will receive an
instance of ProgressTracker that can be used to analyze and control
various aspects of the recognition process

from kivy.vector import Vector
from kivy.multistroke import Recognizer

gdb = Recognizer()

def search_start(gdb, pt):
 print("A search is starting with %d tasks" % (pt.tasks))

def search_stop(gdb, pt):
 # This will call max() on the result dictionary, so it's best to store
 # it instead of calling it 3 times consecutively
 best = pt.best
 print("Search ended (%s). Best is %s (score %f, distance %f)" % (
 pt.status, best['name'], best['score'], best['dist']))

Bind your callbacks to track all matching operations
gdb.bind(on_search_start=search_start)
gdb.bind(on_search_complete=search_stop)

The format below is referred to as `strokes`, a list of stroke paths.
Note that each path shown here consists of two points, ie a straight
line; if you plot them it looks like a T, hence the name.
gdb.add_gesture('T', [
 [Vector(30, 7), Vector(103, 7)],
 [Vector(66, 7), Vector(66, 87)]])

Now you can search for the 'T' gesture using similar data (user input).
This will trigger both of the callbacks bound above.
gdb.recognize([
 [Vector(45, 8), Vector(110, 12)],
 [Vector(88, 9), Vector(85, 95)]])

On the next Clock tick, the matching process starts
(and, in this case, completes).

To track individual calls to Recognizer.recognize(), use the return
value (also a ProgressTracker instance)

Same as above, but keep track of progress using returned value
progress = gdb.recognize([
 [Vector(45, 8), Vector(110, 12)],
 [Vector(88, 9), Vector(85, 95)]])

progress.bind(on_progress=my_other_callback)
print(progress.progress) # = 0

[assuming a kivy.clock.Clock.tick() here]

print(result.progress) # = 1

Algorithm details

For more information about the matching algorithm, see:

	“Protractor: A fast and accurate gesture recognizer” by Yang Li
	http://yangl.org/pdf/protractor-chi2010.pdf

	“$N-Protractor” by Lisa Anthony and Jacob O. Wobbrock
	http://depts.washington.edu/aimgroup/proj/dollar/ndollar-protractor.pdf

	Some of the code is derived from the JavaScript implementation here:
	http://depts.washington.edu/aimgroup/proj/dollar/ndollar.html

	
class kivy.multistroke.Candidate(strokes=None, numpoints=16, **kwargs)

	Bases: builtins.object

Represents a set of unistroke paths of user input, ie data to be matched
against a UnistrokeTemplate object using the Protractor algorithm.
By default, data is precomputed to match both rotation bounded and fully
invariant UnistrokeTemplate objects.

	Arguments:

	
	strokes
	See MultistrokeGesture.strokes for format example. The
Candidate strokes are simply combined to a unistroke in the order
given. The idea is that this will match one of the unistroke
permutations in MultistrokeGesture.templates.

	numpoints
	The Candidate’s default N; this is only for a fallback, it is not
normally used since n is driven by the UnistrokeTemplate we are
being compared to.

	skip_bounded
	If True, do not generate/store rotation bounded vectors

	skip_invariant
	If True, do not generate/store rotation invariant vectors

Note that you WILL get errors if you set a skip-flag and then attempt to
retrieve the data.

	
add_stroke(stroke)

	Add a stroke to the candidate; this will invalidate all
previously computed vectors

	
get_angle_similarity(tpl, **kwargs)

	(Internal use only) Compute the angle similarity between this
Candidate and a UnistrokeTemplate object. Returns a number that
represents the angle similarity (lower is more similar).

	
get_protractor_vector(numpoints, orientation_sens)

	(Internal use only) Return vector for comparing to a
UnistrokeTemplate with Protractor

	
get_start_unit_vector(numpoints, orientation_sens)

	(Internal use only) Get the start vector for this Candidate,
with the path resampled to numpoints points. This is the first
step in the matching process. It is compared to a
UnistrokeTemplate object’s start vector to determine angle
similarity.

	
prepare(numpoints=None)

	Prepare the Candidate vectors. self.strokes is combined to a single
unistroke (connected end-to-end), resampled to numpoints
points, and then the vectors are calculated and stored in self.db (for
use by get_distance and get_angle_similarity)

	
class kivy.multistroke.MultistrokeGesture(name, strokes=None, **kwargs)

	Bases: builtins.object

MultistrokeGesture represents a gesture. It maintains a set of
strokes and generates unistroke (ie UnistrokeTemplate)
permutations that are used for evaluating candidates against this gesture
later.

	Arguments:

	
	name
	Identifies the name of the gesture - it is returned to you in the
results of a Recognizer.recognize() search. You can have any
number of MultistrokeGesture objects with the same name; many
definitions of one gesture. The same name is given to all the
generated unistroke permutations. Required, no default.

	strokes
	A list of paths that represents the gesture. A path is a list of
Vector objects:

gesture = MultistrokeGesture('my_gesture', strokes=[
 [Vector(x1, y1), Vector(x2, y2),], # stroke 1
 [Vector(), Vector(), Vector(), Vector()] # stroke 2
 #, [stroke 3], [stroke 4], ...
])

For template matching purposes, all the strokes are combined to a
single list (unistroke). You should still specify the strokes
individually, and set stroke_sensitive True (whenever possible).

Once you do this, unistroke permutations are immediately generated
and stored in self.templates for later, unless you set the
permute flag to False.

	priority
	Determines when Recognizer.recognize() will attempt to match
this template, lower priorities are evaluated first (only if
a priority filter is used). You should use lower priority on
gestures that are more likely to match. For example, set user
templates at lower number than generic templates. Default is 100.

	numpoints
	Determines the number of points this gesture should be resampled to
(for matching purposes). The default is 16.

	stroke_sensitive
	Determines if the number of strokes (paths) in this gesture is
required to be the same in the candidate (user input) gesture
during matching. If this is False, candidates will always be
evaluated, disregarding the number of strokes. Default is True.

	orientation_sensitive
	Determines if this gesture is orientation sensitive. If True,
aligns the indicative orientation with the one of eight base
orientations that requires least rotation. Default is True.

	angle_similarity
	This is used by the Recognizer.recognize() function when a
candidate is evaluated against this gesture. If the angles between
them are too far off, the template is considered a non-match.
Default is 30.0 (degrees)

	permute
	If False, do not use Heap Permute algorithm to generate different
stroke orders when instantiated. If you set this to False, a
single UnistrokeTemplate built from strokes is used.

	
add_stroke(stroke, permute=False)

	Add a stroke to the self.strokes list. If permute is True, the
permute() method is called to generate new unistroke templates

	
get_distance(cand, tpl, numpoints=None)

	Compute the distance from this Candidate to a UnistrokeTemplate.
Returns the Cosine distance between the stroke paths.

numpoints will prepare both the UnistrokeTemplate and Candidate path
to n points (when necessary), you probably don’t want to do this.

	
match_candidate(cand, **kwargs)

	Match a given candidate against this MultistrokeGesture object. Will
test against all templates and report results as a list of four
items:

	index 0
	Best matching template’s index (in self.templates)

	index 1
	Computed distance from the template to the candidate path

	index 2
	List of distances for all templates. The list index
corresponds to a UnistrokeTemplate index in
self.templates.

	index 3
	Counter for the number of performed matching operations, ie
templates matched against the candidate

	
permute()

	Generate all possible unistroke permutations from self.strokes and
save the resulting list of UnistrokeTemplate objects in self.templates.

Quote from http://faculty.washington.edu/wobbrock/pubs/gi-10.2.pdf

We use Heap Permute [16] (p. 179) to generate all stroke orders
in a multistroke gesture. Then, to generate stroke directions for
each order, we treat each component stroke as a dichotomous
[0,1] variable. There are 2^N combinations for N strokes, so we
convert the decimal values 0 to 2^N-1, inclusive, to binary
representations and regard each bit as indicating forward (0) or
reverse (1). This algorithm is often used to generate truth tables
in propositional logic.

See section 4.1: “$N Algorithm” of the linked paper for details.

Warning

Using heap permute for gestures with more than 3 strokes
can result in very large number of templates (a 9-stroke
gesture = 38 million templates). If you are dealing with
these types of gestures, you should manually compose
all the desired stroke orders.

	
class kivy.multistroke.ProgressTracker(candidate, tasks, **kwargs)

	Bases: kivy.event.EventDispatcher

Represents an ongoing (or completed) search operation. Instantiated and
returned by the Recognizer.recognize() method when it is called. The
results attribute is a dictionary that is updated as the recognition
operation progresses.

Note

You do not need to instantiate this class.

	Arguments:

	
	candidate
	Candidate object to be evaluated

	tasks
	Total number of gestures in tasklist (to test against)

	Events:

	
	on_progress
	Fired for every gesture that is processed

	on_result
	Fired when a new result is added, and it is the first match
for the name so far, or a consecutive match with better score.

	on_complete
	Fired when the search is completed, for whatever reason.
(use ProgressTracker.status to find out)

	Attributes:

	
	results
	A dictionary of all results (so far). The key is the name of the
gesture (ie UnistrokeTemplate.name usually inherited from
MultistrokeGesture). Each item in the dictionary is a
dict with the following entries:

	name
	Name of the matched template (redundant)

	score
	Computed score from 1.0 (perfect match) to 0.0

	dist
	Cosine distance from candidate to template (low=closer)

	gesture
	The MultistrokeGesture object that was matched

	best_template
	Index of the best matching template (in
MultistrokeGesture.templates)

	template_results
	List of distances for all templates. The list index
corresponds to a UnistrokeTemplate index in
gesture.templates.

	status
	
	search
	Currently working

	stop
	Was stopped by the user (stop() called)

	timeout
	A timeout occurred (specified as timeout= to recognize())

	goodscore
	The search was stopped early because a gesture with a high
enough score was found (specified as goodscore= to
recognize())

	complete
	The search is complete (all gestures matching filters were
tested)

	
property best

	Return the best match found by recognize() so far. It returns a
dictionary with three keys, ‘name’, ‘dist’ and ‘score’ representing
the template’s name, distance (from candidate path) and the
computed score value. This is a Python property.

	
property progress

	Returns the progress as a float, 0 is 0% done, 1 is 100%. This
is a Python property.

	
stop()

	Raises a stop flag that is checked by the search process. It will
be stopped on the next clock tick (if it is still running).

	
class kivy.multistroke.Recognizer(**kwargs)

	Bases: kivy.event.EventDispatcher

Recognizer provides a gesture database with matching
facilities.

	Events:

	
	on_search_start
	Fired when a new search is started using this Recognizer.

	on_search_complete
	Fired when a running search ends, for whatever reason.
(use ProgressTracker.status to find out)

	Properties:

	
	db
	A ListProperty that contains the available
MultistrokeGesture objects.

db is a
ListProperty and defaults to []

	
add_gesture(name, strokes, **kwargs)

	Add a new gesture to the database. This will instantiate a new
MultistrokeGesture with strokes and append it to self.db.

Note

If you already have instantiated a MultistrokeGesture
object and wish to add it, append it to Recognizer.db
manually.

	
export_gesture(filename=None, **kwargs)

	Export a list of MultistrokeGesture objects. Outputs a
base64-encoded string that can be decoded to a Python list with
the parse_gesture() function or imported directly to
self.db using Recognizer.import_gesture(). If
filename is specified, the output is written to disk, otherwise
returned.

This method accepts optional Recognizer.filter() arguments.

	
filter(**kwargs)

	filter() returns a subset of objects in self.db,
according to given criteria. This is used by many other methods of
the Recognizer; the arguments below can for example be
used when calling Recognizer.recognize() or
Recognizer.export_gesture(). You normally don’t need to call
this directly.

	Arguments:

	
	name
	Limits the returned list to gestures where
MultistrokeGesture.name matches given regular
expression(s). If re.match(name, MultistrokeGesture.name)
tests true, the gesture is included in the returned list.
Can be a string or an array of strings

gdb = Recognizer()

Will match all names that start with a capital N
(ie Next, New, N, Nebraska etc, but not "n" or "next")
gdb.filter(name='N')

exactly 'N'
gdb.filter(name='N$')

Nebraska, teletubbies, France, fraggle, N, n, etc
gdb.filter(name=['[Nn]', '(?i)T', '(?i)F'])

	priority
	Limits the returned list to gestures with certain
MultistrokeGesture.priority values. If specified as an
integer, only gestures with a lower priority are returned. If
specified as a list (min/max)

Max priority 50
gdb.filter(priority=50)

Max priority 50 (same result as above)
gdb.filter(priority=[0, 50])

Min priority 50, max 100
gdb.filter(priority=[50, 100])

When this option is used, Recognizer.db is
automatically sorted according to priority, incurring extra
cost. You can use force_priority_sort to override this
behavior if your gestures are already sorted according to
priority.

	orientation_sensitive
	Limits the returned list to gestures that are
orientation sensitive (True), gestures that are not orientation
sensitive (False) or None (ignore template sensitivity, this is
the default).

	numstrokes
	Limits the returned list to gestures that have the specified
number of strokes (in MultistrokeGesture.strokes).
Can be a single integer or a list of integers.

	numpoints
	Limits the returned list to gestures that have specific
MultistrokeGesture.numpoints values. This is provided
for flexibility, do not use it unless you understand what it
does. Can be a single integer or a list of integers.

	force_priority_sort
	Can be used to override the default sort behavior. Normally
MultistrokeGesture objects are returned in priority
order if the priority option is used. Setting this to True
will return gestures sorted in priority order, False will
return in the order gestures were added. None means decide
automatically (the default).

Note

For improved performance, you can load your gesture
database in priority order and set this to False when
calling Recognizer.recognize()

	db
	Can be set if you want to filter a different list of objects
than Recognizer.db. You probably don’t want to do this;
it is used internally by import_gesture().

	
import_gesture(data=None, filename=None, **kwargs)

	Import a list of gestures as formatted by export_gesture().
One of data or filename must be specified.

This method accepts optional Recognizer.filter() arguments,
if none are specified then all gestures in specified data are
imported.

	
parse_gesture(data)

	Parse data formatted by export_gesture(). Returns a list of
MultistrokeGesture objects. This is used internally by
import_gesture(), you normally don’t need to call this
directly.

	
prepare_templates(**kwargs)

	This method is used to prepare UnistrokeTemplate objects
within the gestures in self.db. This is useful if you want to minimize
punishment of lazy resampling by preparing all vectors in advance. If
you do this before a call to Recognizer.export_gesture(), you
will have the vectors computed when you load the data later.

This method accepts optional Recognizer.filter() arguments.

force_numpoints, if specified, will prepare all templates to the
given number of points (instead of each template’s preferred n; ie
UnistrokeTemplate.numpoints). You normally don’t want to
do this.

	
recognize(strokes, goodscore=None, timeout=0, delay=0, **kwargs)

	Search for gestures matching strokes. Returns a
ProgressTracker instance.

This method accepts optional Recognizer.filter() arguments.

	Arguments:

	
	strokes
	A list of stroke paths (list of lists of
Vector objects) that will be matched
against gestures in the database. Can also be a
Candidate instance.

Warning

If you manually supply a Candidate that has a
skip-flag, make sure that the correct filter arguments
are set. Otherwise the system will attempt to load vectors
that have not been computed. For example, if you set
skip_bounded and do not set orientation_sensitive to
False, it will raise an exception if an
orientation_sensitive UnistrokeTemplate
is encountered.

	goodscore
	If this is set (between 0.0 - 1.0) and a gesture score is
equal to or higher than the specified value, the search is
immediately halted and the on_search_complete event is
fired (+ the on_complete event of the associated
ProgressTracker instance). Default is None (disabled).

	timeout
	Specifies a timeout (in seconds) for when the search is
aborted and the results returned. This option applies only
when max_gpf is not 0. Default value is 0, meaning all
gestures in the database will be tested, no matter how long
it takes.

	max_gpf
	Specifies the maximum number of MultistrokeGesture
objects that can be processed per frame. When exceeded, will
cause the search to halt and resume work in the next frame.
Setting to 0 will complete the search immediately (and block
the UI).

Warning

This does not limit the number of
UnistrokeTemplate objects matched! If a single
gesture has a million templates, they will all be
processed in a single frame with max_gpf=1!

	delay
	Sets an optional delay between each run of the recognizer
loop. Normally, a run is scheduled for the next frame until
the tasklist is exhausted. If you set this, there will be an
additional delay between each run (specified in seconds).
Default is 0, resume in the next frame.

	force_numpoints
	forces all templates (and candidate) to be prepared to a
certain number of points. This can be useful for example if
you are evaluating templates for optimal n (do not use this
unless you understand what it does).

	
transfer_gesture(tgt, **kwargs)

	Transfers MultistrokeGesture objects from
Recognizer.db to another Recognizer instance tgt.

This method accepts optional Recognizer.filter() arguments.

	
class kivy.multistroke.UnistrokeTemplate(name, points=None, **kwargs)

	Bases: builtins.object

Represents a (uni)stroke path as a list of Vectors. Normally, this class
is instantiated by MultistrokeGesture and not by the programmer directly.
However, it is possible to manually compose UnistrokeTemplate objects.

	Arguments:

	
	name
	Identifies the name of the gesture. This is normally inherited from
the parent MultistrokeGesture object when a template is generated.

	points
	A list of points that represents a unistroke path. This is normally
one of the possible stroke order permutations from a
MultistrokeGesture.

	numpoints
	The number of points this template should (ideally) be resampled to
before the matching process. The default is 16, but you can use a
template-specific settings if that improves results.

	orientation_sensitive
	Determines if this template is orientation sensitive (True) or
fully rotation invariant (False). The default is True.

Note

You will get an exception if you set a skip-flag and then attempt to
retrieve those vectors.

	
add_point(p)

	Add a point to the unistroke/path. This invalidates all previously
computed vectors.

	
prepare(numpoints=None)

	This function prepares the UnistrokeTemplate for matching given a
target number of points (for resample). 16 is optimal.

Parser utilities

Helper functions used for CSS parsing.

	
kivy.parser.parse_bool(text)

	Parse a string to a boolean, ignoring case. “true”/”1” is True,
“false”/”0” is False. Anything else throws an exception.

	
kivy.parser.parse_color(text)

	Parse a string to a kivy color. Supported formats:

	rgb(r, g, b)

	rgba(r, g, b, a)

	rgb

	rgba

	rrggbb

	rrggbbaa

For hexadecimal values, you case also use:

	#rgb

	#rgba

	#rrggbb

	#rrggbbaa

	
kivy.parser.parse_filename(filename)

	Parse a filename and search for it using resource_find().
If found, the resource path is returned, otherwise return the unmodified
filename (as specified by the caller).

	
kivy.parser.parse_float

	alias of float

	
kivy.parser.parse_float4(text)

	Parse a string to a list of exactly 4 floats.

>>> parse_float4('54 87. 35 0')
54, 87., 35, 0

	
kivy.parser.parse_int

	alias of int

	
kivy.parser.parse_int2(text)

	Parse a string to a list of exactly 2 integers.

>>> print(parse_int2("12 54"))
12, 54

	
kivy.parser.parse_string(text)

	Parse a string to a string (removing single and double quotes).

Properties

The Properties classes are used when you create an
EventDispatcher.

Warning

Kivy’s Properties are not to be confused with Python’s
properties (i.e. the @property decorator and the <property> type).

Kivy’s property classes support:

	Value Checking / Validation
	When you assign a new value to a property, the value is checked against
validation constraints. For
example, validation for an OptionProperty will make sure that
the value is in a predefined list of possibilities. Validation for a
NumericProperty will check that your value is a numeric type.
This prevents many errors early on.

	Observer Pattern
	You can specify what should happen when a property’s value changes.
You can bind your own function as a callback to changes of a
Property. If, for example, you want a piece of code to be
called when a widget’s pos property
changes, you can bind a function
to it.

	Better Memory Management
	The same instance of a property is shared across multiple widget
instances.

Comparison Python vs. Kivy

Basic example

Let’s compare Python and Kivy properties by creating a Python class with ‘a’
as a float property:

class MyClass(object):
 def __init__(self, a=1.0):
 super(MyClass, self).__init__()
 self.a = a

With Kivy, you can do:

class MyClass(EventDispatcher):
 a = NumericProperty(1.0)

Depth being tracked

Only the “top level” of a nested object is being tracked. For example:

my_list_prop = ListProperty([1, {'hi': 0}])
Changing a top level element will trigger all `on_my_list_prop` callbacks
my_list_prop[0] = 4
Changing a deeper element will be ignored by all `on_my_list_prop` callbacks
my_list_prop[1]['hi'] = 4

The same holds true for all container-type kivy properties.

Value checking

If you wanted to add a check for a minimum / maximum value allowed for a
property, here is a possible implementation in Python:

class MyClass(object):
 def __init__(self, a=1):
 super(MyClass, self).__init__()
 self.a_min = 0
 self.a_max = 100
 self.a = a

 def _get_a(self):
 return self._a
 def _set_a(self, value):
 if value < self.a_min or value > self.a_max:
 raise ValueError('a out of bounds')
 self._a = value
 a = property(_get_a, _set_a)

The disadvantage is you have to do that work yourself. And it becomes
laborious and complex if you have many properties.
With Kivy, you can simplify the process:

class MyClass(EventDispatcher):
 a = BoundedNumericProperty(1, min=0, max=100)

That’s all!

Error Handling

If setting a value would otherwise raise a ValueError, you have two options to
handle the error gracefully within the property. The first option is to use an
errorvalue parameter. An errorvalue is a substitute for the invalid value:

simply returns 0 if the value exceeds the bounds
bnp = BoundedNumericProperty(0, min=-500, max=500, errorvalue=0)

The second option in to use an errorhandler parameter. An errorhandler is a
callable (single argument function or lambda) which can return a valid
substitute:

returns the boundary value when exceeded
bnp = BoundedNumericProperty(0, min=-500, max=500,
 errorhandler=lambda x: 500 if x > 500 else -500)

Keyword arguments and __init__()

When working with inheritance, namely with the __init__() of an object that
inherits from EventDispatcher e.g. a
Widget, the properties protect
you from a Python 3 object error. This error occurs when passing kwargs to the
object instance through a super() call:

class MyClass(EventDispatcher):
 def __init__(self, **kwargs):
 super(MyClass, self).__init__(**kwargs)
 self.my_string = kwargs.get('my_string')

print(MyClass(my_string='value').my_string)

While this error is silenced in Python 2, it will stop the application
in Python 3 with:

TypeError: object.__init__() takes no parameters

Logically, to fix that you’d either put my_string directly in the
__init__() definition as a required argument or as an optional keyword
argument with a default value i.e.:

class MyClass(EventDispatcher):
 def __init__(self, my_string, **kwargs):
 super(MyClass, self).__init__(**kwargs)
 self.my_string = my_string

or:

class MyClass(EventDispatcher):
 def __init__(self, my_string='default', **kwargs):
 super(MyClass, self).__init__(**kwargs)
 self.my_string = my_string

Alternatively, you could pop the key-value pair from the kwargs dictionary
before calling super():

class MyClass(EventDispatcher):
 def __init__(self, **kwargs):
 self.my_string = kwargs.pop('my_string')
 super(MyClass, self).__init__(**kwargs)

Kivy properties are more flexible and do the required kwargs.pop()
in the background automatically (within the super() call
to EventDispatcher) to prevent this distraction:

class MyClass(EventDispatcher):
 my_string = StringProperty('default')
 def __init__(self, **kwargs):
 super(MyClass, self).__init__(**kwargs)

print(MyClass(my_string='value').my_string)

Conclusion

Kivy properties are easier to use than the standard ones. See the next chapter
for examples of how to use them :)

Observe Property changes

As we said in the beginning, Kivy’s Properties implement the Observer pattern [http://en.wikipedia.org/wiki/Observer_pattern]. That means you can
bind() to a property and have your own
function called when the value changes.

There are multiple ways to observe the changes.

Observe using bind()

You can observe a property change by using the bind() method outside of the
class:

class MyClass(EventDispatcher):
 a = NumericProperty(1)

def callback(instance, value):
 print('My callback is call from', instance)
 print('and the a value changed to', value)

ins = MyClass()
ins.bind(a=callback)

At this point, any change to the a property will call your callback.
ins.a = 5 # callback called
ins.a = 5 # callback not called, because the value did not change
ins.a = -1 # callback called

Note

Property objects live at the class level and manage the values attached
to instances. Re-assigning at class level will remove the Property. For
example, continuing with the code above, MyClass.a = 5 replaces
the property object with a simple int.

Observe using ‘on_<propname>’

If you defined the class yourself, you can use the ‘on_<propname>’ callback:

class MyClass(EventDispatcher):
 a = NumericProperty(1)

 def on_a(self, instance, value):
 print('My property a changed to', value)

Warning

Be careful with ‘on_<propname>’. If you are creating such a callback on a
property you are inheriting, you must not forget to call the superclass
function too.

Binding to properties of properties.

When binding to a property of a property, for example binding to a numeric
property of an object saved in a object property, updating the object property
to point to a new object will not re-bind the numeric property to the
new object. For example:

<MyWidget>:
 Label:
 id: first
 text: 'First label'
 Label:
 id: second
 text: 'Second label'
 Button:
 label: first
 text: self.label.text
 on_press: self.label = second

When clicking on the button, although the label object property has changed
to the second widget, the button text will not change because it is bound to
the text property of the first label directly.

In 1.9.0, the rebind option has been introduced that will allow the
automatic updating of the text when label is changed, provided it
was enabled. See ObjectProperty.

	
class kivy.properties.AliasProperty(getter, setter=None, rebind=False, watch_before_use=True, **kwargs)

	Bases: kivy.properties.Property

If you don’t find a Property class that fits to your needs, you can make
your own by creating custom Python getter and setter methods.

Example from kivy/uix/widget.py where x and width are instances of
NumericProperty:

def get_right(self):
 return self.x + self.width
def set_right(self, value):
 self.x = value - self.width
right = AliasProperty(get_right, set_right, bind=['x', 'width'])

If x were a non Kivy property then you have to return True from setter
to dispatch new value of right:

def set_right(self, value):
 self.x = value - self.width
 return True

Usually bind list should contain all Kivy properties used in getter
method. If you return True it will cause a dispatch which one should do
when the property value has changed, but keep in mind that the property
could already have dispatched the changed value if a kivy property the
alias property is bound was set in the setter, causing a second dispatch
if the setter returns True.

If you want to cache the value returned by getter then pass cache=True.
This way getter will only be called if new value is set or one of the
binded properties changes. In both cases new value of alias property will
be cached again.

To make property readonly pass None as setter. This way AttributeError
will be raised on every set attempt:

right = AliasProperty(get_right, None, bind=['x', 'width'], cache=True)

	Parameters:

	
	getter: function
	Function to use as a property getter.

	setter: function
	Function to use as a property setter. Callbacks bound to the
alias property won’t be called when the property is set (e.g.
right = 10), unless the setter returns True.

	bind: list/tuple
	Properties to observe for changes as property name strings.
Changing values of this properties will dispatch value of the
alias property.

	cache: boolean
	If True, the value will be cached until one of the binded
elements changes or if setter returns True.

	rebind: bool, defaults to False
	See ObjectProperty for details.

	watch_before_use: bool, defaults to True
	Whether the bind properties are tracked (bound) before this
property is used in any way.

By default, the getter is called if the bind properties update
or if the property value (unless cached) is read. As an
optimization to speed up widget creation, when watch_before_use
is False, we only track the bound properties once this property is
used in any way (i.e. it is bound, it was set/read, etc).

The property value read/set/bound will be correct as expected in
both cases. The difference is only that when False, any side
effects from the getter would not occur until this property is
interacted with in any way because the getter won’t be called
early.

Changed in version 1.9.0: rebind has been introduced.

Changed in version 1.4.0: Parameter cache added.

	
get(EventDispatcher obj)

	

	
link_deps(EventDispatcher obj, unicode name)

	

	
link_eagerly(EventDispatcher obj) → PropertyStorage

	

	
rebind

	rebind: ‘int’

	
set(EventDispatcher obj, value)

	

	
trigger_change(EventDispatcher obj, value)

	

	
class kivy.properties.BooleanProperty(defaultvalue=True, **kw)

	Bases: kivy.properties.Property

	Parameters:

	
	defaultvalue: boolean
	Specifies the default value of the property.

	
class kivy.properties.BoundedNumericProperty(*largs, **kw)

	Bases: kivy.properties.Property

maximum bound – within a numeric range.

	Parameters:

	
	default: numeric
	Specifies the default value of the property.

	**kwargs: a list of keyword arguments
	If a min parameter is included, this specifies the minimum
numeric value that will be accepted.
If a max parameter is included, this specifies the maximum
numeric value that will be accepted.

	
bounds

	Return min/max of the value.

New in version 1.0.9.

	
get_max(EventDispatcher obj)

	Return the maximum value acceptable for the BoundedNumericProperty
in obj. Return None if no maximum value is set. Check
get_min for a usage example.

New in version 1.1.0.

	
get_min(EventDispatcher obj)

	Return the minimum value acceptable for the BoundedNumericProperty
in obj. Return None if no minimum value is set:

class MyWidget(Widget):
 number = BoundedNumericProperty(0, min=-5, max=5)

widget = MyWidget()
print(widget.property('number').get_min(widget))
will output -5

New in version 1.1.0.

	
set_max(EventDispatcher obj, value)

	Change the maximum value acceptable for the BoundedNumericProperty,
only for the obj instance. Set to None if you want to disable it.
Check set_min for a usage example.

Warning

Changing the bounds doesn’t revalidate the current value.

New in version 1.1.0.

	
set_min(EventDispatcher obj, value)

	Change the minimum value acceptable for the BoundedNumericProperty,
only for the obj instance. Set to None if you want to disable it:

class MyWidget(Widget):
 number = BoundedNumericProperty(0, min=-5, max=5)

widget = MyWidget()
change the minimum to -10
widget.property('number').set_min(widget, -10)
or disable the minimum check
widget.property('number').set_min(widget, None)

Warning

Changing the bounds doesn’t revalidate the current value.

New in version 1.1.0.

	
class kivy.properties.ColorProperty(defaultvalue=0, **kw)

	Bases: kivy.properties.Property

	a collection of 3 or 4 float values between 0-1 (kivy default)

	a string in the format #rrggbb or #rrggbbaa

	a string representing color name (eg. ‘red’, ‘yellow’, ‘green’)

Object colormap is used to retrieve color from color
name and names definitions can be found at this
link [https://www.w3.org/TR/SVG11/types.html#ColorKeywords]. Color can
be assigned in different formats, but it will be returned as
ObservableList of 4 float elements with values
between 0-1.

	Parameters:

	
	defaultvalue: list or string, defaults to [1.0, 1.0, 1.0, 1.0]
	Specifies the default value of the property.

New in version 1.10.0.

Changed in version 2.0.0: Color value will be dispatched when set through indexing or slicing,
but when setting with slice you must ensure that slice has 4 components
with float values between 0-1.
Assingning color name as value is now supported.
Value None is allowed as default value for property.

	
class kivy.properties.ConfigParserProperty(defaultvalue, section, key, config, **kw)

	Bases: kivy.properties.Property

of a ConfigParser as well as to bind the ConfigParser
values to other properties.

A ConfigParser is composed of sections, where each section has a number of
keys and values associated with these keys. ConfigParserProperty lets
you automatically listen to and change the values of specified keys based
on other kivy properties.

For example, say we want to have a TextInput automatically write
its value, represented as an int, in the info section of a ConfigParser.
Also, the textinputs should update its values from the ConfigParser’s
fields. Finally, their values should be displayed in a label. In py:

class Info(Label):

 number = ConfigParserProperty(0, 'info', 'number', 'example',
 val_type=int, errorvalue=41)

 def __init__(self, **kw):
 super(Info, self).__init__(**kw)
 config = ConfigParser(name='example')

The above code creates a property that is connected to the number key in
the info section of the ConfigParser named example. Initially, this
ConfigParser doesn’t exist. Then, in __init__, a ConfigParser is created
with name example, which is then automatically linked with this property.
then in kv:

BoxLayout:
 TextInput:
 id: number
 text: str(info.number)
 Info:
 id: info
 number: number.text
 text: 'Number: {}'.format(self.number)

You’ll notice that we have to do text: str(info.number), this is because
the value of this property is always an int, because we specified int as
the val_type. However, we can assign anything to the property, e.g.
number: number.text which assigns a string, because it is instantly
converted with the val_type callback.

Note

If a file has been opened for this ConfigParser using
read(), then
write() will be called every property
change, keeping the file updated.

Warning

It is recommend that the config parser object be assigned to the
property after the kv tree has been constructed (e.g. schedule on next
frame from init). This is because the kv tree and its properties, when
constructed, are evaluated on its own order, therefore, any initial
values in the parser might be overwritten by objects it’s bound to.
So in the example above, the TextInput might be initially empty,
and if number: number.text is evaluated before
text: str(info.number), the config value will be overwritten with the
(empty) text value.

	Parameters:

	
	default: object type
	Specifies the default value for the key. If the parser associated
with this property doesn’t have this section or key, it’ll be
created with the current value, which is the default value
initially.

	section: string type
	The section in the ConfigParser where the key / value will be
written. Must be provided. If the section doesn’t exist, it’ll be
created.

	key: string type
	The key in section section where the value will be written to.
Must be provided. If the key doesn’t exist, it’ll be created and
the current value written to it, otherwise its value will be used.

	config: string or ConfigParser instance.
	The ConfigParser instance to associate with this property if
not None. If it’s a string, the ConfigParser instance whose
name is the value of config
will be used. If no such parser exists yet, whenever a ConfigParser
with this name is created, it will automatically be linked to this
property.

Whenever a ConfigParser becomes linked with a property, if the
section or key doesn’t exist, the current property value will be
used to create that key, otherwise, the existing key value will be
used for the property value; overwriting its current value. You can
change the ConfigParser associated with this property if a string
was used here, by changing the
name of an existing or new
ConfigParser instance. Or through set_config().

	**kwargs: a list of keyword arguments
	
	val_type: a callable object
	The key values are saved in the ConfigParser as strings. When
the ConfigParser value is read internally and assigned to the
property or when the user changes the property value directly,
if val_type is not None, it will be called with the new value
as input and it should return the value converted to the proper
type accepted ny this property. For example, if the property
represent ints, val_type can simply be int.

If the val_type callback raises a ValueError, errorvalue
or errorhandler will be used if provided. Tip: the
getboolean function of the ConfigParser might also be useful
here to convert to a boolean type.

	verify: a callable object
	Can be used to restrict the allowable values of the property.
For every value assigned to the property, if this is specified,
verify is called with the new value, and if it returns True
the value is accepted, otherwise, errorvalue or
errorhandler will be used if provided or a ValueError is
raised.

New in version 1.9.0.

	
link_deps(EventDispatcher obj, unicode name)

	

	
set(EventDispatcher obj, value)

	

	
set_config(config)

	Sets the ConfigParser object to be used by this property. Normally,
the ConfigParser is set when initializing the Property using the
config parameter.

	Parameters:

	
	config: A ConfigParser instance.
	The instance to use for listening to and saving property value
changes. If None, it disconnects the currently used
ConfigParser.

class MyWidget(Widget):
 username = ConfigParserProperty('', 'info', 'name', None)

widget = MyWidget()
widget.property('username').set_config(ConfigParser())

	
class kivy.properties.DictProperty(defaultvalue=0, rebind=False, **kw)

	Bases: kivy.properties.Property

	Parameters:

	
	defaultvalue: dict, defaults to {}
	Specifies the default value of the property.

	rebind: bool, defaults to False
	See ObjectProperty for details.

Changed in version 1.9.0: rebind has been introduced.

Warning

Similar to ListProperty, when assigning a dict to a
DictProperty, the dict stored in the property is a shallow copy of the
dict and not the original dict. See ListProperty for details.

	
link(EventDispatcher obj, unicode name) → PropertyStorage

	

	
rebind

	rebind: ‘int’

	
set(EventDispatcher obj, value)

	

	
class kivy.properties.ListProperty(defaultvalue=0, **kw)

	Bases: kivy.properties.Property

	Parameters:

	
	defaultvalue: list, defaults to []
	Specifies the default value of the property.

Warning

When assigning a list to a ListProperty, the list stored in
the property is a shallow copy of the list and not the original list. This can
be demonstrated with the following example:

>>> class MyWidget(Widget):
>>> my_list = ListProperty([])

>>> widget = MyWidget()
>>> my_list = [1, 5, {'hi': 'hello'}]
>>> widget.my_list = my_list
>>> print(my_list is widget.my_list)
False
>>> my_list.append(10)
>>> print(my_list, widget.my_list)
[1, 5, {'hi': 'hello'}, 10] [1, 5, {'hi': 'hello'}]

However, changes to nested levels will affect the property as well,
since the property uses a shallow copy of my_list.

>>> my_list[2]['hi'] = 'bye'
>>> print(my_list, widget.my_list)
[1, 5, {'hi': 'bye'}, 10] [1, 5, {'hi': 'bye'}]

	
link(EventDispatcher obj, unicode name) → PropertyStorage

	

	
set(EventDispatcher obj, value)

	

	
class kivy.properties.NumericProperty(defaultvalue=0, **kw)

	Bases: kivy.properties.Property

It only accepts the int or float numeric data type or a string that can be
converted to a number as shown below. For other numeric types use ObjectProperty
or use errorhandler to convert it to an int/float.

It does not support numpy numbers so they must be manually converted to int/float.
E.g. widget.num = np.arange(4)[0] will raise an exception. Numpy arrays are not
supported at all, even by ObjectProperty because their comparison does not return
a bool. But if you must use a Kivy property, use a ObjectProperty with comparator
set to np.array_equal. E.g.:

>>> class A(EventDispatcher):
... data = ObjectProperty(comparator=np.array_equal)
>>> a = A()
>>> a.bind(data=print)
>>> a.data = np.arange(2)
<__main__.A object at 0x000001C839B50208> [0 1]
>>> a.data = np.arange(3)
<__main__.A object at 0x000001C839B50208> [0 1 2]

	Parameters:

	
	defaultvalue: int or float, defaults to 0
	Specifies the default value of the property.

>>> wid = Widget()
>>> wid.x = 42
>>> print(wid.x)
42
>>> wid.x = "plop"
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "properties.pyx", line 93, in kivy.properties.Property.__set__
 File "properties.pyx", line 111, in kivy.properties.Property.set
 File "properties.pyx", line 159, in kivy.properties.NumericProperty.check
 ValueError: NumericProperty accept only int/float

Changed in version 1.4.1: NumericProperty can now accept custom text and tuple value to indicate a
type, like “in”, “pt”, “px”, “cm”, “mm”, in the format: ‘10pt’ or (10,
‘pt’).

	
get_format(EventDispatcher obj)

	Return the format used for Numeric calculation. Default is px (mean
the value have not been changed at all). Otherwise, it can be one of
‘in’, ‘pt’, ‘cm’, ‘mm’.

	
class kivy.properties.ObjectProperty(defaultvalue=None, rebind=False, **kw)

	Bases: kivy.properties.Property

	Parameters:

	
	defaultvalue: object type
	Specifies the default value of the property.

	rebind: bool, defaults to False
	Whether kv rules using this object as an intermediate attribute
in a kv rule, will update the bound property when this object
changes.

That is the standard behavior is that if there’s a kv rule
text: self.a.b.c.d, where a, b, and c are
properties with rebind False and d is a
StringProperty. Then when the rule is applied, text
becomes bound only to d. If a, b, or c change,
text still remains bound to d. Furthermore, if any of them
were None when the rule was initially evaluated, e.g. b was
None; then text is bound to b and will not become bound
to d even when b is changed to not be None.

By setting rebind to True, however, the rule will be
re-evaluated and all the properties rebound when that intermediate
property changes. E.g. in the example above, whenever b changes
or becomes not None if it was None before, text is
evaluated again and becomes rebound to d. The overall result is
that text is now bound to all the properties among a,
b, or c that have rebind set to True.

	**kwargs: a list of keyword arguments
	
	baseclass
	If kwargs includes a baseclass argument, this value will be
used for validation: isinstance(value, kwargs[‘baseclass’]).

Warning

To mark the property as changed, you must reassign a new python object.

Changed in version 1.9.0: rebind has been introduced.

Changed in version 1.7.0: baseclass parameter added.

	
rebind

	rebind: ‘int’

	
class kivy.properties.OptionProperty(*largs, **kw)

	Bases: kivy.properties.Property

options.

If the string set in the property is not in the list of valid options
(passed at property creation time), a ValueError exception will be raised.

	Parameters:

	
	default: any valid type in the list of options
	Specifies the default value of the property.

	**kwargs: a list of keyword arguments
	Should include an options parameter specifying a list (not tuple)
of valid options.

For example:

class MyWidget(Widget):
 state = OptionProperty("None", options=["On", "Off", "None"])

	
options

	Return the options available.

New in version 1.0.9.

	
class kivy.properties.Property(defaultvalue, **kw)

	Bases: builtins.object

This class handles all the basic setters and getters, None type handling,
the observer list and storage initialisation. This class should not be
directly instantiated.

By default, a Property always takes a default value:

class MyObject(Widget):

 hello = Property('Hello world')

The default value must be a value that agrees with the Property type. For
example, you can’t set a list to a StringProperty because the
StringProperty will check the default value.

None is a special case: you can set the default value of a Property to
None, but you can’t set None to a property afterward. If you really want
to do that, you must declare the Property with allownone=True:

class MyObject(Widget):

 hello = ObjectProperty(None, allownone=True)

then later
a = MyObject()
a.hello = 'bleh' # working
a.hello = None # working too, because allownone is True.

	Parameters:

	
	default:
	Specifies the default value for the property.

	**kwargs:
	If the parameters include errorhandler, this should be a callable
which must take a single argument and return a valid substitute
value.

If the parameters include errorvalue, this should be an object.
If set, it will replace an invalid property value (overrides
errorhandler).

If the parameters include force_dispatch, it should be a boolean.
If True, no value comparison will be done, so the property event
will be dispatched even if the new value matches the old value (by
default identical values are not dispatched to avoid infinite
recursion in two-way binds). Be careful, this is for advanced use only.

	comparator: callable or None
	When not None, it’s called with two values to be compared.
The function returns whether they are considered the same.

	deprecated: bool
	When True, a warning will be logged if the property is accessed
or set. Defaults to False.

Changed in version 1.4.2: Parameters errorhandler and errorvalue added

Changed in version 1.9.0: Parameter force_dispatch added

Changed in version 1.11.0: Parameter deprecated added

	
bind(EventDispatcher obj, observer)

	Add a new observer to be called only when the value is changed.

	
defaultvalue

	defaultvalue: object

	
dispatch(EventDispatcher obj)

	Dispatch the value change to all observers.

Changed in version 1.1.0: The method is now accessible from Python.

This can be used to force the dispatch of the property, even if the
value didn’t change:

button = Button()
get the Property class instance
prop = button.property('text')
dispatch this property on the button instance
prop.dispatch(button)

	
Property.fbind(EventDispatcher obj, observer, int ref, tuple largs=

	Similar to bind, except it doesn’t check if the observer already
exists. It also expands and forwards largs and kwargs to the callback.
funbind or unbind_uid should be called when unbinding.
It returns a unique positive uid to be used with unbind_uid.

	
Property.funbind(EventDispatcher obj, observer, tuple largs=

	Remove the observer from our widget observer list bound with
fbind. It removes the first match it finds, as opposed to unbind
which searches for all matches.

	
get(EventDispatcher obj)

	Return the value of the property.

	
link(EventDispatcher obj, unicode name) → PropertyStorage

	Link the instance with its real name.

Warning

Internal usage only.

When a widget is defined and uses a Property class, the
creation of the property object happens, but the instance doesn’t know
anything about its name in the widget class:

class MyWidget(Widget):
 uid = NumericProperty(0)

In this example, the uid will be a NumericProperty() instance, but the
property instance doesn’t know its name. That’s why link() is
used in Widget.__new__. The link function is also used to create the
storage space of the property for this specific widget instance.

	
link_deps(EventDispatcher obj, unicode name)

	

	
link_eagerly(EventDispatcher obj) → PropertyStorage

	

	
set(EventDispatcher obj, value)

	Set a new value for the property.

	
set_name(EventDispatcher obj, unicode name)

	

	
unbind(EventDispatcher obj, observer, int stop_on_first=0)

	Remove the observer from our widget observer list.

	
unbind_uid(EventDispatcher obj, uid)

	Remove the observer from our widget observer list bound with
fbind using the uid.

	
class kivy.properties.ReferenceListProperty(*largs, **kw)

	Bases: kivy.properties.Property

For example, if x and y are NumericPropertys, we can create a
ReferenceListProperty for the pos. If you change the value of
pos, it will automatically change the values of x and y accordingly.
If you read the value of pos, it will return a tuple with the values of
x and y.

For example:

class MyWidget(EventDispatcher):
 x = NumericProperty(0)
 y = NumericProperty(0)
 pos = ReferenceListProperty(x, y)

	
get(EventDispatcher obj)

	

	
link(EventDispatcher obj, unicode name) → PropertyStorage

	

	
link_deps(EventDispatcher obj, unicode name)

	

	
set(EventDispatcher obj, _value)

	

	
setitem(EventDispatcher obj, key, value)

	

	
trigger_change(EventDispatcher obj, value)

	

	
class kivy.properties.StringProperty(defaultvalue='', **kw)

	Bases: kivy.properties.Property

	Parameters:

	
	defaultvalue: string, defaults to ‘’
	Specifies the default value of the property.

	
class kivy.properties.VariableListProperty(defaultvalue=None, length=4, **kw)

	Bases: kivy.properties.Property

list items and to expand them to the desired list size.

For example, GridLayout’s padding used to just accept one numeric value
which was applied equally to the left, top, right and bottom of the
GridLayout. Now padding can be given one, two or four values, which are
expanded into a length four list [left, top, right, bottom] and stored
in the property.

	Parameters:

	
	default: a default list of values
	Specifies the default values for the list.

	length: int, one of 2 or 4.
	Specifies the length of the final list. The default list will
be expanded to match a list of this length.

	**kwargs: a list of keyword arguments
	Not currently used.

Keeping in mind that the default list is expanded to a list of length 4,
here are some examples of how VariableListProperty is handled.

	VariableListProperty([1]) represents [1, 1, 1, 1].

	VariableListProperty([1, 2]) represents [1, 2, 1, 2].

	VariableListProperty([‘1px’, (2, ‘px’), 3, 4.0]) represents [1, 2, 3, 4.0].

	VariableListProperty(5) represents [5, 5, 5, 5].

	VariableListProperty(3, length=2) represents [3, 3].

New in version 1.7.0.

	
length

	length: ‘int’

	
link(EventDispatcher obj, unicode name) → PropertyStorage

	

Resources management

Resource management can be a pain if you have multiple paths and projects.
Kivy offers 2 functions for searching for specific resources across a list
of paths.

Resource lookup

When Kivy looks for a resource e.g. an image or a kv file, it searches through
a predetermined set of folders. You can modify this folder list using the
resource_add_path() and resource_remove_path() functions.

Customizing Kivy

These functions can also be helpful if you want to replace standard Kivy
resources with your own. For example, if you wish to customize or re-style
Kivy, you can force your style.kv or data/defaulttheme-0.png files to be
used in preference to the defaults simply by adding the path to your preferred
alternatives via the resource_add_path() method.

As almost all Kivy resources are looked up using the resource_find(), so
you can use this approach to add fonts and keyboard layouts and to replace
images and icons.

	
kivy.resources.resource_add_path(path)

	Add a custom path to search in.

	
kivy.resources.resource_find(filename, use_cache=False)

	Search for a resource in the list of paths.
Use resource_add_path to add a custom path to the search.
By default, results are cached for 60 seconds.
This can be disabled using use_cache=False.

Changed in version 2.1.0: use_cache parameter added and made True by default.

	
kivy.resources.resource_remove_path(path)

	Remove a search path.

New in version 1.0.8.

Support

Activate other frameworks/toolkits inside the kivy event loop.

	
kivy.support.install_android()

	Install hooks for the android platform.

	Automatically sleep when the device is paused.

	Automatically kill the application when the return key is pressed.

	
kivy.support.install_gobject_iteration()

	Import and install gobject context iteration inside our event loop.
This is used as soon as gobject is used (like gstreamer).

	
kivy.support.install_twisted_reactor(**kwargs)

	Installs a threaded twisted reactor, which will schedule one
reactor iteration before the next frame only when twisted needs
to do some work.

Any arguments or keyword arguments passed to this function will be
passed on the the threadedselect reactors interleave function. These
are the arguments one would usually pass to twisted’s reactor.startRunning.

Unlike the default twisted reactor, the installed reactor will not handle
any signals unless you set the ‘installSignalHandlers’ keyword argument
to 1 explicitly. This is done to allow kivy to handle the signals as
usual unless you specifically want the twisted reactor to handle the
signals (e.g. SIGINT).

Note

Twisted is not included in iOS build by default. To use it on iOS,
put the twisted distribution (and zope.interface dependency) in your
application directory.

	
kivy.support.uninstall_twisted_reactor()

	Uninstalls the Kivy’s threaded Twisted Reactor. No more Twisted
tasks will run after this got called. Use this to clean the
twisted.internet.reactor .

New in version 1.9.0.

Utils

The Utils module provides a selection of general utility functions and classes
that may be useful for various applications. These include maths, color,
algebraic and platform functions.

Changed in version 1.6.0: The OrderedDict class has been removed. Use collections.OrderedDict
instead.

	
class kivy.utils.QueryDict

	Bases: builtins.dict

QueryDict is a dict() that can be queried with dot.

d = QueryDict()
create a key named toto, with the value 1
d.toto = 1
it's the same as
d['toto'] = 1

New in version 1.0.4.

	
class kivy.utils.SafeList(*args, **kwargs)

	Bases: builtins.list

List with a clear() method.

Warning

Usage of the iterate() function will decrease your performance.

	
clear()

	Remove all items from list.

	
kivy.utils.boundary(value, minvalue, maxvalue)

	Limit a value between a minvalue and maxvalue.

	
kivy.utils.deprecated(func=None, msg='')

	This is a decorator which can be used to mark functions
as deprecated. It will result in a warning being emitted the first time
the function is used.

	
kivy.utils.difference(set1, set2)

	Return the difference between 2 lists.

	
kivy.utils.escape_markup(text)

	Escape markup characters found in the text. Intended to be used when markup
text is activated on the Label:

untrusted_text = escape_markup('Look at the example [1]')
text = '[color=ff0000]' + untrusted_text + '[/color]'
w = Label(text=text, markup=True)

New in version 1.3.0.

	
kivy.utils.get_color_from_hex(s)

	Transform a hex string color to a kivy
Color.

	
kivy.utils.get_hex_from_color(color)

	Transform a kivy Color to a hex value:

>>> get_hex_from_color((0, 1, 0))
'#00ff00'
>>> get_hex_from_color((.25, .77, .90, .5))
'#3fc4e57f'

New in version 1.5.0.

	
kivy.utils.get_random_color(alpha=1.0)

	Returns a random color (4 tuple).

	Parameters:

	
	alpha: float, defaults to 1.0
	If alpha == ‘random’, a random alpha value is generated.

	
kivy.utils.interpolate(value_from, value_to, step=10)

	Interpolate between two values. This can be useful for smoothing some
transitions. For example:

instead of setting directly
self.pos = pos

use interpolate, and you'll have a nicer transition
self.pos = interpolate(self.pos, new_pos)

Warning

These interpolations work only on lists/tuples/doubles with the same
dimensions. No test is done to check the dimensions are the same.

	
kivy.utils.intersection(set1, set2)

	Return the intersection of 2 lists.

	
kivy.utils.is_color_transparent(c)

	Return True if the alpha channel is 0.

	
kivy.utils.platform = 'linux'

	A string identifying the current operating system. It is one
of: ‘win’, ‘linux’, ‘android’, ‘macosx’, ‘ios’ or ‘unknown’.
You can use it as follows:

from kivy.utils import platform
if platform == 'linux':
 do_linux_things()

New in version 1.3.0.

Changed in version 1.8.0: platform is now a variable instead of a function.

	
class kivy.utils.reify(func)

	Bases: builtins.object

Put the result of a method which uses this (non-data) descriptor decorator
in the instance dict after the first call, effectively replacing the
decorator with an instance variable.

It acts like @property, except that the function is only ever called once;
after that, the value is cached as a regular attribute. This gives you lazy
attribute creation on objects that are meant to be immutable.

Taken from the Pyramid project [https://pypi.python.org/pypi/pyramid/].

To use this as a decorator:

@reify
def lazy(self):
 ...
 return hard_to_compute_int
first_time = self.lazy # lazy is reify obj, reify.__get__() runs
second_time = self.lazy # lazy is hard_to_compute_int

	
kivy.utils.rgba(s, *args)

	Return a Kivy color (4 value from 0-1 range) from either a hex string or
a list of 0-255 values.

New in version 1.10.0.

	
kivy.utils.strtotuple(s)

	Convert a tuple string into a tuple
with some security checks. Designed to be used
with the eval() function:

a = (12, 54, 68)
b = str(a) # return '(12, 54, 68)'
c = strtotuple(b) # return (12, 54, 68)

Vector

The Vector represents a 2D vector (x, y).
Our implementation is built on top of a Python list.

An example of constructing a Vector:

>>> # Construct a point at 82,34
>>> v = Vector(82, 34)
>>> v[0]
82
>>> v.x
82
>>> v[1]
34
>>> v.y
34

>>> # Construct by giving a list of 2 values
>>> pos = (93, 45)
>>> v = Vector(pos)
>>> v[0]
93
>>> v.x
93
>>> v[1]
45
>>> v.y
45

Optimized usage

Most of the time, you can use a list for arguments instead of using a
Vector. For example, if you want to calculate the distance between 2
points:

a = (10, 10)
b = (87, 34)

optimized method
print('distance between a and b:', Vector(a).distance(b))

non-optimized method
va = Vector(a)
vb = Vector(b)
print('distance between a and b:', va.distance(vb))

Vector operators

The Vector supports some numeric operators such as +, -, /:

>>> Vector(1, 1) + Vector(9, 5)
[10, 6]

>>> Vector(9, 5) - Vector(5, 5)
[4, 0]

>>> Vector(10, 10) / Vector(2., 4.)
[5.0, 2.5]

>>> Vector(10, 10) / 5.
[2.0, 2.0]

You can also use in-place operators:

>>> v = Vector(1, 1)
>>> v += 2
>>> v
[3, 3]
>>> v *= 5
[15, 15]
>>> v /= 2.
[7.5, 7.5]

	
class kivy.vector.Vector(*largs)

	Bases: builtins.list

Vector class. See module documentation for more information.

	
angle(a)

	Computes the angle between a and b, and returns the angle in
degrees.

>>> Vector(100, 0).angle((0, 100))
-90.0
>>> Vector(87, 23).angle((-77, 10))
-157.7920283010705

	
distance(to)

	Returns the distance between two points.

>>> Vector(10, 10).distance((5, 10))
5.
>>> a = (90, 33)
>>> b = (76, 34)
>>> Vector(a).distance(b)
14.035668847618199

	
distance2(to)

	Returns the distance between two points squared.

>>> Vector(10, 10).distance2((5, 10))
25

	
dot(a)

	Computes the dot product of a and b.

>>> Vector(2, 4).dot((2, 2))
12

	
static in_bbox(point, a, b)

	Return True if point is in the bounding box defined by a
and b.

>>> bmin = (0, 0)
>>> bmax = (100, 100)
>>> Vector.in_bbox((50, 50), bmin, bmax)
True
>>> Vector.in_bbox((647, -10), bmin, bmax)
False

	
length()

	Returns the length of a vector.

>>> Vector(10, 10).length()
14.142135623730951
>>> pos = (10, 10)
>>> Vector(pos).length()
14.142135623730951

	
length2()

	Returns the length of a vector squared.

>>> Vector(10, 10).length2()
200
>>> pos = (10, 10)
>>> Vector(pos).length2()
200

	
static line_intersection(v1, v2, v3, v4)

	Finds the intersection point between the lines (1)v1->v2 and (2)v3->v4
and returns it as a vector object.

>>> a = (98, 28)
>>> b = (72, 33)
>>> c = (10, -5)
>>> d = (20, 88)
>>> Vector.line_intersection(a, b, c, d)
[15.25931928687196, 43.911669367909241]

Warning

This is a line intersection method, not a segment intersection.

For math see: http://en.wikipedia.org/wiki/Line-line_intersection

	
normalize()

	Returns a new vector that has the same direction as vec,
but has a length of one.

>>> v = Vector(88, 33).normalize()
>>> v
[0.93632917756904444, 0.3511234415883917]
>>> v.length()
1.0

	
rotate(angle)

	Rotate the vector with an angle in degrees.

>>> v = Vector(100, 0)
>>> v.rotate(45)
[70.71067811865476, 70.71067811865474]

	
static segment_intersection(v1, v2, v3, v4)

	Finds the intersection point between segments (1)v1->v2 and (2)v3->v4
and returns it as a vector object.

>>> a = (98, 28)
>>> b = (72, 33)
>>> c = (10, -5)
>>> d = (20, 88)
>>> Vector.segment_intersection(a, b, c, d)
None

>>> a = (0, 0)
>>> b = (10, 10)
>>> c = (0, 10)
>>> d = (10, 0)
>>> Vector.segment_intersection(a, b, c, d)
[5, 5]

	
property x

	x represents the first element in the list.

>>> v = Vector(12, 23)
>>> v[0]
12
>>> v.x
12

	
property y

	y represents the second element in the list.

>>> v = Vector(12, 23)
>>> v[1]
23
>>> v.y
23

Weak Method

The WeakMethod is used by the Clock class to
allow references to a bound method that permits the associated object to
be garbage collected. Please refer to
examples/core/clock_method.py for more information.

This WeakMethod class is taken from the recipe
http://code.activestate.com/recipes/81253/, based on the nicodemus version.
Many thanks nicodemus!

	
class kivy.weakmethod.WeakMethod(method)

	Bases: builtins.object

Implementation of a
weakref [http://en.wikipedia.org/wiki/Weak_reference]
for functions and bound methods.

	
is_dead()

	Returns True if the referenced callable was a bound method and
the instance no longer exists. Otherwise, return False.

Weak Proxy

In order to allow garbage collection, the weak proxy provides
weak references [https://en.wikipedia.org/wiki/Weak_reference] to objects.
It effectively enhances the
weakref.proxy [https://docs.python.org/2/library/weakref.html#weakref.proxy]
by adding comparison support.

	
class kivy.weakproxy.WeakProxy(obj, destructor=None)

	Bases: builtins.object

Replacement for weakref.proxy to support comparisons

Low level Metrics

Animation

Animation and AnimationTransition are used to animate
Widget properties. You must specify at least a
property name and target value. To use an Animation, follow these steps:

	Setup an Animation object

	Use the Animation object on a Widget

Simple animation

To animate a Widget’s x or y position, simply specify the target x/y values
where you want the widget positioned at the end of the animation:

anim = Animation(x=100, y=100)
anim.start(widget)

The animation will last for 1 second unless duration is specified.
When anim.start() is called, the Widget will move smoothly from the current
x/y position to (100, 100).

Multiple properties and transitions

You can animate multiple properties and use built-in or custom transition
functions using transition (or the t= shortcut). For example,
to animate the position and size using the ‘in_quad’ transition:

anim = Animation(x=50, size=(80, 80), t='in_quad')
anim.start(widget)

Note that the t= parameter can be the string name of a method in the
AnimationTransition class or your own animation function.

Sequential animation

To join animations sequentially, use the ‘+’ operator. The following example
will animate to x=50 over 1 second, then animate the size to (80, 80) over the
next two seconds:

anim = Animation(x=50) + Animation(size=(80, 80), duration=2.)
anim.start(widget)

Parallel animation

To join animations in parallel, use the ‘&’ operator. The following example
will animate the position to (80, 10) over 1 second, whilst in parallel
animating the size to (800, 800):

anim = Animation(pos=(80, 10))
anim &= Animation(size=(800, 800), duration=2.)
anim.start(widget)

Keep in mind that creating overlapping animations on the same property may have
unexpected results. If you want to apply multiple animations to the same
property, you should either schedule them sequentially (via the ‘+’ operator or
using the on_complete callback) or cancel previous animations using the
cancel_all method.

Repeating animation

New in version 1.8.0.

Note

This is currently only implemented for ‘Sequence’ animations.

To set an animation to repeat, simply set the Sequence.repeat
property to True:

anim = Animation(...) + Animation(...)
anim.repeat = True
anim.start(widget)

For flow control of animations such as stopping and cancelling, use the methods
already in place in the animation module.

	
class kivy.animation.Animation(**kw)

	Bases: kivy.event.EventDispatcher

Create an animation definition that can be used to animate a Widget.

	Parameters:

	
	duration or d: float, defaults to 1.
	Duration of the animation, in seconds.

	transition or t: str or func
	Transition function for animate properties. It can be the name of a
method from AnimationTransition.

	step or s: float
	Step in milliseconds of the animation. Defaults to 0, which means
the animation is updated for every frame.

To update the animation less often, set the step value to a float.
For example, if you want to animate at 30 FPS, use s=1/30.

	Events:

	
	on_start: animation, widget
	Fired when the animation is started on a widget.

	on_complete: animation, widget
	Fired when the animation is completed or stopped on a widget.

	on_progress: animation, widget, progression
	Fired when the progression of the animation is changing.

Changed in version 1.4.0: Added s/step parameter.

Changed in version 1.10.0: The default value of the step parameter was changed from 1/60. to 0.

	
property animated_properties

	Return the properties used to animate.

	
cancel(widget)

	Cancel the animation previously applied to a widget. Same
effect as stop, except the on_complete event will
not be triggered!

New in version 1.4.0.

	
static cancel_all(widget, *largs)

	Cancel all animations that concern a specific widget / list of
properties. See cancel.

Example:

anim = Animation(x=50)
anim.start(widget)

and later
Animation.cancel_all(widget, 'x')

New in version 1.4.0.

Changed in version 2.1.0: If the parameter widget is None, all animated widgets will be
the target and cancelled. If largs is also given, animation of
these properties will be canceled for all animated widgets.

	
cancel_property(widget, prop)

	Even if an animation is running, remove a property. It will not be
animated further. If it was the only/last property being animated,
the animation will be canceled (see cancel)

New in version 1.4.0.

	
property duration

	Return the duration of the animation.

	
have_properties_to_animate(widget)

	Return True if a widget still has properties to animate.

New in version 1.8.0.

	
start(widget)

	Start the animation on a widget.

	
stop(widget)

	Stop the animation previously applied to a widget, triggering the
on_complete event.

	
static stop_all(widget, *largs)

	Stop all animations that concern a specific widget / list of
properties.

Example:

anim = Animation(x=50)
anim.start(widget)

and later
Animation.stop_all(widget, 'x')

	
stop_property(widget, prop)

	Even if an animation is running, remove a property. It will not be
animated further. If it was the only/last property being animated,
the animation will be stopped (see stop).

	
property transition

	Return the transition of the animation.

	
class kivy.animation.AnimationTransition

	Bases: builtins.object

Collection of animation functions to be used with the Animation object.
Easing Functions ported to Kivy from the Clutter Project
https://developer.gnome.org/clutter/stable/ClutterAlpha.html

The progress parameter in each animation function is in the range 0-1.

	
static in_back(progress)

	[image: _images/anim_in_back.png]

	
static in_bounce(progress)

	[image: _images/anim_in_bounce.png]

	
static in_circ(progress)

	[image: _images/anim_in_circ.png]

	
static in_cubic(progress)

	[image: _images/anim_in_cubic.png]

	
static in_elastic(progress)

	[image: _images/anim_in_elastic.png]

	
static in_expo(progress)

	[image: _images/anim_in_expo.png]

	
static in_out_back(progress)

	[image: _images/anim_in_out_back.png]

	
static in_out_bounce(progress)

	[image: _images/anim_in_out_bounce.png]

	
static in_out_circ(progress)

	[image: _images/anim_in_out_circ.png]

	
static in_out_cubic(progress)

	[image: _images/anim_in_out_cubic.png]

	
static in_out_elastic(progress)

	[image: _images/anim_in_out_elastic.png]

	
static in_out_expo(progress)

	[image: _images/anim_in_out_expo.png]

	
static in_out_quad(progress)

	[image: _images/anim_in_out_quad.png]

	
static in_out_quart(progress)

	[image: _images/anim_in_out_quart.png]

	
static in_out_quint(progress)

	[image: _images/anim_in_out_quint.png]

	
static in_out_sine(progress)

	[image: _images/anim_in_out_sine.png]

	
static in_quad(progress)

	[image: _images/anim_in_quad.png]

	
static in_quart(progress)

	[image: _images/anim_in_quart.png]

	
static in_quint(progress)

	[image: _images/anim_in_quint.png]

	
static in_sine(progress)

	[image: _images/anim_in_sine.png]

	
static linear(progress)

	[image: _images/anim_linear.png]

	
static out_back(progress)

	[image: _images/anim_out_back.png]

	
static out_bounce(progress)

	[image: _images/anim_out_bounce.png]

	
static out_circ(progress)

	[image: _images/anim_out_circ.png]

	
static out_cubic(progress)

	[image: _images/anim_out_cubic.png]

	
static out_elastic(progress)

	[image: _images/anim_out_elastic.png]

	
static out_expo(progress)

	[image: _images/anim_out_expo.png]

	
static out_quad(progress)

	[image: _images/anim_out_quad.png]

	
static out_quart(progress)

	[image: _images/anim_out_quart.png]

	
static out_quint(progress)

	[image: _images/anim_out_quint.png]

	
static out_sine(progress)

	[image: _images/anim_out_sine.png]

Application

The App class is the base for creating Kivy applications.
Think of it as your main entry point into the Kivy run loop. In most
cases, you subclass this class and make your own app. You create an
instance of your specific app class and then, when you are ready to
start the application’s life cycle, you call your instance’s
App.run() method.

Creating an Application

Method using build() override

To initialize your app with a widget tree, override the build()
method in your app class and return the widget tree you constructed.

Here’s an example of a very simple application that just shows a button:

'''
Application example using build() + return
==

An application can be built if you return a widget on build(), or if you set
self.root.
'''

import kivy
kivy.require('1.0.7')

from kivy.app import App
from kivy.uix.button import Button

class TestApp(App):

 def build(self):
 # return a Button() as a root widget
 return Button(text='hello world')

if __name__ == '__main__':
 TestApp().run()

The file is also available in the examples folder at
kivy/examples/application/app_with_build.py.

Here, no widget tree was constructed (or if you will, a tree with only
the root node).

Method using kv file

You can also use the Kivy Language for creating applications. The
.kv can contain rules and root widget definitions at the same time. Here
is the same example as the Button one in a kv file.

Contents of ‘test.kv’:

#:kivy 1.0

Button:
 text: 'Hello from test.kv'

Contents of ‘main.py’:

'''
Application built from a .kv file
==================================

This shows how to implicitly use a .kv file for your application. You
should see a full screen button labelled "Hello from test.kv".

After Kivy instantiates a subclass of App, it implicitly searches for a .kv
file. The file test.kv is selected because the name of the subclass of App is
TestApp, which implies that kivy should try to load "test.kv". That file
contains a root Widget.
'''

import kivy
kivy.require('1.0.7')

from kivy.app import App

class TestApp(App):
 pass

if __name__ == '__main__':
 TestApp().run()

See kivy/examples/application/app_with_kv.py.

The relationship between main.py and test.kv is explained in
App.load_kv().

Application configuration

Use the configuration file

Your application might need its own configuration file. The
App class handles ‘ini’ files automatically if you add
the section key-value pair to the App.build_config() method using the
config parameter (an instance of ConfigParser):

class TestApp(App):
 def build_config(self, config):
 config.setdefaults('section1', {
 'key1': 'value1',
 'key2': '42'
 })

As soon as you add one section to the config, a file is created on the
disk (see get_application_config for its location) and
named based your class name. “TestApp” will give a config file named
“test.ini” with the content:

[section1]
key1 = value1
key2 = 42

The “test.ini” will be automatically loaded at runtime and you can access the
configuration in your App.build() method:

class TestApp(App):
 def build_config(self, config):
 config.setdefaults('section1', {
 'key1': 'value1',
 'key2': '42'
 })

 def build(self):
 config = self.config
 return Label(text='key1 is %s and key2 is %d' % (
 config.get('section1', 'key1'),
 config.getint('section1', 'key2')))

Create a settings panel

Your application can have a settings panel to let your user configure some of
your config tokens. Here is an example done in the KinectViewer example
(available in the examples directory):

[image: _images/app-settings.jpg]

You can add your own panels of settings by extending
the App.build_settings() method.
Check the Settings about how to create a panel,
because you need a JSON file / data first.

Let’s take as an example the previous snippet of TestApp with custom
config. We could create a JSON like this:

[
 { "type": "title",
 "title": "Test application" },

 { "type": "options",
 "title": "My first key",
 "desc": "Description of my first key",
 "section": "section1",
 "key": "key1",
 "options": ["value1", "value2", "another value"] },

 { "type": "numeric",
 "title": "My second key",
 "desc": "Description of my second key",
 "section": "section1",
 "key": "key2" }
]

Then, we can create a panel using this JSON to automatically create all the
options and link them to our App.config ConfigParser instance:

class TestApp(App):
 # ...
 def build_settings(self, settings):
 jsondata = """... put the json data here ..."""
 settings.add_json_panel('Test application',
 self.config, data=jsondata)

That’s all! Now you can press F1 (default keystroke) to toggle the
settings panel or press the “settings” key on your android device. You
can manually call App.open_settings() and
App.close_settings() if you want to handle this manually. Every
change in the panel is automatically saved in the config file.

You can also use App.build_settings() to modify properties of
the settings panel. For instance, the default panel has a sidebar for
switching between json panels whose width defaults to 200dp. If you’d
prefer this to be narrower, you could add:

settings.interface.menu.width = dp(100)

to your build_settings() method.

You might want to know when a config value has been changed by the
user in order to adapt or reload your UI. You can then overload the
on_config_change() method:

class TestApp(App):
 # ...
 def on_config_change(self, config, section, key, value):
 if config is self.config:
 token = (section, key)
 if token == ('section1', 'key1'):
 print('Our key1 has been changed to', value)
 elif token == ('section1', 'key2'):
 print('Our key2 has been changed to', value)

The Kivy configuration panel is added by default to the settings
instance. If you don’t want this panel, you can declare your Application as
follows:

class TestApp(App):
 use_kivy_settings = False
 # ...

This only removes the Kivy panel but does not stop the settings instance
from appearing. If you want to prevent the settings instance from appearing
altogether, you can do this:

class TestApp(App):
 def open_settings(self, *largs):
 pass

New in version 1.0.7.

Profiling with on_start and on_stop

It is often useful to profile python code in order to discover locations to
optimise. The standard library profilers
(http://docs.python.org/2/library/profile.html) provides multiple options for
profiling code. For profiling the entire program, the natural
approaches of using profile as a module or profile’s run method does not work
with Kivy. It is however, possible to use App.on_start() and
App.on_stop() methods:

import cProfile

class MyApp(App):
 def on_start(self):
 self.profile = cProfile.Profile()
 self.profile.enable()

 def on_stop(self):
 self.profile.disable()
 self.profile.dump_stats('myapp.profile')

This will create a file called myapp.profile when you exit your app.

Customising layout

You can choose different settings widget layouts by setting
App.settings_cls. By default, this is a
Settings class which provides the pictured
sidebar layout, but you could set it to any of the other layouts
provided in kivy.uix.settings or create your own. See the
module documentation for kivy.uix.settings for more
information.

You can customise how the settings panel is displayed by
overriding App.display_settings() which is called before
displaying the settings panel on the screen. By default, it
simply draws the panel on top of the window, but you could modify it
to (for instance) show the settings in a
Popup or add it to your app’s
ScreenManager if you are using
one. If you do so, you should also modify App.close_settings()
to exit the panel appropriately. For instance, to have the settings
panel appear in a popup you can do:

def display_settings(self, settings):
 try:
 p = self.settings_popup
 except AttributeError:
 self.settings_popup = Popup(content=settings,
 title='Settings',
 size_hint=(0.8, 0.8))
 p = self.settings_popup
 if p.content is not settings:
 p.content = settings
 p.open()

def close_settings(self, *args):
 try:
 p = self.settings_popup
 p.dismiss()
 except AttributeError:
 pass # Settings popup doesn't exist

Finally, if you want to replace the current settings panel widget, you
can remove the internal references to it using
App.destroy_settings(). If you have modified
App.display_settings(), you should be careful to detect if the
settings panel has been replaced.

Pause mode

New in version 1.1.0.

On tablets and phones, the user can switch at any moment to another
application. By default, your application will close and the
App.on_stop() event will be fired.

If you support Pause mode, when switching to another application, your
application will wait indefinitely until the user
switches back to your application. There is an issue with OpenGL on Android
devices: it is not guaranteed that the OpenGL ES Context will be restored when
your app resumes. The mechanism for restoring all the OpenGL data is not yet
implemented in Kivy.

The currently implemented Pause mechanism is:

	Kivy checks every frame if Pause mode is activated by the Operating
System due to the user switching to another application, a phone
shutdown or any other reason.

	App.on_pause() is called:

	If False is returned or App.on_pause() has no return statement,
then App.on_stop() is called.

	If True is returned or App.on_pause() is not defined, the
application will sleep until the OS resumes our App.

	When the app is resumed, App.on_resume() is called.

	If our app memory has been reclaimed by the OS, then nothing will be
called.

Here is a simple example of how on_pause() should be used:

class TestApp(App):

 def on_pause(self):
 # Here you can save data if needed
 return True

 def on_resume(self):
 # Here you can check if any data needs replacing (usually nothing)
 pass

Warning

Both on_pause and on_stop must save important data because after
on_pause is called, on_resume may not be called at all.

Asynchronous app

In addition to running an app normally,
Kivy can be run within an async event loop such as provided by the standard
library asyncio package or the trio package (highly recommended).

Background

Normally, when a Kivy app is run, it blocks the thread that runs it until the
app exits. Internally, at each clock iteration it executes all the app
callbacks, handles graphics and input, and idles by sleeping for any remaining
time.

To be able to run asynchronously, the Kivy app may not sleep, but instead must
release control of the running context to the asynchronous event loop running
the Kivy app. We do this when idling by calling the appropriate functions of
the async package being used instead of sleeping.

Async configuration

To run a Kivy app asynchronously, either the async_runTouchApp() or
App.async_run() coroutine must be scheduled to run in the event loop of
the async library being used.

The environmental variable KIVY_EVENTLOOP or the async_lib parameter in
async_runTouchApp() and App.async_run() set the async
library that Kivy uses internally when the app is run with
async_runTouchApp() and App.async_run(). It can be set to one of
“asyncio” when the standard library asyncio is used, or “trio” if the
trio library is used. If the environment variable is not set and async_lib
is not provided, the stdlib asyncio is used.

init_async_lib() can also be directly
called to set the async library to use, but it may only be called before the
app has begun running with async_runTouchApp() or App.async_run().

To run the app asynchronously, one schedules async_runTouchApp()
or App.async_run() to run within the given library’s async event loop as
in the examples shown below. Kivy is then treated as just another coroutine
that the given library runs in its event loop. Internally, Kivy will use the
specified async library’s API, so KIVY_EVENTLOOP or async_lib must
match the async library that is running Kivy.

For a fuller basic and more advanced examples, see the demo apps in
examples/async.

Asyncio example
~~~~~~~~~~~~~–

import asyncio

from kivy.app import async_runTouchApp
from kivy.uix.label import Label


loop = asyncio.get_event_loop()
loop.run_until_complete(
    async_runTouchApp(Label(text='Hello, World!'), async_lib='asyncio'))
loop.close()





Trio example
~~~~~~~~~~–

import trio

from kivy.app import async_runTouchApp
from kivy.uix.label import Label

from functools import partial

use functools.partial() to pass keyword arguments:
async_runTouchApp_func = partial(async_runTouchApp, async_lib='trio')

trio.run(async_runTouchApp_func, Label(text='Hello, World!'))

Interacting with Kivy app from other coroutines

It is fully safe to interact with any kivy object from other coroutines
running within the same async event loop. This is because they are all running
from the same thread and the other coroutines are only executed when Kivy
is idling.

Similarly, the kivy callbacks may safely interact with objects from other
coroutines running in the same event loop. Normal single threaded rules apply
to both case.

New in version 2.0.0.

	
class kivy.app.App(**kwargs)

	Bases: kivy.event.EventDispatcher

Application class, see module documentation for more information.

	Events:

	
	on_start:
	Fired when the application is being started (before the
runTouchApp() call.

	on_stop:
	Fired when the application stops.

	on_pause:
	Fired when the application is paused by the OS.

	on_resume:
	Fired when the application is resumed from pause by the OS. Beware:
you have no guarantee that this event will be fired after the
on_pause event has been called.

Changed in version 1.7.0: Parameter kv_file added.

Changed in version 1.8.0: Parameters kv_file and kv_directory are now properties of App.

	
async async_run(async_lib=None)

	Identical to run(), but is a coroutine and can be
scheduled in a running async event loop.

See kivy.app for example usage.

New in version 2.0.0.

	
build()

	Initializes the application; it will be called only once.
If this method returns a widget (tree), it will be used as the root
widget and added to the window.

	Returns:

	None or a root Widget instance
if no self.root exists.

	
build_config(config)

	
New in version 1.0.7.

This method is called before the application is initialized to
construct your ConfigParser object. This
is where you can put any default section / key / value for your
config. If anything is set, the configuration will be
automatically saved in the file returned by
get_application_config().

	Parameters:

	
	config: ConfigParser
	Use this to add default section / key / value items

	
build_settings(settings)

	
New in version 1.0.7.

This method is called when the user (or you) want to show the
application settings. It is called once when the settings panel
is first opened, after which the panel is cached. It may be
called again if the cached settings panel is removed by
destroy_settings().

You can use this method to add settings panels and to
customise the settings widget e.g. by changing the sidebar
width. See the module documentation for full details.

	Parameters:

	
	settings: Settings
	Settings instance for adding panels

	
close_settings(*largs)

	Close the previously opened settings panel.

	Returns:

	True if the settings has been closed.

	
config

	Returns an instance of the ConfigParser for
the application configuration. You can use this to query some config
tokens in the build() method.

	
create_settings()

	Create the settings panel. This method will normally
be called only one time per
application life-time and the result is cached internally,
but it may be called again if the cached panel is removed
by destroy_settings().

By default, it will build a settings panel according to
settings_cls, call build_settings(), add a Kivy panel if
use_kivy_settings is True, and bind to
on_close/on_config_change.

If you want to plug your own way of doing settings, without the Kivy
panel or close/config change events, this is the method you want to
overload.

New in version 1.8.0.

	
destroy_settings()

	
New in version 1.8.0.

Dereferences the current settings panel if one
exists. This means that when App.open_settings() is next
run, a new panel will be created and displayed. It doesn’t
affect any of the contents of the panel, but lets you (for
instance) refresh the settings panel layout if you have
changed the settings widget in response to a screen size
change.

If you have modified open_settings() or
display_settings(), you should be careful to
correctly detect if the previous settings widget has been
destroyed.

	
property directory

	
New in version 1.0.7.

Return the directory where the application lives.

	
display_settings(settings)

	
New in version 1.8.0.

Display the settings panel. By default, the panel is drawn directly
on top of the window. You can define other behaviour by overriding
this method, such as adding it to a ScreenManager or Popup.

You should return True if the display is successful, otherwise False.

	Parameters:

	
	settings: Settings
	You can modify this object in order to modify the settings
display.

	
get_application_config(defaultpath='%(appdir)s/%(appname)s.ini')

	Return the filename of your application configuration. Depending
on the platform, the application file will be stored in
different locations:

	on iOS: <appdir>/Documents/.<appname>.ini

	on Android: <user_data_dir>/.<appname>.ini

	otherwise: <appdir>/<appname>.ini

When you are distributing your application on Desktops, please
note that if the application is meant to be installed
system-wide, the user might not have write-access to the
application directory. If you want to store user settings, you
should overload this method and change the default behavior to
save the configuration file in the user directory.

class TestApp(App):
 def get_application_config(self):
 return super(TestApp, self).get_application_config(
 '~/.%(appname)s.ini')

Some notes:

	The tilda ‘~’ will be expanded to the user directory.

	%(appdir)s will be replaced with the application directory

	%(appname)s will be replaced with the application name

New in version 1.0.7.

Changed in version 1.4.0: Customized the defaultpath for iOS and Android platforms. Added a
defaultpath parameter for desktop OS’s (not applicable to iOS
and Android.)

Changed in version 1.11.0: Changed the Android version to make use of the
user_data_dir and added a missing dot to the iOS
config file name.

	
get_application_icon()

	Return the icon of the application.

	
get_application_name()

	Return the name of the application.

	
static get_running_app()

	Return the currently running application instance.

New in version 1.1.0.

	
icon

	Icon of your application.
The icon can be located in the same directory as your main file. You can
set this as follows:

class MyApp(App):
 def build(self):
 self.icon = 'myicon.png'

New in version 1.0.5.

Changed in version 1.8.0: icon is now a StringProperty. Don’t set the
icon in the class as previously stated in the documentation.

Note

For Kivy prior to 1.8.0, you need to set this as follows:

class MyApp(App):
 icon = 'customicon.png'

Recommended 256x256 or 1024x1024? for GNU/Linux and Mac OSX
32x32 for Windows7 or less. <= 256x256 for windows 8
256x256 does work (on Windows 8 at least), but is scaled
down and doesn’t look as good as a 32x32 icon.

	
kv_directory

	Path of the directory where application kv is stored, defaults to None

New in version 1.8.0.

If a kv_directory is set, it will be used to get the initial kv file. By
default, the file is assumed to be in the same directory as the current App
definition file.

	
kv_file

	Filename of the Kv file to load, defaults to None.

New in version 1.8.0.

If a kv_file is set, it will be loaded when the application starts. The
loading of the “default” kv file will be prevented.

	
load_config()

	(internal) This function is used for returning a ConfigParser with
the application configuration. It’s doing 3 things:

	Creating an instance of a ConfigParser

	Loading the default configuration by calling
build_config(), then

	If it exists, it loads the application configuration file,
otherwise it creates one.

	Returns:

	ConfigParser instance

	
load_kv(filename=None)

	This method is invoked the first time the app is being run if no
widget tree has been constructed before for this app.
This method then looks for a matching kv file in the same directory as
the file that contains the application class.

For example, say you have a file named main.py that contains:

class ShowcaseApp(App):
 pass

This method will search for a file named showcase.kv in
the directory that contains main.py. The name of the kv file has to be
the lowercase name of the class, without the ‘App’ postfix at the end
if it exists.

You can define rules and a root widget in your kv file:

<ClassName>: # this is a rule
 ...

ClassName: # this is a root widget
 ...

There must be only one root widget. See the Kivy Language
documentation for more information on how to create kv files. If your
kv file contains a root widget, it will be used as self.root, the root
widget for the application.

Note

This function is called from run(), therefore, any widget
whose styling is defined in this kv file and is created before
run() is called (e.g. in __init__), won’t have its styling
applied. Note that build() is called after load_kv
has been called.

	
property name

	
New in version 1.0.7.

Return the name of the application based on the class name.

	
on_config_change(config, section, key, value)

	Event handler fired when a configuration token has been changed by
the settings page.

Changed in version 1.10.1: Added corresponding on_config_change event.

	
on_pause()

	Event handler called when Pause mode is requested. You should
return True if your app can go into Pause mode, otherwise
return False and your application will be stopped.

You cannot control when the application is going to go into this mode.
It’s determined by the Operating System and mostly used for mobile
devices (android/ios) and for resizing.

The default return value is True.

New in version 1.1.0.

Changed in version 1.10.0: The default return value is now True.

	
on_resume()

	Event handler called when your application is resuming from
the Pause mode.

New in version 1.1.0.

Warning

When resuming, the OpenGL Context might have been damaged / freed.
This is where you can reconstruct some of your OpenGL state
e.g. FBO content.

	
on_start()

	Event handler for the on_start event which is fired after
initialization (after build() has been called) but before the
application has started running.

	
on_stop()

	Event handler for the on_stop event which is fired when the
application has finished running (i.e. the window is about to be
closed).

	
open_settings(*largs)

	Open the application settings panel. It will be created the very
first time, or recreated if the previously cached panel has been
removed by destroy_settings(). The settings panel will be
displayed with the
display_settings() method, which by default adds the
settings panel to the Window attached to your application. You
should override that method if you want to display the
settings panel differently.

	Returns:

	True if the settings has been opened.

	
options

	Options passed to the __init__ of the App

	
pause(*largs)

	Pause the application.

On Android set OS state to pause, Kivy app state follows.
No functionality on other OS.
.. versionadded:: 2.2.0

	
root

	The root widget returned by the build() method or by the
load_kv() method if the kv file contains a root widget.

	
property root_window

	
New in version 1.9.0.

Returns the root window instance used by run().

	
run()

	Launches the app in standalone mode.

	
settings_cls

	
New in version 1.8.0.

The class used to construct the settings panel and
the instance passed to build_config(). You should
use either Settings or one of the provided
subclasses with different layouts
(SettingsWithSidebar,
SettingsWithSpinner,
SettingsWithTabbedPanel,
SettingsWithNoMenu). You can also create your
own Settings subclass. See the documentation
of Settings for more information.

settings_cls is an ObjectProperty
and defaults to SettingsWithSpinner which
displays settings panels with a spinner to switch between them. If you set
a string, the Factory will be used to resolve the
class.

	
stop(*largs)

	Stop the application.

If you use this method, the whole application will stop by issuing
a call to stopTouchApp().
Except on Android, set Android state to stop, Kivy state then follows.

	
title

	Title of your application. You can set this as follows:

class MyApp(App):
 def build(self):
 self.title = 'Hello world'

New in version 1.0.5.

Changed in version 1.8.0: title is now a StringProperty. Don’t
set the title in the class as previously stated in the documentation.

Note

For Kivy < 1.8.0, you can set this as follows:

class MyApp(App):
 title = 'Custom title'

If you want to dynamically change the title, you can do:

from kivy.base import EventLoop
EventLoop.window.title = 'New title'

	
use_kivy_settings = True

	
New in version 1.0.7.

If True, the application settings will also include the Kivy settings. If
you don’t want the user to change any kivy settings from your settings UI,
change this to False.

	
property user_data_dir

	
New in version 1.7.0.

Returns the path to the directory in the users file system which the
application can use to store additional data.

Different platforms have different conventions with regards to where
the user can store data such as preferences, saved games and settings.
This function implements these conventions. The <app_name> directory
is created when the property is called, unless it already exists.

On iOS, ~/Documents/<app_name> is returned (which is inside the
app’s sandbox).

On Windows, %APPDATA%/<app_name> is returned.

On OS X, ~/Library/Application Support/<app_name> is returned.

On Linux, $XDG_CONFIG_HOME/<app_name> is returned.

On Android, Context.GetFilesDir [https://developer.android.com/reference/android/content/Context.html#getFilesDir()] is returned.

Changed in version 1.11.0: On Android, this function previously returned
/sdcard/<app_name>. This folder became read-only by default
in Android API 26 and the user_data_dir has therefore been moved
to a writeable location.

	
async kivy.app.async_runTouchApp(widget=None, embedded=False, async_lib=None)

	Identical to runTouchApp() but instead it is a coroutine
that can be run in an existing async event loop.

async_lib is the async library to use. See kivy.app for details
and example usage.

New in version 2.0.0.

	
kivy.app.runTouchApp(widget=None, embedded=False)

	Static main function that starts the application loop.
You can access some magic via the following arguments:

See kivy.app for example usage.

	Parameters:

	
	<empty>
	To make dispatching work, you need at least one
input listener. If not, application will leave.
(MTWindow act as an input listener)

	widget
	If you pass only a widget, a MTWindow will be created
and your widget will be added to the window as the root
widget.

	embedded
	No event dispatching is done. This will be your job.

	widget + embedded
	No event dispatching is done. This will be your job but
we try to get the window (must be created by you beforehand)
and add the widget to it. Very useful for embedding Kivy
in another toolkit. (like Qt, check kivy-designed)

	
kivy.app.stopTouchApp()

	Stop the current application by leaving the main loop.

See kivy.app for example usage.

Atlas

New in version 1.1.0.

Atlas manages texture atlases: packing multiple textures into
one. With it, you reduce the number of images loaded and speedup the
application loading. This module contains both the Atlas class and command line
processing for creating an atlas from a set of individual PNG files. The
command line section requires the Pillow library, or the defunct Python Imaging
Library (PIL), to be installed.

	An Atlas is composed of 2 or more files:
	
	a json file (.atlas) that contains the image file names and texture
locations of the atlas.

	one or multiple image files containing textures referenced by the .atlas
file.

Definition of .atlas files

A file with <basename>.atlas is a json file formatted like this:

{
 "<basename>-<index>.png": {
 "id1": [<x>, <y>, <width>, <height>],
 "id2": [<x>, <y>, <width>, <height>],
 # ...
 },
 # ...
}

Example from the Kivy data/images/defaulttheme.atlas:

{
 "defaulttheme-0.png": {
 "progressbar_background": [431, 224, 59, 24],
 "image-missing": [253, 344, 48, 48],
 "filechooser_selected": [1, 207, 118, 118],
 "bubble_btn": [83, 174, 32, 32],
 # ... and more ...
 }
}

In this example, “defaulttheme-0.png” is a large image, with the pixels in the
rectangle from (431, 224) to (431 + 59, 224 + 24) usable as
atlas://data/images/defaulttheme/progressbar_background in
any image parameter.

How to create an Atlas

Warning

The atlas creation requires the Pillow library (or the defunct Imaging/PIL
library). This requirement will be removed in the future when the Kivy core
Image is able to support loading, blitting, and saving operations.

You can directly use this module to create atlas files with this command:

$ python -m kivy.atlas <basename> <size> <list of images...>

Let’s say you have a list of images that you want to put into an Atlas. The
directory is named images with lots of 64x64 png files inside:

$ ls
images
$ cd images
$ ls
bubble.png bubble-red.png button.png button-down.png

You can combine all the png’s into one and generate the atlas file with:

$ python -m kivy.atlas myatlas 256x256 *.png
Atlas created at myatlas.atlas
1 image has been created
$ ls
bubble.png bubble-red.png button.png button-down.png myatlas.atlas
myatlas-0.png

As you can see, we get 2 new files: myatlas.atlas and myatlas-0.png.
myatlas-0.png is a new 256x256 .png composed of all your images. If the
size you specify is not large enough to fit all of the source images, more
atlas images will be created as required e.g. myatlas-1.png,
myatlas-2.png etc.

Note

When using this script, the ids referenced in the atlas are the base names
of the images without the extension. So, if you are going to name a file
../images/button.png, the id for this image will be button.

If you need path information included, you should include use_path as
follows:

$ python -m kivy.atlas -- --use_path myatlas 256 *.png

In which case the id for ../images/button.png will be images_button

How to use an Atlas

Usually, you would specify the images by supplying the path:

a = Button(background_normal='images/button.png',
 background_down='images/button_down.png')

In our previous example, we have created the atlas containing both images and
put them in images/myatlas.atlas. You can use url notation to reference
them:

a = Button(background_normal='atlas://images/myatlas/button',
 background_down='atlas://images/myatlas/button_down')

In other words, the path to the images is replaced by:

atlas://path/to/myatlas/id
will search for the ``path/to/myatlas.atlas`` and get the image ``id``

Note

In the atlas url, there is no need to add the .atlas extension. It will
be automatically append to the filename.

Manual usage of the Atlas

>>> from kivy.atlas import Atlas
>>> atlas = Atlas('path/to/myatlas.atlas')
>>> print(atlas.textures.keys())
['bubble', 'bubble-red', 'button', 'button-down']
>>> print(atlas['button'])
<kivy.graphics.texture.TextureRegion object at 0x2404d10>

	
class kivy.atlas.Atlas(filename)

	Bases: kivy.event.EventDispatcher

Manage texture atlas. See module documentation for more information.

	
static create(outname, filenames, size, padding=2, use_path=False)

	This method can be used to create an atlas manually from a set of
images.

	Parameters:

	
	outname: str
	Basename to use for .atlas creation and -<idx>.png
associated images.

	filenames: list
	List of filenames to put in the atlas.

	size: int or list (width, height)
	Size of the atlas image. If the size is not large enough to
fit all of the source images, more atlas images will created
as required.

	padding: int, defaults to 2
	Padding to put around each image.

Be careful. If you’re using a padding < 2, you might have
issues with the borders of the images. Because of the OpenGL
linearization, it might use the pixels of the adjacent image.

If you’re using a padding >= 2, we’ll automatically generate a
“border” of 1px around your image. If you look at
the result, don’t be scared if the image inside is not
exactly the same as yours :).

	use_path: bool, defaults to False
	If True, the relative path of the source png
file names will be included in the atlas ids rather
that just in the file names. Leading dots and slashes will be
excluded and all other slashes in the path will be replaced
with underscores. For example, if use_path is False
(the default) and the file name is
../data/tiles/green_grass.png, the id will be
green_grass. If use_path is True, it will be
data_tiles_green_grass.

Changed in version 1.8.0: Parameter use_path added

	
filename

	Filename of the current Atlas.

filename is an AliasProperty and defaults
to None.

	
original_textures

	List of original atlas textures (which contain the textures).

original_textures is a ListProperty and
defaults to [].

New in version 1.9.1.

	
textures

	List of available textures within the atlas.

textures is a DictProperty and defaults
to {}.

Kivy Base

This module contains the Kivy core functionality and is not intended for end
users. Feel free to look through it, but bare in mind that calling any of
these methods directly may result in an unpredictable behavior as the calls
access directly the event loop of an application.

	
kivy.base.EventLoop = <kivy.base.EventLoopBase object>

	EventLoop instance

	
class kivy.base.EventLoopBase

	Bases: kivy.event.EventDispatcher

Main event loop. This loop handles the updating of input and
dispatching events.

	
add_event_listener(listener)

	Add a new event listener for getting touch events.

	
add_input_provider(provider, auto_remove=False)

	Add a new input provider to listen for touch events.

	
add_postproc_module(mod)

	Add a postproc input module (DoubleTap, TripleTap, DeJitter
RetainTouch are defaults).

	
async async_idle()

	Identical to idle(), but instead used when running
within an async event loop.

	
close()

	Exit from the main loop and stop all configured
input providers.

	
dispatch_input()

	Called by EventLoopBase.idle() to read events from input
providers, pass events to postproc, and dispatch final events.

	
ensure_window()

	Ensure that we have a window.

	
exit()

	Close the main loop and close the window.

	
idle()

	This function is called after every frame. By default:

	it “ticks” the clock to the next frame.

	it reads all input and dispatches events.

	it dispatches on_update, on_draw and on_flip events to the
window.

	
on_pause()

	Event handler for on_pause which will be fired when
the event loop is paused.

	
on_start()

	Event handler for on_start which will be fired right
after all input providers have been started.

	
on_stop()

	Event handler for on_stop events which will be fired right
after all input providers have been stopped.

	
post_dispatch_input(etype, me)

	This function is called by EventLoopBase.dispatch_input()
when we want to dispatch an input event. The event is dispatched to
all listeners and if grabbed, it’s dispatched to grabbed widgets.

	
remove_android_splash(*args)

	Remove android presplash in SDL2 bootstrap.

	
remove_event_listener(listener)

	Remove an event listener from the list.

	
remove_input_provider(provider)

	Remove an input provider.

Changed in version 2.1.0: Provider will be also removed if it exist in auto-remove list.

	
remove_postproc_module(mod)

	Remove a postproc module.

	
run()

	Main loop

	
set_window(window)

	Set the window used for the event loop.

	
start()

	Must be called before EventLoopBase.run(). This starts all
configured input providers.

Changed in version 2.1.0: Method can be called multiple times, but event loop will start only
once.

	
stop()

	Stop all input providers and call callbacks registered using
EventLoop.add_stop_callback().

Changed in version 2.1.0: Method can be called multiple times, but event loop will stop only
once.

	
property touches

	Return the list of all touches currently in down or move states.

	
class kivy.base.ExceptionHandler

	Bases: builtins.object

Base handler that catches exceptions in runTouchApp().
You can subclass and extend it as follows:

class E(ExceptionHandler):
 def handle_exception(self, inst):
 Logger.exception('Exception caught by ExceptionHandler')
 return ExceptionManager.PASS

ExceptionManager.add_handler(E())

Then, all exceptions will be set to PASS, and logged to the console!

	
handle_exception(exception)

	Called by ExceptionManagerBase to handle a exception.

Defaults to returning ExceptionManager.RAISE that re-raises the
exception. Return ExceptionManager.PASS to indicate that the
exception was handled and should be ignored.

This may be called multiple times with the same exception, if
ExceptionManager.RAISE is returned as the exception bubbles
through multiple kivy exception handling levels.

	
kivy.base.ExceptionManager: ExceptionManagerBase = <kivy.base.ExceptionManagerBase object>

	The ExceptionManagerBase instance that handles kivy exceptions.

	
class kivy.base.ExceptionManagerBase

	Bases: builtins.object

ExceptionManager manages exceptions handlers.

	
PASS = 1

	The exception should be ignored as it was handled by the handler.

	
RAISE = 0

	The exception should be re-raised.

	
add_handler(cls)

	Add a new exception handler to the stack.

	
handle_exception(inst)

	Called when an exception occurred in the runTouchApp()
main loop.

	
remove_handler(cls)

	Remove the exception handler from the stack.

	
async kivy.base.async_runTouchApp(widget=None, embedded=False, async_lib=None)

	Identical to runTouchApp() but instead it is a coroutine
that can be run in an existing async event loop.

async_lib is the async library to use. See kivy.app for details
and example usage.

New in version 2.0.0.

	
kivy.base.runTouchApp(widget=None, embedded=False)

	Static main function that starts the application loop.
You can access some magic via the following arguments:

See kivy.app for example usage.

	Parameters:

	
	<empty>
	To make dispatching work, you need at least one
input listener. If not, application will leave.
(MTWindow act as an input listener)

	widget
	If you pass only a widget, a MTWindow will be created
and your widget will be added to the window as the root
widget.

	embedded
	No event dispatching is done. This will be your job.

	widget + embedded
	No event dispatching is done. This will be your job but
we try to get the window (must be created by you beforehand)
and add the widget to it. Very useful for embedding Kivy
in another toolkit. (like Qt, check kivy-designed)

	
kivy.base.stopTouchApp()

	Stop the current application by leaving the main loop.

See kivy.app for example usage.

Cache manager

The cache manager can be used to store python objects attached to a unique
key. The cache can be controlled in two ways: with a object limit or a
timeout.

For example, we can create a new cache with a limit of 10 objects and a
timeout of 5 seconds:

register a new Cache
Cache.register('mycache', limit=10, timeout=5)

create an object + id
key = 'objectid'
instance = Label(text=text)
Cache.append('mycache', key, instance)

retrieve the cached object
instance = Cache.get('mycache', key)

If the instance is NULL, the cache may have trashed it because you’ve
not used the label for 5 seconds and you’ve reach the limit.

	
class kivy.cache.Cache

	Bases: builtins.object

See module documentation for more information.

	
static append(category, key, obj, timeout=None)

	Add a new object to the cache.

	Parameters:

	
	category: str
	Identifier of the category.

	key: str
	Unique identifier of the object to store.

	obj: object
	Object to store in cache.

	timeout: double (optional)
	Time after which to delete the object if it has not been used.
If None, no timeout is applied.

	Raises:

	ValueError: If None is used as key.

Changed in version 2.0.0: Raises ValueError if None is used as key.

	
static get(category, key, default=None)

	Get a object from the cache.

	Parameters:

	
	category: str
	Identifier of the category.

	key: str
	Unique identifier of the object in the store.

	default: anything, defaults to None
	Default value to be returned if the key is not found.

	
static get_lastaccess(category, key, default=None)

	Get the objects last access time in the cache.

	Parameters:

	
	category: str
	Identifier of the category.

	key: str
	Unique identifier of the object in the store.

	default: anything, defaults to None
	Default value to be returned if the key is not found.

	
static get_timestamp(category, key, default=None)

	Get the object timestamp in the cache.

	Parameters:

	
	category: str
	Identifier of the category.

	key: str
	Unique identifier of the object in the store.

	default: anything, defaults to None
	Default value to be returned if the key is not found.

	
static print_usage()

	Print the cache usage to the console.

	
static register(category, limit=None, timeout=None)

	Register a new category in the cache with the specified limit.

	Parameters:

	
	category: str
	Identifier of the category.

	limit: int (optional)
	Maximum number of objects allowed in the cache.
If None, no limit is applied.

	timeout: double (optional)
	Time after which to delete the object if it has not been used.
If None, no timeout is applied.

	
static remove(category, key=None)

	Purge the cache.

	Parameters:

	
	category: str
	Identifier of the category.

	key: str (optional)
	Unique identifier of the object in the store. If this
argument is not supplied, the entire category will be purged.

Clock object

The Clock object allows you to schedule a function call in the
future; once or repeatedly at specified intervals. You can get the time
elapsed between the scheduling and the calling of the callback via the
dt argument:

dt means delta-time
def my_callback(dt):
 pass

call my_callback every 0.5 seconds
Clock.schedule_interval(my_callback, 0.5)

call my_callback in 5 seconds
Clock.schedule_once(my_callback, 5)

call my_callback as soon as possible (usually next frame.)
Clock.schedule_once(my_callback)

Note

If the callback returns False, the schedule will be canceled and won’t
repeat.

If you want to schedule a function to call with default arguments, you can use
the functools.partial [http://docs.python.org/library/functools.html#functools.partial] python
module:

from functools import partial

def my_callback(value, key, *largs):
 pass

Clock.schedule_interval(partial(my_callback, 'my value', 'my key'), 0.5)

Conversely, if you want to schedule a function that doesn’t accept the dt
argument, you can use a lambda [http://docs.python.org/2/reference/expressions.html#lambda] expression
to write a short function that does accept dt. For Example:

def no_args_func():
 print("I accept no arguments, so don't schedule me in the clock")

Clock.schedule_once(lambda dt: no_args_func(), 0.5)

Note

You cannot unschedule an anonymous function unless you keep a
reference to it. It’s better to add *args to your function
definition so that it can be called with an arbitrary number of
parameters.

Important

The class method callback is weak-referenced: you are responsible for
keeping a reference to your original object/callback. If you don’t keep a
reference, the ClockBase will never execute your callback. For
example:

class Foo(object):
 def start(self):
 Clock.schedule_interval(self.callback, 0.5)

 def callback(self, dt):
 print('In callback')

A Foo object is created and the method start is called.
Because no reference is kept to the instance returned from Foo(),
the object will be collected by the Python Garbage Collector and
your callback will be never called.
Foo().start()

So you should do the following and keep a reference to the instance
of foo until you don't need it anymore!
foo = Foo()
foo.start()

Schedule before frame

New in version 1.0.5.

Sometimes you need to schedule a callback BEFORE the next frame. Starting
from 1.0.5, you can use a timeout of -1:

Clock.schedule_once(my_callback, 0) # call after the next frame
Clock.schedule_once(my_callback, -1) # call before the next frame

The Clock will execute all the callbacks with a timeout of -1 before the
next frame even if you add a new callback with -1 from a running
callback. However, Clock has an iteration limit for these
callbacks: it defaults to 10.

If you schedule a callback that schedules a callback that schedules a … etc
more than 10 times, it will leave the loop and send a warning to the console,
then continue after the next frame. This is implemented to prevent bugs from
hanging or crashing the application.

If you need to increase the limit, set the max_iteration property:

from kivy.clock import Clock
Clock.max_iteration = 20

Triggered Events

New in version 1.0.5.

CyClockBase.create_trigger() is an advanced method way to defer a
callback. It functions exactly like CyClockBase.schedule_once() and
CyClockBase.schedule_interval() except that it doesn’t immediately
schedule the callback. Instead, one schedules the callback using the
ClockEvent returned by it. This ensures that you can call the event
multiple times but it won’t be scheduled more than once. This is not the case
with CyClockBase.schedule_once():

will run the callback twice before the next frame
Clock.schedule_once(my_callback)
Clock.schedule_once(my_callback)

will run the callback once before the next frame
event = Clock.create_trigger(my_callback)
event()
event()

will also run the callback only once before the next frame
event = Clock.schedule_once(my_callback) # now it's already scheduled
event() # won't be scheduled again
event()

In addition, it is more convenient to create and bind to
the triggered event than using CyClockBase.schedule_once() in a
function:

from kivy.clock import Clock
from kivy.uix.widget import Widget

class Sample(Widget):
 def __init__(self, **kwargs):
 self._trigger = Clock.create_trigger(self.cb)
 super(Sample, self).__init__(**kwargs)
 self.bind(x=self._trigger, y=self._trigger)

 def cb(self, *largs):
 pass

Even if x and y changes within one frame, the callback is only run once.

Unscheduling

An event scheduled with CyClockBase.schedule_once(),
CyClockBase.schedule_interval(), or with
CyClockBase.create_trigger() and then triggered can be unscheduled in
multiple ways. E.g:

def my_callback(dt):
 pass

call my_callback every 0.5 seconds
event = Clock.schedule_interval(my_callback, 0.5)

call my_callback in 5 seconds
event2 = Clock.schedule_once(my_callback, 5)

event_trig = Clock.create_trigger(my_callback, 5)
event_trig()

unschedule using cancel
event.cancel()

unschedule using Clock.unschedule
Clock.unschedule(event2)

unschedule using Clock.unschedule with the callback
NOT RECOMMENDED
Clock.unschedule(my_callback)

The best way to unschedule a callback is with ClockEvent.cancel().
CyClockBase.unschedule() is mainly an alias for that for that function.
However, if the original callback itself is passed to
CyClockBase.unschedule(), it’ll unschedule all instances of that
callback (provided all is True, the default, otherwise only the first match
is removed).

Calling CyClockBase.unschedule() on the original callback is highly
discouraged because it’s significantly slower than when using the event.

Clock Lifecycle

Kivy’s clock has a lifecycle. By default, scheduling a callback after the Clock
has ended will not raise an error, even though the callback may never be
called. That’s because most callbacks are like services, e.g. responding to a
user button press - if the app is running the callbacks need to service the app
and respond to the input, but once the app has stopped or is stopping, we can
safely not process these events.

Other events always need to be processed. E.g. another thread may request a
callback in kivy’s thread and then process some result. If the event is not
processed in Kivy’s thread because the app stopped, the second thread may
block forever hanging the application as it exits.

Consequently, we provide a API
(CyClockBase.create_lifecycle_aware_trigger()) for scheduling callbacks
that raise a ClockNotRunningError if the clock has stopped. If the
scheduling succeeded it guarantees that one of its callbacks will be called.
I.e. the new CyClockBase.create_lifecycle_aware_trigger() accepts an
additional clock_ended_callback parameter. Normally, callback will be
called when the event is processed. But, if the clock is stopped before it can
be processed, if the application exited normally (and the app was started) and
the event wasn’t canceled, and the callbacks are not garbage collected, then
clock_ended_callback will be called instead when the clock is stopped.

That is, given these conditions, if ClockNotRunningError was not
raised when the event was scheduled, then one of these callbacks will be
called - either callback if the event executed normally, or
clock_ended_callback if the clock is stopped while the event is scheduled.

By default, events can be scheduled before the clock is started because it is
assumed the clock will eventually be started when the app starts. I.e.
calling CyClockBase.create_lifecycle_aware_trigger() before the clock
and application starts will succeed. But if the app never actually starts, then
neither of the callbacks may be executed.

New in version 2.0.0: The lifecycle was added in 2.0.0

Exception Handling

Kivy provides a exception handling manager,
ExceptionManager, to handle its internal exceptions
including exceptions raised by clock callbacks, without crashing the
application. By default when an exception is raised, the app will crash.
But, if a handler is registered with the exception manager and the handler
handles the exception, the app will not crash and will continue as normal.:

from kivy.base import ExceptionHandler, ExceptionManager
class MyHandler(ExceptionHandler):
 def handle_exception(self, inst):
 if isinstance(inst, ValueError):
 Logger.exception('ValueError caught by MyHandler')
 return ExceptionManager.PASS
 return ExceptionManager.RAISE

ExceptionManager.add_handler(MyHandler())

Then, all ValueError exceptions will be logged to the console and ignored.
Similarly, if a scheduled clock callback raises a ValueError, other clock
events will still be processed normally.

If an event’s callback raises an exception, before the exception handler is
executed, the callback is immediately canceled.

It still is possible for the app to be corrupted if kivy itself is the source
of the exception. I.e. even with a handler that ignores exceptions and doesn’t
crash, the app may be in a corrupted state if the error originates from within
Kivy itself. However, the exception handler can help protect the app from
crashing and can help protect against user callbacks crashing the app.

Changed in version 2.0.0: Prior to Kivy 2.0.0, an exception raised in a event’s callback would
cause the clock to crash and subsequent events may or may not be executed.
Even if the exception was handled by an
ExceptionHandler, there was no guarantee that some
scheduled events would not be skipped.

From 2.0.0 onward, if a event’s exception is handled by an
ExceptionHandler, other events will be shielded from
the exception and will execute normally.

Scheduling from __del__

It is not safe to schedule Clock events from a object’s __del__ or
__dealloc__ method. If you must schedule a Clock call from this method, use
CyClockBase.schedule_del_safe() or
CyClockBase.schedule_lifecycle_aware_del_safe() instead.

Threading and Callback Order

Beginning with 1.10.0, all the events scheduled for the same frame, e.g.
all the events scheduled in the same frame with a timeout of 0,
well be executed in the order they were scheduled.

Also, all the scheduling and canceling methods are fully thread safe and
can be safely used from external threads.

As a a consequence, calling CyClockBase.unschedule() with the original
callback is now significantly slower and highly discouraged. Instead, the
returned events should be used to cancel. As a tradeoff, all the other methods
are now significantly faster than before.

Advanced Clock Details

The following section goes into the internal kivy clock details as well
as the various clock options. It is meant only for advanced users.

Fundamentally, the Kivy clock attempts to execute any scheduled callback
rhythmically as determined by the specified fps (frame per second, see
maxfps in config). That is, ideally, given e.g. a desired fps
of 30, the clock will execute the callbacks at intervals of 1 / 30 seconds, or
every 33.33 ms. All the callbacks in a frame are given the same timestamp,
i.e. the dt passed to the callback are all the same and it’s the difference
in time between the start of this and the previous frame.

Because of inherent indeterminism, the frames do not actually occur exactly
at intervals of the fps and dt may be under or over the desired fps.
Also, once the timeout is “close enough” to the desired timeout, as determined
internally, Kivy will execute the callback in the current frame even when the
“actual time” has not elapsed the timeout amount.

Kivy offers now, since 1.10.0, multiple clocks with different behaviors.

Default Clock

The default clock (default) behaves as described above. When a callback
with a timeout of zero or non-zero is scheduled, they are executed at the frame
that is near the timeout, which is a function of the fps. So a timeout of zero
would still result in a delay of one frame or about 1 / fps, typically a bit
less but sometimes more depending on the CPU usage of the other events
scheduled for that frame.

In a test using a fps of 30, a callback with a timeout of 0, 0.001, and 0.05,
resulted in a mean callback delay of 0.02487, 0.02488, and 0.05011 seconds,
respectively. When tested with a fps of 600 the delay for 0.05 was similar,
except the standard deviation was reduced resulting in overall better accuracy.

Interruptible Clock

The default clock suffers from the quantization problem, as frames occur only
on intervals and any scheduled timeouts will not be able to occur during an
interval. For example, with the timeout of 0.05, while the mean was 0.05011,
its values ranged between 0.02548 - 0.07348 and a standard deviation of 0.002.
Also, there’s the minimum timeout of about 0.02487.

The interruptible clock (interrupt) will execute timeouts even during a
frame. So a timeout of zero will execute as quickly as possible and similarly
a non-zero timeout will be executed even during the interval.

This clock, and all the clocks described after this have an option,
ClockBaseInterruptBehavior.interupt_next_only. When True, any of the
behavior new behavior will only apply to the callbacks with a timeout of
zero. Non-zero timeouts will behave like in the default clock. E.g. for this
clock when True, only zero timeouts will execute during the the interval.

In a test using a fps of 30, a callback with a timeout of 0, 0.001, and 0.05,
resulted in a mean callback delay of 0.00013, 0.00013, and 0.04120 seconds,
respectively when ClockBaseInterruptBehavior.interupt_next_only was
False. Also, compared to the default clock the standard deviation was reduced.
When ClockBaseInterruptBehavior.interupt_next_only was True, the values
were 0.00010, 0.02414, and 0.05034, respectively.

Free Clock

The interruptible clock may not be ideal for all cases because all the events
are executed during the intervals and events are not executed anymore
rhythmically as multiples of the fps. For example, there may not be any benefit
for the graphics to update in a sub-interval, so the additional accuracy
wastes CPU.

The Free clock (free_all) solves this by having Clock.xxx_free versions
of all the Clock scheduling methods. By free, we mean the event is free from
the fps because it’s not fps limited. E.g.
CyClockBaseFree.create_trigger_free() corresponds to
CyClockBase.create_trigger(). Only when an event scheduled using the
Clock.xxx_free methods is present will the clock interrupt and execute
the events during the interval. So, if no free event is present the clock
behaves like the default clock, otherwise it behaves like the interrupt
clock.

In a test using a fps of 30, a callback with a timeout of 0s, 0.001s, and
0.05s, resulted in a mean callback delay of 0.00012s, 0.00017s, and 0.04121s
seconds, respectively when it was a free event and 0.02403s, 0.02405s, and
0.04829s, respectively when it wasn’t.

Free Only Clock

The Free clock executes all events when a free event was scheduled. This
results in normal events also being execute in the middle of the interval
when a free event is scheduled. For example, above, when a free event was
absent, a normal event with a 0.001s timeout was delayed for 0.02405s. However,
if a free event happened to be also scheduled, the normal event was only
delayed 0.00014s, which may be undesirable.

The Free only clock (free_only) solves it by only executing free events
during the interval and normal events are always executed like with the
default clock. For example, in the presence of a free event, a normal event
with a timeout of 0.001s still had a delay of 0.02406. So this clock,
treats free and normal events independently, with normal events always being
fps limited, but never the free events.

Summary

The kivy clock type to use can be set with the kivy_clock option the
config. If KIVY_CLOCK is present in the environment it
overwrites the config selection. Its possible values are as follows:

	When kivy_clock is default, the normal clock, ClockBase,
which limits callbacks to the maxfps quantization - is used.

	When kivy_clock is interrupt, a interruptible clock,
ClockBaseInterrupt, which doesn’t limit any callbacks to the
maxfps - is used. Callbacks will be executed at any time.

	When kivy_clock is free_all, a interruptible clock,
ClockBaseFreeInterruptAll, which doesn’t limit any callbacks to the
maxfps in the presence of free events, but in their absence it limits events
to the fps quantization interval - is used.

	When kivy_clock is free_only, a interruptible clock,
ClockBaseFreeInterruptAll, which treats free and normal events
independently; normal events are fps limited while free events are not - is
used.

Async clock support

New in version 2.0.0.

Experimental async support has been added in 2.0.0. The Clock now has a
ClockBaseBehavior.async_tick() and ClockBaseBehavior.async_idle()
coroutine method which is used by the kivy EventLoop when the kivy EventLoop is
executed in a asynchronous manner. When used, the kivy clock does not
block while idling.

The async library to use is selected with the KIVY_EVENTLOOP environmental
variable or by calling init_async_lib()
directly. The library can be one of “asyncio” when the standard library
asyncio should be used, or “trio” if the trio library
should be used. If not set it defaults to “asyncio”.

See app for example usage.

	
kivy.clock.Clock: ClockBase = None

	The kivy Clock instance. See module documentation for details.

	
class kivy.clock.ClockBase(**kwargs)

	Bases: kivy.clock.ClockBaseBehavior, kivy._clock.CyClockBase

The default kivy clock. See module for details.

	
usleep(microseconds)

	Sleeps for the number of microseconds.

	
class kivy.clock.ClockBaseBehavior(async_lib='asyncio', **kwargs)

	Bases: builtins.object

The base of the kivy clock.

	Parameters:

	
	async_lib: string
	The async library to use when the clock is run asynchronously.
Can be one of, “asyncio” when the standard library asyncio
should be used, or “trio” if the trio library should be used.

It defaults to ‘asyncio’ or the value in the environmental
variable KIVY_EVENTLOOP if set. init_async_lib() can also
be called directly to set the library.

	
MIN_SLEEP = 0.005

	The minimum time to sleep. If the remaining time is less than this,
the event loop will continue.

	
async async_idle()

	(internal) async version of idle().

	
async async_tick()

	async version of tick().

	
property frames

	Number of internal frames (not necessarily drawn) from the start of
the clock.

New in version 1.8.0.

	
property frames_displayed

	Number of displayed frames from the start of the clock.

	
property frametime

	Time spent between the last frame and the current frame
(in seconds).

New in version 1.8.0.

	
get_boottime()

	Get the time in seconds from the application start.

	
get_fps()

	Get the current average FPS calculated by the clock.

	
get_rfps()

	Get the current “real” FPS calculated by the clock.
This counter reflects the real framerate displayed on the screen.

In contrast to get_fps(), this function returns a counter of the
number of frames, not the average of frames per second.

	
get_time()

	Get the last tick made by the clock.

	
idle()

	(internal) waits here until the next frame.

	
init_async_lib(lib)

	Manually sets the async library to use internally, when running in
a asynchronous manner.

This can be called anytime before the kivy event loop has started,
but not once the kivy App is running.

	Parameters:

	
	lib: string
	The async library to use when the clock is run asynchronously.
Can be one of, “asyncio” when the standard library asyncio
should be used, or “trio” if the trio library should be used.

	
post_idle(ts, current)

	Called after idle() by tick().

	
pre_idle()

	Called before idle() by tick().

	
tick()

	Advance the clock to the next step. Must be called every frame.
The default clock has a tick() function called by the core Kivy
framework.

	
tick_draw()

	Tick the drawing counter.

	
static time()

	Proxy method for clock().

	
usleep(microseconds)

	Sleeps for the number of microseconds.

	
class kivy.clock.ClockBaseFreeInterruptAll(**kwargs)

	Bases: kivy.clock.ClockBaseInterruptFreeBehavior, kivy._clock.CyClockBaseFree

The free_all kivy clock. See module for details.

	
class kivy.clock.ClockBaseFreeInterruptOnly(**kwargs)

	Bases: kivy.clock.ClockBaseInterruptFreeBehavior, kivy._clock.CyClockBaseFree

The free_only kivy clock. See module for details.

	
async async_idle()

	(internal) async version of idle().

	
idle()

	(internal) waits here until the next frame.

	
class kivy.clock.ClockBaseInterrupt(interupt_next_only=False, **kwargs)

	Bases: kivy.clock.ClockBaseInterruptBehavior, kivy._clock.CyClockBase

The interrupt kivy clock. See module for details.

	
class kivy.clock.ClockBaseInterruptBehavior(interupt_next_only=False, **kwargs)

	Bases: kivy.clock.ClockBaseBehavior

A kivy clock which can be interrupted during a frame to execute events.

	
async async_idle()

	(internal) async version of idle().

	
idle()

	(internal) waits here until the next frame.

	
init_async_lib(lib)

	Manually sets the async library to use internally, when running in
a asynchronous manner.

This can be called anytime before the kivy event loop has started,
but not once the kivy App is running.

	Parameters:

	
	lib: string
	The async library to use when the clock is run asynchronously.
Can be one of, “asyncio” when the standard library asyncio
should be used, or “trio” if the trio library should be used.

	
usleep(microseconds)

	Sleeps for the number of microseconds.

	
class kivy.clock.ClockBaseInterruptFreeBehavior(**kwargs)

	Bases: kivy.clock.ClockBaseInterruptBehavior

A base class for the clock that interrupts the sleep interval for
free events.

	
class kivy.clock.ClockEvent(CyClockBase clock, int loop, callback, double timeout, double starttime, cid=None, int trigger=False, clock_ended_callback=None, release_ref=True, **kwargs)

	Bases: builtins.object

This class is never created by the user; instead, kivy creates and returns
an instance of this class when scheduling a callback.

An event can be triggered (scheduled) by calling it. If it’s already
scheduled, nothing will happen, otherwise it’ll be scheduled. E.g.:

event = Clock.schedule_once(my_callback, .5)
event() # nothing will happen since it's already scheduled.
event.cancel() # cancel it
event() # now it's scheduled again.

	
callback

	callback: object

	
cancel()

	Cancels the callback if it was scheduled to be called. If not
scheduled, nothing happens.

	
cid

	cid: object

	
clock

	clock: kivy._clock.CyClockBase
The CyClockBase instance associated with the event.

	
clock_ended_callback

	clock_ended_callback: object
A Optional callback for this event, which if provided is called by the clock

when the clock is stopped and the event was not ticked.

	
get_callback()

	Returns the callback associated with the event. Callbacks get stored
with a indirect ref so that it doesn’t keep objects alive. If the callback
is dead, None is returned.

	
get_clock_ended_callback()

	Returns the clock_ended_callback associated with the event.
Callbacks get stored with a indirect ref so that it doesn’t keep
objects alive. If the callback is dead or wasn’t provided,
None is returned.

	
is_triggered

	Returns whether the event is scheduled to have its callback executed by
the kivy thread.

	
loop

	loop: ‘int’
Whether this event repeats at intervals of timeout.

	
next

	next: kivy._clock.ClockEvent
The next ClockEvent in order they were scheduled.

	
prev

	prev: kivy._clock.ClockEvent
The previous ClockEvent in order they were scheduled.

	
release()

	(internal method) Converts the callback into a indirect ref.

	
release_ref

	release_ref: ‘int’
If True, the event should never release the reference to the callbacks.

If False, a weakref may be created instead.

	
tick(double curtime)

	(internal method) Processes the event for the kivy thread.

	
timeout

	timeout: ‘double’
The duration after scheduling when the callback should be executed.

	
weak_callback

	weak_callback: object

	
weak_clock_ended_callback

	weak_clock_ended_callback: object

	
exception kivy.clock.ClockNotRunningError

	Bases: RuntimeError

Raised by the kivy Clock when scheduling an event if the
Kivy Clock has already finished (stop_clock was
called).

	
class kivy.clock.CyClockBase(**kwargs)

	Bases: builtins.object

	
clock_resolution

	clock_resolution: ‘double’
If the remaining time until the event timeout is less than clock_resolution,

the clock will execute the callback even if it hasn’t exactly timed out.

If -1, the default, the resolution will be computed from config’s maxfps.
Otherwise, the provided value is used. Defaults to -1.

	
create_lifecycle_aware_trigger(callback, clock_ended_callback, timeout=0, interval=False, release_ref=True) → ClockEvent

	Create a Trigger event similarly to create_trigger(), but the event
is sensitive to the clock’s state.

If this event is triggered after the clock has stopped (stop_clock()), then a
ClockNotRunningError will be raised. If the error is not raised,
then either callback or clock_ended_callback will be
called. callback will be called when the event
is normally executed. If the clock is stopped before it can be executed,
provided the app exited normally without crashing and the event wasn’t manually
canceled, and the callbacks are not garbage collected then
clock_ended_callback will be called instead when the clock is stopped.

	Parameters:

	
	callback: callable
	The callback to execute from kivy. It takes a single parameter - the
current elapsed kivy time.

	clock_ended_callback: callable
	A callback that will be called if the clock is stopped
while the event is still scheduled to be called. The callback takes
a single parameter - the event object. When the event is successfully
scheduled, if the app exited normally and the event wasn’t canceled,
and the callbacks are not garbage collected - it is guaranteed that
either callback or clock_ended_callback would have been called.

	timeout: float
	How long to wait before calling the callback.

	interval: bool
	Whether the callback should be called once (False) or repeatedly
with a period of timeout (True) like schedule_interval().

	release_ref: bool
	If True, the default, then if callback or clock_ended_callback
is a class method and the object has no references to it, then
the object may be garbage collected and the callbacks won’t be called.
If False, the clock keeps a reference to the object preventing it
from being garbage collected - so it will be called.

	Returns:

	A ClockEvent instance. To schedule the callback of this
instance, you can call it.

New in version 2.0.0.

	
create_trigger(callback, timeout=0, interval=False, release_ref=True) → ClockEvent

	Create a Trigger event. It is thread safe but not __del__ or
__dealloc__ safe (see schedule_del_safe()).
Check module documentation for more information.

To cancel the event before it is executed, call ClockEvent.cancel()
on the returned event.
To schedule it again, simply call the event (event()) and it’ll be safely
rescheduled if it isn’t already scheduled.

	Parameters:

	
	callback: callable
	The callback to execute from kivy. It takes a single parameter - the
current elapsed kivy time.

	timeout: float
	How long to wait before calling the callback.

	interval: bool
	Whether the callback should be called once (False) or repeatedly
with a period of timeout (True) like schedule_interval().

	release_ref: bool
	If True, the default, then if callback
is a class method and the object has no references to it, then
the object may be garbage collected and the callbacks won’t be called.
If False, the clock keeps a reference to the object preventing it
from being garbage collected - so it will be called.

	Returns:

	A ClockEvent instance. To schedule the callback of this
instance, you can call it.

New in version 1.0.5.

Changed in version 1.10.0: interval has been added.

Changed in version 2.0.0: release_ref has been added.

	
get_before_frame_events()

	Returns the list of ClockEvent instances that are scheduled
to be called before the next frame (-1 timeout).

New in version 2.1.0.

	
get_events()

	Returns the list of ClockEvent instances currently scheduled.

	
get_min_timeout()

	Returns the remaining time since the start of the current frame
for the event with the smallest timeout.

	
get_resolution()

	Returns the minimum resolution the clock has. It’s a function of
clock_resolution and maxfps provided at the config.

	
handle_exception(e)

	Provides an opportunity to handle an event’s exception.

If desired, the exception is handled, otherwise it should be raised
again. By default it is raised again.

	Parameters:

	e – The exception to be handled.

New in version 2.0.0.

	
has_ended

	has_ended: ‘int’

	
has_started

	has_started: ‘int’

	
max_iteration

	max_iteration: ‘int’
The maximum number of callback iterations at the end of the frame, before the next

frame. If more iterations occur, a warning is issued.

	
on_schedule(event)

	Function that is called internally every time an event is triggered
for this clock. It takes the event as a parameter.

The order of on_schedule calls are not guaranteed to be in the same
order that the events are scheduled. Similarly, it is possible that the
event being scheduled was canceled before this is called on the event.
That’s because on_schedule() may be called from different threads.

	
schedule_del_safe(callback)

	Schedule a callback that is thread safe and __del__ or
__dealloc__ safe.

It’s unsafe to call various kinds of code from __del__ or
__dealloc__ methods because they can be executed at any time. Most
Kivy’s Clock methods are unsafe to call the Clock from these methods. Instead,
use this method, which is thread safe and __del__ or __dealloc__
safe, to schedule the callback in the kivy thread. It’ll be executed
in order after the normal events are processed.

	Parameters:

	
	callback: Callable
	The callback the execute from kivy. It takes no parameters and
cannot be canceled.

New in version 1.11.0.

	
schedule_interval(callback, timeout) → ClockEvent

	Schedule an event to be called every <timeout> seconds.
See create_trigger() for advanced scheduling and more details.

To cancel the event before it is executed, call ClockEvent.cancel()
on the returned event.
If the callback is a class method, a weakref to the object is created and it
may be garbage collected if there’s no other reference to the object.

	Returns:

	A ClockEvent instance. As opposed to
create_trigger() which only creates the trigger event, this
method also schedules it.

	
schedule_lifecycle_aware_del_safe(callback, clock_ended_callback)

	Schedule a callback that is thread safe and __del__ or
__dealloc__ safe similarly to schedule_del_safe(), but the callback
is sensitive to the clock’s state.

If this event is triggered after the clock has stopped (stop_clock()), then a
ClockNotRunningError will be raised. If the error is not raised,
then either callback or clock_ended_callback will be
called. callback will be called when the callback
is normally executed. If the clock is stopped before it can be executed,
provided the app exited normally without crashing then
clock_ended_callback will be called instead when the clock is stopped.

	Parameters:

	
	callback: Callable
	The callback the execute from kivy. It takes no parameters and
cannot be canceled.

	clock_ended_callback: callable
	A callback that will be called if the clock is stopped
while the callback is still scheduled to be called. The callback takes
a single parameter - the callback. If the
app exited normally, it is guaranteed that either callback
or clock_ended_callback would have been called.

New in version 2.0.0.

	
schedule_once(callback, timeout=0) → ClockEvent

	Schedule an event in <timeout> seconds. If <timeout> is unspecified
or 0, the callback will be called after the next frame is rendered.
See create_trigger() for advanced scheduling and more details.

To cancel the event before it is executed, call ClockEvent.cancel()
on the returned event.
If the callback is a class method, a weakref to the object is created and it
may be garbage collected if there’s no other reference to the object.

	Returns:

	A ClockEvent instance. As opposed to
create_trigger() which only creates the trigger event, this
method also schedules it.

Changed in version 1.0.5: If the timeout is -1, the callback will be called before the next
frame (at tick_draw()).

	
start_clock()

	Must be called to start the clock.

Once stop_clock() is called, it cannot be started again.

	
stop_clock()

	Stops the clock and cleans up.

This must be called to process the lifecycle_aware callbacks etc.

	
unschedule(callback, all=True)

	Remove a previously scheduled event.

An ClockEvent can also be canceled directly by calling
ClockEvent.cancel().

	Parameters:

	
	callback: ClockEvent or a callable.
	If it’s a ClockEvent instance, then the callback
associated with this event will be canceled if it is
scheduled.

If it’s a callable, then the callable will be unscheduled if it
was scheduled.

Warning

Passing the callback function rather than the returned
ClockEvent will result in a significantly slower
unscheduling.

	all: bool
	If True and if callback is a callable, all instances of this
callable will be unscheduled (i.e. if this callable was
scheduled multiple times). Defaults to True.

Changed in version 1.9.0: The all parameter was added. Before, it behaved as if all was
True.

	
class kivy.clock.CyClockBaseFree

	Bases: kivy._clock.CyClockBase

A clock class that supports scheduling free events in addition to normal
events.

Each of the create_trigger(),
schedule_once(), and schedule_interval()
methods, which create a normal event, have a corresponding method
for creating a free event.

	
create_lifecycle_aware_trigger(callback, clock_ended_callback, timeout=0, interval=False, release_ref=True) → FreeClockEvent

	

	
create_lifecycle_aware_trigger_free(callback, clock_ended_callback, timeout=0, interval=False, release_ref=True) → FreeClockEvent

	Similar to create_lifecycle_aware_trigger(), but instead creates
a free event.

	
create_trigger(callback, timeout=0, interval=False, release_ref=True) → FreeClockEvent

	

	
create_trigger_free(callback, timeout=0, interval=False, release_ref=True) → FreeClockEvent

	Similar to create_trigger(), but instead creates
a free event.

	
get_min_free_timeout()

	Returns the remaining time since the start of the current frame
for the free event with the smallest timeout.

	
schedule_interval(callback, timeout) → FreeClockEvent

	

	
schedule_interval_free(callback, timeout) → FreeClockEvent

	Similar to schedule_interval(), but instead creates
a free event.

	
schedule_once(callback, timeout=0) → FreeClockEvent

	

	
schedule_once_free(callback, timeout=0) → FreeClockEvent

	Similar to schedule_once(), but instead creates
a free event.

	
class kivy.clock.FreeClockEvent(free, *largs, **kwargs)

	Bases: kivy._clock.ClockEvent

CyClockBaseFree. It stores whether the event was scheduled as a
free event.

	
free

	free: ‘int’
Whether this event was scheduled as a free event.

	
kivy.clock.mainthread(func)

	Decorator that will schedule the call of the function for the next
available frame in the mainthread. It can be useful when you use
UrlRequest or when you do Thread
programming: you cannot do any OpenGL-related work in a thread.

Please note that this method will return directly and no result can be
returned:

@mainthread
def callback(self, *args):
 print('The request succeeded!',
 'This callback is called in the main thread.')

self.req = UrlRequest(url='http://...', on_success=callback)

New in version 1.8.0.

	
kivy.clock.triggered(timeout=0, interval=False)

	Decorator that will trigger the call of the function at the specified
timeout, through the method CyClockBase.create_trigger(). Subsequent
calls to the decorated function (while the timeout is active) are ignored.

It can be helpful when an expensive function (i.e. call to a server) can be
triggered by different methods. Setting a proper timeout will delay the
calling and only one of them will be triggered.

@triggered(timeout, interval=False)
def callback(id):

print(‘The callback has been called with id=%d’ % id)

>> callback(id=1)
>> callback(id=2)
The callback has been called with id=2

The decorated callback can also be unscheduled using:

>> callback.cancel()

New in version 1.10.1.

Compatibility module for Python 2.7 and >= 3.4

This module provides a set of utility types and functions for optimization and
to aid in writing Python 2/3 compatible code.

	
kivy.compat.PY2 = False

	False, because we don’t support Python 2 anymore.

	
kivy.compat.clock() → float

	A clock with the highest available resolution on your current Operating
System.

	
kivy.compat.isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)

	Determine whether two floating point numbers are close in value.

	rel_tol
	maximum difference for being considered “close”, relative to the
magnitude of the input values

	abs_tol
	maximum difference for being considered “close”, regardless of the
magnitude of the input values

Return True if a is close in value to b, and False otherwise.

For the values to be considered close, the difference between them
must be smaller than at least one of the tolerances.

-inf, inf and NaN behave similarly to the IEEE 754 Standard. That
is, NaN is not close to anything, even itself. inf and -inf are
only close to themselves.

	
kivy.compat.string_types

	A utility type for detecting string in a Python 2/3 friendly way. For
example:

if isinstance(s, string_types):
 print("It's a string or unicode type")
else:
 print("It's something else.")

Configuration object

The Config object is an instance of a modified Python ConfigParser.
See the ConfigParser documentation [http://docs.python.org/library/configparser.html] for more information.

Kivy has a configuration file which determines the default settings. In
order to change these settings, you can alter this file manually or use
the Config object. Please see the Configure Kivy section for more
information.

Applying configurations

Configuration options control the initialization of the App.
In order to avoid situations where the config settings do not work or are not
applied before window creation (like setting an initial window size),
Config.set should be used before
importing any other Kivy modules. Ideally, this means setting them right at
the start of your main.py script.

Alternatively, you can save these settings permanently using
Config.set then
Config.write. In this case, you will need to
restart the app for the changes to take effect. Note that this approach will
effect all Kivy apps system wide.

Please note that no underscores (_) are allowed in the section name.

Usage of the Config object

To read a configuration token from a particular section:

>>> from kivy.config import Config
>>> Config.getint('kivy', 'show_fps')
0

Change the configuration and save it:

>>> Config.set('postproc', 'retain_time', '50')
>>> Config.write()

For information on configuring your App, please see the
Application configuration section.

Changed in version 1.7.1: The ConfigParser should work correctly with utf-8 now. The values are
converted from ascii to unicode only when needed. The method get() returns
utf-8 strings.

Changing configuration with environment variables

Since 1.11.0, it is now possible to change the configuration using
environment variables. They take precedence on the loaded config.ini.
The format is:

KCFG_<section>_<key> = <value>

For example:

KCFG_GRAPHICS_FULLSCREEN=auto …
KCFG_KIVY_LOG_LEVEL=warning …

Or in your file before any kivy import:

import os
os.environ[“KCFG_KIVY_LOG_LEVEL”] = “warning”

If you don’t want to map any environment variables, you can disable
the behavior:

os.environ["KIVY_NO_ENV_CONFIG"] = "1"

Available configuration tokens

	kivy:

	
	default_font: list
	Default fonts used for widgets displaying any text. It defaults to
[‘Roboto’, ‘data/fonts/Roboto-Regular.ttf’,
‘data/fonts/Roboto-Italic.ttf’, ‘data/fonts/Roboto-Bold.ttf’,
‘data/fonts/Roboto-BoldItalic.ttf’].

	desktop: int, 0 or 1
	This option controls desktop OS specific features, such as enabling
drag-able scroll-bar in scroll views, disabling of bubbles in
TextInput etc. 0 is disabled, 1 is enabled.

	exit_on_escape: int, 0 or 1
	Enables exiting kivy when escape is pressed.
0 is disabled, 1 is enabled.

	pause_on_minimize: int, 0 or 1
	If set to 1, the main loop is paused and the on_pause event
is dispatched when the window is minimized. This option is intended
for desktop use only. Defaults to 0.

	keyboard_layout: string
	Identifier of the layout to use.

	keyboard_mode: string
	Specifies the keyboard mode to use. If can be one of the following:

	‘’ - Let Kivy choose the best option for your current platform.

	‘system’ - real keyboard.

	‘dock’ - one virtual keyboard docked to a screen side.

	‘multi’ - one virtual keyboard for every widget request.

	‘systemanddock’ - virtual docked keyboard plus input from real
keyboard.

	‘systemandmulti’ - analogous.

	kivy_clock: one of default, interrupt, free_all, free_only
	The clock type to use with kivy. See kivy.clock.

	log_dir: string
	Path of log directory.

	log_enable: int, 0 or 1
	Activate file logging. 0 is disabled, 1 is enabled.

Note

Logging output can also be controlled by the environment variables
KIVY_LOG_MODE, KIVY_NO_FILELOG and KIVY_NO_CONSOLELOG.
More information is provided in the kivy.logger module.

	log_level: string, one of ‘trace’, ‘debug’, ‘info’, ‘warning’, ‘error’ or ‘critical’
	Set the minimum log level to use.

	log_name: string
	Format string to use for the filename of log file.

	log_maxfiles: int
	Keep log_maxfiles recent logfiles while purging the log directory. Set
‘log_maxfiles’ to -1 to disable logfile purging (eg keep all logfiles).

Note

You end up with ‘log_maxfiles + 1’ logfiles because the logger
adds a new one after purging.

	window_icon: string
	Path of the window icon. Use this if you want to replace the default
pygame icon.

	postproc:

	
	double_tap_distance: float
	Maximum distance allowed for a double tap, normalized inside the range
0 - 1000.

	double_tap_time: int
	Time allowed for the detection of double tap, in milliseconds.

	ignore: list of tuples
	List of regions where new touches are ignored.
This configuration token can be used to resolve hotspot problems
with DIY hardware. The format of the list must be:

ignore = [(xmin, ymin, xmax, ymax), ...]

All the values must be inside the range 0 - 1.

	jitter_distance: int
	Maximum distance for jitter detection, normalized inside the range 0
- 1000.

	jitter_ignore_devices: string, separated with commas
	List of devices to ignore from jitter detection.

	retain_distance: int
	If the touch moves more than is indicated by retain_distance, it will
not be retained. Argument should be an int between 0 and 1000.

	retain_time: int
	Time allowed for a retain touch, in milliseconds.

	triple_tap_distance: float
	Maximum distance allowed for a triple tap, normalized inside the range
0 - 1000.

	triple_tap_time: int
	Time allowed for the detection of triple tap, in milliseconds.

	graphics:

	
	borderless: int, one of 0 or 1
	If set to 1, removes the window border/decoration. Window resizing
must also be disabled to hide the resizing border.

	custom_titlebar: int, one of 0 or 1
	If set to 1, removes the window border and allows user to set a Widget
as a titlebar
see set_custom_titlebar()
for detailed usage

	custom_titlebar_border: int, defaults to 5
	sets the how many pixles off the border should be used as the
rezising frame

	window_state: string , one of ‘visible’, ‘hidden’, ‘maximized’
	
or ‘minimized’

Sets the window state, defaults to ‘visible’. This option is available
only for the SDL2 window provider and it should be used on desktop
OSes.

	fbo: string, one of ‘hardware’, ‘software’ or ‘force-hardware’
	Selects the FBO backend to use.

	fullscreen: int or string, one of 0, 1, ‘fake’ or ‘auto’
	Activate fullscreen. If set to 1, a resolution of width
times height pixels will be used.
If set to auto, your current display’s resolution will be
used instead. This is most likely what you want.
If you want to place the window in another display,
use fake, or set the borderless option from the graphics section,
then adjust width, height, top and left.

	height: int
	Height of the Window, not used if
fullscreen is set to auto.

	left: int
	Left position of the Window.

	maxfps: int, defaults to 60
	Maximum FPS allowed.

Warning

Setting maxfps to 0 will lead to max CPU usage.

	‘multisamples’: int, defaults to 2
	Sets the MultiSample Anti-Aliasing (MSAA) [http://en.wikipedia.org/wiki/Multisample_anti-aliasing] level.
Increasing this value results in smoother graphics but at the cost of
processing time.

Note

This feature is limited by device hardware support and will have no
effect on devices which do not support the level of MSAA requested.

	position: string, one of ‘auto’ or ‘custom’
	Position of the window on your display. If auto is used, you have no
control of the initial position: top and left are ignored.

	show_cursor: int, one of 0 or 1
	Set whether or not the cursor is shown on the window.

	top: int
	Top position of the Window.

	resizable: int, one of 0 or 1
	If 0, the window will have a fixed size. If 1, the window will be
resizable.

	rotation: int, one of 0, 90, 180 or 270
	Rotation of the Window.

	width: int
	Width of the Window, not used if
fullscreen is set to auto.

	minimum_width: int
	Minimum width to restrict the window to. (sdl2 only)

	minimum_height: int
	Minimum height to restrict the window to. (sdl2 only)

	min_state_time: float, defaults to .035
	Minimum time for widgets to display a given visual state.
This attrib is currently used by widgets like
DropDown &
ButtonBehavior to
make sure they display their current visual state for the given
time.

	always_on_top: int, one of 0 or 1, defaults to 0
	When enabled, the window will be brought to the front and will keep
the window above the rest. Only works for the sdl2 window provider.
0 is disabled, 1 is enabled.

	show_taskbar_icon: int, one of 0 or 1, defaults to 1
	Determines whether the app’s icon will be added to the taskbar. Only
applicable for the SDL2 window provider.
0 means the icon will not be shown in the taskbar and 1 means
it will.

	allow_screensaver: int, one of 0 or 1, defaults to 1
	Allow the device to show a screen saver, or to go to sleep
on mobile devices. Only works for the sdl2 window provider.

	vsync: none, empty value, or integers
	Whether vsync is enabled, currently only used with sdl2 window.
Possible values are none or empty value – leaves it unchanged,
0 – disables vsync, 1 or larger – sets vsync interval,
-1 sets adaptive vsync. It falls back to 1 if setting to 2+
or -1 failed. See SDL_GL_SetSwapInterval.

	verify_gl_main_thread: int, 1 or 0, defaults to 1
	Whether to check if code that changes any gl instructions is
running outside the main thread and then raise an error.

	input:

	You can create new input devices using this syntax:

example of input provider instance
yourid = providerid,parameters

example for tuio provider
default = tuio,127.0.0.1:3333
mytable = tuio,192.168.0.1:3334

See also

Check the providers in kivy.input.providers for the syntax to
use inside the configuration file.

	widgets:

	
	scroll_distance: int
	Default value of the
scroll_distance
property used by the ScrollView widget.
Check the widget documentation for more information.

	scroll_friction: float
	Default value of the
scroll_friction
property used by the ScrollView widget.
Check the widget documentation for more information.

Deprecated since version 1.7.0: Please use
effect_cls instead.

	scroll_timeout: int
	Default value of the
scroll_timeout
property used by the ScrollView widget.
Check the widget documentation for more information.

	scroll_stoptime: int
	Default value of the
scroll_stoptime
property used by the ScrollView widget.
Check the widget documentation for more information.

Deprecated since version 1.7.0: Please use
effect_cls instead.

	scroll_moves: int
	Default value of the
scroll_moves
property used by the ScrollView widget.
Check the widget documentation for more information.

Deprecated since version 1.7.0: Please use
effect_cls instead.

	modules:

	You can activate modules with this syntax:

modulename =

Anything after the = will be passed to the module as arguments.
Check the specific module’s documentation for a list of accepted
arguments.

New in version 2.2.0: always_on_top have been added to the graphics section.
show_taskbar_icon have been added to the graphics section.

Changed in version 2.2.0: implementation has been added to the network section.

Changed in version 2.1.0: vsync has been added to the graphics section.
verify_gl_main_thread has been added to the graphics section.

Changed in version 1.10.0: min_state_time and allow_screensaver have been added
to the graphics section.
kivy_clock has been added to the kivy section.
default_font has beed added to the kivy section.
useragent has been added to the network section.

Changed in version 1.9.0: borderless and window_state have been added to the graphics section.
The fake setting of the fullscreen option has been deprecated,
use the borderless option instead.
pause_on_minimize has been added to the kivy section.

Changed in version 1.8.0: systemanddock and systemandmulti has been added as possible values for
keyboard_mode in the kivy section. exit_on_escape has been added
to the kivy section.

Changed in version 1.2.0: resizable has been added to graphics section.

Changed in version 1.1.0: tuio no longer listens by default. Window icons are not copied to
user directory anymore. You can still set a new window icon by using the
window_icon config setting.

Changed in version 1.0.8: scroll_timeout, scroll_distance and scroll_friction have been added.
list_friction, list_trigger_distance and list_friction_bound
have been removed. keyboard_type and keyboard_layout have been
removed from the widget. keyboard_mode and keyboard_layout have
been added to the kivy section.

	
kivy.config.Config = None

	The default Kivy configuration object. This is a ConfigParser
instance with the name set to ‘kivy’.

Config = ConfigParser(name='kivy')

	
class kivy.config.ConfigParser(name='', **kwargs)

	Bases: configparser.RawConfigParser, builtins.object

Enhanced ConfigParser class that supports the addition of default
sections and default values.

By default, the kivy ConfigParser instance, Config,
is named ‘kivy’ and the ConfigParser instance used by the
App.build_settings method is named
‘app’.

	Parameters:

	
	name: string
	The name of the instance. See name. Defaults to ‘’.

Changed in version 1.9.0: Each ConfigParser can now be named. You can get the
ConfigParser associated with a name using get_configparser().
In addition, you can now control the config values with
ConfigParserProperty.

New in version 1.0.7.

	
add_callback(callback, section=None, key=None)

	Add a callback to be called when a specific section or key has
changed. If you don’t specify a section or key, it will call the
callback for all section/key changes.

Callbacks will receive 3 arguments: the section, key and value.

New in version 1.4.1.

	
adddefaultsection(section)

	Add a section if the section is missing.

	
get(section, option, **kwargs)

	Get an option value for a given section.

If `vars’ is provided, it must be a dictionary. The option is looked up
in `vars’ (if provided), `section’, and in `DEFAULTSECT’ in that order.
If the key is not found and `fallback’ is provided, it is used as
a fallback value. `None’ can be provided as a `fallback’ value.

If interpolation is enabled and the optional argument `raw’ is False,
all interpolations are expanded in the return values.

Arguments `raw’, `vars’, and `fallback’ are keyword only.

The section DEFAULT is special.

	
static get_configparser(name)

	Returns the ConfigParser instance whose name is name, or
None if not found.

	Parameters:

	
	name: string
	The name of the ConfigParser instance to return.

	
getdefault(section, option, defaultvalue)

	Get the value of an option in the specified section. If not found,
it will return the default value.

	
getdefaultint(section, option, defaultvalue)

	Get the value of an option in the specified section. If not found,
it will return the default value. The value will always be
returned as an integer.

New in version 1.6.0.

	
property name

	The name associated with this ConfigParser instance, if not ‘’.
Defaults to ‘’. It can be safely changed dynamically or set to ‘’.

When a ConfigParser is given a name, that config object can be
retrieved using get_configparser(). In addition, that config
instance can also be used with a
ConfigParserProperty instance that set its
config value to this name.

Setting more than one ConfigParser with the same name will raise a
ValueError.

	
read(filename)

	Read only one filename. In contrast to the original ConfigParser of
Python, this one is able to read only one file at a time. The last
read file will be used for the write() method.

Changed in version 1.9.0: read() now calls the callbacks if read changed any values.

	
remove_callback(callback, section=None, key=None)

	Removes a callback added with add_callback().
remove_callback() must be called with the same parameters as
add_callback().

Raises a ValueError if not found.

New in version 1.9.0.

	
set(section, option, value)

	Functions similarly to PythonConfigParser’s set method, except that
the value is implicitly converted to a string.

	
setall(section, keyvalues)

	Sets multiple key-value pairs in a section. keyvalues should be a
dictionary containing the key-value pairs to be set.

	
setdefault(section, option, value)

	Set the default value for an option in the specified section.

	
setdefaults(section, keyvalues)

	Set multiple key-value defaults in a section. keyvalues should be
a dictionary containing the new key-value defaults.

	
update_config(filename, overwrite=False)

	Upgrade the configuration based on a new default config file.
Overwrite any existing values if overwrite is True.

	
write()

	Write the configuration to the last file opened using the
read() method.

Return True if the write finished successfully, False otherwise.

Context

New in version 1.8.0.

Warning

This is experimental and subject to change as long as this warning notice
is present.

Kivy has a few “global” instances that are used directly by many pieces of the
framework: Cache, Builder, Clock.

TODO: document this module.

	
class kivy.context.Context(init=False)

	Bases: builtins.dict

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised

	
kivy.context.get_current_context()

	Return the current context.

	
kivy.context.register_context(name, cls, *args, **kwargs)

	Register a new context.

Core Abstraction

This module defines the abstraction layers for our core providers and their
implementations. For further information, please refer to
Architectural Overview and the Core Providers and Input Providers section of the documentation.

In most cases, you shouldn’t directly use a library that’s already covered
by the core abstraction. Always try to use our providers first.
In case we are missing a feature or method, please let us know by
opening a new Bug report instead of relying on your library.

Warning

These are not widgets! These are just abstractions of the respective
functionality. For example, you cannot add a core image to your window.
You have to use the image widget class instead. If you’re really
looking for widgets, please refer to kivy.uix instead.

	
exception kivy.core.CoreCriticalException

	Bases: Exception

	Audio
	Event dispatching and state changes

	Sound
	Sound.filename

	Sound.get_pos()

	Sound.length

	Sound.load()

	Sound.loop

	Sound.pitch

	Sound.play()

	Sound.seek()

	Sound.source

	Sound.state

	Sound.status

	Sound.stop()

	Sound.unload()

	Sound.volume

	SoundLoader
	SoundLoader.load()

	SoundLoader.register()

	Camera
	CameraBase
	CameraBase.index

	CameraBase.init_camera()

	CameraBase.resolution

	CameraBase.start()

	CameraBase.stop()

	CameraBase.texture

	Clipboard

	OpenGL

	Image
	In-memory image loading

	Saving an image

	Image
	Image.anim_available

	Image.anim_delay

	Image.anim_index

	Image.anim_reset()

	Image.filename

	Image.height

	Image.image

	Image.load()

	Image.load_memory()

	Image.nocache

	Image.on_texture()

	Image.read_pixel()

	Image.remove_from_cache()

	Image.save()

	Image.size

	Image.texture

	Image.width

	ImageData
	ImageData.add_mipmap()

	ImageData.data

	ImageData.flip_vertical

	ImageData.fmt

	ImageData.get_mipmap()

	ImageData.height

	ImageData.iterate_mipmaps()

	ImageData.mipmaps

	ImageData.rowlength

	ImageData.size

	ImageData.source

	ImageData.width

	Spelling
	NoLanguageSelectedError

	NoSuchLangError

	SpellingBase
	SpellingBase.check()

	SpellingBase.list_languages()

	SpellingBase.select_language()

	SpellingBase.suggest()

	Text
	Font Context Manager

	LabelBase
	LabelBase.content_height

	LabelBase.content_size

	LabelBase.content_width

	LabelBase.find_base_direction()

	LabelBase.fontid

	LabelBase.get_cached_extents()

	LabelBase.get_extents()

	LabelBase.get_system_fonts_dir()

	LabelBase.label

	LabelBase.refresh()

	LabelBase.register()

	LabelBase.render()

	LabelBase.shorten()

	LabelBase.text

	LabelBase.text_size

	LabelBase.usersize

	Text layout
	LayoutLine
	LayoutLine.h

	LayoutLine.is_last_line

	LayoutLine.line_wrap

	LayoutLine.w

	LayoutLine.words

	LayoutLine.x

	LayoutLine.y

	LayoutWord
	LayoutWord.lh

	LayoutWord.lw

	LayoutWord.options

	LayoutWord.text

	layout_text()

	Text Markup
	MarkupLabel
	MarkupLabel.anchors

	MarkupLabel.markup

	MarkupLabel.refs

	MarkupLabel.render()

	MarkupLabel.shorten_post()

	Video
	VideoBase
	VideoBase.duration

	VideoBase.filename

	VideoBase.load()

	VideoBase.pause()

	VideoBase.play()

	VideoBase.position

	VideoBase.seek()

	VideoBase.state

	VideoBase.stop()

	VideoBase.texture

	VideoBase.unload()

	VideoBase.volume

	Window
	Keyboard
	Keyboard.callback

	Keyboard.keycode_to_string()

	Keyboard.release()

	Keyboard.string_to_keycode()

	Keyboard.target

	Keyboard.widget

	Keyboard.window

	WindowBase
	WindowBase.add_widget()

	WindowBase.allow_screensaver

	WindowBase.always_on_top

	WindowBase.borderless

	WindowBase.center

	WindowBase.children

	WindowBase.clear()

	WindowBase.clearcolor

	WindowBase.close()

	WindowBase.create_window()

	WindowBase.custom_titlebar

	WindowBase.dpi

	WindowBase.event_managers

	WindowBase.event_managers_dict

	WindowBase.flip()

	WindowBase.focus

	WindowBase.fullscreen

	WindowBase.get_gl_backend_name()

	WindowBase.gl_backends_allowed

	WindowBase.gl_backends_ignored

	WindowBase.grab_mouse()

	WindowBase.height

	WindowBase.hide()

	WindowBase.icon

	WindowBase.keyboard_anim_args

	WindowBase.keyboard_height

	WindowBase.keyboard_padding

	WindowBase.left

	WindowBase.mainloop()

	WindowBase.managed_textinput

	WindowBase.maximize()

	WindowBase.minimize()

	WindowBase.minimum_height

	WindowBase.minimum_width

	WindowBase.modifiers

	WindowBase.mouse_pos

	WindowBase.on_close()

	WindowBase.on_cursor_enter()

	WindowBase.on_cursor_leave()

	WindowBase.on_drop_begin()

	WindowBase.on_drop_end()

	WindowBase.on_drop_file()

	WindowBase.on_drop_text()

	WindowBase.on_flip()

	WindowBase.on_hide()

	WindowBase.on_joy_axis()

	WindowBase.on_joy_ball()

	WindowBase.on_joy_button_down()

	WindowBase.on_joy_button_up()

	WindowBase.on_joy_hat()

	WindowBase.on_key_down()

	WindowBase.on_key_up()

	WindowBase.on_keyboard()

	WindowBase.on_maximize()

	WindowBase.on_memorywarning()

	WindowBase.on_minimize()

	WindowBase.on_motion()

	WindowBase.on_mouse_down()

	WindowBase.on_mouse_move()

	WindowBase.on_mouse_up()

	WindowBase.on_request_close()

	WindowBase.on_resize()

	WindowBase.on_restore()

	WindowBase.on_rotate()

	WindowBase.on_show()

	WindowBase.on_textedit()

	WindowBase.on_textinput()

	WindowBase.on_touch_down()

	WindowBase.on_touch_move()

	WindowBase.on_touch_up()

	WindowBase.parent

	WindowBase.raise_window()

	WindowBase.register_event_manager()

	WindowBase.release_all_keyboards()

	WindowBase.release_keyboard()

	WindowBase.remove_widget()

	WindowBase.request_keyboard()

	WindowBase.restore()

	WindowBase.rotation

	WindowBase.screenshot()

	WindowBase.set_custom_titlebar()

	WindowBase.set_icon()

	WindowBase.set_system_cursor()

	WindowBase.set_title()

	WindowBase.set_vkeyboard_class()

	WindowBase.shape_color_key

	WindowBase.shape_cutoff

	WindowBase.shape_image

	WindowBase.shape_mode

	WindowBase.shaped

	WindowBase.show()

	WindowBase.show_cursor

	WindowBase.size

	WindowBase.softinput_mode

	WindowBase.system_size

	WindowBase.to_normalized_pos()

	WindowBase.toggle_fullscreen()

	WindowBase.top

	WindowBase.transform_motion_event_2d()

	WindowBase.ungrab_mouse()

	WindowBase.unregister_event_manager()

	WindowBase.width

Audio

Load an audio sound and play it with:

from kivy.core.audio import SoundLoader

sound = SoundLoader.load('mytest.wav')
if sound:
 print("Sound found at %s" % sound.source)
 print("Sound is %.3f seconds" % sound.length)
 sound.play()

You should not use the Sound class directly. The class returned by
SoundLoader.load() will be the best sound provider for that particular
file type, so it might return different Sound classes depending the file type.

Event dispatching and state changes

Audio is often processed in parallel to your code. This means you often need to
enter the Kivy eventloop in order to allow
events and state changes to be dispatched correctly.

You seldom need to worry about this as Kivy apps typically always
require this event loop for the GUI to remain responsive, but it is good to
keep this in mind when debugging or running in a
REPL [https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop]
(Read-eval-print loop).

Changed in version 1.10.0: The pygst and gi providers have been removed.

Changed in version 1.8.0: There are now 2 distinct Gstreamer implementations: one using Gi/Gst
working for both Python 2+3 with Gstreamer 1.0, and one using PyGST
working only for Python 2 + Gstreamer 0.10.

Note

The core audio library does not support recording audio. If you require
this functionality, please refer to the
audiostream [https://github.com/kivy/audiostream] extension.

	
class kivy.core.audio.Sound

	Bases: kivy.event.EventDispatcher

Represents a sound to play. This class is abstract, and cannot be used
directly.

Use SoundLoader to load a sound.

	Events:

	
	on_play: None
	Fired when the sound is played.

	on_stop: None
	Fired when the sound is stopped.

	
filename

	
Deprecated since version 1.3.0: Use source instead.

	
get_pos()

	Returns the current position of the audio file.
Returns 0 if not playing.

New in version 1.4.1.

	
property length

	Get length of the sound (in seconds).

	
load()

	Load the file into memory.

	
loop

	Set to True if the sound should automatically loop when it finishes.

New in version 1.8.0.

loop is a BooleanProperty and defaults to
False.

	
pitch

	Pitch of a sound. 2 is an octave higher, .5 one below. This is only
implemented for SDL2 audio provider yet.

New in version 1.10.0.

pitch is a NumericProperty and defaults
to 1.

	
play()

	Play the file.

	
seek(position)

	Go to the <position> (in seconds).

Note

Most sound providers cannot seek when the audio is stopped.
Play then seek.

	
source

	Filename / source of your audio file.

New in version 1.3.0.

source is a StringProperty that defaults
to None and is read-only. Use the SoundLoader.load() for loading
audio.

	
state

	State of the sound, one of ‘stop’ or ‘play’.

New in version 1.3.0.

state is a read-only OptionProperty.

	
status

	
Deprecated since version 1.3.0: Use state instead.

	
stop()

	Stop playback.

	
unload()

	Unload the file from memory.

	
volume

	Volume, in the range 0-1. 1 means full volume, 0 means mute.

New in version 1.3.0.

volume is a NumericProperty and defaults
to 1.

	
class kivy.core.audio.SoundLoader

	Bases: builtins.object

Load a sound, using the best loader for the given file type.

	
static load(filename)

	Load a sound, and return a Sound() instance.

	
static register(classobj)

	Register a new class to load the sound.

Camera

Core class for acquiring the camera and converting its input into a
Texture.

Changed in version 1.10.0: The pygst and videocapture providers have been removed.

Changed in version 1.8.0: There is now 2 distinct Gstreamer implementation: one using Gi/Gst
working for both Python 2+3 with Gstreamer 1.0, and one using PyGST
working only for Python 2 + Gstreamer 0.10.

	
class kivy.core.camera.CameraBase(**kwargs)

	Bases: kivy.event.EventDispatcher

Abstract Camera Widget class.

Concrete camera classes must implement initialization and
frame capturing to a buffer that can be uploaded to the gpu.

	Parameters:

	
	index: int
	Source index of the camera.

	size: tuple (int, int)
	Size at which the image is drawn. If no size is specified,
it defaults to the resolution of the camera image.

	resolution: tuple (int, int)
	Resolution to try to request from the camera.
Used in the gstreamer pipeline by forcing the appsink caps
to this resolution. If the camera doesn’t support the resolution,
a negotiation error might be thrown.

	Events:

	
	on_load
	Fired when the camera is loaded and the texture has become
available.

	on_texture
	Fired each time the camera texture is updated.

	
property index

	Source index of the camera

	
init_camera()

	Initialise the camera (internal)

	
property resolution

	Resolution of camera capture (width, height)

	
start()

	Start the camera acquire

	
stop()

	Release the camera

	
property texture

	Return the camera texture with the latest capture

Clipboard

Core class for accessing the Clipboard. If we are not able to access the
system clipboard, a fake one will be used.

Usage example:

#:import Clipboard kivy.core.clipboard.Clipboard

Button:
 on_release:
 self.text = Clipboard.paste()
 Clipboard.copy('Data')

OpenGL

Select and use the best OpenGL library available. Depending on your system, the
core provider can select an OpenGL ES or a ‘classic’ desktop OpenGL library.

Image

Core classes for loading images and converting them to a
Texture. The raw image data can be keep in
memory for further access.

Changed in version 1.11.0: Add support for argb and abgr image data

In-memory image loading

New in version 1.9.0: Official support for in-memory loading. Not all the providers support it,
but currently SDL2, pygame, pil and imageio work.

To load an image with a filename, you would usually do:

from kivy.core.image import Image as CoreImage
im = CoreImage("image.png")

You can also load the image data directly from a memory block. Instead of
passing the filename, you’ll need to pass the data as a BytesIO object
together with an “ext” parameter. Both are mandatory:

import io
from kivy.core.image import Image as CoreImage
data = io.BytesIO(open("image.png", "rb").read())
im = CoreImage(data, ext="png")

By default, the image will not be cached as our internal cache requires a
filename. If you want caching, add a filename that represents your file (it
will be used only for caching):

import io
from kivy.core.image import Image as CoreImage
data = io.BytesIO(open("image.png", "rb").read())
im = CoreImage(data, ext="png", filename="image.png")

Saving an image

A CoreImage can be saved to a file:

from kivy.core.image import Image as CoreImage
image = CoreImage(...)
image.save("/tmp/test.png")

Or you can get the bytes (new in 1.11.0):

import io
from kivy.core.image import Image as CoreImage
data = io.BytesIO()
image = CoreImage(…)
image.save(data, fmt=”png”)
png_bytes = data.read()

	
class kivy.core.image.Image(arg, **kwargs)

	Bases: kivy.event.EventDispatcher

Load an image and store the size and texture.

Changed in version 1.0.7: mipmap attribute has been added. The texture_mipmap and
texture_rectangle have been deleted.

Changed in version 1.0.8: An Image widget can change its texture. A new event ‘on_texture’ has
been introduced. New methods for handling sequenced animation have been
added.

	Parameters:

	
	arg: can be a string (str), Texture, BytesIO or Image object
	A string path to the image file or data URI to be loaded; or a
Texture object, which will be wrapped in an Image object; or a
BytesIO object containing raw image data; or an already existing
image object, in which case, a real copy of the given image object
will be returned.

	keep_data: bool, defaults to False
	Keep the image data when the texture is created.

	mipmap: bool, defaults to False
	Create mipmap for the texture.

	anim_delay: float, defaults to .25
	Delay in seconds between each animation frame. Lower values means
faster animation.

	ext: str, only with BytesIO arg
	File extension to use in determining how to load raw image data.

	filename: str, only with BytesIO arg
	Filename to use in the image cache for raw image data.

	
property anim_available

	Return True if this Image instance has animation available.

New in version 1.0.8.

	
property anim_delay

	Delay between each animation frame. A lower value means faster
animation.

New in version 1.0.8.

	
property anim_index

	Return the index number of the image currently in the texture.

New in version 1.0.8.

	
anim_reset(allow_anim)

	Reset an animation if available.

New in version 1.0.8.

	Parameters:

	
	allow_anim: bool
	Indicate whether the animation should restart playing or not.

Usage:

start/reset animation
image.anim_reset(True)

or stop the animation
image.anim_reset(False)

You can change the animation speed whilst it is playing:

Set to 20 FPS
image.anim_delay = 1 / 20.

	
property filename

	Get/set the filename of image

	
property height

	Image height

	
property image

	Get/set the data image object

	
static load(filename, **kwargs)

	Load an image

	Parameters:

	
	filename: str
	Filename of the image.

	keep_data: bool, defaults to False
	Keep the image data when the texture is created.

	
load_memory(data, ext, filename='__inline__')

	(internal) Method to load an image from raw data.

	
property nocache

	Indicate whether the texture will not be stored in the cache or not.

New in version 1.6.0.

	
on_texture(*largs)

	
	This event is fired when the texture reference or content has
	changed. It is normally used for sequenced images.

New in version 1.0.8.

	
read_pixel(x, y)

	For a given local x/y position, return the pixel color at that
position.

Warning

This function can only be used with images loaded with the
keep_data=True keyword. For example:

m = Image.load('image.png', keep_data=True)
color = m.read_pixel(150, 150)

	Parameters:

	
	x: int
	Local x coordinate of the pixel in question.

	y: int
	Local y coordinate of the pixel in question.

	
remove_from_cache()

	Remove the Image from cache. This facilitates re-loading of
images from disk in case the image content has changed.

New in version 1.3.0.

Usage:

im = CoreImage('1.jpg')
-- do something --
im.remove_from_cache()
im = CoreImage('1.jpg')
this time image will be re-loaded from disk

	
save(filename, flipped=False, fmt=None)

	Save image texture to file.

The filename should have the ‘.png’ extension because the texture data
read from the GPU is in the RGBA format. ‘.jpg’ might work but has not
been heavily tested so some providers might break when using it.
Any other extensions are not officially supported.

The flipped parameter flips the saved image vertically, and
defaults to False.

Example:

Save an core image object
from kivy.core.image import Image
img = Image('hello.png')
img.save('hello2.png')

Save a texture
texture = Texture.create(...)
img = Image(texture)
img.save('hello3.png')

New in version 1.7.0.

Changed in version 1.8.0: Parameter flipped added to flip the image before saving, default
to False.

Changed in version 1.11.0: Parameter fmt added to force the output format of the file
Filename can now be a BytesIO object.

	
property size

	Image size (width, height)

	
property texture

	Texture of the image

	
property width

	Image width

	
class kivy.core.image.ImageData(width, height, fmt, data, source=None, flip_vertical=True, source_image=None, rowlength=0)

	Bases: builtins.object

Container for images and mipmap images.
The container will always have at least the mipmap level 0.

	
add_mipmap(level, width, height, data, rowlength)

	Add a image for a specific mipmap level.

New in version 1.0.7.

	
property data

	Image data.
(If the image is mipmapped, it will use the level 0)

	
flip_vertical

	Indicate if the texture will need to be vertically flipped

	
fmt

	Decoded image format, one of a available texture format

	
get_mipmap(level)

	Get the mipmap image at a specific level if it exists

New in version 1.0.7.

	
property height

	Image height in pixels.
(If the image is mipmapped, it will use the level 0)

	
iterate_mipmaps()

	Iterate over all mipmap images available.

New in version 1.0.7.

	
mipmaps

	Data for each mipmap.

	
property rowlength

	Image rowlength.
(If the image is mipmapped, it will use the level 0)

New in version 1.9.0.

	
property size

	Image (width, height) in pixels.
(If the image is mipmapped, it will use the level 0)

	
source

	Image source, if available

	
property width

	Image width in pixels.
(If the image is mipmapped, it will use the level 0)

Spelling

Provides abstracted access to a range of spellchecking backends as well as
word suggestions. The API is inspired by enchant but other backends can be
added that implement the same API.

Spelling currently requires python-enchant for all platforms except
OSX, where a native implementation exists.

>>> from kivy.core.spelling import Spelling
>>> s = Spelling()
>>> s.list_languages()
['en', 'en_CA', 'en_GB', 'en_US']
>>> s.select_language('en_US')
>>> s.suggest('helo')
[u'hole', u'help', u'helot', u'hello', u'halo', u'hero', u'hell', u'held',
 u'helm', u'he-lo']

	
exception kivy.core.spelling.NoLanguageSelectedError

	Bases: Exception

Exception to be raised when a language-using method is called but no
language was selected prior to the call.

	
exception kivy.core.spelling.NoSuchLangError

	Bases: Exception

Exception to be raised when a specific language could not be found.

	
class kivy.core.spelling.SpellingBase(language=None)

	Bases: builtins.object

Base class for all spelling providers.
Supports some abstract methods for checking words and getting suggestions.

	
check(word)

	If word is a valid word in self._language (the currently active
language), returns True. If the word shouldn’t be checked, returns
None (e.g. for ‘’). If it is not a valid word in self._language,
return False.

	Parameters:

	
	word: str
	The word to check.

	
list_languages()

	Return a list of all supported languages.
E.g. [‘en’, ‘en_GB’, ‘en_US’, ‘de’, …]

	
select_language(language)

	From the set of registered languages, select the first language
for language.

	Parameters:

	
	language: str
	Language identifier. Needs to be one of the options returned by
list_languages(). Sets the language used for spell checking and
word suggestions.

	
suggest(fragment)

	For a given fragment (i.e. part of a word or a word by itself),
provide corrections (fragment may be misspelled) or completions
as a list of strings.

	Parameters:

	
	fragment: str
	The word fragment to get suggestions/corrections for.
E.g. ‘foo’ might become ‘of’, ‘food’ or ‘foot’.

Text

An abstraction of text creation. Depending of the selected backend, the
accuracy of text rendering may vary.

Changed in version 1.10.1: LabelBase.find_base_direction() added.

Changed in version 1.5.0: LabelBase.line_height added.

Changed in version 1.0.7: The LabelBase does not generate any texture if the text has a
width <= 1.

This is the backend layer for rendering text with different text providers,
you should only be using this directly if your needs aren’t fulfilled by the
Label.

Usage example:

from kivy.core.text import Label as CoreLabel

...
...
my_label = CoreLabel()
my_label.text = 'hello'
the label is usually not drawn until needed, so force it to draw.
my_label.refresh()
Now access the texture of the label and use it wherever and
however you may please.
hello_texture = my_label.texture

Font Context Manager

A font context is a namespace where multiple fonts are loaded; if a font is
missing a glyph needed to render text, it can fall back to a different font in
the same context. The font context manager can be used to query and manipulate
the state of font contexts when using the Pango text provider (no other
provider currently implements it).

New in version 1.11.0.

Warning

This feature requires the Pango text provider.

Font contexts can be created automatically by kivy.uix.label.Label or
kivy.uix.textinput.TextInput; if a non-existent context is used in
one of these classes, it will be created automatically, or if a font file is
specified without a context (this creates an isolated context, without
support for fallback).

Usage example:

from kivy.uix.label import Label
from kivy.core.text import FontContextManager as FCM

Create a font context containing system fonts + one custom TTF
FCM.create('system://myapp')
family = FCM.add_font('/path/to/file.ttf')

These are now interchangeable ways to refer to the custom font:
lbl1 = Label(font_context='system://myapp', family_name=family)
lbl2 = Label(font_context='system://myapp', font_name='/path/to/file.ttf')

You could also refer to a system font by family, since this is a
system:// font context
lbl3 = Label(font_context='system://myapp', family_name='Arial')

	
class kivy.core.text.LabelBase(text='', font_size=12, font_name=None, bold=False, italic=False, underline=False, strikethrough=False, font_family=None, halign='left', valign='bottom', shorten=False, text_size=None, mipmap=False, color=None, line_height=1.0, strip=False, strip_reflow=True, shorten_from='center', split_str=' ', unicode_errors='replace', font_hinting='normal', font_kerning=True, font_blended=True, outline_width=None, outline_color=None, font_context=None, font_features=None, base_direction=None, font_direction='ltr', font_script_name='Latin', text_language=None, **kwargs)

	Bases: builtins.object

Core text label.
This is the abstract class used by different backends to render text.

Warning

The core text label can’t be changed at runtime. You must recreate one.

	Parameters:

	
	font_size: int, defaults to 12
	Font size of the text

	font_context: str, defaults to None
	Context for the specified font (see kivy.uix.label.Label
for details). None will autocreate an isolated context named
after the resolved font file.

	font_name: str, defaults to DEFAULT_FONT
	Font name of the text

	font_family: str, defaults to None
	Font family name to request for drawing, this can only be used
with font_context.

	bold: bool, defaults to False
	Activate “bold” text style

	italic: bool, defaults to False
	Activate “italic” text style

	text_size: tuple, defaults to (None, None)
	Add constraint to render the text (inside a bounding box).
If no size is given, the label size will be set to the text size.

	padding: int|float or list|tuple, defaults to [0, 0, 0, 0].
	Padding of the text in the format [padding_left, padding_top,
padding_right, padding_bottom].
padding should be int|float or a list|tuple with 1, 2 or 4
elements.

	padding_x: float, defaults to 0.0
	Left/right padding

	padding_y: float, defaults to 0.0
	Top/bottom padding

	halign: str, defaults to “left”
	Horizontal text alignment inside the bounding box

	valign: str, defaults to “bottom”
	Vertical text alignment inside the bounding box

	shorten: bool, defaults to False
	Indicate whether the label should attempt to shorten its textual
contents as much as possible if a size is given.
Setting this to True without an appropriately set size will lead to
unexpected results.

	shorten_from: str, defaults to center
	The side from which we should shorten the text from, can be left,
right, or center. E.g. if left, the ellipsis will appear towards
the left side and it will display as much text starting from the
right as possible.

	split_str: string, defaults to ‘ ‘ (space)
	The string to use to split the words by when shortening. If empty,
we can split after every character filling up the line as much as
possible.

	max_lines: int, defaults to 0 (unlimited)
	If set, this indicate how maximum line are allowed to render the
text. Works only if a limitation on text_size is set.

	mipmap: bool, defaults to False
	Create a mipmap for the texture

	strip: bool, defaults to False
	Whether each row of text has its leading and trailing spaces
stripped. If halign is justify it is implicitly True.

	strip_reflow: bool, defaults to True
	Whether text that has been reflowed into a second line should
be stripped, even if strip is False. This is only in effect when
size_hint_x is not None, because otherwise lines are never
split.

	unicode_errors: str, defaults to ‘replace’
	How to handle unicode decode errors. Can be ‘strict’, ‘replace’
or ‘ignore’.

	outline_width: int, defaults to None
	Width in pixels for the outline.

	outline_color: tuple, defaults to (0, 0, 0)
	Color of the outline.

	font_features: str, defaults to None
	OpenType font features in CSS format (Pango only)

	base_direction: str, defaults to None (auto)
	Text direction, one of None, ‘ltr’, ‘rtl’, ‘weak_ltr’,
or ‘weak_rtl’ (Pango only)

	text_language: str, defaults to None (user locale)
	RFC-3066 format language tag as a string (Pango only)

Deprecated since version 2.2.0: padding_x and padding_y have been deprecated. Please use padding
instead.

Changed in version 2.2.0: padding is now a list and defaults to [0, 0, 0, 0]. padding accepts
int|float or a list|tuple with 1, 2 or 4 elements.

Changed in version 1.10.1: font_context, font_family, font_features, base_direction
and text_language were added.

Changed in version 1.10.0: outline_width and outline_color were added.

Changed in version 1.9.0: strip, strip_reflow, shorten_from, split_str, and
unicode_errors were added.

Changed in version 1.9.0: padding_x and padding_y has been fixed to work as expected.
In the past, the text was padded by the negative of their values.

Changed in version 1.8.0: max_lines parameters has been added.

Changed in version 1.0.8: size have been deprecated and replaced with text_size.

Changed in version 1.0.7: The valign is now respected. This wasn’t the case previously
so you might have an issue in your application if you have not
considered this.

	
property content_height

	Return the content height; i.e. the height of the text without
any padding.

	
property content_size

	Return the content size (width, height)

	
property content_width

	Return the content width; i.e. the width of the text without
any padding.

	
static find_base_direction(text)

	Searches a string the first character that has a strong direction,
according to the Unicode bidirectional algorithm. Returns None if
the base direction cannot be determined, or one of ‘ltr’ or ‘rtl’.

Note

This feature requires the Pango text provider.

	
property fontid

	Return a unique id for all font parameters

	
get_cached_extents()

	Returns a cached version of the get_extents() function.

>>> func = self._get_cached_extents()
>>> func
<built-in method size of pygame.font.Font object at 0x01E45650>
>>> func('a line')
(36, 18)

Warning

This method returns a size measuring function that is valid
for the font settings used at the time get_cached_extents()
was called. Any change in the font settings will render the
returned function incorrect. You should only use this if you know
what you’re doing.

New in version 1.9.0.

	
get_extents(text)

	Return a tuple (width, height) indicating the size of the specified
text

	
static get_system_fonts_dir()

	Return the directories used by the system for fonts.

	
property label

	Get/Set the text

	
refresh()

	Force re-rendering of the text

	
static register(name, fn_regular, fn_italic=None, fn_bold=None, fn_bolditalic=None)

	Register an alias for a Font.

New in version 1.1.0.

If you’re using a ttf directly, you might not be able to use the
bold/italic properties of
the ttf version. If the font is delivered in multiple files
(one regular, one italic and one bold), then you need to register these
files and use the alias instead.

All the fn_regular/fn_italic/fn_bold parameters are resolved with
kivy.resources.resource_find(). If fn_italic/fn_bold are None,
fn_regular will be used instead.

	
render(real=False)

	Return a tuple (width, height) to create the image
with the user constraints. (width, height) includes the padding.

	
shorten(text, margin=2)

	Shortens the text to fit into a single line by the width specified
by text_size [0]. If text_size [0] is None, it returns
text text unchanged.

split_str and shorten_from determines how the text is
shortened.

	Params:

	text str, the text to be shortened.
margin int, the amount of space to leave between the margins
and the text. This is in addition to padding_x.

	Returns:

	the text shortened to fit into a single line.

	
property text

	Get/Set the text

	
property text_size

	Get/set the (width, height) of the ‘
‘contrained rendering box

	
property usersize

	(deprecated) Use text_size instead.

	Text layout
	LayoutLine
	LayoutLine.h

	LayoutLine.is_last_line

	LayoutLine.line_wrap

	LayoutLine.w

	LayoutLine.words

	LayoutLine.x

	LayoutLine.y

	LayoutWord
	LayoutWord.lh

	LayoutWord.lw

	LayoutWord.options

	LayoutWord.text

	layout_text()

	Text Markup
	MarkupLabel
	MarkupLabel.anchors

	MarkupLabel.markup

	MarkupLabel.refs

	MarkupLabel.render()

	MarkupLabel.shorten_post()

Text layout

An internal module for laying out text according to options and constraints.
This is not part of the API and may change at any time.

	
class kivy.core.text.text_layout.LayoutLine

	Bases: builtins.object

Formally describes a line of text. A line of text is composed of many
LayoutWord instances, each with it’s own text, size and options.

A LayoutLine instance does not always imply that the words
contained in the line ended with a newline. That is only the case if
is_last_line is True. For example a single real line of text can
be split across multiple LayoutLine instances if the whole line
doesn’t fit in the constrained width.

	Parameters:

	
	x: int
	the location in a texture from where the left side of this line is
began drawn.

	y: int
	the location in a texture from where the bottom of this line is
drawn.

	w: int
	the width of the line. This is the sum of the individual widths
of its LayoutWord instances. Does not include any padding.

	h: int
	the height of the line. This is the maximum of the individual
heights of its LayoutWord instances multiplied by the
line_height of these instance. So this is larger then the word
height.

	is_last_line: bool
	whether this line was the last line in a paragraph. When True, it
implies that the line was followed by a newline. Newlines should
not be included in the text of words, but is implicit by setting
this to True.

	line_wrap: bool
	whether this line is continued from a previous line which didn’t
fit into a constrained width and was therefore split across
multiple LayoutLine instances. line_wrap can be True
or False independently of is_last_line.

	words: python list
	a list that contains only LayoutWord instances describing
the text of the line.

	
h

	h: ‘int’

	
is_last_line

	is_last_line: ‘int’

	
line_wrap

	line_wrap: ‘int’

	
w

	w: ‘int’

	
words

	words: list

	
x

	x: ‘int’

	
y

	y: ‘int’

	
class kivy.core.text.text_layout.LayoutWord

	Bases: builtins.object

Formally describes a word contained in a line. The name word simply
means a chunk of text and can be used to describe any text.

A word has some width, height and is rendered according to options saved
in options. See LayoutLine for its usage.

	Parameters:

	
	options: dict
	the label options dictionary for this word.

	lw: int
	the width of the text in pixels.

	lh: int
	the height of the text in pixels.

	text: string
	the text of the word.

	
lh

	lh: ‘int’

	
lw

	lw: ‘int’

	
options

	options: dict

	
text

	text: object

	
kivy.core.text.text_layout.layout_text(text, list lines, tuple size, tuple text_size, dict options, get_extents, int append_down, int complete)

	Lays out text into a series of LayoutWord and
LayoutLine instances according to the options specified.

The function is designed to be called many times, each time new text is
appended to the last line (or first line if appending upwards), unless a
newline is present in the text. Each text appended is described by its own
options which can change between successive calls. If the text is
constrained, we stop as soon as the constraint is reached.

	Parameters:

	
	text: string or bytes
	the text to be broken down into lines. If lines is not empty,
the text is added to the last line (or first line if append_down
is False) until a newline is reached which creates a new line in
lines. See LayoutLine.

	lines: list
	a list of LayoutLine instances, each describing a line of
the text. Calls to layout_text() append or create
new LayoutLine instances in lines.

	size: 2-tuple of ints
	the size of the laid out text so far. Upon first call it should
probably be (0, 0), afterwards it should be the (w, h) returned
by this function in a previous call. When size reaches the
constraining size, text_size, we stop adding lines and return
True for the clipped parameter. size includes the x and y padding.

	text_size: 2-tuple of ints or None.
	the size constraint on the laid out text. If either element is
None, the text is not constrained in that dimension. For example,
(None, 200) will constrain the height, including padding to 200,
while the width is unconstrained. The first line, and the first
character of a line is always returned, even if it exceeds the
constraint. The value be changed between different calls.

	options: dict
	the label options of this text. The options are saved with each
word allowing different words to have different options from
successive calls.

Note, options must include a space_width key with a value
indicating the width of a space for that set of options.

	get_extents: callable
	a function called with a string, which returns a tuple containing
the width, height of the string.

	append_down: bool
	Whether successive calls to the function appends lines before or
after the existing lines. If True, they are appended to the last
line and below it. If False, it’s appended at the first line and
above. For example, if False, everything after the last
newline in text is appended to the first line in lines.
Everything before the last newline is inserted at the start of
lines in same order as text; that is we do not invert the line
order.

This allows laying out from top to bottom until the constrained is
reached, or from bottom to top until the constrained is reached.

	complete: bool
	whether this text complete lines. It use is that normally is
strip in options is True, all leading and trailing spaces
are removed from each line except from the last line (or first
line if append_down is False) which only removes leading spaces.
That’s because further text can still be appended to the last line
so we cannot strip them. If complete is True, it indicates no
further text is coming and all lines will be stripped.

The function can also be called with text set to the empty string
and complete set to True in order for the last (first) line to
be stripped.

	Returns:

	3-tuple, (w, h, clipped).
w and h is the width and height of the text in lines so far and
includes padding. This can be larger than text_size, e.g. if not even
a single fitted, the first line would still be returned.
clipped is True if not all the text has been added to lines because
w, h reached the constrained size.

Following is a simple example with no padding and no stripping:

>>> from kivy.core.text import Label
>>> from kivy.core.text.text_layout import layout_text

>>> l = Label()
>>> lines = []
>>> # layout text with width constraint by 50, but no height constraint
>>> w, h, clipped = layout_text('heres some text\nah, another line',
... lines, (0, 0), (50, None), l.options, l.get_cached_extents(), True,
... False)
>>> w, h, clipped
(46, 90, False)
now add text from bottom up, and constrain width only be 100
>>> w, h, clipped = layout_text('\nyay, more text\n', lines, (w, h),
... (100, None), l.options, l.get_cached_extents(), False, True)
>>> w, h, clipped
(77, 120, 0)
>>> for line in lines:
... print('line w: {}, line h: {}'.format(line.w, line.h))
... for word in line.words:
... print('w: {}, h: {}, text: {}'.format(word.lw, word.lh,
... [word.text]))
line w: 0, line h: 15
line w: 77, line h: 15
w: 77, h: 15, text: ['yay, more text']
line w: 31, line h: 15
w: 31, h: 15, text: ['heres']
line w: 34, line h: 15
w: 34, h: 15, text: [' some']
line w: 24, line h: 15
w: 24, h: 15, text: [' text']
line w: 17, line h: 15
w: 17, h: 15, text: ['ah,']
line w: 46, line h: 15
w: 46, h: 15, text: [' another']
line w: 23, line h: 15
w: 23, h: 15, text: [' line']

Text Markup

New in version 1.1.0.

Changed in version 1.10.1: Added font_context, font_features and text_language (Pango only)

We provide a simple text-markup for inline text styling. The syntax look the
same as the BBCode [http://en.wikipedia.org/wiki/BBCode].

A tag is defined as [tag], and should have a corresponding
[/tag] closing tag. For example:

[b]Hello [color=ff0000]world[/color][/b]

The following tags are available:

	[b][/b]
	Activate bold text

	[i][/i]
	Activate italic text

	[u][/u]
	Underlined text

	[s][/s]
	Strikethrough text

	[font=<str>][/font]
	Change the font (note: this refers to a TTF file or registered alias)

	[font_context=<str>][/font_context]
	Change context for the font, use string value “none” for isolated context.

	[font_family=<str>][/font_family]
	Font family to request for drawing. This is only valid when using a
font context, and takes precedence over [font]. See
kivy.uix.label.Label for details.

	[font_features=<str>][/font_features]
	OpenType font features, in CSS format, this is passed straight
through to Pango. The effects of requesting a feature depends on loaded
fonts, library versions, etc. Pango only, requires v1.38 or later.

	[size=<size>][/size]
	Change the font size. <size> should be an integer, optionally with a
unit (i.e. 16sp)

	[color=#<color>][/color]
	Change the text color

	[ref=<str>][/ref]
	Add an interactive zone. The reference + all the word box inside the
reference will be available in MarkupLabel.refs

	[anchor=<str>]
	Put an anchor in the text. You can get the position of your anchor within
the text with MarkupLabel.anchors

	[sub][/sub]
	Display the text at a subscript position relative to the text before it.

	[sup][/sup]
	Display the text at a superscript position relative to the text before it.

	[text_language=<str>][/text_language]
	Language of the text, this is an RFC-3066 format language tag (as string),
for example “en_US”, “zh_CN”, “fr” or “ja”. This can impact font selection,
metrics and rendering. For example, the same bytes of text can look
different for ur and ar languages, though both use Arabic script.
Use the string ‘none’ to revert to locale detection. Pango only.

If you need to escape the markup from the current text, use
kivy.utils.escape_markup().

	
class kivy.core.text.markup.MarkupLabel(*largs, **kwargs)

	Bases: kivy.core.text.LabelBase

Markup text label.

See module documentation for more information.

	
property anchors

	Get the position of all the [anchor=...]:

{ 'anchorA': (x, y), 'anchorB': (x, y), ... }

	
property markup

	Return the text with all the markup split:

>>> MarkupLabel('[b]Hello world[/b]').markup
>>> ('[b]', 'Hello world', '[/b]')

	
property refs

	Get the bounding box of all the [ref=...]:

{ 'refA': ((x1, y1, x2, y2), (x1, y1, x2, y2)), ... }

	
render(real=False)

	Return a tuple (width, height) to create the image
with the user constraints. (width, height) includes the padding.

	
shorten_post(lines, w, h, margin=2)

	Shortens the text to a single line according to the label options.

This function operates on a text that has already been laid out because
for markup, parts of text can have different size and options.

If text_size [0] is None, the lines are returned unchanged.
Otherwise, the lines are converted to a single line fitting within the
constrained width, text_size [0].

	Params:

	lines: list of LayoutLine instances describing the text.
w: int, the width of the text in lines, including padding.
h: int, the height of the text in lines, including padding.
margin int, the additional space left on the sides. This is in
addition to padding_x.

	Returns:

	3-tuple of (xw, h, lines), where w, and h is similar to the input
and contains the resulting width / height of the text, including
padding. lines, is a list containing a single LayoutLine, which
contains the words for the line.

Video

Core class for reading video files and managing the video
Texture.

Changed in version 1.10.0: The pyglet, pygst and gi providers have been removed.

Changed in version 1.8.0: There are now 2 distinct Gstreamer implementations: one using Gi/Gst
working for both Python 2+3 with Gstreamer 1.0, and one using PyGST
working only for Python 2 + Gstreamer 0.10.

Note

Recording is not supported.

	
class kivy.core.video.VideoBase(**kwargs)

	Bases: kivy.event.EventDispatcher

VideoBase, a class used to implement a video reader.

	Parameters:

	
	filename: str
	Filename of the video. Can be a file or an URI.

	eos: str, defaults to ‘pause’
	Action to take when EOS is hit. Can be one of ‘pause’, ‘stop’ or
‘loop’.

Changed in version 1.4.0: added ‘pause’

	async: bool, defaults to True
	Load the video asynchronously (may be not supported by all
providers).

	autoplay: bool, defaults to False
	Auto play the video on init.

	Events:

	
	on_eos
	Fired when EOS is hit.

	on_load
	Fired when the video is loaded and the texture is available.

	on_frame
	Fired when a new frame is written to the texture.

	
property duration

	Get the video duration (in seconds)

	
property filename

	Get/set the filename/uri of the current video

	
load()

	Load the video from the current filename

	
pause()

	Pause the video

New in version 1.4.0.

	
play()

	Play the video

	
property position

	Get/set the position in the video (in seconds)

	
seek(percent, precise=True)

	Move to position as percentage (strictly, a proportion from
0 - 1) of the duration

	
property state

	Get the video playing status

	
stop()

	Stop the video playing

	
property texture

	Get the video texture

	
unload()

	Unload the actual video

	
property volume

	Get/set the volume in the video (1.0 = 100%)

Window

Core class for creating the default Kivy window. Kivy supports only one window
per application: please don’t try to create more than one.

	
class kivy.core.window.Keyboard(**kwargs)

	Bases: kivy.event.EventDispatcher

Keyboard interface that is returned by
WindowBase.request_keyboard(). When you request a keyboard,
you’ll get an instance of this class. Whatever the keyboard input is
(system or virtual keyboard), you’ll receive events through this
instance.

	Events:

	
	on_key_down: keycode, text, modifiers
	Fired when a new key is pressed down

	on_key_up: keycode
	Fired when a key is released (up)

Here is an example of how to request a Keyboard in accordance with the
current configuration:

import kivy
kivy.require('1.0.8')

from kivy.core.window import Window
from kivy.uix.widget import Widget

class MyKeyboardListener(Widget):

 def __init__(self, **kwargs):
 super(MyKeyboardListener, self).__init__(**kwargs)
 self._keyboard = Window.request_keyboard(
 self._keyboard_closed, self, 'text')
 if self._keyboard.widget:
 # If it exists, this widget is a VKeyboard object which you can use
 # to change the keyboard layout.
 pass
 self._keyboard.bind(on_key_down=self._on_keyboard_down)

 def _keyboard_closed(self):
 print('My keyboard have been closed!')
 self._keyboard.unbind(on_key_down=self._on_keyboard_down)
 self._keyboard = None

 def _on_keyboard_down(self, keyboard, keycode, text, modifiers):
 print('The key', keycode, 'have been pressed')
 print(' - text is %r' % text)
 print(' - modifiers are %r' % modifiers)

 # Keycode is composed of an integer + a string
 # If we hit escape, release the keyboard
 if keycode[1] == 'escape':
 keyboard.release()

 # Return True to accept the key. Otherwise, it will be used by
 # the system.
 return True

if __name__ == '__main__':
 from kivy.base import runTouchApp
 runTouchApp(MyKeyboardListener())

	
callback

	Callback that will be called when the keyboard is released

	
keycode_to_string(value)

	Convert a keycode number to a string according to the
Keyboard.keycodes. If the value is not found in the
keycodes, it will return ‘’.

	
release()

	Call this method to release the current keyboard.
This will ensure that the keyboard is no longer attached to your
callback.

	
string_to_keycode(value)

	Convert a string to a keycode number according to the
Keyboard.keycodes. If the value is not found in the
keycodes, it will return -1.

	
target

	Target that have requested the keyboard

	
widget

	VKeyboard widget, if allowed by the configuration

	
window

	Window which the keyboard is attached too

	
class kivy.core.window.WindowBase(**kwargs)

	Bases: kivy.event.EventDispatcher

WindowBase is an abstract window widget for any window implementation.

	Parameters:

	
	borderless: str, one of (‘0’, ‘1’)
	Set the window border state. Check the
config documentation for a
more detailed explanation on the values.

	custom_titlebar: str, one of (‘0’, ‘1’)
	Set to ‘1’ to uses a custom titlebar

	fullscreen: str, one of (‘0’, ‘1’, ‘auto’, ‘fake’)
	Make the window fullscreen. Check the
config documentation for a
more detailed explanation on the values.

	width: int
	Width of the window.

	height: int
	Height of the window.

	minimum_width: int
	Minimum width of the window (only works for sdl2 window provider).

	minimum_height: int
	Minimum height of the window (only works for sdl2 window provider).

	always_on_top: bool
	When enabled, the window will be brought to the front and will keep
the window above the rest. If disabled, it will restore the default
behavior. Only works for the sdl2 window provider.

	allow_screensaver: bool
	Allow the device to show a screen saver, or to go to sleep
on mobile devices. Defaults to True. Only works for sdl2 window
provider.

	Events:

	
	on_motion: etype, motionevent
	Fired when a new MotionEvent is
dispatched

	on_touch_down:
	Fired when a new touch event is initiated.

	on_touch_move:
	Fired when an existing touch event changes location.

	on_touch_up:
	Fired when an existing touch event is terminated.

	on_draw:
	Fired when the Window is being drawn.

	on_flip:
	Fired when the Window GL surface is being flipped.

	on_rotate: rotation
	Fired when the Window is being rotated.

	on_close:
	Fired when the Window is closed.

	on_request_close:
	Fired when the event loop wants to close the window, or if the
escape key is pressed and exit_on_escape is True. If a function
bound to this event returns True, the window will not be closed.
If the the event is triggered because of the keyboard escape key,
the keyword argument source is dispatched along with a value of
keyboard to the bound functions.

New in version 1.9.0.

	on_cursor_enter:
	Fired when the cursor enters the window.

New in version 1.9.1.

	on_cursor_leave:
	Fired when the cursor leaves the window.

New in version 1.9.1.

	on_minimize:
	Fired when the window is minimized.

New in version 1.10.0.

	on_maximize:
	Fired when the window is maximized.

New in version 1.10.0.

	on_restore:
	Fired when the window is restored.

New in version 1.10.0.

	on_hide:
	Fired when the window is hidden.

New in version 1.10.0.

	on_show:
	Fired when when the window is shown.

New in version 1.10.0.

	on_keyboard: key, scancode, codepoint, modifier
	Fired when the keyboard is used for input.

Changed in version 1.3.0: The unicode parameter has been deprecated in favor of
codepoint, and will be removed completely in future versions.

	on_key_down: key, scancode, codepoint, modifier
	Fired when a key pressed.

Changed in version 1.3.0: The unicode parameter has been deprecated in favor of
codepoint, and will be removed completely in future versions.

	on_key_up: key, scancode, codepoint
	Fired when a key is released.

Changed in version 1.3.0: The unicode parameter has be deprecated in favor of
codepoint, and will be removed completely in future versions.

	on_drop_begin: x, y, *args
	Fired when text(s) or file(s) drop on the application is about to
begin.

New in version 2.1.0.

	on_drop_file: filename (bytes), x, y, *args
	Fired when a file is dropped on the application.

New in version 1.2.0.

Changed in version 2.1.0: Renamed from on_dropfile to on_drop_file.

	on_drop_text: text (bytes), x, y, *args
	Fired when a text is dropped on the application.

New in version 2.1.0.

	on_drop_end: x, y, *args
	Fired when text(s) or file(s) drop on the application has ended.

New in version 2.1.0.

	on_memorywarning:
	Fired when the platform have memory issue (iOS / Android mostly)
You can listen to this one, and clean whatever you can.

New in version 1.9.0.

	on_textedit(self, text):
	Fired when inputting with IME.
The string inputting with IME is set as the parameter of
this event.

New in version 1.10.1.

	
add_widget(widget, canvas=None)

	Add a widget to a window

	
allow_screensaver

	Whether the screen saver is enabled, or on mobile devices whether the
device is allowed to go to sleep while the app is open.

New in version 1.10.0.

allow_screensaver is a BooleanProperty
and defaults to True.

	
always_on_top

	When enabled, the window will be brought to the front and will keep
the window above the rest. If disabled, it will restore the default
behavior.

This option can be toggled freely during the window’s lifecycle.

Only works for the sdl2 window provider. Check the config
documentation for a more detailed explanation on the values.

New in version 2.2.0.

always_on_top is a BooleanProperty and
defaults to False.

	
borderless

	When set to True, this property removes the window border/decoration.
Check the config documentation for a more detailed
explanation on the values.

New in version 1.9.0.

borderless is a BooleanProperty and
defaults to False.

	
center

	Center of the rotated window.

New in version 1.0.9.

center is an AliasProperty.

	
children

	List of the children of this window.

children is a ListProperty instance and
defaults to an empty list.

Use add_widget() and remove_widget() to manipulate the list of
children. Don’t manipulate the list directly unless you know what you are
doing.

	
clear()

	Clear the window with the background color

	
clearcolor

	Color used to clear the window.

from kivy.core.window import Window

red background color
Window.clearcolor = (1, 0, 0, 1)

don't clear background at all
Window.clearcolor = None

Changed in version 1.7.2: The clearcolor default value is now: (0, 0, 0, 1).

New in version 1.0.9.

clearcolor is an ColorProperty and
defaults to (0, 0, 0, 1).

Changed in version 2.1.0: Changed from AliasProperty to
ColorProperty.

	
close()

	Close the window

	
create_window(*largs)

	Will create the main window and configure it.

Warning

This method is called automatically at runtime. If you call it, it
will recreate a RenderContext and Canvas. This means you’ll have a
new graphics tree, and the old one will be unusable.

This method exist to permit the creation of a new OpenGL context
AFTER closing the first one. (Like using runTouchApp() and
stopTouchApp()).

This method has only been tested in a unittest environment and
is not suitable for Applications.

Again, don’t use this method unless you know exactly what you are
doing!

	
custom_titlebar

	When set to True, allows the user to set a widget as a titlebar.
Check the config documentation for a more detailed
explanation on the values.

New in version 2.1.0.

see set_custom_titlebar()
for detailed usage
custom_titlebar is a BooleanProperty and
defaults to False.

	
dpi

	Return the DPI of the screen as computed by the window. If the
implementation doesn’t support DPI lookup, it’s 96.

Warning

This value is not cross-platform. Use
kivy.metrics.Metrics.dpi instead.

	
event_managers = None

	Holds a list of registered event managers.

Don’t change the property directly but use
register_event_manager() and unregister_event_manager() to
register and unregister an event manager.

Event manager is an instance of
EventManagerBase.

New in version 2.1.0.

Warning

This is an experimental property and it remains so while this warning
is present.

	
event_managers_dict = None

	Holds a dict of type_id to list of event managers.

Don’t change the property directly but use
register_event_manager() and unregister_event_manager() to
register and unregister an event manager.

Event manager is an instance of
EventManagerBase.

New in version 2.1.0.

Warning

This is an experimental property and it remains so while this warning
is present.

	
flip()

	Flip between buffers

	
focus

	Check whether or not the window currently has focus.

New in version 1.9.1.

focus is a read-only AliasProperty and
defaults to True.

	
fullscreen

	This property sets the fullscreen mode of the window. Available options
are: True, False, ‘auto’ and ‘fake’. Check the config
documentation for more detailed explanations on these values.

fullscreen is an OptionProperty and defaults to
False.

New in version 1.2.0.

Note

The ‘fake’ option has been deprecated, use the borderless
property instead.

Warning

On iOS, setting fullscreen to False will not automatically
hide the status bar.

To achieve this, you must set fullscreen to False, and
then also set borderless to False.

	
get_gl_backend_name()

	Returns the gl backend that will or is used with this window.

	
gl_backends_allowed = []

	A list of Kivy gl backend names, which if not empty, will be the
exclusive list of gl backends that can be used with this window.

	
gl_backends_ignored = []

	A list of Kivy gl backend names that may not be used with this window.

	
grab_mouse()

	Grab mouse - so won’t leave window

New in version 1.10.0.

Note

This feature requires the SDL2 window provider.

	
height

	Rotated window height.

height is a read-only AliasProperty.

	
hide()

	Hides the window. This method should be used on desktop
platforms only.

New in version 1.9.0.

Note

This feature requires the SDL2 window provider and is currently
only supported on desktop platforms.

	
icon

	A path to the window icon.

New in version 1.1.2.

icon is a StringProperty.

	
keyboard_anim_args = {'d': 0.5, 't': 'in_out_quart'}

	The attributes for animating softkeyboard/IME.
t = transition, d = duration. This value will have no effect on
desktops.

New in version 1.10.0.

keyboard_anim_args is a dict and defaults to
{‘t’: ‘in_out_quart’, ‘d’: .5}.

	
keyboard_height

	Returns the height of the softkeyboard/IME on mobile platforms.
Will return 0 if not on mobile platform or if IME is not active.

Note

This property returns 0 with SDL2 on Android, but setting
Window.softinput_mode does work.

New in version 1.9.0.

keyboard_height is a read-only
AliasProperty and defaults to 0.

	
keyboard_padding

	The padding to have between the softkeyboard/IME & target
or bottom of window. Will have no effect on desktops.

New in version 1.10.0.

keyboard_padding is a
NumericProperty and defaults to 0.

	
left

	Left position of the window.

Note

It’s an SDL2 property with [0, 0] in the top-left corner.

Changed in version 1.10.0: left is now an AliasProperty

New in version 1.9.1.

left is an AliasProperty and defaults to
the position set in Config.

	
mainloop()

	Called by the EventLoop every frame after it idles.

	
managed_textinput = False

	True if this Window class uses on_textinput to insert text, internal.

	
maximize()

	Maximizes the window. This method should be used on desktop
platforms only.

New in version 1.9.0.

Note

This feature requires the SDL2 window provider and is currently
only supported on desktop platforms.

	
minimize()

	Minimizes the window. This method should be used on desktop
platforms only.

New in version 1.9.0.

Note

This feature requires the SDL2 window provider and is currently
only supported on desktop platforms.

	
minimum_height

	The minimum height to restrict the window to.

New in version 1.9.1.

minimum_height is a NumericProperty and
defaults to 0.

	
minimum_width

	The minimum width to restrict the window to.

New in version 1.9.1.

minimum_width is a NumericProperty and
defaults to 0.

	
modifiers

	List of keyboard modifiers currently active.

New in version 1.0.9.

modifiers is an AliasProperty.

	
mouse_pos

	2d position of the mouse cursor within the window.

Position is relative to the left/bottom point of the window.

Note

Cursor position will be scaled by the pixel density if the high density
mode is supported by the window provider.

New in version 1.2.0.

mouse_pos is an ObjectProperty and
defaults to (0, 0).

	
on_close(*largs)

	Event called when the window is closed.

	
on_cursor_enter(*largs)

	Event called when the cursor enters the window.

New in version 1.9.1.

Note

This feature requires the SDL2 window provider.

	
on_cursor_leave(*largs)

	Event called when the cursor leaves the window.

New in version 1.9.1.

Note

This feature requires the SDL2 window provider.

	
on_drop_begin(x, y, *args)

	Event called when a text or a file drop on the application is about
to begin. It will be followed-up by a single or a multiple
on_drop_text or on_drop_file events ending with an on_drop_end
event.

Arguments x and y are the mouse cursor position at the time of the
drop and you should only rely on them if the drop originated from the
mouse.

	Parameters:

	
	x: int
	Cursor x position, relative to the window left, at the
time of the drop.

	y: int
	Cursor y position, relative to the window top, at the
time of the drop.

	*args: tuple
	Additional arguments.

Note

This event works with sdl2 window provider.

New in version 2.1.0.

	
on_drop_end(x, y, *args)

	Event called when a text or a file drop on the application has
ended.

Arguments x and y are the mouse cursor position at the time of the
drop and you should only rely on them if the drop originated from the
mouse.

	Parameters:

	
	x: int
	Cursor x position, relative to the window left, at the
time of the drop.

	y: int
	Cursor y position, relative to the window top, at the
time of the drop.

	*args: tuple
	Additional arguments.

Note

This event works with sdl2 window provider.

New in version 2.1.0.

	
on_drop_file(filename, x, y, *args)

	Event called when a file is dropped on the application.

Arguments x and y are the mouse cursor position at the time of the
drop and you should only rely on them if the drop originated from the
mouse.

	Parameters:

	
	filename: bytes
	Absolute path to a dropped file.

	x: int
	Cursor x position, relative to the window left, at the
time of the drop.

	y: int
	Cursor y position, relative to the window top, at the
time of the drop.

	*args: tuple
	Additional arguments.

Warning

This event currently works with sdl2 window provider, on pygame
window provider and OS X with a patched version of pygame.
This event is left in place for further evolution
(ios, android etc.)

Note

On Windows it is possible to drop a file on the window title bar
or on its edges and for that case mouse_pos won’t be
updated as the mouse cursor is not within the window.

Note

This event doesn’t work for apps with elevated permissions,
because the OS API calls are filtered. Check issue
#4999 [https://github.com/kivy/kivy/issues/4999] for
pointers to workarounds.

New in version 1.2.0.

Changed in version 2.1.0: Renamed from on_dropfile to on_drop_file.

	
on_drop_text(text, x, y, *args)

	Event called when a text is dropped on the application.

Arguments x and y are the mouse cursor position at the time of the
drop and you should only rely on them if the drop originated from the
mouse.

	Parameters:

	
	text: bytes
	Text which is dropped.

	x: int
	Cursor x position, relative to the window left, at the
time of the drop.

	y: int
	Cursor y position, relative to the window top, at the
time of the drop.

	*args: tuple
	Additional arguments.

Note

This event works with sdl2 window provider on x11 window.

Note

On Windows it is possible to drop a text on the window title bar
or on its edges and for that case mouse_pos won’t be
updated as the mouse cursor is not within the window.

New in version 2.1.0.

	
on_flip()

	Flip between buffers (event)

	
on_hide(*largs)

	Event called when the window is hidden.

New in version 1.10.0.

Note

This feature requires the SDL2 window provider.

	
on_joy_axis(stickid, axisid, value)

	Event called when a joystick has a stick or other axis moved.

New in version 1.9.0.

	
on_joy_ball(stickid, ballid, xvalue, yvalue)

	Event called when a joystick has a ball moved.

New in version 1.9.0.

	
on_joy_button_down(stickid, buttonid)

	Event called when a joystick has a button pressed.

New in version 1.9.0.

	
on_joy_button_up(stickid, buttonid)

	Event called when a joystick has a button released.

New in version 1.9.0.

	
on_joy_hat(stickid, hatid, value)

	Event called when a joystick has a hat/dpad moved.

New in version 1.9.0.

	
on_key_down(key, scancode=None, codepoint=None, modifier=None, **kwargs)

	Event called when a key is down (same arguments as on_keyboard)

	
on_key_up(key, scancode=None, codepoint=None, modifier=None, **kwargs)

	Event called when a key is released (same arguments as on_keyboard).

	
on_keyboard(key, scancode=None, codepoint=None, modifier=None, **kwargs)

	Event called when keyboard is used.

Warning

Some providers may omit scancode, codepoint and/or modifier.

	
on_maximize(*largs)

	Event called when the window is maximized.

New in version 1.10.0.

Note

This feature requires the SDL2 window provider.

	
on_memorywarning()

	Event called when the platform have memory issue.
Your goal is to clear the cache in your app as much as you can,
release unused widgets, do garbage collection etc.

Currently, this event is fired only from the SDL2 provider, for
iOS and Android.

New in version 1.9.0.

	
on_minimize(*largs)

	Event called when the window is minimized.

New in version 1.10.0.

Note

This feature requires the SDL2 window provider.

	
on_motion(etype, me)

	Event called when a motion event is received.

	Parameters:

	
	etype: str
	One of “begin”, “update” or “end”.

	me: MotionEvent
	The motion event currently dispatched.

Changed in version 2.1.0: Event managers get to handle the touch event first and if none of
them accepts the event (by returning True) then window will
dispatch me through “on_touch_down”, “on_touch_move”,
“on_touch_up” events depending on the etype. All non-touch events
will go only through managers.

	
on_mouse_down(x, y, button, modifiers)

	Event called when the mouse is used (pressed/released).

	
on_mouse_move(x, y, modifiers)

	Event called when the mouse is moved with buttons pressed.

	
on_mouse_up(x, y, button, modifiers)

	Event called when the mouse is moved with buttons pressed.

	
on_request_close(*largs, **kwargs)

	Event called before we close the window. If a bound function returns
True, the window will not be closed. If the the event is triggered
because of the keyboard escape key, the keyword argument source is
dispatched along with a value of keyboard to the bound functions.

Warning

When the bound function returns True the window will not be closed,
so use with care because the user would not be able to close the
program, even if the red X is clicked.

	
on_resize(width, height)

	Event called when the window is resized.

	
on_restore(*largs)

	Event called when the window is restored.

New in version 1.10.0.

Note

This feature requires the SDL2 window provider.

	
on_rotate(rotation)

	Event called when the screen has been rotated.

	
on_show(*largs)

	Event called when the window is shown.

New in version 1.10.0.

Note

This feature requires the SDL2 window provider.

	
on_textedit(text)

	Event called when inputting with IME.
The string inputting with IME is set as the parameter of
this event.

New in version 1.10.1.

	
on_textinput(text)

	Event called when text: i.e. alpha numeric non control keys or set
of keys is entered. As it is not guaranteed whether we get one
character or multiple ones, this event supports handling multiple
characters.

New in version 1.9.0.

	
on_touch_down(touch)

	Event called when a touch down event is initiated.

Changed in version 1.9.0: The touch pos is now transformed to window coordinates before
this method is called. Before, the touch pos coordinate would be
(0, 0) when this method was called.

	
on_touch_move(touch)

	Event called when a touch event moves (changes location).

Changed in version 1.9.0: The touch pos is now transformed to window coordinates before
this method is called. Before, the touch pos coordinate would be
(0, 0) when this method was called.

	
on_touch_up(touch)

	Event called when a touch event is released (terminated).

Changed in version 1.9.0: The touch pos is now transformed to window coordinates before
this method is called. Before, the touch pos coordinate would be
(0, 0) when this method was called.

	
parent

	Parent of this window.

parent is a ObjectProperty instance and
defaults to None. When created, the parent is set to the window itself.
You must take care of it if you are doing a recursive check.

	
raise_window()

	Raise the window. This method should be used on desktop
platforms only.

New in version 1.9.1.

Note

This feature requires the SDL2 window provider and is currently
only supported on desktop platforms.

	
register_event_manager(manager)

	Register and start an event manager to handle events declared in
type_ids attribute.

New in version 2.1.0.

Warning

This is an experimental method and it remains so until this warning
is present as it can be changed or removed in the next versions of
Kivy.

	
release_all_keyboards()

	
New in version 1.0.8.

This will ensure that no virtual keyboard / system keyboard is
requested. All instances will be closed.

	
release_keyboard(target=None)

	
New in version 1.0.4.

Internal method for the widget to release the real-keyboard. Check
request_keyboard() to understand how it works.

	
remove_widget(widget)

	Remove a widget from a window

	
request_keyboard(callback, target, input_type='text', keyboard_suggestions=True)

	
New in version 1.0.4.

Internal widget method to request the keyboard. This method is rarely
required by the end-user as it is handled automatically by the
TextInput. We expose it in case you want
to handle the keyboard manually for unique input scenarios.

A widget can request the keyboard, indicating a callback to call
when the keyboard is released (or taken by another widget).

	Parameters:

	
	callback: func
	Callback that will be called when the keyboard is
closed. This can be because somebody else requested the
keyboard or the user closed it.

	target: Widget
	Attach the keyboard to the specified target. This should be
the widget that requested the keyboard. Ensure you have a
different target attached to each keyboard if you’re working in
a multi user mode.

New in version 1.0.8.

	input_type: string
	Choose the type of soft keyboard to request. Can be one of
‘null’, ‘text’, ‘number’, ‘url’, ‘mail’, ‘datetime’, ‘tel’,
‘address’.

Note

input_type is currently only honored on Android.

New in version 1.8.0.

Changed in version 2.1.0: Added null to soft keyboard types.

	keyboard_suggestions: bool
	If True provides auto suggestions on top of keyboard.
This will only work if input_type is set to text, url,
mail or address.

New in version 2.1.0.

	Return:

	An instance of Keyboard containing the callback, target,
and if the configuration allows it, a
VKeyboard instance attached as a
.widget property.

Note

The behavior of this function is heavily influenced by the current
keyboard_mode. Please see the Config’s
configuration tokens section for
more information.

	
restore()

	Restores the size and position of a maximized or minimized window.
This method should be used on desktop platforms only.

New in version 1.9.0.

Note

This feature requires the SDL2 window provider and is currently
only supported on desktop platforms.

	
rotation

	Get/set the window content rotation. Can be one of 0, 90, 180, 270
degrees.

New in version 1.0.9.

rotation is an AliasProperty.

	
screenshot(name='screenshot{:04d}.png')

	Save the actual displayed image to a file.

	
set_custom_titlebar(widget)

	Sets a Widget as a titlebar

	widget:

	The widget you want to set as the titlebar

New in version 2.1.0.

This function returns True on successfully setting the custom titlebar,
else false

How to use this feature

1. first set Window.custom_titlebar to True
2. then call Window.set_custom_titlebar with the widget/layout you want to set as titlebar as the argument # noqa: E501

If you want a child of the widget to receive touch events, in
that child define a property draggable and set it to False

If you set the property draggable on a layout,
all the child in the layout will receive touch events

If you want to override default behaviour, add function in_drag_area(x,y)
to the widget

The function is call with two args x,y which are mouse.x, and mouse.y
the function should return

True if that point should be used to drag the window

False if you want to receive the touch event at the point

Note

If you use in_drag_area() property draggable
will not be checked

Note

This feature requires the SDL2 window provider and is currently
only supported on desktop platforms.

Warning

custom_titlebar must be set to True
for the widget to be successfully set as a titlebar

	
set_icon(filename)

	Set the icon of the window.

New in version 1.0.5.

	
set_system_cursor(cursor_name)

	Set type of a mouse cursor in the Window.

It can be one of ‘arrow’, ‘ibeam’, ‘wait’, ‘crosshair’, ‘wait_arrow’,
‘size_nwse’, ‘size_nesw’, ‘size_we’, ‘size_ns’, ‘size_all’, ‘no’, or
‘hand’.

On some platforms there might not be a specific cursor supported and
such an option falls back to one of the substitutable alternatives:

	
	Windows

	MacOS

	Linux X11

	Linux Wayland

	arrow

	arrow

	arrow

	arrow

	arrow

	ibeam

	ibeam

	ibeam

	ibeam

	ibeam

	wait

	wait

	arrow

	wait

	wait

	crosshair

	crosshair

	crosshair

	crosshair

	hand

	wait_arrow

	arrow

	arrow

	wait

	wait

	size_nwse

	size_nwse

	size_all

	size_all

	hand

	size_nesw

	size_nesw

	size_all

	size_all

	hand

	size_we

	size_we

	size_we

	size_we

	hand

	size_ns

	size_ns

	size_ns

	size_ns

	hand

	size_all

	size_all

	size_all

	size_all

	hand

	no

	no

	no

	no

	ibeam

	hand

	hand

	hand

	hand

	hand

New in version 1.10.1.

Note

This feature requires the SDL2 window provider and is currently
only supported on desktop platforms.

	
set_title(title)

	Set the window title.

New in version 1.0.5.

	
set_vkeyboard_class(cls)

	
New in version 1.0.8.

Set the VKeyboard class to use. If set to None, it will use the
kivy.uix.vkeyboard.VKeyboard.

	
shape_color_key

	Color key of the shaped window - sets which color will be hidden from
the window shape_image (only works for sdl2 window provider).

New in version 1.10.1.

shape_color_key is a ColorProperty
instance and defaults to [1, 1, 1, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
shape_cutoff

	The window shape_image cutoff property (only works for sdl2
window provider).

New in version 1.10.1.

shape_cutoff is a BooleanProperty and
defaults to True.

	
shape_image

	An image for the window shape (only works for sdl2 window provider).

Warning

The image size has to be the same like the window’s size!

New in version 1.10.1.

shape_image is a StringProperty and
defaults to ‘data/images/defaultshape.png’. This value is taken from
Config.

	
shape_mode

	Window mode for shaping (only works for sdl2 window provider).

	
	can be RGB only
	
	default - does nothing special

	colorkey - hides a color of the shape_color_key

	
	has to contain alpha channel
	
	binalpha - hides an alpha channel of the shape_image

	reversebinalpha - shows only the alpha of the shape_image

Note

Before actually setting the mode make sure the Window has the same
size like the shape_image, preferably via Config before
the Window is actually created.

If the shape_image isn’t set, the default one will be used
and the mode might not take the desired visual effect.

New in version 1.10.1.

shape_mode is an AliasProperty.

	
shaped

	Read only property to check if the window is shapable or not (only works
for sdl2 window provider).

New in version 1.10.1.

shaped is an AliasProperty.

	
show()

	Shows the window. This method should be used on desktop
platforms only.

New in version 1.9.0.

Note

This feature requires the SDL2 window provider and is currently
only supported on desktop platforms.

	
show_cursor

	Set whether or not the cursor is shown on the window.

New in version 1.9.1.

show_cursor is a BooleanProperty and
defaults to True.

	
size

	Get the rotated size of the window. If rotation is set, then the
size will change to reflect the rotation.

New in version 1.0.9.

size is an AliasProperty.

	
softinput_mode

	This specifies the behavior of window contents on display of the soft
keyboard on mobile platforms. It can be one of ‘’, ‘pan’, ‘scale’,
‘resize’ or ‘below_target’. Their effects are listed below.

	Value

	Effect

	‘’

	The main window is left as is, allowing you to use
the keyboard_height to manage the window
contents manually.

	‘pan’

	The main window pans, moving the bottom part of the
window to be always on top of the keyboard.

	‘resize’

	The window is resized and the contents scaled to fit
the remaining space.

	‘below_target’

	The window pans so that the current target TextInput
widget requesting the keyboard is presented just above
the soft keyboard.

softinput_mode is an OptionProperty and
defaults to ‘’.

Note

The resize option does not currently work with SDL2 on Android.

New in version 1.9.0.

Changed in version 1.9.1: The ‘below_target’ option was added.

	
system_size

	Real size of the window ignoring rotation. If the density is
not 1, the system_size is the size divided by
density.

New in version 1.0.9.

system_size is an AliasProperty.

	
to_normalized_pos(x, y)

	Transforms absolute coordinates to normalized (0-1) coordinates
using system_size.

New in version 2.1.0.

	
toggle_fullscreen()

	Toggle between fullscreen and windowed mode.

Deprecated since version 1.9.0: Use fullscreen instead.

	
top

	Top position of the window.

Note

It’s an SDL2 property with [0, 0] in the top-left corner.

Changed in version 1.10.0: top is now an AliasProperty

New in version 1.9.1.

top is an AliasProperty and defaults to
the position set in Config.

	
transform_motion_event_2d(me, widget=None)

	Transforms the motion event me to this window size and then if
widget is passed transforms me to widget’s local coordinates.

	Raises:

	AttributeError: If widget’s ancestor is None.

Note

Unless it’s a specific case, call
push() before and
pop() after this method’s
call to preserve previous values of me’s attributes.

New in version 2.1.0.

	
ungrab_mouse()

	Ungrab mouse

New in version 1.10.0.

Note

This feature requires the SDL2 window provider.

	
unregister_event_manager(manager)

	Unregister and stop an event manager previously registered with
register_event_manager().

New in version 2.1.0.

Warning

This is an experimental method and it remains so until this warning
is present as it can be changed or removed in the next versions of
Kivy.

	
width

	Rotated window width.

width is a read-only AliasProperty.

Audio

Load an audio sound and play it with:

from kivy.core.audio import SoundLoader

sound = SoundLoader.load('mytest.wav')
if sound:
 print("Sound found at %s" % sound.source)
 print("Sound is %.3f seconds" % sound.length)
 sound.play()

You should not use the Sound class directly. The class returned by
SoundLoader.load() will be the best sound provider for that particular
file type, so it might return different Sound classes depending the file type.

Event dispatching and state changes

Audio is often processed in parallel to your code. This means you often need to
enter the Kivy eventloop in order to allow
events and state changes to be dispatched correctly.

You seldom need to worry about this as Kivy apps typically always
require this event loop for the GUI to remain responsive, but it is good to
keep this in mind when debugging or running in a
REPL [https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop]
(Read-eval-print loop).

Changed in version 1.10.0: The pygst and gi providers have been removed.

Changed in version 1.8.0: There are now 2 distinct Gstreamer implementations: one using Gi/Gst
working for both Python 2+3 with Gstreamer 1.0, and one using PyGST
working only for Python 2 + Gstreamer 0.10.

Note

The core audio library does not support recording audio. If you require
this functionality, please refer to the
audiostream [https://github.com/kivy/audiostream] extension.

	
class kivy.core.audio.Sound

	Bases: kivy.event.EventDispatcher

Represents a sound to play. This class is abstract, and cannot be used
directly.

Use SoundLoader to load a sound.

	Events:

	
	on_play: None
	Fired when the sound is played.

	on_stop: None
	Fired when the sound is stopped.

	
filename

	
Deprecated since version 1.3.0: Use source instead.

	
get_pos()

	Returns the current position of the audio file.
Returns 0 if not playing.

New in version 1.4.1.

	
property length

	Get length of the sound (in seconds).

	
load()

	Load the file into memory.

	
loop

	Set to True if the sound should automatically loop when it finishes.

New in version 1.8.0.

loop is a BooleanProperty and defaults to
False.

	
pitch

	Pitch of a sound. 2 is an octave higher, .5 one below. This is only
implemented for SDL2 audio provider yet.

New in version 1.10.0.

pitch is a NumericProperty and defaults
to 1.

	
play()

	Play the file.

	
seek(position)

	Go to the <position> (in seconds).

Note

Most sound providers cannot seek when the audio is stopped.
Play then seek.

	
source

	Filename / source of your audio file.

New in version 1.3.0.

source is a StringProperty that defaults
to None and is read-only. Use the SoundLoader.load() for loading
audio.

	
state

	State of the sound, one of ‘stop’ or ‘play’.

New in version 1.3.0.

state is a read-only OptionProperty.

	
status

	
Deprecated since version 1.3.0: Use state instead.

	
stop()

	Stop playback.

	
unload()

	Unload the file from memory.

	
volume

	Volume, in the range 0-1. 1 means full volume, 0 means mute.

New in version 1.3.0.

volume is a NumericProperty and defaults
to 1.

	
class kivy.core.audio.SoundLoader

	Bases: builtins.object

Load a sound, using the best loader for the given file type.

	
static load(filename)

	Load a sound, and return a Sound() instance.

	
static register(classobj)

	Register a new class to load the sound.

Camera

Core class for acquiring the camera and converting its input into a
Texture.

Changed in version 1.10.0: The pygst and videocapture providers have been removed.

Changed in version 1.8.0: There is now 2 distinct Gstreamer implementation: one using Gi/Gst
working for both Python 2+3 with Gstreamer 1.0, and one using PyGST
working only for Python 2 + Gstreamer 0.10.

	
class kivy.core.camera.CameraBase(**kwargs)

	Bases: kivy.event.EventDispatcher

Abstract Camera Widget class.

Concrete camera classes must implement initialization and
frame capturing to a buffer that can be uploaded to the gpu.

	Parameters:

	
	index: int
	Source index of the camera.

	size: tuple (int, int)
	Size at which the image is drawn. If no size is specified,
it defaults to the resolution of the camera image.

	resolution: tuple (int, int)
	Resolution to try to request from the camera.
Used in the gstreamer pipeline by forcing the appsink caps
to this resolution. If the camera doesn’t support the resolution,
a negotiation error might be thrown.

	Events:

	
	on_load
	Fired when the camera is loaded and the texture has become
available.

	on_texture
	Fired each time the camera texture is updated.

	
property index

	Source index of the camera

	
init_camera()

	Initialise the camera (internal)

	
property resolution

	Resolution of camera capture (width, height)

	
start()

	Start the camera acquire

	
stop()

	Release the camera

	
property texture

	Return the camera texture with the latest capture

Clipboard

Core class for accessing the Clipboard. If we are not able to access the
system clipboard, a fake one will be used.

Usage example:

#:import Clipboard kivy.core.clipboard.Clipboard

Button:
 on_release:
 self.text = Clipboard.paste()
 Clipboard.copy('Data')

OpenGL

Select and use the best OpenGL library available. Depending on your system, the
core provider can select an OpenGL ES or a ‘classic’ desktop OpenGL library.

Image

Core classes for loading images and converting them to a
Texture. The raw image data can be keep in
memory for further access.

Changed in version 1.11.0: Add support for argb and abgr image data

In-memory image loading

New in version 1.9.0: Official support for in-memory loading. Not all the providers support it,
but currently SDL2, pygame, pil and imageio work.

To load an image with a filename, you would usually do:

from kivy.core.image import Image as CoreImage
im = CoreImage("image.png")

You can also load the image data directly from a memory block. Instead of
passing the filename, you’ll need to pass the data as a BytesIO object
together with an “ext” parameter. Both are mandatory:

import io
from kivy.core.image import Image as CoreImage
data = io.BytesIO(open("image.png", "rb").read())
im = CoreImage(data, ext="png")

By default, the image will not be cached as our internal cache requires a
filename. If you want caching, add a filename that represents your file (it
will be used only for caching):

import io
from kivy.core.image import Image as CoreImage
data = io.BytesIO(open("image.png", "rb").read())
im = CoreImage(data, ext="png", filename="image.png")

Saving an image

A CoreImage can be saved to a file:

from kivy.core.image import Image as CoreImage
image = CoreImage(...)
image.save("/tmp/test.png")

Or you can get the bytes (new in 1.11.0):

import io
from kivy.core.image import Image as CoreImage
data = io.BytesIO()
image = CoreImage(…)
image.save(data, fmt=”png”)
png_bytes = data.read()

	
class kivy.core.image.Image(arg, **kwargs)

	Bases: kivy.event.EventDispatcher

Load an image and store the size and texture.

Changed in version 1.0.7: mipmap attribute has been added. The texture_mipmap and
texture_rectangle have been deleted.

Changed in version 1.0.8: An Image widget can change its texture. A new event ‘on_texture’ has
been introduced. New methods for handling sequenced animation have been
added.

	Parameters:

	
	arg: can be a string (str), Texture, BytesIO or Image object
	A string path to the image file or data URI to be loaded; or a
Texture object, which will be wrapped in an Image object; or a
BytesIO object containing raw image data; or an already existing
image object, in which case, a real copy of the given image object
will be returned.

	keep_data: bool, defaults to False
	Keep the image data when the texture is created.

	mipmap: bool, defaults to False
	Create mipmap for the texture.

	anim_delay: float, defaults to .25
	Delay in seconds between each animation frame. Lower values means
faster animation.

	ext: str, only with BytesIO arg
	File extension to use in determining how to load raw image data.

	filename: str, only with BytesIO arg
	Filename to use in the image cache for raw image data.

	
property anim_available

	Return True if this Image instance has animation available.

New in version 1.0.8.

	
property anim_delay

	Delay between each animation frame. A lower value means faster
animation.

New in version 1.0.8.

	
property anim_index

	Return the index number of the image currently in the texture.

New in version 1.0.8.

	
anim_reset(allow_anim)

	Reset an animation if available.

New in version 1.0.8.

	Parameters:

	
	allow_anim: bool
	Indicate whether the animation should restart playing or not.

Usage:

start/reset animation
image.anim_reset(True)

or stop the animation
image.anim_reset(False)

You can change the animation speed whilst it is playing:

Set to 20 FPS
image.anim_delay = 1 / 20.

	
property filename

	Get/set the filename of image

	
property height

	Image height

	
property image

	Get/set the data image object

	
static load(filename, **kwargs)

	Load an image

	Parameters:

	
	filename: str
	Filename of the image.

	keep_data: bool, defaults to False
	Keep the image data when the texture is created.

	
load_memory(data, ext, filename='__inline__')

	(internal) Method to load an image from raw data.

	
property nocache

	Indicate whether the texture will not be stored in the cache or not.

New in version 1.6.0.

	
on_texture(*largs)

	
	This event is fired when the texture reference or content has
	changed. It is normally used for sequenced images.

New in version 1.0.8.

	
read_pixel(x, y)

	For a given local x/y position, return the pixel color at that
position.

Warning

This function can only be used with images loaded with the
keep_data=True keyword. For example:

m = Image.load('image.png', keep_data=True)
color = m.read_pixel(150, 150)

	Parameters:

	
	x: int
	Local x coordinate of the pixel in question.

	y: int
	Local y coordinate of the pixel in question.

	
remove_from_cache()

	Remove the Image from cache. This facilitates re-loading of
images from disk in case the image content has changed.

New in version 1.3.0.

Usage:

im = CoreImage('1.jpg')
-- do something --
im.remove_from_cache()
im = CoreImage('1.jpg')
this time image will be re-loaded from disk

	
save(filename, flipped=False, fmt=None)

	Save image texture to file.

The filename should have the ‘.png’ extension because the texture data
read from the GPU is in the RGBA format. ‘.jpg’ might work but has not
been heavily tested so some providers might break when using it.
Any other extensions are not officially supported.

The flipped parameter flips the saved image vertically, and
defaults to False.

Example:

Save an core image object
from kivy.core.image import Image
img = Image('hello.png')
img.save('hello2.png')

Save a texture
texture = Texture.create(...)
img = Image(texture)
img.save('hello3.png')

New in version 1.7.0.

Changed in version 1.8.0: Parameter flipped added to flip the image before saving, default
to False.

Changed in version 1.11.0: Parameter fmt added to force the output format of the file
Filename can now be a BytesIO object.

	
property size

	Image size (width, height)

	
property texture

	Texture of the image

	
property width

	Image width

	
class kivy.core.image.ImageData(width, height, fmt, data, source=None, flip_vertical=True, source_image=None, rowlength=0)

	Bases: builtins.object

Container for images and mipmap images.
The container will always have at least the mipmap level 0.

	
add_mipmap(level, width, height, data, rowlength)

	Add a image for a specific mipmap level.

New in version 1.0.7.

	
property data

	Image data.
(If the image is mipmapped, it will use the level 0)

	
flip_vertical

	Indicate if the texture will need to be vertically flipped

	
fmt

	Decoded image format, one of a available texture format

	
get_mipmap(level)

	Get the mipmap image at a specific level if it exists

New in version 1.0.7.

	
property height

	Image height in pixels.
(If the image is mipmapped, it will use the level 0)

	
iterate_mipmaps()

	Iterate over all mipmap images available.

New in version 1.0.7.

	
mipmaps

	Data for each mipmap.

	
property rowlength

	Image rowlength.
(If the image is mipmapped, it will use the level 0)

New in version 1.9.0.

	
property size

	Image (width, height) in pixels.
(If the image is mipmapped, it will use the level 0)

	
source

	Image source, if available

	
property width

	Image width in pixels.
(If the image is mipmapped, it will use the level 0)

Spelling

Provides abstracted access to a range of spellchecking backends as well as
word suggestions. The API is inspired by enchant but other backends can be
added that implement the same API.

Spelling currently requires python-enchant for all platforms except
OSX, where a native implementation exists.

>>> from kivy.core.spelling import Spelling
>>> s = Spelling()
>>> s.list_languages()
['en', 'en_CA', 'en_GB', 'en_US']
>>> s.select_language('en_US')
>>> s.suggest('helo')
[u'hole', u'help', u'helot', u'hello', u'halo', u'hero', u'hell', u'held',
 u'helm', u'he-lo']

	
exception kivy.core.spelling.NoLanguageSelectedError

	Bases: Exception

Exception to be raised when a language-using method is called but no
language was selected prior to the call.

	
exception kivy.core.spelling.NoSuchLangError

	Bases: Exception

Exception to be raised when a specific language could not be found.

	
class kivy.core.spelling.SpellingBase(language=None)

	Bases: builtins.object

Base class for all spelling providers.
Supports some abstract methods for checking words and getting suggestions.

	
check(word)

	If word is a valid word in self._language (the currently active
language), returns True. If the word shouldn’t be checked, returns
None (e.g. for ‘’). If it is not a valid word in self._language,
return False.

	Parameters:

	
	word: str
	The word to check.

	
list_languages()

	Return a list of all supported languages.
E.g. [‘en’, ‘en_GB’, ‘en_US’, ‘de’, …]

	
select_language(language)

	From the set of registered languages, select the first language
for language.

	Parameters:

	
	language: str
	Language identifier. Needs to be one of the options returned by
list_languages(). Sets the language used for spell checking and
word suggestions.

	
suggest(fragment)

	For a given fragment (i.e. part of a word or a word by itself),
provide corrections (fragment may be misspelled) or completions
as a list of strings.

	Parameters:

	
	fragment: str
	The word fragment to get suggestions/corrections for.
E.g. ‘foo’ might become ‘of’, ‘food’ or ‘foot’.

Text

An abstraction of text creation. Depending of the selected backend, the
accuracy of text rendering may vary.

Changed in version 1.10.1: LabelBase.find_base_direction() added.

Changed in version 1.5.0: LabelBase.line_height added.

Changed in version 1.0.7: The LabelBase does not generate any texture if the text has a
width <= 1.

This is the backend layer for rendering text with different text providers,
you should only be using this directly if your needs aren’t fulfilled by the
Label.

Usage example:

from kivy.core.text import Label as CoreLabel

...
...
my_label = CoreLabel()
my_label.text = 'hello'
the label is usually not drawn until needed, so force it to draw.
my_label.refresh()
Now access the texture of the label and use it wherever and
however you may please.
hello_texture = my_label.texture

Font Context Manager

A font context is a namespace where multiple fonts are loaded; if a font is
missing a glyph needed to render text, it can fall back to a different font in
the same context. The font context manager can be used to query and manipulate
the state of font contexts when using the Pango text provider (no other
provider currently implements it).

New in version 1.11.0.

Warning

This feature requires the Pango text provider.

Font contexts can be created automatically by kivy.uix.label.Label or
kivy.uix.textinput.TextInput; if a non-existent context is used in
one of these classes, it will be created automatically, or if a font file is
specified without a context (this creates an isolated context, without
support for fallback).

Usage example:

from kivy.uix.label import Label
from kivy.core.text import FontContextManager as FCM

Create a font context containing system fonts + one custom TTF
FCM.create('system://myapp')
family = FCM.add_font('/path/to/file.ttf')

These are now interchangeable ways to refer to the custom font:
lbl1 = Label(font_context='system://myapp', family_name=family)
lbl2 = Label(font_context='system://myapp', font_name='/path/to/file.ttf')

You could also refer to a system font by family, since this is a
system:// font context
lbl3 = Label(font_context='system://myapp', family_name='Arial')

	
class kivy.core.text.LabelBase(text='', font_size=12, font_name=None, bold=False, italic=False, underline=False, strikethrough=False, font_family=None, halign='left', valign='bottom', shorten=False, text_size=None, mipmap=False, color=None, line_height=1.0, strip=False, strip_reflow=True, shorten_from='center', split_str=' ', unicode_errors='replace', font_hinting='normal', font_kerning=True, font_blended=True, outline_width=None, outline_color=None, font_context=None, font_features=None, base_direction=None, font_direction='ltr', font_script_name='Latin', text_language=None, **kwargs)

	Bases: builtins.object

Core text label.
This is the abstract class used by different backends to render text.

Warning

The core text label can’t be changed at runtime. You must recreate one.

	Parameters:

	
	font_size: int, defaults to 12
	Font size of the text

	font_context: str, defaults to None
	Context for the specified font (see kivy.uix.label.Label
for details). None will autocreate an isolated context named
after the resolved font file.

	font_name: str, defaults to DEFAULT_FONT
	Font name of the text

	font_family: str, defaults to None
	Font family name to request for drawing, this can only be used
with font_context.

	bold: bool, defaults to False
	Activate “bold” text style

	italic: bool, defaults to False
	Activate “italic” text style

	text_size: tuple, defaults to (None, None)
	Add constraint to render the text (inside a bounding box).
If no size is given, the label size will be set to the text size.

	padding: int|float or list|tuple, defaults to [0, 0, 0, 0].
	Padding of the text in the format [padding_left, padding_top,
padding_right, padding_bottom].
padding should be int|float or a list|tuple with 1, 2 or 4
elements.

	padding_x: float, defaults to 0.0
	Left/right padding

	padding_y: float, defaults to 0.0
	Top/bottom padding

	halign: str, defaults to “left”
	Horizontal text alignment inside the bounding box

	valign: str, defaults to “bottom”
	Vertical text alignment inside the bounding box

	shorten: bool, defaults to False
	Indicate whether the label should attempt to shorten its textual
contents as much as possible if a size is given.
Setting this to True without an appropriately set size will lead to
unexpected results.

	shorten_from: str, defaults to center
	The side from which we should shorten the text from, can be left,
right, or center. E.g. if left, the ellipsis will appear towards
the left side and it will display as much text starting from the
right as possible.

	split_str: string, defaults to ‘ ‘ (space)
	The string to use to split the words by when shortening. If empty,
we can split after every character filling up the line as much as
possible.

	max_lines: int, defaults to 0 (unlimited)
	If set, this indicate how maximum line are allowed to render the
text. Works only if a limitation on text_size is set.

	mipmap: bool, defaults to False
	Create a mipmap for the texture

	strip: bool, defaults to False
	Whether each row of text has its leading and trailing spaces
stripped. If halign is justify it is implicitly True.

	strip_reflow: bool, defaults to True
	Whether text that has been reflowed into a second line should
be stripped, even if strip is False. This is only in effect when
size_hint_x is not None, because otherwise lines are never
split.

	unicode_errors: str, defaults to ‘replace’
	How to handle unicode decode errors. Can be ‘strict’, ‘replace’
or ‘ignore’.

	outline_width: int, defaults to None
	Width in pixels for the outline.

	outline_color: tuple, defaults to (0, 0, 0)
	Color of the outline.

	font_features: str, defaults to None
	OpenType font features in CSS format (Pango only)

	base_direction: str, defaults to None (auto)
	Text direction, one of None, ‘ltr’, ‘rtl’, ‘weak_ltr’,
or ‘weak_rtl’ (Pango only)

	text_language: str, defaults to None (user locale)
	RFC-3066 format language tag as a string (Pango only)

Deprecated since version 2.2.0: padding_x and padding_y have been deprecated. Please use padding
instead.

Changed in version 2.2.0: padding is now a list and defaults to [0, 0, 0, 0]. padding accepts
int|float or a list|tuple with 1, 2 or 4 elements.

Changed in version 1.10.1: font_context, font_family, font_features, base_direction
and text_language were added.

Changed in version 1.10.0: outline_width and outline_color were added.

Changed in version 1.9.0: strip, strip_reflow, shorten_from, split_str, and
unicode_errors were added.

Changed in version 1.9.0: padding_x and padding_y has been fixed to work as expected.
In the past, the text was padded by the negative of their values.

Changed in version 1.8.0: max_lines parameters has been added.

Changed in version 1.0.8: size have been deprecated and replaced with text_size.

Changed in version 1.0.7: The valign is now respected. This wasn’t the case previously
so you might have an issue in your application if you have not
considered this.

	
property content_height

	Return the content height; i.e. the height of the text without
any padding.

	
property content_size

	Return the content size (width, height)

	
property content_width

	Return the content width; i.e. the width of the text without
any padding.

	
static find_base_direction(text)

	Searches a string the first character that has a strong direction,
according to the Unicode bidirectional algorithm. Returns None if
the base direction cannot be determined, or one of ‘ltr’ or ‘rtl’.

Note

This feature requires the Pango text provider.

	
property fontid

	Return a unique id for all font parameters

	
get_cached_extents()

	Returns a cached version of the get_extents() function.

>>> func = self._get_cached_extents()
>>> func
<built-in method size of pygame.font.Font object at 0x01E45650>
>>> func('a line')
(36, 18)

Warning

This method returns a size measuring function that is valid
for the font settings used at the time get_cached_extents()
was called. Any change in the font settings will render the
returned function incorrect. You should only use this if you know
what you’re doing.

New in version 1.9.0.

	
get_extents(text)

	Return a tuple (width, height) indicating the size of the specified
text

	
static get_system_fonts_dir()

	Return the directories used by the system for fonts.

	
property label

	Get/Set the text

	
refresh()

	Force re-rendering of the text

	
static register(name, fn_regular, fn_italic=None, fn_bold=None, fn_bolditalic=None)

	Register an alias for a Font.

New in version 1.1.0.

If you’re using a ttf directly, you might not be able to use the
bold/italic properties of
the ttf version. If the font is delivered in multiple files
(one regular, one italic and one bold), then you need to register these
files and use the alias instead.

All the fn_regular/fn_italic/fn_bold parameters are resolved with
kivy.resources.resource_find(). If fn_italic/fn_bold are None,
fn_regular will be used instead.

	
render(real=False)

	Return a tuple (width, height) to create the image
with the user constraints. (width, height) includes the padding.

	
shorten(text, margin=2)

	Shortens the text to fit into a single line by the width specified
by text_size [0]. If text_size [0] is None, it returns
text text unchanged.

split_str and shorten_from determines how the text is
shortened.

	Params:

	text str, the text to be shortened.
margin int, the amount of space to leave between the margins
and the text. This is in addition to padding_x.

	Returns:

	the text shortened to fit into a single line.

	
property text

	Get/Set the text

	
property text_size

	Get/set the (width, height) of the ‘
‘contrained rendering box

	
property usersize

	(deprecated) Use text_size instead.

	Text layout
	LayoutLine
	LayoutLine.h

	LayoutLine.is_last_line

	LayoutLine.line_wrap

	LayoutLine.w

	LayoutLine.words

	LayoutLine.x

	LayoutLine.y

	LayoutWord
	LayoutWord.lh

	LayoutWord.lw

	LayoutWord.options

	LayoutWord.text

	layout_text()

	Text Markup
	MarkupLabel
	MarkupLabel.anchors

	MarkupLabel.markup

	MarkupLabel.refs

	MarkupLabel.render()

	MarkupLabel.shorten_post()

Text layout

An internal module for laying out text according to options and constraints.
This is not part of the API and may change at any time.

	
class kivy.core.text.text_layout.LayoutLine

	Bases: builtins.object

Formally describes a line of text. A line of text is composed of many
LayoutWord instances, each with it’s own text, size and options.

A LayoutLine instance does not always imply that the words
contained in the line ended with a newline. That is only the case if
is_last_line is True. For example a single real line of text can
be split across multiple LayoutLine instances if the whole line
doesn’t fit in the constrained width.

	Parameters:

	
	x: int
	the location in a texture from where the left side of this line is
began drawn.

	y: int
	the location in a texture from where the bottom of this line is
drawn.

	w: int
	the width of the line. This is the sum of the individual widths
of its LayoutWord instances. Does not include any padding.

	h: int
	the height of the line. This is the maximum of the individual
heights of its LayoutWord instances multiplied by the
line_height of these instance. So this is larger then the word
height.

	is_last_line: bool
	whether this line was the last line in a paragraph. When True, it
implies that the line was followed by a newline. Newlines should
not be included in the text of words, but is implicit by setting
this to True.

	line_wrap: bool
	whether this line is continued from a previous line which didn’t
fit into a constrained width and was therefore split across
multiple LayoutLine instances. line_wrap can be True
or False independently of is_last_line.

	words: python list
	a list that contains only LayoutWord instances describing
the text of the line.

	
h

	h: ‘int’

	
is_last_line

	is_last_line: ‘int’

	
line_wrap

	line_wrap: ‘int’

	
w

	w: ‘int’

	
words

	words: list

	
x

	x: ‘int’

	
y

	y: ‘int’

	
class kivy.core.text.text_layout.LayoutWord

	Bases: builtins.object

Formally describes a word contained in a line. The name word simply
means a chunk of text and can be used to describe any text.

A word has some width, height and is rendered according to options saved
in options. See LayoutLine for its usage.

	Parameters:

	
	options: dict
	the label options dictionary for this word.

	lw: int
	the width of the text in pixels.

	lh: int
	the height of the text in pixels.

	text: string
	the text of the word.

	
lh

	lh: ‘int’

	
lw

	lw: ‘int’

	
options

	options: dict

	
text

	text: object

	
kivy.core.text.text_layout.layout_text(text, list lines, tuple size, tuple text_size, dict options, get_extents, int append_down, int complete)

	Lays out text into a series of LayoutWord and
LayoutLine instances according to the options specified.

The function is designed to be called many times, each time new text is
appended to the last line (or first line if appending upwards), unless a
newline is present in the text. Each text appended is described by its own
options which can change between successive calls. If the text is
constrained, we stop as soon as the constraint is reached.

	Parameters:

	
	text: string or bytes
	the text to be broken down into lines. If lines is not empty,
the text is added to the last line (or first line if append_down
is False) until a newline is reached which creates a new line in
lines. See LayoutLine.

	lines: list
	a list of LayoutLine instances, each describing a line of
the text. Calls to layout_text() append or create
new LayoutLine instances in lines.

	size: 2-tuple of ints
	the size of the laid out text so far. Upon first call it should
probably be (0, 0), afterwards it should be the (w, h) returned
by this function in a previous call. When size reaches the
constraining size, text_size, we stop adding lines and return
True for the clipped parameter. size includes the x and y padding.

	text_size: 2-tuple of ints or None.
	the size constraint on the laid out text. If either element is
None, the text is not constrained in that dimension. For example,
(None, 200) will constrain the height, including padding to 200,
while the width is unconstrained. The first line, and the first
character of a line is always returned, even if it exceeds the
constraint. The value be changed between different calls.

	options: dict
	the label options of this text. The options are saved with each
word allowing different words to have different options from
successive calls.

Note, options must include a space_width key with a value
indicating the width of a space for that set of options.

	get_extents: callable
	a function called with a string, which returns a tuple containing
the width, height of the string.

	append_down: bool
	Whether successive calls to the function appends lines before or
after the existing lines. If True, they are appended to the last
line and below it. If False, it’s appended at the first line and
above. For example, if False, everything after the last
newline in text is appended to the first line in lines.
Everything before the last newline is inserted at the start of
lines in same order as text; that is we do not invert the line
order.

This allows laying out from top to bottom until the constrained is
reached, or from bottom to top until the constrained is reached.

	complete: bool
	whether this text complete lines. It use is that normally is
strip in options is True, all leading and trailing spaces
are removed from each line except from the last line (or first
line if append_down is False) which only removes leading spaces.
That’s because further text can still be appended to the last line
so we cannot strip them. If complete is True, it indicates no
further text is coming and all lines will be stripped.

The function can also be called with text set to the empty string
and complete set to True in order for the last (first) line to
be stripped.

	Returns:

	3-tuple, (w, h, clipped).
w and h is the width and height of the text in lines so far and
includes padding. This can be larger than text_size, e.g. if not even
a single fitted, the first line would still be returned.
clipped is True if not all the text has been added to lines because
w, h reached the constrained size.

Following is a simple example with no padding and no stripping:

>>> from kivy.core.text import Label
>>> from kivy.core.text.text_layout import layout_text

>>> l = Label()
>>> lines = []
>>> # layout text with width constraint by 50, but no height constraint
>>> w, h, clipped = layout_text('heres some text\nah, another line',
... lines, (0, 0), (50, None), l.options, l.get_cached_extents(), True,
... False)
>>> w, h, clipped
(46, 90, False)
now add text from bottom up, and constrain width only be 100
>>> w, h, clipped = layout_text('\nyay, more text\n', lines, (w, h),
... (100, None), l.options, l.get_cached_extents(), False, True)
>>> w, h, clipped
(77, 120, 0)
>>> for line in lines:
... print('line w: {}, line h: {}'.format(line.w, line.h))
... for word in line.words:
... print('w: {}, h: {}, text: {}'.format(word.lw, word.lh,
... [word.text]))
line w: 0, line h: 15
line w: 77, line h: 15
w: 77, h: 15, text: ['yay, more text']
line w: 31, line h: 15
w: 31, h: 15, text: ['heres']
line w: 34, line h: 15
w: 34, h: 15, text: [' some']
line w: 24, line h: 15
w: 24, h: 15, text: [' text']
line w: 17, line h: 15
w: 17, h: 15, text: ['ah,']
line w: 46, line h: 15
w: 46, h: 15, text: [' another']
line w: 23, line h: 15
w: 23, h: 15, text: [' line']

Text Markup

New in version 1.1.0.

Changed in version 1.10.1: Added font_context, font_features and text_language (Pango only)

We provide a simple text-markup for inline text styling. The syntax look the
same as the BBCode [http://en.wikipedia.org/wiki/BBCode].

A tag is defined as [tag], and should have a corresponding
[/tag] closing tag. For example:

[b]Hello [color=ff0000]world[/color][/b]

The following tags are available:

	[b][/b]
	Activate bold text

	[i][/i]
	Activate italic text

	[u][/u]
	Underlined text

	[s][/s]
	Strikethrough text

	[font=<str>][/font]
	Change the font (note: this refers to a TTF file or registered alias)

	[font_context=<str>][/font_context]
	Change context for the font, use string value “none” for isolated context.

	[font_family=<str>][/font_family]
	Font family to request for drawing. This is only valid when using a
font context, and takes precedence over [font]. See
kivy.uix.label.Label for details.

	[font_features=<str>][/font_features]
	OpenType font features, in CSS format, this is passed straight
through to Pango. The effects of requesting a feature depends on loaded
fonts, library versions, etc. Pango only, requires v1.38 or later.

	[size=<size>][/size]
	Change the font size. <size> should be an integer, optionally with a
unit (i.e. 16sp)

	[color=#<color>][/color]
	Change the text color

	[ref=<str>][/ref]
	Add an interactive zone. The reference + all the word box inside the
reference will be available in MarkupLabel.refs

	[anchor=<str>]
	Put an anchor in the text. You can get the position of your anchor within
the text with MarkupLabel.anchors

	[sub][/sub]
	Display the text at a subscript position relative to the text before it.

	[sup][/sup]
	Display the text at a superscript position relative to the text before it.

	[text_language=<str>][/text_language]
	Language of the text, this is an RFC-3066 format language tag (as string),
for example “en_US”, “zh_CN”, “fr” or “ja”. This can impact font selection,
metrics and rendering. For example, the same bytes of text can look
different for ur and ar languages, though both use Arabic script.
Use the string ‘none’ to revert to locale detection. Pango only.

If you need to escape the markup from the current text, use
kivy.utils.escape_markup().

	
class kivy.core.text.markup.MarkupLabel(*largs, **kwargs)

	Bases: kivy.core.text.LabelBase

Markup text label.

See module documentation for more information.

	
property anchors

	Get the position of all the [anchor=...]:

{ 'anchorA': (x, y), 'anchorB': (x, y), ... }

	
property markup

	Return the text with all the markup split:

>>> MarkupLabel('[b]Hello world[/b]').markup
>>> ('[b]', 'Hello world', '[/b]')

	
property refs

	Get the bounding box of all the [ref=...]:

{ 'refA': ((x1, y1, x2, y2), (x1, y1, x2, y2)), ... }

	
render(real=False)

	Return a tuple (width, height) to create the image
with the user constraints. (width, height) includes the padding.

	
shorten_post(lines, w, h, margin=2)

	Shortens the text to a single line according to the label options.

This function operates on a text that has already been laid out because
for markup, parts of text can have different size and options.

If text_size [0] is None, the lines are returned unchanged.
Otherwise, the lines are converted to a single line fitting within the
constrained width, text_size [0].

	Params:

	lines: list of LayoutLine instances describing the text.
w: int, the width of the text in lines, including padding.
h: int, the height of the text in lines, including padding.
margin int, the additional space left on the sides. This is in
addition to padding_x.

	Returns:

	3-tuple of (xw, h, lines), where w, and h is similar to the input
and contains the resulting width / height of the text, including
padding. lines, is a list containing a single LayoutLine, which
contains the words for the line.

Text Markup

New in version 1.1.0.

Changed in version 1.10.1: Added font_context, font_features and text_language (Pango only)

We provide a simple text-markup for inline text styling. The syntax look the
same as the BBCode [http://en.wikipedia.org/wiki/BBCode].

A tag is defined as [tag], and should have a corresponding
[/tag] closing tag. For example:

[b]Hello [color=ff0000]world[/color][/b]

The following tags are available:

	[b][/b]
	Activate bold text

	[i][/i]
	Activate italic text

	[u][/u]
	Underlined text

	[s][/s]
	Strikethrough text

	[font=<str>][/font]
	Change the font (note: this refers to a TTF file or registered alias)

	[font_context=<str>][/font_context]
	Change context for the font, use string value “none” for isolated context.

	[font_family=<str>][/font_family]
	Font family to request for drawing. This is only valid when using a
font context, and takes precedence over [font]. See
kivy.uix.label.Label for details.

	[font_features=<str>][/font_features]
	OpenType font features, in CSS format, this is passed straight
through to Pango. The effects of requesting a feature depends on loaded
fonts, library versions, etc. Pango only, requires v1.38 or later.

	[size=<size>][/size]
	Change the font size. <size> should be an integer, optionally with a
unit (i.e. 16sp)

	[color=#<color>][/color]
	Change the text color

	[ref=<str>][/ref]
	Add an interactive zone. The reference + all the word box inside the
reference will be available in MarkupLabel.refs

	[anchor=<str>]
	Put an anchor in the text. You can get the position of your anchor within
the text with MarkupLabel.anchors

	[sub][/sub]
	Display the text at a subscript position relative to the text before it.

	[sup][/sup]
	Display the text at a superscript position relative to the text before it.

	[text_language=<str>][/text_language]
	Language of the text, this is an RFC-3066 format language tag (as string),
for example “en_US”, “zh_CN”, “fr” or “ja”. This can impact font selection,
metrics and rendering. For example, the same bytes of text can look
different for ur and ar languages, though both use Arabic script.
Use the string ‘none’ to revert to locale detection. Pango only.

If you need to escape the markup from the current text, use
kivy.utils.escape_markup().

	
class kivy.core.text.markup.MarkupLabel(*largs, **kwargs)

	Bases: kivy.core.text.LabelBase

Markup text label.

See module documentation for more information.

	
property anchors

	Get the position of all the [anchor=...]:

{ 'anchorA': (x, y), 'anchorB': (x, y), ... }

	
property markup

	Return the text with all the markup split:

>>> MarkupLabel('[b]Hello world[/b]').markup
>>> ('[b]', 'Hello world', '[/b]')

	
property refs

	Get the bounding box of all the [ref=...]:

{ 'refA': ((x1, y1, x2, y2), (x1, y1, x2, y2)), ... }

	
render(real=False)

	Return a tuple (width, height) to create the image
with the user constraints. (width, height) includes the padding.

	
shorten_post(lines, w, h, margin=2)

	Shortens the text to a single line according to the label options.

This function operates on a text that has already been laid out because
for markup, parts of text can have different size and options.

If text_size [0] is None, the lines are returned unchanged.
Otherwise, the lines are converted to a single line fitting within the
constrained width, text_size [0].

	Params:

	lines: list of LayoutLine instances describing the text.
w: int, the width of the text in lines, including padding.
h: int, the height of the text in lines, including padding.
margin int, the additional space left on the sides. This is in
addition to padding_x.

	Returns:

	3-tuple of (xw, h, lines), where w, and h is similar to the input
and contains the resulting width / height of the text, including
padding. lines, is a list containing a single LayoutLine, which
contains the words for the line.

Text layout

An internal module for laying out text according to options and constraints.
This is not part of the API and may change at any time.

	
class kivy.core.text.text_layout.LayoutLine

	Bases: builtins.object

Formally describes a line of text. A line of text is composed of many
LayoutWord instances, each with it’s own text, size and options.

A LayoutLine instance does not always imply that the words
contained in the line ended with a newline. That is only the case if
is_last_line is True. For example a single real line of text can
be split across multiple LayoutLine instances if the whole line
doesn’t fit in the constrained width.

	Parameters:

	
	x: int
	the location in a texture from where the left side of this line is
began drawn.

	y: int
	the location in a texture from where the bottom of this line is
drawn.

	w: int
	the width of the line. This is the sum of the individual widths
of its LayoutWord instances. Does not include any padding.

	h: int
	the height of the line. This is the maximum of the individual
heights of its LayoutWord instances multiplied by the
line_height of these instance. So this is larger then the word
height.

	is_last_line: bool
	whether this line was the last line in a paragraph. When True, it
implies that the line was followed by a newline. Newlines should
not be included in the text of words, but is implicit by setting
this to True.

	line_wrap: bool
	whether this line is continued from a previous line which didn’t
fit into a constrained width and was therefore split across
multiple LayoutLine instances. line_wrap can be True
or False independently of is_last_line.

	words: python list
	a list that contains only LayoutWord instances describing
the text of the line.

	
h

	h: ‘int’

	
is_last_line

	is_last_line: ‘int’

	
line_wrap

	line_wrap: ‘int’

	
w

	w: ‘int’

	
words

	words: list

	
x

	x: ‘int’

	
y

	y: ‘int’

	
class kivy.core.text.text_layout.LayoutWord

	Bases: builtins.object

Formally describes a word contained in a line. The name word simply
means a chunk of text and can be used to describe any text.

A word has some width, height and is rendered according to options saved
in options. See LayoutLine for its usage.

	Parameters:

	
	options: dict
	the label options dictionary for this word.

	lw: int
	the width of the text in pixels.

	lh: int
	the height of the text in pixels.

	text: string
	the text of the word.

	
lh

	lh: ‘int’

	
lw

	lw: ‘int’

	
options

	options: dict

	
text

	text: object

	
kivy.core.text.text_layout.layout_text(text, list lines, tuple size, tuple text_size, dict options, get_extents, int append_down, int complete)

	Lays out text into a series of LayoutWord and
LayoutLine instances according to the options specified.

The function is designed to be called many times, each time new text is
appended to the last line (or first line if appending upwards), unless a
newline is present in the text. Each text appended is described by its own
options which can change between successive calls. If the text is
constrained, we stop as soon as the constraint is reached.

	Parameters:

	
	text: string or bytes
	the text to be broken down into lines. If lines is not empty,
the text is added to the last line (or first line if append_down
is False) until a newline is reached which creates a new line in
lines. See LayoutLine.

	lines: list
	a list of LayoutLine instances, each describing a line of
the text. Calls to layout_text() append or create
new LayoutLine instances in lines.

	size: 2-tuple of ints
	the size of the laid out text so far. Upon first call it should
probably be (0, 0), afterwards it should be the (w, h) returned
by this function in a previous call. When size reaches the
constraining size, text_size, we stop adding lines and return
True for the clipped parameter. size includes the x and y padding.

	text_size: 2-tuple of ints or None.
	the size constraint on the laid out text. If either element is
None, the text is not constrained in that dimension. For example,
(None, 200) will constrain the height, including padding to 200,
while the width is unconstrained. The first line, and the first
character of a line is always returned, even if it exceeds the
constraint. The value be changed between different calls.

	options: dict
	the label options of this text. The options are saved with each
word allowing different words to have different options from
successive calls.

Note, options must include a space_width key with a value
indicating the width of a space for that set of options.

	get_extents: callable
	a function called with a string, which returns a tuple containing
the width, height of the string.

	append_down: bool
	Whether successive calls to the function appends lines before or
after the existing lines. If True, they are appended to the last
line and below it. If False, it’s appended at the first line and
above. For example, if False, everything after the last
newline in text is appended to the first line in lines.
Everything before the last newline is inserted at the start of
lines in same order as text; that is we do not invert the line
order.

This allows laying out from top to bottom until the constrained is
reached, or from bottom to top until the constrained is reached.

	complete: bool
	whether this text complete lines. It use is that normally is
strip in options is True, all leading and trailing spaces
are removed from each line except from the last line (or first
line if append_down is False) which only removes leading spaces.
That’s because further text can still be appended to the last line
so we cannot strip them. If complete is True, it indicates no
further text is coming and all lines will be stripped.

The function can also be called with text set to the empty string
and complete set to True in order for the last (first) line to
be stripped.

	Returns:

	3-tuple, (w, h, clipped).
w and h is the width and height of the text in lines so far and
includes padding. This can be larger than text_size, e.g. if not even
a single fitted, the first line would still be returned.
clipped is True if not all the text has been added to lines because
w, h reached the constrained size.

Following is a simple example with no padding and no stripping:

>>> from kivy.core.text import Label
>>> from kivy.core.text.text_layout import layout_text

>>> l = Label()
>>> lines = []
>>> # layout text with width constraint by 50, but no height constraint
>>> w, h, clipped = layout_text('heres some text\nah, another line',
... lines, (0, 0), (50, None), l.options, l.get_cached_extents(), True,
... False)
>>> w, h, clipped
(46, 90, False)
now add text from bottom up, and constrain width only be 100
>>> w, h, clipped = layout_text('\nyay, more text\n', lines, (w, h),
... (100, None), l.options, l.get_cached_extents(), False, True)
>>> w, h, clipped
(77, 120, 0)
>>> for line in lines:
... print('line w: {}, line h: {}'.format(line.w, line.h))
... for word in line.words:
... print('w: {}, h: {}, text: {}'.format(word.lw, word.lh,
... [word.text]))
line w: 0, line h: 15
line w: 77, line h: 15
w: 77, h: 15, text: ['yay, more text']
line w: 31, line h: 15
w: 31, h: 15, text: ['heres']
line w: 34, line h: 15
w: 34, h: 15, text: [' some']
line w: 24, line h: 15
w: 24, h: 15, text: [' text']
line w: 17, line h: 15
w: 17, h: 15, text: ['ah,']
line w: 46, line h: 15
w: 46, h: 15, text: [' another']
line w: 23, line h: 15
w: 23, h: 15, text: [' line']

Video

Core class for reading video files and managing the video
Texture.

Changed in version 1.10.0: The pyglet, pygst and gi providers have been removed.

Changed in version 1.8.0: There are now 2 distinct Gstreamer implementations: one using Gi/Gst
working for both Python 2+3 with Gstreamer 1.0, and one using PyGST
working only for Python 2 + Gstreamer 0.10.

Note

Recording is not supported.

	
class kivy.core.video.VideoBase(**kwargs)

	Bases: kivy.event.EventDispatcher

VideoBase, a class used to implement a video reader.

	Parameters:

	
	filename: str
	Filename of the video. Can be a file or an URI.

	eos: str, defaults to ‘pause’
	Action to take when EOS is hit. Can be one of ‘pause’, ‘stop’ or
‘loop’.

Changed in version 1.4.0: added ‘pause’

	async: bool, defaults to True
	Load the video asynchronously (may be not supported by all
providers).

	autoplay: bool, defaults to False
	Auto play the video on init.

	Events:

	
	on_eos
	Fired when EOS is hit.

	on_load
	Fired when the video is loaded and the texture is available.

	on_frame
	Fired when a new frame is written to the texture.

	
property duration

	Get the video duration (in seconds)

	
property filename

	Get/set the filename/uri of the current video

	
load()

	Load the video from the current filename

	
pause()

	Pause the video

New in version 1.4.0.

	
play()

	Play the video

	
property position

	Get/set the position in the video (in seconds)

	
seek(percent, precise=True)

	Move to position as percentage (strictly, a proportion from
0 - 1) of the duration

	
property state

	Get the video playing status

	
stop()

	Stop the video playing

	
property texture

	Get the video texture

	
unload()

	Unload the actual video

	
property volume

	Get/set the volume in the video (1.0 = 100%)

Window

Core class for creating the default Kivy window. Kivy supports only one window
per application: please don’t try to create more than one.

	
class kivy.core.window.Keyboard(**kwargs)

	Bases: kivy.event.EventDispatcher

Keyboard interface that is returned by
WindowBase.request_keyboard(). When you request a keyboard,
you’ll get an instance of this class. Whatever the keyboard input is
(system or virtual keyboard), you’ll receive events through this
instance.

	Events:

	
	on_key_down: keycode, text, modifiers
	Fired when a new key is pressed down

	on_key_up: keycode
	Fired when a key is released (up)

Here is an example of how to request a Keyboard in accordance with the
current configuration:

import kivy
kivy.require('1.0.8')

from kivy.core.window import Window
from kivy.uix.widget import Widget

class MyKeyboardListener(Widget):

 def __init__(self, **kwargs):
 super(MyKeyboardListener, self).__init__(**kwargs)
 self._keyboard = Window.request_keyboard(
 self._keyboard_closed, self, 'text')
 if self._keyboard.widget:
 # If it exists, this widget is a VKeyboard object which you can use
 # to change the keyboard layout.
 pass
 self._keyboard.bind(on_key_down=self._on_keyboard_down)

 def _keyboard_closed(self):
 print('My keyboard have been closed!')
 self._keyboard.unbind(on_key_down=self._on_keyboard_down)
 self._keyboard = None

 def _on_keyboard_down(self, keyboard, keycode, text, modifiers):
 print('The key', keycode, 'have been pressed')
 print(' - text is %r' % text)
 print(' - modifiers are %r' % modifiers)

 # Keycode is composed of an integer + a string
 # If we hit escape, release the keyboard
 if keycode[1] == 'escape':
 keyboard.release()

 # Return True to accept the key. Otherwise, it will be used by
 # the system.
 return True

if __name__ == '__main__':
 from kivy.base import runTouchApp
 runTouchApp(MyKeyboardListener())

	
callback

	Callback that will be called when the keyboard is released

	
keycode_to_string(value)

	Convert a keycode number to a string according to the
Keyboard.keycodes. If the value is not found in the
keycodes, it will return ‘’.

	
release()

	Call this method to release the current keyboard.
This will ensure that the keyboard is no longer attached to your
callback.

	
string_to_keycode(value)

	Convert a string to a keycode number according to the
Keyboard.keycodes. If the value is not found in the
keycodes, it will return -1.

	
target

	Target that have requested the keyboard

	
widget

	VKeyboard widget, if allowed by the configuration

	
window

	Window which the keyboard is attached too

	
class kivy.core.window.WindowBase(**kwargs)

	Bases: kivy.event.EventDispatcher

WindowBase is an abstract window widget for any window implementation.

	Parameters:

	
	borderless: str, one of (‘0’, ‘1’)
	Set the window border state. Check the
config documentation for a
more detailed explanation on the values.

	custom_titlebar: str, one of (‘0’, ‘1’)
	Set to ‘1’ to uses a custom titlebar

	fullscreen: str, one of (‘0’, ‘1’, ‘auto’, ‘fake’)
	Make the window fullscreen. Check the
config documentation for a
more detailed explanation on the values.

	width: int
	Width of the window.

	height: int
	Height of the window.

	minimum_width: int
	Minimum width of the window (only works for sdl2 window provider).

	minimum_height: int
	Minimum height of the window (only works for sdl2 window provider).

	always_on_top: bool
	When enabled, the window will be brought to the front and will keep
the window above the rest. If disabled, it will restore the default
behavior. Only works for the sdl2 window provider.

	allow_screensaver: bool
	Allow the device to show a screen saver, or to go to sleep
on mobile devices. Defaults to True. Only works for sdl2 window
provider.

	Events:

	
	on_motion: etype, motionevent
	Fired when a new MotionEvent is
dispatched

	on_touch_down:
	Fired when a new touch event is initiated.

	on_touch_move:
	Fired when an existing touch event changes location.

	on_touch_up:
	Fired when an existing touch event is terminated.

	on_draw:
	Fired when the Window is being drawn.

	on_flip:
	Fired when the Window GL surface is being flipped.

	on_rotate: rotation
	Fired when the Window is being rotated.

	on_close:
	Fired when the Window is closed.

	on_request_close:
	Fired when the event loop wants to close the window, or if the
escape key is pressed and exit_on_escape is True. If a function
bound to this event returns True, the window will not be closed.
If the the event is triggered because of the keyboard escape key,
the keyword argument source is dispatched along with a value of
keyboard to the bound functions.

New in version 1.9.0.

	on_cursor_enter:
	Fired when the cursor enters the window.

New in version 1.9.1.

	on_cursor_leave:
	Fired when the cursor leaves the window.

New in version 1.9.1.

	on_minimize:
	Fired when the window is minimized.

New in version 1.10.0.

	on_maximize:
	Fired when the window is maximized.

New in version 1.10.0.

	on_restore:
	Fired when the window is restored.

New in version 1.10.0.

	on_hide:
	Fired when the window is hidden.

New in version 1.10.0.

	on_show:
	Fired when when the window is shown.

New in version 1.10.0.

	on_keyboard: key, scancode, codepoint, modifier
	Fired when the keyboard is used for input.

Changed in version 1.3.0: The unicode parameter has been deprecated in favor of
codepoint, and will be removed completely in future versions.

	on_key_down: key, scancode, codepoint, modifier
	Fired when a key pressed.

Changed in version 1.3.0: The unicode parameter has been deprecated in favor of
codepoint, and will be removed completely in future versions.

	on_key_up: key, scancode, codepoint
	Fired when a key is released.

Changed in version 1.3.0: The unicode parameter has be deprecated in favor of
codepoint, and will be removed completely in future versions.

	on_drop_begin: x, y, *args
	Fired when text(s) or file(s) drop on the application is about to
begin.

New in version 2.1.0.

	on_drop_file: filename (bytes), x, y, *args
	Fired when a file is dropped on the application.

New in version 1.2.0.

Changed in version 2.1.0: Renamed from on_dropfile to on_drop_file.

	on_drop_text: text (bytes), x, y, *args
	Fired when a text is dropped on the application.

New in version 2.1.0.

	on_drop_end: x, y, *args
	Fired when text(s) or file(s) drop on the application has ended.

New in version 2.1.0.

	on_memorywarning:
	Fired when the platform have memory issue (iOS / Android mostly)
You can listen to this one, and clean whatever you can.

New in version 1.9.0.

	on_textedit(self, text):
	Fired when inputting with IME.
The string inputting with IME is set as the parameter of
this event.

New in version 1.10.1.

	
add_widget(widget, canvas=None)

	Add a widget to a window

	
allow_screensaver

	Whether the screen saver is enabled, or on mobile devices whether the
device is allowed to go to sleep while the app is open.

New in version 1.10.0.

allow_screensaver is a BooleanProperty
and defaults to True.

	
always_on_top

	When enabled, the window will be brought to the front and will keep
the window above the rest. If disabled, it will restore the default
behavior.

This option can be toggled freely during the window’s lifecycle.

Only works for the sdl2 window provider. Check the config
documentation for a more detailed explanation on the values.

New in version 2.2.0.

always_on_top is a BooleanProperty and
defaults to False.

	
borderless

	When set to True, this property removes the window border/decoration.
Check the config documentation for a more detailed
explanation on the values.

New in version 1.9.0.

borderless is a BooleanProperty and
defaults to False.

	
center

	Center of the rotated window.

New in version 1.0.9.

center is an AliasProperty.

	
children

	List of the children of this window.

children is a ListProperty instance and
defaults to an empty list.

Use add_widget() and remove_widget() to manipulate the list of
children. Don’t manipulate the list directly unless you know what you are
doing.

	
clear()

	Clear the window with the background color

	
clearcolor

	Color used to clear the window.

from kivy.core.window import Window

red background color
Window.clearcolor = (1, 0, 0, 1)

don't clear background at all
Window.clearcolor = None

Changed in version 1.7.2: The clearcolor default value is now: (0, 0, 0, 1).

New in version 1.0.9.

clearcolor is an ColorProperty and
defaults to (0, 0, 0, 1).

Changed in version 2.1.0: Changed from AliasProperty to
ColorProperty.

	
close()

	Close the window

	
create_window(*largs)

	Will create the main window and configure it.

Warning

This method is called automatically at runtime. If you call it, it
will recreate a RenderContext and Canvas. This means you’ll have a
new graphics tree, and the old one will be unusable.

This method exist to permit the creation of a new OpenGL context
AFTER closing the first one. (Like using runTouchApp() and
stopTouchApp()).

This method has only been tested in a unittest environment and
is not suitable for Applications.

Again, don’t use this method unless you know exactly what you are
doing!

	
custom_titlebar

	When set to True, allows the user to set a widget as a titlebar.
Check the config documentation for a more detailed
explanation on the values.

New in version 2.1.0.

see set_custom_titlebar()
for detailed usage
custom_titlebar is a BooleanProperty and
defaults to False.

	
dpi

	Return the DPI of the screen as computed by the window. If the
implementation doesn’t support DPI lookup, it’s 96.

Warning

This value is not cross-platform. Use
kivy.metrics.Metrics.dpi instead.

	
event_managers = None

	Holds a list of registered event managers.

Don’t change the property directly but use
register_event_manager() and unregister_event_manager() to
register and unregister an event manager.

Event manager is an instance of
EventManagerBase.

New in version 2.1.0.

Warning

This is an experimental property and it remains so while this warning
is present.

	
event_managers_dict = None

	Holds a dict of type_id to list of event managers.

Don’t change the property directly but use
register_event_manager() and unregister_event_manager() to
register and unregister an event manager.

Event manager is an instance of
EventManagerBase.

New in version 2.1.0.

Warning

This is an experimental property and it remains so while this warning
is present.

	
flip()

	Flip between buffers

	
focus

	Check whether or not the window currently has focus.

New in version 1.9.1.

focus is a read-only AliasProperty and
defaults to True.

	
fullscreen

	This property sets the fullscreen mode of the window. Available options
are: True, False, ‘auto’ and ‘fake’. Check the config
documentation for more detailed explanations on these values.

fullscreen is an OptionProperty and defaults to
False.

New in version 1.2.0.

Note

The ‘fake’ option has been deprecated, use the borderless
property instead.

Warning

On iOS, setting fullscreen to False will not automatically
hide the status bar.

To achieve this, you must set fullscreen to False, and
then also set borderless to False.

	
get_gl_backend_name()

	Returns the gl backend that will or is used with this window.

	
gl_backends_allowed = []

	A list of Kivy gl backend names, which if not empty, will be the
exclusive list of gl backends that can be used with this window.

	
gl_backends_ignored = []

	A list of Kivy gl backend names that may not be used with this window.

	
grab_mouse()

	Grab mouse - so won’t leave window

New in version 1.10.0.

Note

This feature requires the SDL2 window provider.

	
height

	Rotated window height.

height is a read-only AliasProperty.

	
hide()

	Hides the window. This method should be used on desktop
platforms only.

New in version 1.9.0.

Note

This feature requires the SDL2 window provider and is currently
only supported on desktop platforms.

	
icon

	A path to the window icon.

New in version 1.1.2.

icon is a StringProperty.

	
keyboard_anim_args = {'d': 0.5, 't': 'in_out_quart'}

	The attributes for animating softkeyboard/IME.
t = transition, d = duration. This value will have no effect on
desktops.

New in version 1.10.0.

keyboard_anim_args is a dict and defaults to
{‘t’: ‘in_out_quart’, ‘d’: .5}.

	
keyboard_height

	Returns the height of the softkeyboard/IME on mobile platforms.
Will return 0 if not on mobile platform or if IME is not active.

Note

This property returns 0 with SDL2 on Android, but setting
Window.softinput_mode does work.

New in version 1.9.0.

keyboard_height is a read-only
AliasProperty and defaults to 0.

	
keyboard_padding

	The padding to have between the softkeyboard/IME & target
or bottom of window. Will have no effect on desktops.

New in version 1.10.0.

keyboard_padding is a
NumericProperty and defaults to 0.

	
left

	Left position of the window.

Note

It’s an SDL2 property with [0, 0] in the top-left corner.

Changed in version 1.10.0: left is now an AliasProperty

New in version 1.9.1.

left is an AliasProperty and defaults to
the position set in Config.

	
mainloop()

	Called by the EventLoop every frame after it idles.

	
managed_textinput = False

	True if this Window class uses on_textinput to insert text, internal.

	
maximize()

	Maximizes the window. This method should be used on desktop
platforms only.

New in version 1.9.0.

Note

This feature requires the SDL2 window provider and is currently
only supported on desktop platforms.

	
minimize()

	Minimizes the window. This method should be used on desktop
platforms only.

New in version 1.9.0.

Note

This feature requires the SDL2 window provider and is currently
only supported on desktop platforms.

	
minimum_height

	The minimum height to restrict the window to.

New in version 1.9.1.

minimum_height is a NumericProperty and
defaults to 0.

	
minimum_width

	The minimum width to restrict the window to.

New in version 1.9.1.

minimum_width is a NumericProperty and
defaults to 0.

	
modifiers

	List of keyboard modifiers currently active.

New in version 1.0.9.

modifiers is an AliasProperty.

	
mouse_pos

	2d position of the mouse cursor within the window.

Position is relative to the left/bottom point of the window.

Note

Cursor position will be scaled by the pixel density if the high density
mode is supported by the window provider.

New in version 1.2.0.

mouse_pos is an ObjectProperty and
defaults to (0, 0).

	
on_close(*largs)

	Event called when the window is closed.

	
on_cursor_enter(*largs)

	Event called when the cursor enters the window.

New in version 1.9.1.

Note

This feature requires the SDL2 window provider.

	
on_cursor_leave(*largs)

	Event called when the cursor leaves the window.

New in version 1.9.1.

Note

This feature requires the SDL2 window provider.

	
on_drop_begin(x, y, *args)

	Event called when a text or a file drop on the application is about
to begin. It will be followed-up by a single or a multiple
on_drop_text or on_drop_file events ending with an on_drop_end
event.

Arguments x and y are the mouse cursor position at the time of the
drop and you should only rely on them if the drop originated from the
mouse.

	Parameters:

	
	x: int
	Cursor x position, relative to the window left, at the
time of the drop.

	y: int
	Cursor y position, relative to the window top, at the
time of the drop.

	*args: tuple
	Additional arguments.

Note

This event works with sdl2 window provider.

New in version 2.1.0.

	
on_drop_end(x, y, *args)

	Event called when a text or a file drop on the application has
ended.

Arguments x and y are the mouse cursor position at the time of the
drop and you should only rely on them if the drop originated from the
mouse.

	Parameters:

	
	x: int
	Cursor x position, relative to the window left, at the
time of the drop.

	y: int
	Cursor y position, relative to the window top, at the
time of the drop.

	*args: tuple
	Additional arguments.

Note

This event works with sdl2 window provider.

New in version 2.1.0.

	
on_drop_file(filename, x, y, *args)

	Event called when a file is dropped on the application.

Arguments x and y are the mouse cursor position at the time of the
drop and you should only rely on them if the drop originated from the
mouse.

	Parameters:

	
	filename: bytes
	Absolute path to a dropped file.

	x: int
	Cursor x position, relative to the window left, at the
time of the drop.

	y: int
	Cursor y position, relative to the window top, at the
time of the drop.

	*args: tuple
	Additional arguments.

Warning

This event currently works with sdl2 window provider, on pygame
window provider and OS X with a patched version of pygame.
This event is left in place for further evolution
(ios, android etc.)

Note

On Windows it is possible to drop a file on the window title bar
or on its edges and for that case mouse_pos won’t be
updated as the mouse cursor is not within the window.

Note

This event doesn’t work for apps with elevated permissions,
because the OS API calls are filtered. Check issue
#4999 [https://github.com/kivy/kivy/issues/4999] for
pointers to workarounds.

New in version 1.2.0.

Changed in version 2.1.0: Renamed from on_dropfile to on_drop_file.

	
on_drop_text(text, x, y, *args)

	Event called when a text is dropped on the application.

Arguments x and y are the mouse cursor position at the time of the
drop and you should only rely on them if the drop originated from the
mouse.

	Parameters:

	
	text: bytes
	Text which is dropped.

	x: int
	Cursor x position, relative to the window left, at the
time of the drop.

	y: int
	Cursor y position, relative to the window top, at the
time of the drop.

	*args: tuple
	Additional arguments.

Note

This event works with sdl2 window provider on x11 window.

Note

On Windows it is possible to drop a text on the window title bar
or on its edges and for that case mouse_pos won’t be
updated as the mouse cursor is not within the window.

New in version 2.1.0.

	
on_flip()

	Flip between buffers (event)

	
on_hide(*largs)

	Event called when the window is hidden.

New in version 1.10.0.

Note

This feature requires the SDL2 window provider.

	
on_joy_axis(stickid, axisid, value)

	Event called when a joystick has a stick or other axis moved.

New in version 1.9.0.

	
on_joy_ball(stickid, ballid, xvalue, yvalue)

	Event called when a joystick has a ball moved.

New in version 1.9.0.

	
on_joy_button_down(stickid, buttonid)

	Event called when a joystick has a button pressed.

New in version 1.9.0.

	
on_joy_button_up(stickid, buttonid)

	Event called when a joystick has a button released.

New in version 1.9.0.

	
on_joy_hat(stickid, hatid, value)

	Event called when a joystick has a hat/dpad moved.

New in version 1.9.0.

	
on_key_down(key, scancode=None, codepoint=None, modifier=None, **kwargs)

	Event called when a key is down (same arguments as on_keyboard)

	
on_key_up(key, scancode=None, codepoint=None, modifier=None, **kwargs)

	Event called when a key is released (same arguments as on_keyboard).

	
on_keyboard(key, scancode=None, codepoint=None, modifier=None, **kwargs)

	Event called when keyboard is used.

Warning

Some providers may omit scancode, codepoint and/or modifier.

	
on_maximize(*largs)

	Event called when the window is maximized.

New in version 1.10.0.

Note

This feature requires the SDL2 window provider.

	
on_memorywarning()

	Event called when the platform have memory issue.
Your goal is to clear the cache in your app as much as you can,
release unused widgets, do garbage collection etc.

Currently, this event is fired only from the SDL2 provider, for
iOS and Android.

New in version 1.9.0.

	
on_minimize(*largs)

	Event called when the window is minimized.

New in version 1.10.0.

Note

This feature requires the SDL2 window provider.

	
on_motion(etype, me)

	Event called when a motion event is received.

	Parameters:

	
	etype: str
	One of “begin”, “update” or “end”.

	me: MotionEvent
	The motion event currently dispatched.

Changed in version 2.1.0: Event managers get to handle the touch event first and if none of
them accepts the event (by returning True) then window will
dispatch me through “on_touch_down”, “on_touch_move”,
“on_touch_up” events depending on the etype. All non-touch events
will go only through managers.

	
on_mouse_down(x, y, button, modifiers)

	Event called when the mouse is used (pressed/released).

	
on_mouse_move(x, y, modifiers)

	Event called when the mouse is moved with buttons pressed.

	
on_mouse_up(x, y, button, modifiers)

	Event called when the mouse is moved with buttons pressed.

	
on_request_close(*largs, **kwargs)

	Event called before we close the window. If a bound function returns
True, the window will not be closed. If the the event is triggered
because of the keyboard escape key, the keyword argument source is
dispatched along with a value of keyboard to the bound functions.

Warning

When the bound function returns True the window will not be closed,
so use with care because the user would not be able to close the
program, even if the red X is clicked.

	
on_resize(width, height)

	Event called when the window is resized.

	
on_restore(*largs)

	Event called when the window is restored.

New in version 1.10.0.

Note

This feature requires the SDL2 window provider.

	
on_rotate(rotation)

	Event called when the screen has been rotated.

	
on_show(*largs)

	Event called when the window is shown.

New in version 1.10.0.

Note

This feature requires the SDL2 window provider.

	
on_textedit(text)

	Event called when inputting with IME.
The string inputting with IME is set as the parameter of
this event.

New in version 1.10.1.

	
on_textinput(text)

	Event called when text: i.e. alpha numeric non control keys or set
of keys is entered. As it is not guaranteed whether we get one
character or multiple ones, this event supports handling multiple
characters.

New in version 1.9.0.

	
on_touch_down(touch)

	Event called when a touch down event is initiated.

Changed in version 1.9.0: The touch pos is now transformed to window coordinates before
this method is called. Before, the touch pos coordinate would be
(0, 0) when this method was called.

	
on_touch_move(touch)

	Event called when a touch event moves (changes location).

Changed in version 1.9.0: The touch pos is now transformed to window coordinates before
this method is called. Before, the touch pos coordinate would be
(0, 0) when this method was called.

	
on_touch_up(touch)

	Event called when a touch event is released (terminated).

Changed in version 1.9.0: The touch pos is now transformed to window coordinates before
this method is called. Before, the touch pos coordinate would be
(0, 0) when this method was called.

	
parent

	Parent of this window.

parent is a ObjectProperty instance and
defaults to None. When created, the parent is set to the window itself.
You must take care of it if you are doing a recursive check.

	
raise_window()

	Raise the window. This method should be used on desktop
platforms only.

New in version 1.9.1.

Note

This feature requires the SDL2 window provider and is currently
only supported on desktop platforms.

	
register_event_manager(manager)

	Register and start an event manager to handle events declared in
type_ids attribute.

New in version 2.1.0.

Warning

This is an experimental method and it remains so until this warning
is present as it can be changed or removed in the next versions of
Kivy.

	
release_all_keyboards()

	
New in version 1.0.8.

This will ensure that no virtual keyboard / system keyboard is
requested. All instances will be closed.

	
release_keyboard(target=None)

	
New in version 1.0.4.

Internal method for the widget to release the real-keyboard. Check
request_keyboard() to understand how it works.

	
remove_widget(widget)

	Remove a widget from a window

	
request_keyboard(callback, target, input_type='text', keyboard_suggestions=True)

	
New in version 1.0.4.

Internal widget method to request the keyboard. This method is rarely
required by the end-user as it is handled automatically by the
TextInput. We expose it in case you want
to handle the keyboard manually for unique input scenarios.

A widget can request the keyboard, indicating a callback to call
when the keyboard is released (or taken by another widget).

	Parameters:

	
	callback: func
	Callback that will be called when the keyboard is
closed. This can be because somebody else requested the
keyboard or the user closed it.

	target: Widget
	Attach the keyboard to the specified target. This should be
the widget that requested the keyboard. Ensure you have a
different target attached to each keyboard if you’re working in
a multi user mode.

New in version 1.0.8.

	input_type: string
	Choose the type of soft keyboard to request. Can be one of
‘null’, ‘text’, ‘number’, ‘url’, ‘mail’, ‘datetime’, ‘tel’,
‘address’.

Note

input_type is currently only honored on Android.

New in version 1.8.0.

Changed in version 2.1.0: Added null to soft keyboard types.

	keyboard_suggestions: bool
	If True provides auto suggestions on top of keyboard.
This will only work if input_type is set to text, url,
mail or address.

New in version 2.1.0.

	Return:

	An instance of Keyboard containing the callback, target,
and if the configuration allows it, a
VKeyboard instance attached as a
.widget property.

Note

The behavior of this function is heavily influenced by the current
keyboard_mode. Please see the Config’s
configuration tokens section for
more information.

	
restore()

	Restores the size and position of a maximized or minimized window.
This method should be used on desktop platforms only.

New in version 1.9.0.

Note

This feature requires the SDL2 window provider and is currently
only supported on desktop platforms.

	
rotation

	Get/set the window content rotation. Can be one of 0, 90, 180, 270
degrees.

New in version 1.0.9.

rotation is an AliasProperty.

	
screenshot(name='screenshot{:04d}.png')

	Save the actual displayed image to a file.

	
set_custom_titlebar(widget)

	Sets a Widget as a titlebar

	widget:

	The widget you want to set as the titlebar

New in version 2.1.0.

This function returns True on successfully setting the custom titlebar,
else false

How to use this feature

1. first set Window.custom_titlebar to True
2. then call Window.set_custom_titlebar with the widget/layout you want to set as titlebar as the argument # noqa: E501

If you want a child of the widget to receive touch events, in
that child define a property draggable and set it to False

If you set the property draggable on a layout,
all the child in the layout will receive touch events

If you want to override default behaviour, add function in_drag_area(x,y)
to the widget

The function is call with two args x,y which are mouse.x, and mouse.y
the function should return

True if that point should be used to drag the window

False if you want to receive the touch event at the point

Note

If you use in_drag_area() property draggable
will not be checked

Note

This feature requires the SDL2 window provider and is currently
only supported on desktop platforms.

Warning

custom_titlebar must be set to True
for the widget to be successfully set as a titlebar

	
set_icon(filename)

	Set the icon of the window.

New in version 1.0.5.

	
set_system_cursor(cursor_name)

	Set type of a mouse cursor in the Window.

It can be one of ‘arrow’, ‘ibeam’, ‘wait’, ‘crosshair’, ‘wait_arrow’,
‘size_nwse’, ‘size_nesw’, ‘size_we’, ‘size_ns’, ‘size_all’, ‘no’, or
‘hand’.

On some platforms there might not be a specific cursor supported and
such an option falls back to one of the substitutable alternatives:

	
	Windows

	MacOS

	Linux X11

	Linux Wayland

	arrow

	arrow

	arrow

	arrow

	arrow

	ibeam

	ibeam

	ibeam

	ibeam

	ibeam

	wait

	wait

	arrow

	wait

	wait

	crosshair

	crosshair

	crosshair

	crosshair

	hand

	wait_arrow

	arrow

	arrow

	wait

	wait

	size_nwse

	size_nwse

	size_all

	size_all

	hand

	size_nesw

	size_nesw

	size_all

	size_all

	hand

	size_we

	size_we

	size_we

	size_we

	hand

	size_ns

	size_ns

	size_ns

	size_ns

	hand

	size_all

	size_all

	size_all

	size_all

	hand

	no

	no

	no

	no

	ibeam

	hand

	hand

	hand

	hand

	hand

New in version 1.10.1.

Note

This feature requires the SDL2 window provider and is currently
only supported on desktop platforms.

	
set_title(title)

	Set the window title.

New in version 1.0.5.

	
set_vkeyboard_class(cls)

	
New in version 1.0.8.

Set the VKeyboard class to use. If set to None, it will use the
kivy.uix.vkeyboard.VKeyboard.

	
shape_color_key

	Color key of the shaped window - sets which color will be hidden from
the window shape_image (only works for sdl2 window provider).

New in version 1.10.1.

shape_color_key is a ColorProperty
instance and defaults to [1, 1, 1, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
shape_cutoff

	The window shape_image cutoff property (only works for sdl2
window provider).

New in version 1.10.1.

shape_cutoff is a BooleanProperty and
defaults to True.

	
shape_image

	An image for the window shape (only works for sdl2 window provider).

Warning

The image size has to be the same like the window’s size!

New in version 1.10.1.

shape_image is a StringProperty and
defaults to ‘data/images/defaultshape.png’. This value is taken from
Config.

	
shape_mode

	Window mode for shaping (only works for sdl2 window provider).

	
	can be RGB only
	
	default - does nothing special

	colorkey - hides a color of the shape_color_key

	
	has to contain alpha channel
	
	binalpha - hides an alpha channel of the shape_image

	reversebinalpha - shows only the alpha of the shape_image

Note

Before actually setting the mode make sure the Window has the same
size like the shape_image, preferably via Config before
the Window is actually created.

If the shape_image isn’t set, the default one will be used
and the mode might not take the desired visual effect.

New in version 1.10.1.

shape_mode is an AliasProperty.

	
shaped

	Read only property to check if the window is shapable or not (only works
for sdl2 window provider).

New in version 1.10.1.

shaped is an AliasProperty.

	
show()

	Shows the window. This method should be used on desktop
platforms only.

New in version 1.9.0.

Note

This feature requires the SDL2 window provider and is currently
only supported on desktop platforms.

	
show_cursor

	Set whether or not the cursor is shown on the window.

New in version 1.9.1.

show_cursor is a BooleanProperty and
defaults to True.

	
size

	Get the rotated size of the window. If rotation is set, then the
size will change to reflect the rotation.

New in version 1.0.9.

size is an AliasProperty.

	
softinput_mode

	This specifies the behavior of window contents on display of the soft
keyboard on mobile platforms. It can be one of ‘’, ‘pan’, ‘scale’,
‘resize’ or ‘below_target’. Their effects are listed below.

	Value

	Effect

	‘’

	The main window is left as is, allowing you to use
the keyboard_height to manage the window
contents manually.

	‘pan’

	The main window pans, moving the bottom part of the
window to be always on top of the keyboard.

	‘resize’

	The window is resized and the contents scaled to fit
the remaining space.

	‘below_target’

	The window pans so that the current target TextInput
widget requesting the keyboard is presented just above
the soft keyboard.

softinput_mode is an OptionProperty and
defaults to ‘’.

Note

The resize option does not currently work with SDL2 on Android.

New in version 1.9.0.

Changed in version 1.9.1: The ‘below_target’ option was added.

	
system_size

	Real size of the window ignoring rotation. If the density is
not 1, the system_size is the size divided by
density.

New in version 1.0.9.

system_size is an AliasProperty.

	
to_normalized_pos(x, y)

	Transforms absolute coordinates to normalized (0-1) coordinates
using system_size.

New in version 2.1.0.

	
toggle_fullscreen()

	Toggle between fullscreen and windowed mode.

Deprecated since version 1.9.0: Use fullscreen instead.

	
top

	Top position of the window.

Note

It’s an SDL2 property with [0, 0] in the top-left corner.

Changed in version 1.10.0: top is now an AliasProperty

New in version 1.9.1.

top is an AliasProperty and defaults to
the position set in Config.

	
transform_motion_event_2d(me, widget=None)

	Transforms the motion event me to this window size and then if
widget is passed transforms me to widget’s local coordinates.

	Raises:

	AttributeError: If widget’s ancestor is None.

Note

Unless it’s a specific case, call
push() before and
pop() after this method’s
call to preserve previous values of me’s attributes.

New in version 2.1.0.

	
ungrab_mouse()

	Ungrab mouse

New in version 1.10.0.

Note

This feature requires the SDL2 window provider.

	
unregister_event_manager(manager)

	Unregister and stop an event manager previously registered with
register_event_manager().

New in version 2.1.0.

Warning

This is an experimental method and it remains so until this warning
is present as it can be changed or removed in the next versions of
Kivy.

	
width

	Rotated window width.

width is a read-only AliasProperty.

Kivy module for binary dependencies.

Binary dependencies such as gstreamer is installed as a
namespace module of kivy.deps. These modules are responsible
for making sure that the binaries are available to kivy.

Effects

New in version 1.7.0.

Everything starts with the KineticEffect, the base class for
computing velocity out of a movement.

This base class is used to implement the ScrollEffect, a base
class used for our ScrollView widget effect.
We have multiple implementations:

	ScrollEffect: base class used for implementing
an effect. It only calculates the scrolling and the overscroll.

	DampedScrollEffect: uses the overscroll
information to allow the user to drag more than expected. Once the user stops
the drag, the position is returned to one of the bounds.

	OpacityScrollEffect: uses the overscroll
information to reduce the opacity of the scrollview widget. When the user
stops the drag, the opacity is set back to 1.

	Damped scroll effect
	DampedScrollEffect
	DampedScrollEffect.edge_damping

	DampedScrollEffect.min_overscroll

	DampedScrollEffect.round_value

	DampedScrollEffect.spring_constant

	DampedScrollEffect.update_velocity()

	Kinetic effect
	KineticEffect
	KineticEffect.cancel()

	KineticEffect.friction

	KineticEffect.is_manual

	KineticEffect.max_history

	KineticEffect.min_distance

	KineticEffect.min_velocity

	KineticEffect.start()

	KineticEffect.std_dt

	KineticEffect.stop()

	KineticEffect.update()

	KineticEffect.update_velocity()

	KineticEffect.value

	KineticEffect.velocity

	Opacity scroll effect
	OpacityScrollEffect

	Scroll effect
	ScrollEffect
	ScrollEffect.displacement

	ScrollEffect.drag_threshold

	ScrollEffect.max

	ScrollEffect.min

	ScrollEffect.overscroll

	ScrollEffect.reset()

	ScrollEffect.scroll

	ScrollEffect.start()

	ScrollEffect.stop()

	ScrollEffect.target_widget

	ScrollEffect.update()

Damped scroll effect

New in version 1.7.0.

This damped scroll effect will use the
overscroll to calculate the scroll
value, and slows going back to the upper or lower limit.

	
class kivy.effects.dampedscroll.DampedScrollEffect(**kwargs)

	Bases: kivy.effects.scroll.ScrollEffect

DampedScrollEffect class. See the module documentation for more
information.

	
edge_damping

	Edge damping.

edge_damping is a NumericProperty and
defaults to 0.25

	
min_overscroll

	An overscroll less than this amount will be normalized to 0.

New in version 1.8.0.

min_overscroll is a NumericProperty and
defaults to .5.

	
round_value

	If True, when the motion stops, value is rounded to the nearest
integer.

New in version 1.8.0.

round_value is a BooleanProperty and
defaults to True.

	
spring_constant

	Spring constant.

spring_constant is a NumericProperty and
defaults to 2.0

	
update_velocity(dt)

	(internal) Update the velocity according to the frametime and
friction.

Kinetic effect

New in version 1.7.0.

The KineticEffect is the base class that is used to compute the
velocity out of a movement. When the movement is finished, the effect will
compute the position of the movement according to the velocity, and reduce the
velocity with a friction. The movement stop until the velocity is 0.

Conceptually, the usage could be:

>>> effect = KineticEffect()
>>> effect.start(10)
>>> effect.update(15)
>>> effect.update(30)
>>> effect.stop(48)

Over the time, you will start a movement of a value, update it, and stop the
movement. At this time, you’ll get the movement value into
KineticEffect.value. On the example i’ve typed manually, the computed
velocity will be:

>>> effect.velocity
3.1619100231163046

After multiple clock interaction, the velocity will decrease according to
KineticEffect.friction. The computed value will be stored in
KineticEffect.value. The output of this value could be:

46.30038145219605
54.58302451968686
61.9229016256196
...

	
class kivy.effects.kinetic.KineticEffect(**kwargs)

	Bases: kivy.event.EventDispatcher

Kinetic effect class. See module documentation for more information.

	
cancel()

	Cancel a movement. This can be used in case stop() cannot be
called. It will reset is_manual to False, and compute the
movement if the velocity is > 0.

	
friction

	Friction to apply on the velocity

friction is a NumericProperty and
defaults to 0.05.

	
is_manual

	Indicate if a movement is in progress (True) or not (False).

is_manual is a BooleanProperty and
defaults to False.

	
max_history

	Save up to max_history movement value into the history. This is used
for correctly calculating the velocity according to the movement.

max_history is a NumericProperty and
defaults to 5.

	
min_distance

	The minimal distance for a movement to have nonzero velocity.

New in version 1.8.0.

min_distance is NumericProperty and
defaults to 0.1.

	
min_velocity

	Velocity below this quantity is normalized to 0. In other words,
any motion whose velocity falls below this number is stopped.

New in version 1.8.0.

min_velocity is a NumericProperty and
defaults to 0.5.

	
start(val, t=None)

	Start the movement.

	Parameters:

	
	val: float or int
	Value of the movement

	t: float, defaults to None
	Time when the movement happen. If no time is set, it will use
time.time()

	
std_dt

	
	std_dt
	correction update_velocity if dt is not constant

New in version 2.0.0.

std_dt is a NumericProperty and
defaults to 0.017.

	
stop(val, t=None)

	Stop the movement.

See start() for the arguments.

	
update(val, t=None)

	Update the movement.

See start() for the arguments.

	
update_velocity(dt)

	(internal) Update the velocity according to the frametime and
friction.

	
value

	Value (during the movement and computed) of the effect.

value is a NumericProperty and
defaults to 0.

	
velocity

	Velocity of the movement.

velocity is a NumericProperty and
defaults to 0.

Opacity scroll effect

Based on the DampedScrollEffect, this one will
also decrease the opacity of the target widget during the overscroll.

	
class kivy.effects.opacityscroll.OpacityScrollEffect(**kwargs)

	Bases: kivy.effects.dampedscroll.DampedScrollEffect

OpacityScrollEffect class. Uses the overscroll
information to reduce the opacity of the scrollview widget. When the user
stops the drag, the opacity is set back to 1.

Scroll effect

New in version 1.7.0.

Based on the kinetic effect, the ScrollEffect
will limit the movement to bounds determined by its min
and max properties. If the movement exceeds these
bounds, it will calculate the amount of overscroll and
try to return to the value of one of the bounds.

This is very useful for implementing a scrolling list. We actually use this
class as a base effect for our ScrollView widget.

	
class kivy.effects.scroll.ScrollEffect(**kwargs)

	Bases: kivy.effects.kinetic.KineticEffect

ScrollEffect class. See the module documentation for more information.

	
displacement

	Cumulative distance of the movement during the interaction. This is used
to determine if the movement is a drag (more than drag_threshold)
or not.

displacement is a NumericProperty and
defaults to 0.

	
drag_threshold

	Minimum distance to travel before the movement is considered as a drag.

drag_threshold is a NumericProperty and
defaults to 20sp.

	
max

	Maximum boundary to use for scrolling.

max is a NumericProperty and defaults to
0.

	
min

	Minimum boundary to use for scrolling.

min is a NumericProperty and defaults to
0.

	
overscroll

	Computed value when the user over-scrolls i.e. goes out of the bounds.

overscroll is a NumericProperty and
defaults to 0.

	
reset(pos)

	(internal) Reset the value and the velocity to the pos.
Mostly used when the bounds are checked.

	
scroll

	Computed value for scrolling. This value is different from
kivy.effects.kinetic.KineticEffect.value
in that it will return to one of the min/max bounds.

scroll is a NumericProperty and defaults
to 0.

	
start(val, t=None)

	Start the movement.

	Parameters:

	
	val: float or int
	Value of the movement

	t: float, defaults to None
	Time when the movement happen. If no time is set, it will use
time.time()

	
stop(val, t=None)

	Stop the movement.

See start() for the arguments.

	
target_widget

	Widget to attach to this effect. Even if this class doesn’t make changes
to the target_widget by default, subclasses can use it to change the
graphics or apply custom transformations.

target_widget is a ObjectProperty and
defaults to None.

	
update(val, t=None)

	Update the movement.

See start() for the arguments.

Damped scroll effect

New in version 1.7.0.

This damped scroll effect will use the
overscroll to calculate the scroll
value, and slows going back to the upper or lower limit.

	
class kivy.effects.dampedscroll.DampedScrollEffect(**kwargs)

	Bases: kivy.effects.scroll.ScrollEffect

DampedScrollEffect class. See the module documentation for more
information.

	
edge_damping

	Edge damping.

edge_damping is a NumericProperty and
defaults to 0.25

	
min_overscroll

	An overscroll less than this amount will be normalized to 0.

New in version 1.8.0.

min_overscroll is a NumericProperty and
defaults to .5.

	
round_value

	If True, when the motion stops, value is rounded to the nearest
integer.

New in version 1.8.0.

round_value is a BooleanProperty and
defaults to True.

	
spring_constant

	Spring constant.

spring_constant is a NumericProperty and
defaults to 2.0

	
update_velocity(dt)

	(internal) Update the velocity according to the frametime and
friction.

Kinetic effect

New in version 1.7.0.

The KineticEffect is the base class that is used to compute the
velocity out of a movement. When the movement is finished, the effect will
compute the position of the movement according to the velocity, and reduce the
velocity with a friction. The movement stop until the velocity is 0.

Conceptually, the usage could be:

>>> effect = KineticEffect()
>>> effect.start(10)
>>> effect.update(15)
>>> effect.update(30)
>>> effect.stop(48)

Over the time, you will start a movement of a value, update it, and stop the
movement. At this time, you’ll get the movement value into
KineticEffect.value. On the example i’ve typed manually, the computed
velocity will be:

>>> effect.velocity
3.1619100231163046

After multiple clock interaction, the velocity will decrease according to
KineticEffect.friction. The computed value will be stored in
KineticEffect.value. The output of this value could be:

46.30038145219605
54.58302451968686
61.9229016256196
...

	
class kivy.effects.kinetic.KineticEffect(**kwargs)

	Bases: kivy.event.EventDispatcher

Kinetic effect class. See module documentation for more information.

	
cancel()

	Cancel a movement. This can be used in case stop() cannot be
called. It will reset is_manual to False, and compute the
movement if the velocity is > 0.

	
friction

	Friction to apply on the velocity

friction is a NumericProperty and
defaults to 0.05.

	
is_manual

	Indicate if a movement is in progress (True) or not (False).

is_manual is a BooleanProperty and
defaults to False.

	
max_history

	Save up to max_history movement value into the history. This is used
for correctly calculating the velocity according to the movement.

max_history is a NumericProperty and
defaults to 5.

	
min_distance

	The minimal distance for a movement to have nonzero velocity.

New in version 1.8.0.

min_distance is NumericProperty and
defaults to 0.1.

	
min_velocity

	Velocity below this quantity is normalized to 0. In other words,
any motion whose velocity falls below this number is stopped.

New in version 1.8.0.

min_velocity is a NumericProperty and
defaults to 0.5.

	
start(val, t=None)

	Start the movement.

	Parameters:

	
	val: float or int
	Value of the movement

	t: float, defaults to None
	Time when the movement happen. If no time is set, it will use
time.time()

	
std_dt

	
	std_dt
	correction update_velocity if dt is not constant

New in version 2.0.0.

std_dt is a NumericProperty and
defaults to 0.017.

	
stop(val, t=None)

	Stop the movement.

See start() for the arguments.

	
update(val, t=None)

	Update the movement.

See start() for the arguments.

	
update_velocity(dt)

	(internal) Update the velocity according to the frametime and
friction.

	
value

	Value (during the movement and computed) of the effect.

value is a NumericProperty and
defaults to 0.

	
velocity

	Velocity of the movement.

velocity is a NumericProperty and
defaults to 0.

Opacity scroll effect

Based on the DampedScrollEffect, this one will
also decrease the opacity of the target widget during the overscroll.

	
class kivy.effects.opacityscroll.OpacityScrollEffect(**kwargs)

	Bases: kivy.effects.dampedscroll.DampedScrollEffect

OpacityScrollEffect class. Uses the overscroll
information to reduce the opacity of the scrollview widget. When the user
stops the drag, the opacity is set back to 1.

Scroll effect

New in version 1.7.0.

Based on the kinetic effect, the ScrollEffect
will limit the movement to bounds determined by its min
and max properties. If the movement exceeds these
bounds, it will calculate the amount of overscroll and
try to return to the value of one of the bounds.

This is very useful for implementing a scrolling list. We actually use this
class as a base effect for our ScrollView widget.

	
class kivy.effects.scroll.ScrollEffect(**kwargs)

	Bases: kivy.effects.kinetic.KineticEffect

ScrollEffect class. See the module documentation for more information.

	
displacement

	Cumulative distance of the movement during the interaction. This is used
to determine if the movement is a drag (more than drag_threshold)
or not.

displacement is a NumericProperty and
defaults to 0.

	
drag_threshold

	Minimum distance to travel before the movement is considered as a drag.

drag_threshold is a NumericProperty and
defaults to 20sp.

	
max

	Maximum boundary to use for scrolling.

max is a NumericProperty and defaults to
0.

	
min

	Minimum boundary to use for scrolling.

min is a NumericProperty and defaults to
0.

	
overscroll

	Computed value when the user over-scrolls i.e. goes out of the bounds.

overscroll is a NumericProperty and
defaults to 0.

	
reset(pos)

	(internal) Reset the value and the velocity to the pos.
Mostly used when the bounds are checked.

	
scroll

	Computed value for scrolling. This value is different from
kivy.effects.kinetic.KineticEffect.value
in that it will return to one of the min/max bounds.

scroll is a NumericProperty and defaults
to 0.

	
start(val, t=None)

	Start the movement.

	Parameters:

	
	val: float or int
	Value of the movement

	t: float, defaults to None
	Time when the movement happen. If no time is set, it will use
time.time()

	
stop(val, t=None)

	Stop the movement.

See start() for the arguments.

	
target_widget

	Widget to attach to this effect. Even if this class doesn’t make changes
to the target_widget by default, subclasses can use it to change the
graphics or apply custom transformations.

target_widget is a ObjectProperty and
defaults to None.

	
update(val, t=None)

	Update the movement.

See start() for the arguments.

Event dispatcher

All objects that produce events in Kivy implement the EventDispatcher
which provides a consistent interface for registering and manipulating event
handlers.

Changed in version 1.0.9: Property discovery and methods have been moved from the
Widget to the EventDispatcher.

	
class kivy.event.EventDispatcher(**kwargs)

	Bases: kivy.event.ObjectWithUid

See the module docstring for usage.

	
apply_property(**kwargs)

	Adds properties at runtime to the class. The function accepts
keyword arguments of the form prop_name=prop, where prop is a
Property instance and prop_name is the name of the attribute
of the property.

New in version 1.9.1.

Warning

This method is not recommended for common usage because you should
declare the properties in your class instead of using this method.

For example:

>>> print(wid.property('sticks', quiet=True))
None
>>> wid.apply_property(sticks=ObjectProperty(55, max=10))
>>> print(wid.property('sticks', quiet=True))
<kivy.properties.ObjectProperty object at 0x04303130>

	
bind(**kwargs)

	Bind an event type or a property to a callback.

Usage:

With properties
def my_x_callback(obj, value):
 print('on object', obj, 'x changed to', value)
def my_width_callback(obj, value):
 print('on object', obj, 'width changed to', value)
self.bind(x=my_x_callback, width=my_width_callback)

With event
def my_press_callback(obj):
 print('event on object', obj)
self.bind(on_press=my_press_callback)

In general, property callbacks are called with 2 arguments (the
object and the property’s new value) and event callbacks with
one argument (the object). The example above illustrates this.

The following example demonstrates various ways of using the bind
function in a complete application:

from kivy.uix.boxlayout import BoxLayout
from kivy.app import App
from kivy.uix.button import Button
from functools import partial

class DemoBox(BoxLayout):
 """
 This class demonstrates various techniques that can be used for binding to
 events. Although parts could me made more optimal, advanced Python concepts
 are avoided for the sake of readability and clarity.
 """
 def __init__(self, **kwargs):
 super(DemoBox, self).__init__(**kwargs)
 self.orientation = "vertical"

 # We start with binding to a normal event. The only argument
 # passed to the callback is the object which we have bound to.
 btn = Button(text="Normal binding to event")
 btn.bind(on_press=self.on_event)

 # Next, we bind to a standard property change event. This typically
 # passes 2 arguments: the object and the value
 btn2 = Button(text="Normal binding to a property change")
 btn2.bind(state=self.on_property)

 # Here we use anonymous functions (a.k.a lambdas) to perform binding.
 # Their advantage is that you can avoid declaring new functions i.e.
 # they offer a concise way to "redirect" callbacks.
 btn3 = Button(text="Using anonymous functions.")
 btn3.bind(on_press=lambda x: self.on_event(None))

 # You can also declare a function that accepts a variable number of
 # positional and keyword arguments and use introspection to determine
 # what is being passed in. This is very handy for debugging as well
 # as function re-use. Here, we use standard event binding to a function
 # that accepts optional positional and keyword arguments.
 btn4 = Button(text="Use a flexible function")
 btn4.bind(on_press=self.on_anything)

 # Lastly, we show how to use partial functions. They are sometimes
 # difficult to grasp, but provide a very flexible and powerful way to
 # reuse functions.
 btn5 = Button(text="Using partial functions. For hardcores.")
 btn5.bind(on_press=partial(self.on_anything, "1", "2", monthy="python"))

 for but in [btn, btn2, btn3, btn4, btn5]:
 self.add_widget(but)

 def on_event(self, obj):
 print("Typical event from", obj)

 def on_property(self, obj, value):
 print("Typical property change from", obj, "to", value)

 def on_anything(self, *args, **kwargs):
 print('The flexible function has *args of', str(args),
 "and **kwargs of", str(kwargs))

class DemoApp(App):
 def build(self):
 return DemoBox()

if __name__ == "__main__":
 DemoApp().run()

If a callback has already been bound to a given event or property,
it won’t be added again.

When binding a method to an event or property, a
kivy.weakmethod.WeakMethod of the callback is saved. That is,
rather than storing a regular reference, it stores both a weak
reference to the instance (see Python’s weakref).

This has two consequences.

The first is that the binding will not prevent garbage collection of
the method’s object. The client must maintain a reference to the instance for
the desired lifetime. The callback reference is silently removed if it
becomes invalid.

The second is that when using a decorated method e.g.:

@my_decorator
def callback(self, *args):
 pass

the decorator (my_decorator here) must use wraps [https://docs.python.org/3/library/functools.html#functools.wraps] internally.

	
create_property(unicode name, value=None, default_value=True, *largs, **kwargs)

	Create a new property at runtime.

New in version 1.0.9.

Changed in version 1.8.0: value parameter added, can be used to set the default value of the
property. Also, the type of the value is used to specialize the
created property.

Changed in version 1.9.0: In the past, if value was of type bool, a NumericProperty
would be created, now a BooleanProperty is created.

Also, now and positional and keyword arguments are passed to the
property when created.

Changed in version 2.0.0: default_value has been added.

Warning

This function is designed for the Kivy language, don’t use it in
your code. You should declare the property in your class instead of
using this method.

	Parameters:

	
	name: string
	Name of the property

	value: object, optional
	Default value of the property. Type is also used for creating
more appropriate property types. Defaults to None.

	default_value: bool, True by default
	If True, value will be the default for the property. Otherwise,
the property will be initialized with the the property type’s
normal default value, and subsequently set to value.

>>> mywidget = Widget()
>>> mywidget.create_property('custom')
>>> mywidget.custom = True
>>> print(mywidget.custom)
True

	
dispatch(event_type, *largs, **kwargs)

	Dispatch an event across all the handlers added in bind/fbind().
As soon as a handler returns True, the dispatching stops.

The function collects all the positional and keyword arguments and
passes them on to the handlers.

Note

The handlers are called in reverse order than they were registered
with bind().

	Parameters:

	
	event_type: str
	the event name to dispatch.

Changed in version 1.9.0: Keyword arguments collection and forwarding was added. Before, only
positional arguments would be collected and forwarded.

	
dispatch_children(event_type, *largs, **kwargs)

	

	
dispatch_generic(event_type, *largs, **kwargs)

	

	
events()

	Return all the events in the class. Can be used for introspection.

New in version 1.8.0.

	
fbind(name, func, *largs, **kwargs)

	A method for advanced, and typically faster binding. This method is
different than bind() and is meant for more advanced users and
internal usage. It can be used as long as the following points are heeded.

	As opposed to bind(), it does not check that this function and
largs/kwargs has not been bound before to this name. So binding
the same callback multiple times will just keep adding it.

	Although bind() creates a WeakMethod of the callback when
binding to an event or property, this method stores the callback
directly, unless a keyword argument ref with value True is provided
and then a WeakMethod is saved.
This is useful when there’s no risk of a memory leak by storing the
callback directly.

	This method returns a unique positive number if name was found and
bound, and 0, otherwise. It does not raise an exception, like
bind() if the property name is not found. If not zero,
the uid returned is unique to this name and callback and can be
used with unbind_uid() for unbinding.

When binding a callback with largs and/or kwargs, funbind()
must be used for unbinding. If no largs and kwargs are provided,
unbind() may be used as well. unbind_uid() can be used in
either case.

This method passes on any caught positional and/or keyword arguments to
the callback, removing the need to call partial. When calling the
callback the expended largs are passed on followed by instance/value
(just instance for kwargs) followed by expended kwargs.

Following is an example of usage similar to the example in
bind():

class DemoBox(BoxLayout):

 def __init__(self, **kwargs):
 super(DemoBox, self).__init__(**kwargs)
 self.orientation = "vertical"

 btn = Button(text="Normal binding to event")
 btn.fbind('on_press', self.on_event)

 btn2 = Button(text="Normal binding to a property change")
 btn2.fbind('state', self.on_property)

 btn3 = Button(text="A: Using function with args.")
 btn3.fbind('on_press', self.on_event_with_args, 'right',
 tree='birch', food='apple')

 btn4 = Button(text="Unbind A.")
 btn4.fbind('on_press', self.unbind_a, btn3)

 btn5 = Button(text="Use a flexible function")
 btn5.fbind('on_press', self.on_anything)

 btn6 = Button(text="B: Using flexible functions with args. For hardcores.")
 btn6.fbind('on_press', self.on_anything, "1", "2", monthy="python")

 btn7 = Button(text="Force dispatch B with different params")
 btn7.fbind('on_press', btn6.dispatch, 'on_press', 6, 7, monthy="other python")

 for but in [btn, btn2, btn3, btn4, btn5, btn6, btn7]:
 self.add_widget(but)

 def on_event(self, obj):
 print("Typical event from", obj)

 def on_event_with_args(self, side, obj, tree=None, food=None):
 print("Event with args", obj, side, tree, food)

 def on_property(self, obj, value):
 print("Typical property change from", obj, "to", value)

 def on_anything(self, *args, **kwargs):
 print('The flexible function has *args of', str(args),
 "and **kwargs of", str(kwargs))
 return True

 def unbind_a(self, btn, event):
 btn.funbind('on_press', self.on_event_with_args, 'right',
 tree='birch', food='apple')

Note

Since the kv lang uses this method to bind, one has to implement
this method, instead of bind() when creating a non
EventDispatcher based class used with the kv lang. See
Observable for an example.

New in version 1.9.0.

Changed in version 1.9.1: The ref keyword argument has been added.

	
funbind(name, func, *largs, **kwargs)

	Similar to fbind().

When unbinding, unbind() will unbind all callbacks that match the
callback, while this method will only unbind the first.

To unbind, the same positional and keyword arguments passed to
fbind() must be passed on to funbind.

Note

It is safe to use funbind() to unbind a function bound with
bind() as long as no keyword and positional arguments are
provided to funbind().

New in version 1.9.0.

	
get_property_observers(name, args=False)

	Returns a list of methods that are bound to the property/event
passed as the name argument:

widget_instance.get_property_observers('on_release')

	Parameters:

	
	name: str
	The name of the event or property.

	args: bool
	Whether to return the bound args. To keep compatibility,
only the callback functions and not their provided args will
be returned in the list when args is False.

If True, each element in the list is a 5-tuple of
(callback, largs, kwargs, is_ref, uid), where is_ref indicates
whether callback is a weakref, and uid is the uid given by
fbind(), or None if bind() was used. Defaults to False.

	Returns:

	The list of bound callbacks. See args for details.

New in version 1.8.0.

Changed in version 1.9.0: args has been added.

	
getter(name)

	Return the getter of a property.

New in version 1.0.9.

	
is_event_type(event_type)

	Return True if the event_type is already registered.

New in version 1.0.4.

	
properties() → dict

	Return all the properties in the class in a dictionary of
key/property class. Can be used for introspection.

New in version 1.0.9.

	
property(name, quiet=False)

	Get a property instance from the property name. If quiet is True,
None is returned instead of raising an exception when name is not a
property. Defaults to False.

New in version 1.0.9.

	Returns:

	A Property derived instance
corresponding to the name.

Changed in version 1.9.0: quiet was added.

	
proxy_ref

	Returns a WeakProxy reference to the
EventDispatcher.

New in version 1.9.0.

Changed in version 2.0.0: Previously it just returned itself, now it actually returns a
WeakProxy.

	
register_event_type(event_type)

	Register an event type with the dispatcher.

Registering event types allows the dispatcher to validate event handler
names as they are attached and to search attached objects for suitable
handlers. Each event type declaration must:

	start with the prefix on_.

	have a default handler in the class.

Example of creating a custom event:

class MyWidget(Widget):
 def __init__(self, **kwargs):
 super(MyWidget, self).__init__(**kwargs)
 self.register_event_type('on_swipe')

 def on_swipe(self):
 pass

def on_swipe_callback(*largs):
 print('my swipe is called', largs)
w = MyWidget()
w.dispatch('on_swipe')

	
setter(name)

	Return the setter of a property. Use: instance.setter(‘name’).
The setter is a convenient callback function useful if you want
to directly bind one property to another.
It returns a partial function that will accept
(obj, value) args and results in the property ‘name’ of instance
being set to value.

New in version 1.0.9.

For example, to bind number2 to number1 in python you would do:

class ExampleWidget(Widget):
 number1 = NumericProperty(None)
 number2 = NumericProperty(None)

 def __init__(self, **kwargs):
 super(ExampleWidget, self).__init__(**kwargs)
 self.bind(number1=self.setter('number2'))

This is equivalent to kv binding:

<ExampleWidget>:
 number2: self.number1

	
unbind(**kwargs)

	Unbind properties from callback functions with similar usage as
bind().

If a callback has been bound to a given event or property multiple
times, only the first occurrence will be unbound.

Note

It is safe to use unbind() on a function bound with fbind()
as long as that function was originally bound without any keyword and
positional arguments. Otherwise, the function will fail to be unbound
and you should use funbind() instead.

	
unbind_uid(name, uid)

	Uses the uid returned by fbind() to unbind the callback.

This method is much more efficient than funbind(). If uid
evaluates to False (e.g. 0) a ValueError is raised. Also, only
callbacks bound with fbind() can be unbound with this method.

Since each call to fbind() will generate a unique uid,
only one callback will be removed. If uid is not found among the
callbacks, no error is raised.

E.g.:

btn6 = Button(text="B: Using flexible functions with args. For hardcores.")
uid = btn6.fbind('on_press', self.on_anything, "1", "2", monthy="python")
if not uid:
 raise Exception('Binding failed').
...
btn6.unbind_uid('on_press', uid)

New in version 1.9.0.

	
unregister_event_type(event_type)

	Unregister an event type in the dispatcher.

Changed in version 2.1.0: Method renamed from unregister_event_types to
unregister_event_type.

	
unregister_event_types(self, event_type)

	

	
class kivy.event.ObjectWithUid

	Bases: builtins.object

(internal) This class assists in providing unique identifiers for class
instances. It is not intended for direct usage.

	
class kivy.event.Observable

	Bases: kivy.event.ObjectWithUid

Observable is a stub class defining the methods required
for binding. EventDispatcher is (the) one example of a class that
implements the binding interface. See EventDispatcher for details.

New in version 1.9.0.

	
bind(**kwargs)

	

	
fbind(name, func, *largs, **kwargs)

	See EventDispatcher.fbind().

Note

To keep backward compatibility with derived classes which may have
inherited from Observable before, the
fbind() method was added. The default implementation
of fbind() is to create a partial
function that it passes to bind while saving the uid and largs/kwargs.
However, funbind() (and unbind_uid()) are fairly
inefficient since we have to first lookup this partial function
using the largs/kwargs or uid and then call unbind() on
the returned function. It is recommended to overwrite
these methods in derived classes to bind directly for
better performance.

Similarly to EventDispatcher.fbind(), this method returns
0 on failure and a positive unique uid on success. This uid can be
used with unbind_uid().

	
funbind(name, func, *largs, **kwargs)

	See fbind() and EventDispatcher.funbind().

	
unbind(**kwargs)

	

	
unbind_uid(name, uid)

	See fbind() and EventDispatcher.unbind_uid().

Event Manager

The EventManagerBase is the abstract class intended for specific
implementation of dispatching motion events
(instances of MotionEvent) to widgets through
on_motion() method of the
Widget class.

Warning

This feature is experimental and it remains so while this warning is
present.

Manager is a layer between the window and its widgets.
WindowBase will forward all the events it receives
in on_motion() method to the all managers
who declared to receive types of those events. Event will continue to go
through the managers list even if one of them accept it (by returning True).

When to use an event manager

Use a manager when you want to:

	Dispatch touch, hover, keyboard, joystick or any other events to the widgets
through on_motion() method.

	Dispatch filtered motion events by any criteria, like by a
device or a
profile.

	Combine several motion events (touch, hover etc.) into one new event and
dispatch it to the widgets.

	Dispatch one-time generic events, like app pause/resume.

	Write an event simulator, like a touch simulator which draws a circle on
window’s canvas for every simulated touch.

Defining and registering an event manager

	Inherit EventManagerBase and set which events this manager
should receive by declaring event types in
EventManagerBase.type_ids attribute.

	Implement EventManagerBase.dispatch() which will be called by window
to pass event type (one of “begin”, “update”, “end”) and an event.

	Implement EventManagerBase.start() and EventManagerBase.stop()
to allocate and release additional resources if needed.

	Register a manager instance to window using method
register_event_manager(). This can be
done by overriding methods build() or
on_start().

All registered managers are kept in the
event_managers list. To unregister a
manager call unregister_event_manager()
which itself can be called in on_stop() method.

Dispatching events to the widgets

Once registered, window will start the manager and forward all events of types
declared in EventManagerBase.type_ids to the manager’s
EventManagerBase.dispatch() method. It’s up to manager to decide how to
dispatch them, either by going through EventManagerBase.window.children
list and dispatching on_motion event or by using some different logic. It’s
also up to manager to dispatch grabbed events if grab feature is supported by
the event (see grab() and
ungrab() methods).

Manager can assign a different dispatch mode to decide how event
should be dispatched throughout the widget tree by changing the value of the
dispatch_mode attribute. Before
changing the mode manager should store/restore the current one, either by using
a local variable or by using event’s
push() /
pop() methods.

Currently there are three dispatch modes (behaviors) recognized by the
on_motion method in Widget class:

	Default dispatch (requires MODE_DEFAULT_DISPATCH) - event will go
through widget’s children list, starting with the first widget in the
list until event gets accepted or last widget registered for that event is
reached. Mode MODE_DEFAULT_DISPATCH is assigned by default in
MotionEvent class.

	Filtered dispatch (requires MODE_FILTERED_DISPATCH) - event will go
only through registered child widgets.

	No dispatch to children (requires MODE_DONT_DISPATCH) - event will
not be dispatched to child widgets.

Note that window does not have a motion_filter property and therefore does
not have a list of filtered widgets from its children list.

	
class kivy.eventmanager.EventManagerBase

	Bases: builtins.object

Abstract class with methods start(), stop() and
dispatch() for specific class to implement.

Example of the manager receiving touch and hover events:

class TouchHoverManager(EventManagerBase):

 type_ids = ('touch', 'hover')

 def start(self):
 # Create additional resources, bind callbacks to self.window

 def dispatch(self, etype, me):
 if me.type_id == 'touch':
 # Handle touch event
 elif me.type_id == 'hover'
 # Handle hover event

 def stop(self):
 # Release resources

	
dispatch(etype, me)

	Dispatch event me to the widgets in the window.

	Parameters:

	
	etype: str
	One of “begin”, “update” or “end”

	me: MotionEvent
	The Motion Event currently dispatched.

	Returns:

	bool
True to stop event dispatching

New in version 2.1.0.

	
start()

	Start the manager, bind callbacks to the objects and create
additional resources. Attribute window is assigned when this
method is called.

New in version 2.1.0.

	
stop()

	Stop the manager, unbind from any objects and release any allocated
resources.

New in version 2.1.0.

	
type_ids = None

	Override this attribute to declare the type ids of the events which
manager wants to receive. This attribute will be used by
WindowBase to know which events to pass to the
dispatch() method.

New in version 2.1.0.

	
window = None

	Holds the instance of the WindowBase.

New in version 2.1.0.

	
kivy.eventmanager.MODE_DEFAULT_DISPATCH = 'default'

	Assign this mode to make event dispatch through widget’s children list,
starting with the first widget in the list until event gets accepted or last
widget registered for that event is reached. Widgets after the last registered
widget are ignored.

New in version 2.1.0.

	
kivy.eventmanager.MODE_DONT_DISPATCH = 'none'

	Assign this mode to prevent event from dispatching to child widgets.

New in version 2.1.0.

	
kivy.eventmanager.MODE_FILTERED_DISPATCH = 'filtered'

	Assign this mode to make event dispatch only to child widgets which were
previously registered to receive events of the same
type_id and not to all
child widgets.

New in version 2.1.0.

Factory object

The factory can be used to automatically register any class or module
and instantiate classes from it anywhere in your project. It is an
implementation of the
Factory Pattern [http://en.wikipedia.org/wiki/Factory_pattern].

The class list and available modules are automatically generated by setup.py.

Example for registering a class/module:

>>> from kivy.factory import Factory
>>> Factory.register('Widget', module='kivy.uix.widget')
>>> Factory.register('Vector', module='kivy.vector')

Example of using the Factory:

>>> from kivy.factory import Factory
>>> widget = Factory.Widget(pos=(456,456))
>>> vector = Factory.Vector(9, 2)

Example using a class name:

>>> from kivy.factory import Factory
>>> Factory.register('MyWidget', cls=MyWidget)

By default, the first classname you register via the factory is permanent.
If you wish to change the registered class, you need to unregister the
classname before you re-assign it:

>>> from kivy.factory import Factory
>>> Factory.register('MyWidget', cls=MyWidget)
>>> widget = Factory.MyWidget()
>>> Factory.unregister('MyWidget')
>>> Factory.register('MyWidget', cls=CustomWidget)
>>> customWidget = Factory.MyWidget()

	
kivy.factory.Factory: FactoryBase = <kivy.factory.FactoryBase object>

	Factory instance to use for getting new classes

	
exception kivy.factory.FactoryException

	Bases: Exception

Garden

New in version 1.7.0.

Changed in version 1.11.1.

Garden is a project to centralize addons for Kivy maintained by users. You can
find more information at Kivy Garden [http://kivy-garden.github.io/]. All
the garden packages are centralized on the kivy-garden Github [https://github.com/kivy-garden] repository.

Warning

The garden flower widgets are contributed by regular users such as
yourself. The kivy developers do not take any responsibility for the code
hosted in the garden organization repositories - we do not actively monitor
the flower repos. Please use at your own risk.

Update to garden structure

Starting with the kivy 1.11.0 release, kivy has
shifted [https://github.com/kivy/kivy/wiki/Moving-kivy.garden.xxx-to-kivy_garden.xxx-and-kivy.deps.xxx-to-kivy_deps.xxx] from using the garden legacy
tool that installs flowers with garden install flower where the flower
does not have a proper python package structure to flowers that can be
installed with pip and uploaded to pypi. Kivy supports the legacy garden
flowers side by side with the newer packages so the garden tool and legacy
flowers will be able to be used indefinitely. But we will only provide support
for the newer packages format in the future.

For garden package maintainers - for a guide how to migrate your garden package
from the legacy structure garden.flower to the newer flower structure used
with the pip, see this guide [https://kivy-garden.github.io/#guideformigratingflowersfromlegacystructure].

We hope most garden packages will be converted to the newer format to help
with installation.

General Usage Guidelines

To use a kivy garden flower, first check if the flower is in the legacy format.
If the flower name is in the format of garden.flower, such as
garden.graph [https://github.com/kivy-garden/garden.graph] it is a legacy
flower. If it is just flower such as
graph [https://github.com/kivy-garden/graph] it is in the present format.
If it is in the legacy format see Legacy garden tool instructions for how to
install and use it. Otherwise, continue with the guide below.

Garden flowers can now be installed with the pip tool like a normal python
package. Given a flower that you want to install, lets use
graph [https://github.com/kivy-garden/graph] as an example. You can install
master directly from github with:

python -m pip install https://github.com/kivy-garden/graph/archive/master.zip

Look under the repository’s releases tab if you’d like to install a specific
release or a pre-compiled wheel, if the flower has any. Then use the url with
pip.

Or you can automatically install it using garden’s pypi server with:

python -m pip install kivy_garden.graph --extra-index-url https://kivy-garden.github.io/simple/

To permanently add our garden server to your pip configuration so that you
don’t have to specify it with –extra-index-url, add:

[global]
timeout = 60
index-url = https://kivy-garden.github.io/simple/

to your pip.conf [https://pip.pypa.io/en/stable/user_guide/#config-file].

If the flower maintainer has uploaded the flower to
pypi [https://pypi.org/], you can just install it with
pip install kivy_garden.flower.

Legacy garden tool instructions

Garden is now distributed as a separate Python module, kivy-garden. You can
install it with pip:

pip install kivy-garden

The garden module does not initially include any packages. You can download
them with the garden tool installed by the pip package:

Installing a garden package
garden install graph

Upgrade a garden package
garden install --upgrade graph

Uninstall a garden package
garden uninstall graph

List all the garden packages installed
garden list

Search new packages
garden search

Search all the packages that contain "graph"
garden search graph

Show the help
garden --help

All the garden packages are installed by default in ~/.kivy/garden.

Note

In previous versions of Kivy, garden was a tool at
kivy/tools/garden. This no longer exists, but the
kivy-garden module provides exactly the same functionality.

Packaging

If you want to include garden packages in your application, you can add –app
to the install command. This will create a libs/garden directory in your
current directory which will be used by kivy.garden.

For example:

cd myapp
garden install --app graph

	
kivy.garden.garden_system_dir = 'garden'

	system path where garden modules can be installed

Geometry utilities

This module contains some helper functions for geometric calculations.

	
kivy.geometry.circumcircle(a, b, c)

	Computes the circumcircle of a triangle defined by a, b, c.
See: http://en.wikipedia.org/wiki/Circumscribed_circle

	Parameters:

	
	a: iterable containing at least 2 values (for x and y)
	The 1st point of the triangle.

	b: iterable containing at least 2 values (for x and y)
	The 2nd point of the triangle.

	c: iterable containing at least 2 values (for x and y)
	The 3rd point of the triangle.

	Return:

	
	A tuple that defines the circle :
	
	The first element in the returned tuple is the center as (x, y)

	The second is the radius (float)

	
kivy.geometry.minimum_bounding_circle(points)

	Returns the minimum bounding circle for a set of points.

For a description of the problem being solved, see the Smallest Circle
Problem [http://en.wikipedia.org/wiki/Smallest_circle_problem].

The function uses Applet’s Algorithm, the runtime is O(h^3, *n),
where h is the number of points in the convex hull of the set of points.
But it runs in linear time in almost all real world cases.
See: http://tinyurl.com/6e4n5yb

	Parameters:

	
	points: iterable
	A list of points (2 tuple with x,y coordinates)

	Return:

	
	A tuple that defines the circle:
	
	The first element in the returned tuple is the center (x, y)

	The second the radius (float)

Gesture recognition

This class allows you to easily create new
gestures and compare them:

from kivy.gesture import Gesture, GestureDatabase

Create a gesture
g = Gesture()
g.add_stroke(point_list=[(1,1), (3,4), (2,1)])
g.normalize()

Add it to the database
gdb = GestureDatabase()
gdb.add_gesture(g)

And for the next gesture, try to find it!
g2 = Gesture()
...
gdb.find(g2)

Warning

You don’t really want to do this: it’s more of an example of how
to construct gestures dynamically. Typically, you would
need a lot more points, so it’s better to record gestures in a file and
reload them to compare later. Look in the examples/gestures directory for
an example of how to do that.

	
class kivy.gesture.Gesture(tolerance=None)

	Bases: builtins.object

A python implementation of a gesture recognition algorithm by
Oleg Dopertchouk: http://www.gamedev.net/reference/articles/article2039.asp

Implemented by Jeiel Aranal (chemikhazi@gmail.com),
released into the public domain.

	
add_stroke(point_list=None)

	Adds a stroke to the gesture and returns the Stroke instance.
Optional point_list argument is a list of the mouse points for
the stroke.

	
dot_product(comparison_gesture)

	Calculates the dot product of the gesture with another gesture.

	
get_rigid_rotation(dstpts)

	Extract the rotation to apply to a group of points to minimize the
distance to a second group of points. The two groups of points are
assumed to be centered. This is a simple version that just picks
an angle based on the first point of the gesture.

	
get_score(comparison_gesture, rotation_invariant=True)

	Returns the matching score of the gesture against another gesture.

	
normalize(stroke_samples=32)

	Runs the gesture normalization algorithm and calculates the dot
product with self.

	
class kivy.gesture.GestureDatabase

	Bases: builtins.object

Class to handle a gesture database.

	
add_gesture(gesture)

	Add a new gesture to the database.

	
find(gesture, minscore=0.9, rotation_invariant=True)

	Find a matching gesture in the database.

	
gesture_to_str(gesture)

	Convert a gesture into a unique string.

	
str_to_gesture(data)

	Convert a unique string to a gesture.

	
class kivy.gesture.GestureStroke

	Bases: builtins.object

Gestures can be made up of multiple strokes.

	
add_point(x=x_pos, y=y_pos)

	Adds a point to the stroke.

	
center_stroke(offset_x, offset_y)

	Centers the stroke by offsetting the points.

	
normalize_stroke(sample_points=32)

	Normalizes strokes so that every stroke has a standard number of
points. Returns True if stroke is normalized, False if it can’t be
normalized. sample_points controls the resolution of the stroke.

	
points_distance(point1=GesturePoint, point2=GesturePoint)

	Returns the distance between two GesturePoints.

	
scale_stroke(scale_factor=float)

	Scales the stroke down by scale_factor.

	
stroke_length(point_list=None)

	Finds the length of the stroke. If a point list is given,
finds the length of that list.

Graphics

This package assembles many low level functions used for drawing. The whole
graphics package is compatible with OpenGL ES 2.0 and has many rendering
optimizations.

The basics

For drawing on a screen, you will need :

	a Canvas object.

	Instruction objects.

Each Widget
in Kivy already has a Canvas by default. When you create
a widget, you can create all the instructions needed for drawing. If
self is your current widget, you can do:

from kivy.graphics import *
with self.canvas:
 # Add a red color
 Color(1., 0, 0)

 # Add a rectangle
 Rectangle(pos=(10, 10), size=(500, 500))

The instructions Color and Rectangle are automatically added
to the canvas object and will be used when the window is drawn.

Note

Kivy drawing instructions are not automatically relative to the position
or size of the widget. You, therefore, need to consider these factors when
drawing. In order to make your drawing instructions relative to the widget,
the instructions need either to be
declared in the KvLang or bound to pos and size changes.
Please see Adding a Background to a Layout for more detail.

GL Reloading mechanism

New in version 1.2.0.

During the lifetime of the application, the OpenGL context might be lost. This
happens:

	when the window is resized on OS X or the Windows platform and you’re
using pygame as a window provider. This is due to SDL 1.2. In the SDL 1.2
design, it needs to recreate a GL context everytime the window is
resized. This was fixed in SDL 1.3 but pygame is not yet available on it
by default.

	when Android releases the app resources: when your application goes to the
background, Android might reclaim your opengl context to give the
resource to another app. When the user switches back to your application, a
newly created gl context is given to your app.

Starting from 1.2.0, we have introduced a mechanism for reloading all the
graphics resources using the GPU: Canvas, FBO, Shader, Texture, VBO,
and VertexBatch:

	VBO and VertexBatch are constructed by our graphics instructions. We have all
the data needed to reconstruct when reloading.

	Shader: same as VBO, we store the source and values used in the
shader so we are able to recreate the vertex/fragment/program.

	Texture: if the texture has a source (an image file or atlas), the image
is reloaded from the source and reuploaded to the GPU.

You should cover these cases yourself:

	Textures without a source: if you manually created a texture and manually
blit data / a buffer to it, you must handle the reloading yourself. Check the
Texture to learn how to manage that case. (The text
rendering already generates the texture and handles the reloading. You
don’t need to reload text yourself.)

	FBO: if you added / removed / drew things multiple times on the FBO, we
can’t reload it. We don’t keep a history of the instructions put on it.
As for textures without a source, check the Framebuffer to
learn how to manage that case.

	
class kivy.graphics.ApplyContextMatrix(**kwargs)

	Bases: kivy.graphics.instructions.ContextInstruction

target_stack by the matrix at the top of the ‘source_stack’

New in version 1.6.0.

	
source_stack

	Name of the matrix stack to use as a source.
Can be ‘modelview_mat’, ‘projection_mat’ or ‘frag_modelview_mat’.

New in version 1.6.0.

	
target_stack

	Name of the matrix stack to use as a target.
Can be ‘modelview_mat’, ‘projection_mat’ or ‘frag_modelview_mat’.

New in version 1.6.0.

	
class kivy.graphics.Bezier(**kwargs)

	Bases: kivy.graphics.instructions.VertexInstruction

New in version 1.0.8.

	Parameters:

	
	points: list
	List of points in the format (x1, y1, x2, y2…)

	segments: int, defaults to 180
	Define how many segments are needed for drawing the curve.
The drawing will be smoother if you have many segments.

	loop: bool, defaults to False
	Set the bezier curve to join the last point to the first.

	dash_length: int
	Length of a segment (if dashed), defaults to 1.

	dash_offset: int
	Distance between the end of a segment and the start of the
next one, defaults to 0. Changing this makes it dashed.

	
dash_length

	Property for getting/setting the length of the dashes in the curve.

	
dash_offset

	Property for getting/setting the offset between the dashes in the
curve.

	
points

	Property for getting/settings the points of the triangle.

Warning

This will always reconstruct the whole graphic from the new points
list. It can be very CPU intensive.

	
segments

	Property for getting/setting the number of segments of the curve.

	
class kivy.graphics.BindTexture(**kwargs)

	Bases: kivy.graphics.instructions.ContextInstruction

The BindTexture Instruction will bind a texture and enable
GL_TEXTURE_2D for subsequent drawing.

	Parameters:

	
	texture: Texture
	Specifies the texture to bind to the given index.

	
source

	Set/get the source (filename) to load for the texture.

	
class kivy.graphics.BorderImage(**kwargs)

	Bases: kivy.graphics.vertex_instructions.Rectangle

concept of a CSS3 border-image.

	Parameters:

	
	border: list
	Border information in the format (bottom, right, top, left).
Each value is in pixels.

	auto_scale: string
	
New in version 1.9.1.

Changed in version 1.9.2: This used to be a bool and has been changed to be a string
state.

Can be one of ‘off’, ‘both’, ‘x_only’, ‘y_only’, ‘y_full_x_lower’,
‘x_full_y_lower’, ‘both_lower’.

Autoscale controls the behavior of the 9-slice.

By default the border values are preserved exactly, meaning that
if the total size of the object is smaller than the border values
you will have some ‘rendering errors’ where your texture appears
inside out. This also makes it impossible to achieve a rounded
button that scales larger than the size of its source texture. The
various options for auto_scale will let you achieve some mixes of
the 2 types of rendering.

‘off’: is the default and behaves as BorderImage did when auto_scale
was False before.

‘both’: Scales both x and y dimension borders according to the size
of the BorderImage, this disables the BorderImage making it render
the same as a regular Image.

‘x_only’: The Y dimension functions as the default, and the X
scales to the size of the BorderImage’s width.

‘y_only’: The X dimension functions as the default, and the Y
scales to the size of the BorderImage’s height.

‘y_full_x_lower’: Y scales as in ‘y_only’, Y scales if the
size of the scaled version would be smaller than the provided
border only.

‘x_full_y_lower’: X scales as in ‘x_only’, Y scales if the
size of the scaled version would be smaller than the provided
border only.

‘both_lower’: This is what auto_scale did when it was True in 1.9.1
Both X and Y dimensions will be scaled if the BorderImage is
smaller than the source.

If the BorderImage’s size is less than the sum of its
borders, horizontally or vertically, and this property is
set to True, the borders will be rescaled to accommodate for
the smaller size.

	
auto_scale

	Property for setting if the corners are automatically scaled
when the BorderImage is too small.

	
border

	Property for getting/setting the border of the class.

	
display_border

	Property for getting/setting the border display size.

	
class kivy.graphics.BoxShadow(*args, **kwargs)

	Bases: kivy.graphics.fbo.Fbo

New in version 2.2.0.

	Parameters:

	
	inset: bool, defaults to False.
	Defines whether the shadow is drawn from the inside out or from the
outline to the inside of the BoxShadow instruction.

	size: list | tuple, defaults to (100.0, 100.0).
	Define the raw size of the shadow, that is, you should not take into account
changes in the value of blur_radius and spread_radius
properties when setting this parameter.

	pos: list | tuple, defaults to (0.0, 0.0).
	Define the raw position of the shadow, that is, you should not take into account
changes in the value of the offset property when setting this parameter.

	offset: list | tuple, defaults to (0.0, 0.0).
	Specifies shadow offsets in (horizontal, vertical) format.
Positive values for the offset indicate that the shadow should move to the right and/or top.
The negative ones indicate that the shadow should move to the left and/or down.

	blur_radius: float, defaults to 15.0.
	Define the shadow blur radius. Controls shadow expansion and softness.

	spread_radius: list | tuple, defaults to (0.0, 0.0).
	Define the shrink/expansion of the shadow.

	border_radius: list | tuple, defaults to (0.0, 0.0, 0.0, 0.0).
	Specifies the radii used for the rounded corners clockwise:
top-left, top-right, bottom-right, bottom-left.

	
blur_radius

	Define the shadow blur radius. Controls shadow expansion and softness.

Defaults to 15.0.

In the images below, the start and end positions of the shadow blur
effect length are indicated.
The transition between color and transparency is seamless, and although
the shadow appears to end before before the dotted rectangle, its end
is made to be as smooth as possible.

	
	inset OFF:
	[image: _images/boxshadow_blur_radius.svg]

	
	inset ON:
	[image: _images/boxshadow_blur_radius_inset.svg]

Note

In some cases (if this is not your intention), placing an element
above the shadow (before the blur radius ends) will result in a unwanted
cropping/overlay behavior rather than continuity, breaking the
shadow’s soft ending, as shown in the image below.

[image: _images/boxshadow_common_mistake_1.svg]

	
border_radius

	Specifies the radii used for the rounded corners clockwise:
top-left, top-right, bottom-right, bottom-left.

Defaults to (0.0, 0.0, 0.0, 0.0).

	
	inset OFF:
	[image: _images/boxshadow_border_radius.svg]

	
	inset ON:
	[image: _images/boxshadow_border_radius_inset.svg]

	
inset

	Defines whether the shadow is drawn from the inside out or from the outline to the inside of the BoxShadow instruction.

Defaults to False.

Note

Although the inset mode determines the drawing behavior of the shadow, the position of the BoxShadow
instruction in the canvas hierarchy depends on the other graphic instructions present in the
Canvas instruction tree.

In other words, if the target is in the canvas layer and you want to use the default inset = False
mode to create an elevation effect, you must declare the BoxShadow instruction in canvas.before layer.

[image: _images/boxshadow_example_1.png]
<MyWidget@Widget>:
 size_hint: None, None
 size: 100, 100
 pos: 100, 100

 canvas.before:
 # BoxShadow statements
 Color:
 rgba: 0, 0, 0, 0.65
 BoxShadow:
 pos: self.pos
 size: self.size
 offset: 0, -10
 blur_radius: 25
 spread_radius: -10, -10
 border_radius: 10, 10, 10, 10

 canvas:
 # target element statements
 Color:
 rgba: 1, 1, 1, 1
 Rectangle:
 pos: self.pos
 size: self.size

Or, if the target is in the canvas layer and you want to use the inset = True mode to create an
insertion effect, you must declare the BoxShadow instruction in the canvas layer, immediately after
the target canvas declaration, or declare it in canvas.after.

[image: _images/boxshadow_example_2.png]
<MyWidget@Widget>:
 size_hint: None, None
 size: 100, 100
 pos: 100, 100

 canvas:
 # target element statements
 Color:
 rgba: 1, 1, 1, 1
 Rectangle:
 pos: self.pos
 size: self.size

 # BoxShadow statements
 Color:
 rgba: 0, 0, 0, 0.65
 BoxShadow:
 inset: True
 pos: self.pos
 size: self.size
 offset: 0, -10
 blur_radius: 25
 spread_radius: -10, -10
 border_radius: 10, 10, 10, 10

In summary:

	Elevation effect - inset = False: the BoxShadow instruction needs to be drawn before the target element.

	Insertion effect - inset = True: the BoxShadow instruction needs to be drawn after the target element.

In general, BoxShadow is more flexible than box-shadow (CSS) because the inset = False and
inset = True modes do not limit the drawing of the shadow below and above the target element,
respectively. Actually, you can define any hierarchy you want in the Canvas
declaration tree, to create more complex effects that go beyond common shadow effects.

Modes:

	False (default) - The shadow is drawn inside out the BoxShadow instruction, creating a raised effect.

	True - The shadow is drawn from the outline to the inside of the BoxShadow instruction, creating a inset effect.

[image: _images/boxshadow_inset.svg]

	
offset

	Specifies shadow offsets in [horizontal, vertical] format.
Positive values for the offset indicate that the shadow should move to
the right and/or top.
The negative ones indicate that the shadow should move to the left
and/or down.

Defaults to (0.0, 0.0).

For this property to work as expected, it is indicated that the value
of pos coincides with the position of the target element of the
shadow, as in the example below:

	
	inset OFF:
	[image: _images/boxshadow_offset.svg]

	
	inset ON:
	[image: _images/boxshadow_offset_inset.svg]

	
pos

	Define the raw position of the shadow, that is, you should not take
into account changes in the value of the offset property when
setting this property.

	
	inset OFF:
	Returns the adjusted position of the shadow according to the
adjusted size of the shadow and offset property.

	
	inset ON:
	Returns the raw position (the same as specified).

Defaults to (0.0, 0.0).

Note

It is recommended that this property matches the raw position of
the shadow target element. To manipulate horizontal and vertical
offset, use offset instead.

	
size

	Define the raw size of the shadow, that is, you should not take into
account changes in the value of blur_radius and spread_radius properties.

	
	inset OFF:
	Returns the adjusted size of the shadow according to the
blur_radius and spread_radius properties.

	
	inset ON:
	Returns the raw size (the same as specified).

Defaults to (100.0, 100.0).

Note

It is recommended that this property matches the raw size of
the shadow target element. To control the shrink/expansion of
the shadow’s raw size, use spread_radius instead.

	
spread_radius

	Define the shrink/expansion of the shadow in [horizontal, vertical] format.

Defaults to (0.0, 0.0).

This property is especially useful for cases where you want to achieve
a softer shadow around the element, by setting negative values for
spread_radius and a larger value for blur_radius as
in the example.

	
	inset OFF:
	In the image below, the target element has a raw size of 200 x 150px.
Positive changes to the spread_radius values will cause the raw
size of the shadow to increase, while negative values will cause
the shadow to shrink.

[image: _images/boxshadow_spread_radius.svg]

	
	inset ON:
	Positive values will cause the shadow to grow into the bounding box,
while negative values will cause the shadow to shrink.

[image: _images/boxshadow_spread_radius_inset.svg]

	
class kivy.graphics.Callback(callback=None, **kwargs)

	Bases: kivy.graphics.instructions.Instruction

A Callback is an instruction that will be called when the drawing
operation is performed. When adding instructions to a canvas, you can do
this:

with self.canvas:
 Color(1, 1, 1)
 Rectangle(pos=self.pos, size=self.size)
 Callback(self.my_callback)

The definition of the callback must be:

def my_callback(self, instr):
 print('I have been called!')

Warning

Note that if you perform many and/or costly calls to callbacks, you
might potentially slow down the rendering performance significantly.

The updating of your canvas does not occur until something new happens.
From your callback, you can ask for an update:

with self.canvas:
 self.cb = Callback(self.my_callback)
then later in the code
self.cb.ask_update()

If you use the Callback class to call rendering methods of another
toolkit, you will have issues with the OpenGL context. The OpenGL state may
have been manipulated by the other toolkit, and as soon as program flow
returns to Kivy, it will just break. You can have glitches, crashes, black
holes might occur, etc.
To avoid that, you can activate the reset_context option. It will
reset the OpenGL context state to make Kivy’s rendering correct after the
call to your callback.

Warning

The reset_context is not a full OpenGL reset. If you have issues
regarding that, please contact us.

	
ask_update()

	Inform the parent canvas that we’d like it to update on the next
frame. This is useful when you need to trigger a redraw due to some
value having changed for example.

New in version 1.0.4.

	
callback

	Property for getting/setting func.

	
reset_context

	Set this to True if you want to reset the OpenGL context for Kivy
after the callback has been called.

	
class kivy.graphics.Canvas(**kwargs)

	Bases: kivy.graphics.instructions.CanvasBase

instructions that you want to be used for drawing.

Note

The Canvas supports Python’s with statement and its enter & exit
semantics.

Usage of a canvas without the with statement:

self.canvas.add(Color(1., 1., 0))
self.canvas.add(Rectangle(size=(50, 50)))

Usage of a canvas with Python’s with statement:

with self.canvas:
 Color(1., 1., 0)
 Rectangle(size=(50, 50))

	
add(Instruction c)

	Append an Instruction to our list. If the canvas contains
an after group, then this instruction is inserted just before the
after group, which remains last. This is different from how
insert() works, which can insert anywhere.

	
after

	Property for getting the ‘after’ group.

	
ask_update()

	Inform the canvas that we’d like it to update on the next frame.
This is useful when you need to trigger a redraw due to some value
having changed for example.

	
before

	Property for getting the ‘before’ group.

	
clear()

	Clears every Instruction in the canvas, leaving it clean.

	
draw()

	Apply the instruction to our window.

	
has_after

	Property to see if the after group has already been created.

New in version 1.7.0.

	
has_before

	Property to see if the before group has already been created.

New in version 1.7.0.

	
opacity

	Property to get/set the opacity value of the canvas.

New in version 1.4.1.

The opacity attribute controls the opacity of the canvas and its
children. Be careful, it’s a cumulative attribute: the value is
multiplied to the current global opacity and the result is applied to
the current context color.

For example: if your parent has an opacity of 0.5 and a child has an
opacity of 0.2, the real opacity of the child will be 0.5 * 0.2 = 0.1.

Then, the opacity is applied on the shader as:

frag_color = color * vec4(1.0, 1.0, 1.0, opacity);

	
remove(Instruction c)

	

	
class kivy.graphics.CanvasBase

	Bases: kivy.graphics.instructions.InstructionGroup

CanvasBase provides the context manager methods for the
Canvas.

	
class kivy.graphics.ChangeState(**kwargs)

	Bases: kivy.graphics.instructions.ContextInstruction

current render context.

New in version 1.6.0.

	
class kivy.graphics.ClearBuffers(*args, **kwargs)

	Bases: kivy.graphics.instructions.Instruction

New in version 1.3.0.

Clear the buffers specified by the instructions buffer mask property.
By default, only the coloc buffer is cleared.

	
clear_color

	If True, the color buffer will be cleared.

	
clear_depth

	If True, the depth buffer will be cleared.

	
clear_stencil

	If True, the stencil buffer will be cleared.

	
class kivy.graphics.ClearColor(r, g, b, a, **kwargs)

	Bases: kivy.graphics.instructions.Instruction

New in version 1.3.0.

Sets the clear color used to clear buffers with the glClear function or
ClearBuffers graphics instructions.

	
a

	Alpha component, between 0 and 1.

	
b

	Blue component, between 0 and 1.

	
g

	Green component, between 0 and 1.

	
r

	Red component, between 0 and 1.

	
rgb

	RGB color, a list of 3 values in 0-1 range where alpha will be 1.

	
rgba

	RGBA color used for the clear color, a list of 4 values in the 0-1
range.

	
class kivy.graphics.Color(*args, **kwargs)

	Bases: kivy.graphics.instructions.ContextInstruction

drawn after it.

This represents a color between 0 and 1, but is applied as a
multiplier to the texture of any vertex instructions following
it in a canvas. If no texture is set, the vertex instruction
takes the precise color of the Color instruction.

For instance, if a Rectangle has a texture with uniform color
(0.5, 0.5, 0.5, 1.0) and the preceding Color has
rgba=(1, 0.5, 2, 1), the actual visible color will be
(0.5, 0.25, 1.0, 1.0) since the Color instruction is applied as
a multiplier to every rgba component. In this case, a Color
component outside the 0-1 range gives a visible result as the
intensity of the blue component is doubled.

To declare a Color in Python, you can do:

from kivy.graphics import Color

create red v
c = Color(1, 0, 0)
create blue color
c = Color(0, 1, 0)
create blue color with 50% alpha
c = Color(0, 1, 0, .5)

using hsv mode
c = Color(0, 1, 1, mode='hsv')
using hsv mode + alpha
c = Color(0, 1, 1, .2, mode='hsv')

You can also set color components that are available as properties
by passing them as keyword arguments:

c = Color(b=0.5) # sets the blue component only

In kv lang you can set the color properties directly:

<Rule>:
 canvas:
 # red color
 Color:
 rgb: 1, 0, 0
 # blue color
 Color:
 rgb: 0, 1, 0
 # blue color with 50% alpha
 Color:
 rgba: 0, 1, 0, .5

 # using hsv mode
 Color:
 hsv: 0, 1, 1
 # using hsv mode + alpha
 Color:
 hsv: 0, 1, 1
 a: .5

	
a

	Alpha component, between 0 and 1.

	
b

	Blue component, between 0 and 1.

	
g

	Green component, between 0 and 1.

	
h

	Hue component, between 0 and 1.

	
hsv

	HSV color, list of 3 values in 0-1 range, alpha will be 1.

	
r

	Red component, between 0 and 1.

	
rgb

	RGB color, list of 3 values in 0-1 range. The alpha will be 1.

	
rgba

	RGBA color, list of 4 values in 0-1 range.

	
s

	Saturation component, between 0 and 1.

	
v

	Value component, between 0 and 1.

	
class kivy.graphics.ContextInstruction(**kwargs)

	Bases: kivy.graphics.instructions.Instruction

that don’t have a direct visual representation, but instead modify the
current Canvas’ state, e.g. texture binding, setting color parameters,
matrix manipulation and so on.

	
class kivy.graphics.Ellipse(*args, **kwargs)

	Bases: kivy.graphics.vertex_instructions.Rectangle

	Parameters:

	
	segments: int, the default value is calculated from the range between angle.
	Define how many segments are needed for drawing the ellipse.
The ellipse drawing will be smoother if you have many segments,
however you can also use this property to create polygons with 3 or more sides.

	angle_start: float, defaults to 0.0
	Specifies the starting angle, in degrees, of the disk portion.

	angle_end: float, defaults to 360.0
	Specifies the ending angle, in degrees, of the disk portion.

Changed in version 1.0.7: Added angle_start and angle_end.

Changed in version 2.2.0: The default number of segments is no longer 180, it is now calculated
according to the angle range, as this is a more efficient approach.

	
angle_end

	End angle of the ellipse in degrees, defaults to 360.

	
angle_start

	Start angle of the ellipse in degrees, defaults to 0.

	
segments

	Property for getting/setting the number of segments of the ellipse.
The ellipse drawing will be smoother if you have many segments, however
you can also use this property to create polygons with 3 or more sides.
Values smaller than 3 will not be represented and the number of
segments will be automatically calculated.

Changed in version 2.2.0: The minimum number of segments allowed is 3. Smaller values will be
ignored and the number of segments will be automatically calculated.

	
class kivy.graphics.Fbo(*args, **kwargs)

	Bases: kivy.graphics.instructions.RenderContext

“with” statement.

	Parameters:

	
	clear_color: tuple, defaults to (0, 0, 0, 0)
	Define the default color for clearing the framebuffer

	size: tuple, defaults to (1024, 1024)
	Default size of the framebuffer

	push_viewport: bool, defaults to True
	If True, the OpenGL viewport will be set to the framebuffer size,
and will be automatically restored when the framebuffer released.

	with_depthbuffer: bool, defaults to False
	If True, the framebuffer will be allocated with a Z buffer.

	with_stencilbuffer: bool, defaults to False
	
New in version 1.9.0.

If True, the framebuffer will be allocated with a stencil buffer.

	texture: Texture, defaults to None
	If None, a default texture will be created.

Note

Using both of with_stencilbuffer and with_depthbuffer is not
supported in kivy 1.9.0

	
add_reload_observer(callback)

	Add a callback to be called after the whole graphics context has
been reloaded. This is where you can reupload your custom data in GPU.

New in version 1.2.0.

	Parameters:

	
	callback: func(context) -> return None
	The first parameter will be the context itself

	
bind()

	Bind the FBO to the current opengl context.
Bind mean that you enable the Framebuffer, and all the drawing
operations will act inside the Framebuffer, until release() is
called.

The bind/release operations are automatically called when you add
graphics objects into it. If you want to manipulate a Framebuffer
yourself, you can use it like this:

self.fbo = FBO()
self.fbo.bind()
do any drawing command
self.fbo.release()

then, your fbo texture is available at
print(self.fbo.texture)

	
clear_buffer()

	Clear the framebuffer with the clear_color.

You need to bind the framebuffer yourself before calling this
method:

fbo.bind()
fbo.clear_buffer()
fbo.release()

	
clear_color

	Clear color in (red, green, blue, alpha) format.

	
get_pixel_color(int wx, int wy)

	Get the color of the pixel with specified window
coordinates wx, wy. It returns result in RGBA format.

New in version 1.8.0.

	
pixels

	Get the pixels texture, in RGBA format only, unsigned byte. The
origin of the image is at bottom left.

New in version 1.7.0.

	
release()

	Release the Framebuffer (unbind).

	
remove_reload_observer(callback)

	Remove a callback from the observer list, previously added by
add_reload_observer().

New in version 1.2.0.

	
size

	Size of the framebuffer, in (width, height) format.

If you change the size, the framebuffer content will be lost.

	
texture

	Return the framebuffer texture

	
exception kivy.graphics.GraphicException

	Bases: Exception

Exception raised when a graphics error is fired.

	
class kivy.graphics.Instruction(**kwargs)

	Bases: kivy.event.ObjectWithUid

usage only, don’t use it directly.

	
flag_data_update()

	

	
flag_update(int do_parent=1)

	

	
group

	group: unicode

	
proxy_ref

	Return a proxy reference to the Instruction i.e. without creating a
reference of the widget. See weakref.proxy [http://docs.python.org/2/library/weakref.html?highlight=proxy#weakref.proxy]
for more information.

New in version 1.7.2.

	
class kivy.graphics.InstructionGroup(**kwargs)

	Bases: kivy.graphics.instructions.Instruction

of graphics instructions. It can be used directly as follows:

blue = InstructionGroup()
blue.add(Color(0, 0, 1, 0.2))
blue.add(Rectangle(pos=self.pos, size=(100, 100)))

green = InstructionGroup()
green.add(Color(0, 1, 0, 0.4))
green.add(Rectangle(pos=(100, 100), size=(100, 100)))

Here, self should be a Widget or subclass
[self.canvas.add(group) for group in [blue, green]]

	
add(Instruction c)

	Add a new Instruction to our list.

	
children

	children: list

	
clear()

	Remove all the Instructions.

	
get_group(unicode groupname)

	Return an iterable for all the Instructions
with a specific group name.

	
indexof(Instruction c)

	

	
insert(int index, Instruction c)

	Insert a new Instruction into our list at index.

	
length()

	

	
remove(Instruction c)

	Remove an existing Instruction from our list.

	
remove_group(unicode groupname)

	Remove all Instructions with a specific group
name.

	
class kivy.graphics.Line(**kwargs)

	Bases: kivy.graphics.instructions.VertexInstruction

Drawing a line can be done easily:

with self.canvas:
 Line(points=[100, 100, 200, 100, 100, 200], width=10)

The line has 3 internal drawing modes that you should be aware of
for optimal results:

	If the width is 1.0, then the standard GL_LINE drawing from
OpenGL will be used. dash_length, dash_offset, and dashes will
work, while properties for cap and joint have no meaning here.

	If the width is greater than 1.0, then a custom drawing method,
based on triangulation, will be used. dash_length,
dash_offset, and dashes do not work in this mode.
Additionally, if the current color has an alpha less than 1.0, a
stencil will be used internally to draw the line.

[image: _images/line-instruction.png]

	Parameters:

	
	points: list
	List of points in the format (x1, y1, x2, y2…)

	dash_length: int
	Length of a segment (if dashed), defaults to 1.

	dash_offset: int
	Offset between the end of a segment and the beginning of the
next one, defaults to 0. Changing this makes it dashed.

	dashes: list of ints
	List of [ON length, offset, ON length, offset, …]. E.g. [2,4,1,6,8,2]
would create a line with the first dash length 2 then an offset of 4 then
a dash length of 1 then an offset of 6 and so on. Defaults to [].
Changing this makes it dashed and overrides dash_length and dash_offset.

	width: float
	Width of the line, defaults to 1.0.

	cap: str, defaults to ‘round’
	See cap for more information.

	joint: str, defaults to ‘round’
	See joint for more information.

	cap_precision: int, defaults to 10
	See cap_precision for more information

	joint_precision: int, defaults to 10
	See joint_precision for more information
See cap_precision for more information.

	joint_precision: int, defaults to 10
	See joint_precision for more information.

	close: bool, defaults to False
	If True, the line will be closed.

	circle: list
	If set, the points will be set to build a circle. See
circle for more information.

	ellipse: list
	If set, the points will be set to build an ellipse. See
ellipse for more information.

	rectangle: list
	If set, the points will be set to build a rectangle. See
rectangle for more information.

	bezier: list
	If set, the points will be set to build a bezier line. See
bezier for more information.

	bezier_precision: int, defaults to 180
	Precision of the Bezier drawing.

Changed in version 1.0.8: dash_offset and dash_length have been added.

Changed in version 1.4.1: width, cap, joint, cap_precision, joint_precision, close,
ellipse, rectangle have been added.

Changed in version 1.4.1: bezier, bezier_precision have been added.

Changed in version 1.11.0: dashes have been added

	
bezier

	Use this property to build a bezier line, without calculating the
points. You can only set this property, not get it.

The argument must be a tuple of 2n elements, n being the number of points.

Usage:

Line(bezier=(x1, y1, x2, y2, x3, y3)

New in version 1.4.2.

Note

Bezier lines calculations are inexpensive for a low number of
points, but complexity is quadratic, so lines with a lot of points
can be very expensive to build, use with care!

	
bezier_precision

	Number of iteration for drawing the bezier between 2 segments,
defaults to 180. The bezier_precision must be at least 1.

New in version 1.4.2.

	
cap

	Determine the cap of the line, defaults to ‘round’. Can be one of
‘none’, ‘square’ or ‘round’

New in version 1.4.1.

	
cap_precision

	Number of iteration for drawing the “round” cap, defaults to 10.
The cap_precision must be at least 1.

New in version 1.4.1.

	
circle

	Use this property to build a circle, without calculating the
points.

The argument must be a tuple of (center_x, center_y, radius, angle_start,
angle_end, segments):

	center_x and center_y represent the center of the circle

	radius represent the radius of the circle

	(optional) angle_start and angle_end are in degree. The default
value is 0 and 360.

	(optional) segments is the precision of the ellipse. The default
value is calculated from the range between angle.

Note that it’s up to you to close the circle or not.

For example, for building a simple ellipse, in python:

simple circle
Line(circle=(150, 150, 50))

only from 90 to 180 degrees
Line(circle=(150, 150, 50, 90, 180))

only from 90 to 180 degrees, with few segments
Line(circle=(150, 150, 50, 90, 180, 20))

New in version 1.4.1.

Changed in version 2.2.0: Now you can get the circle generated through the property.

	
close

	If True, the line will be closed by joining the two ends, according to close_mode.

New in version 1.4.1.

	
close_mode

	Defines how the ends of the line will be connected.
Defaults to "straight-line".

Note

Support for the different closing modes depends on drawing shapes.

Available modes:

	"straight-line" (all drawing shapes): the ends will be closed by a straight line.

	"center-connected" (ellipse specific): the ends will be closed by a line passing through the center of the ellipse.

New in version 2.2.0.

	
dash_length

	Property for getting/setting the length of the dashes in the curve

New in version 1.0.8.

	
dash_offset

	Property for getting/setting the offset between the dashes in the curve

New in version 1.0.8.

	
dashes

	Property for getting/setting dashes.

List of [ON length, offset, ON length, offset, …]. E.g. [2,4,1,6,8,2]
would create a line with the first dash length 2 then an offset of 4 then
a dash length of 1 then an offset of 6 and so on.

New in version 1.11.0.

	
ellipse

	Use this property to build an ellipse, without calculating the
points.

The argument must be a tuple of (x, y, width, height, angle_start,
angle_end, segments):

	x and y represent the bottom left of the ellipse

	width and height represent the size of the ellipse

	(optional) angle_start and angle_end are in degree. The default
value is 0 and 360.

	(optional) segments is the precision of the ellipse. The default
value is calculated from the range between angle. You can use this
property to create polygons with 3 or more sides. Values smaller than
3 will not be represented and the number of segments will be
automatically calculated.

Note that it’s up to you to close or not.
If you choose to close, use close_mode to define how the figure
will be closed. Whether it will be by closed by a "straight-line"
or by "center-connected".

For example, for building a simple ellipse, in python:

simple ellipse
Line(ellipse=(0, 0, 150, 150))

only from 90 to 180 degrees
Line(ellipse=(0, 0, 150, 150, 90, 180))

only from 90 to 180 degrees, with few segments
Line(ellipse=(0, 0, 150, 150, 90, 180, 20))

New in version 1.4.1.

Changed in version 2.2.0: Now you can get the ellipse generated through the property.

The minimum number of segments allowed is 3. Smaller values will be
ignored and the number of segments will be automatically calculated.

	
joint

	Determine the join of the line, defaults to ‘round’. Can be one of
‘none’, ‘round’, ‘bevel’, ‘miter’.

New in version 1.4.1.

	
joint_precision

	Number of iteration for drawing the “round” joint, defaults to 10.
The joint_precision must be at least 1.

New in version 1.4.1.

	
points

	Property for getting/settings points of the line

Warning

This will always reconstruct the whole graphics from the new points
list. It can be very CPU expensive.

	
rectangle

	Use this property to build a rectangle, without calculating the
points.

The argument must be a tuple of (x, y, width, height):

	x and y represent the bottom-left position of the rectangle

	width and height represent the size

The line is automatically closed.

Usage:

Line(rectangle=(0, 0, 200, 200))

New in version 1.4.1.

Changed in version 2.2.0: Now you can get the rectangle generated through the property.

	
rounded_rectangle

	Use this property to build a rectangle, without calculating the
points.

The argument must be a tuple of one of the following forms:

	(x, y, width, height, corner_radius)

	(x, y, width, height, corner_radius, resolution)

	(x, y, width, height, corner_radius1, corner_radius2, corner_radius3, corner_radius4)

	(x, y, width, height, corner_radius1, corner_radius2, corner_radius3, corner_radius4, resolution)

	x and y represent the bottom-left position of the rectangle.

	width and height represent the size.

	corner_radius specifies the radius used for the rounded corners clockwise: top-left, top-right, bottom-right, bottom-left.

	resolution is the number of line segment that will be used to draw the circle arc at each corner (defaults to 45).

The line is automatically closed.

Usage:

Line(rounded_rectangle=(0, 0, 200, 200, 10, 20, 30, 40, 100))

New in version 1.9.0.

Changed in version 2.2.0: Default value of resolution changed from 30 to 45.

Now you can get the rounded rectangle generated through the property.

The order of corner_radius has been changed to match the RoundedRectangle radius property (clockwise).
It was bottom-left, bottom-right, top-right, top-left in previous versions.
Now both are clockwise: top-left, top-right, bottom-right, bottom-left.
To keep the corner radius order without changing the order manually, you can use python’s built-in method reversed or [::-1],
to reverse the order of the corner radius.

	
width

	Determine the width of the line, defaults to 1.0.

New in version 1.4.1.

	
class kivy.graphics.LoadIdentity(**kwargs)

	Bases: kivy.graphics.instructions.ContextInstruction

the instructions stack property (default=’modelview_mat’)

New in version 1.6.0.

	
stack

	Name of the matrix stack to use. Can be ‘modelview_mat’,
‘projection_mat’ or ‘frag_modelview_mat’.

	
class kivy.graphics.MatrixInstruction(*args, **kwargs)

	Bases: kivy.graphics.instructions.ContextInstruction

	
matrix

	Matrix property. Matrix from the transformation module.
Setting the matrix using this property when a change is made
is important because it will notify the context about the update.

	
stack

	Name of the matrix stack to use. Can be ‘modelview_mat’,
‘projection_mat’ or ‘frag_modelview_mat’.

New in version 1.6.0.

	
class kivy.graphics.Mesh(**kwargs)

	Bases: kivy.graphics.instructions.VertexInstruction

In OpenGL ES 2.0 and in our graphics implementation, you cannot have more
than 65535 indices.

A list of vertices is described as:

vertices = [x1, y1, u1, v1, x2, y2, u2, v2, ...]
 | | | |
 +---- i1 ----+ +---- i2 ----+

If you want to draw a triangle, add 3 vertices. You can then make an
indices list as follows:

indices = [0, 1, 2]

New in version 1.1.0.

	Parameters:

	
	vertices: iterable
	List of vertices in the format (x1, y1, u1, v1, x2, y2, u2, v2…).

	indices: iterable
	List of indices in the format (i1, i2, i3…).

	mode: str
	Mode of the vbo. Check mode for more information. Defaults to
‘points’.

	fmt: list
	The format for vertices, by default, each vertex is described by 2D
coordinates (x, y) and 2D texture coordinate (u, v).
Each element of the list should be a tuple or list, of the form

(variable_name, size, type)

which will allow mapping vertex data to the glsl instructions.

[(b’v_pos’, 2, ‘float’), (b’v_tc’, 2, ‘float’),]

will allow using

attribute vec2 v_pos;
attribute vec2 v_tc;

in glsl’s vertex shader.

Changed in version 1.8.1: Before, vertices and indices would always be converted to a list,
now, they are only converted to a list if they do not implement the
buffer interface. So e.g. numpy arrays, python arrays etc. are used
in place, without creating any additional copies. However, the
buffers cannot be readonly (even though they are not changed, due to
a cython limitation) and must be contiguous in memory.

Note

When passing a memoryview or a instance that implements the buffer
interface, vertices should be a buffer of floats (‘f’ code in
python array) and indices should be a buffer of unsigned short (‘H’
code in python array). Arrays in other formats will still have to be
converted internally, negating any potential gain.

	
indices

	Vertex indices used to specify the order when drawing the
mesh.

	
mode

	VBO Mode used for drawing vertices/indices. Can be one of ‘points’,
‘line_strip’, ‘line_loop’, ‘lines’, ‘triangles’, ‘triangle_strip’ or
‘triangle_fan’.

	
vertices

	List of x, y, u, v coordinates used to construct the Mesh. Right now,
the Mesh instruction doesn’t allow you to change the format of the
vertices, which means it’s only x, y + one texture coordinate.

	
class kivy.graphics.Point(**kwargs)

	Bases: kivy.graphics.instructions.VertexInstruction

width/height of 2 times the pointsize.

	Parameters:

	
	points: list
	List of points in the format (x1, y1, x2, y2…), where each pair
of coordinates specifies the center of a new point.

	pointsize: float, defaults to 1.
	The size of the point, measured from the center to the edge. A
value of 1.0 therefore means the real size will be 2.0 x 2.0.

Warning

Starting from version 1.0.7, vertex instruction have a limit of 65535
vertices (indices of vertex to be accurate).
2 entries in the list (x, y) will be converted to 4 vertices. So the
limit inside Point() class is 2^15-2.

	
add_point(float x, float y)

	Add a point to the current points list.

If you intend to add multiple points, prefer to use this method instead
of reassigning a new points list. Assigning a new points
list will recalculate and reupload the whole buffer into the GPU.
If you use add_point, it will only upload the changes.

	
points

	Property for getting/settings the center points in the points list.
Each pair of coordinates specifies the center of a new point.

	
pointsize

	Property for getting/setting point size.
The size is measured from the center to the edge, so a value of 1.0
means the real size will be 2.0 x 2.0.

	
class kivy.graphics.PopMatrix(*args, **kwargs)

	Bases: kivy.graphics.instructions.ContextInstruction

	
stack

	Name of the matrix stack to use. Can be ‘modelview_mat’,
‘projection_mat’ or ‘frag_modelview_mat’.

New in version 1.6.0.

	
class kivy.graphics.PopState(*args, **kwargs)

	Bases: kivy.graphics.instructions.ContextInstruction

state stack.

New in version 1.6.0.

	
class kivy.graphics.PushMatrix(*args, **kwargs)

	Bases: kivy.graphics.instructions.ContextInstruction

	
stack

	Name of the matrix stack to use. Can be ‘modelview_mat’,
‘projection_mat’ or ‘frag_modelview_mat’.

New in version 1.6.0.

	
class kivy.graphics.PushState(*args, **kwargs)

	Bases: kivy.graphics.instructions.ContextInstruction

state stack.

New in version 1.6.0.

	
class kivy.graphics.Quad(**kwargs)

	Bases: kivy.graphics.instructions.VertexInstruction

	Parameters:

	
	points: list
	List of point in the format (x1, y1, x2, y2, x3, y3, x4, y4).

	
points

	Property for getting/settings points of the quad.

	
class kivy.graphics.Rectangle(**kwargs)

	Bases: kivy.graphics.instructions.VertexInstruction

	Parameters:

	
	pos: list
	Position of the rectangle, in the format (x, y).

	size: list
	Size of the rectangle, in the format (width, height).

	
pos

	Property for getting/settings the position of the rectangle.

	
size

	Property for getting/settings the size of the rectangle.

	
class kivy.graphics.RenderContext(*args, **kwargs)

	Bases: kivy.graphics.instructions.Canvas

	The vertex shader

	The fragment shader

	The default texture

	The state stack (color, texture, matrix…)

	
shader

	Return the shader attached to the render context.

	
use_parent_frag_modelview

	If True, the parent fragment modelview matrix will be used.

New in version 1.10.1: rc = RenderContext(use_parent_frag_modelview=True)

	
use_parent_modelview

	If True, the parent modelview matrix will be used.

New in version 1.7.0.

Before:

rc['modelview_mat'] = Window.render_context['modelview_mat']

Now:

rc = RenderContext(use_parent_modelview=True)

	
use_parent_projection

	If True, the parent projection matrix will be used.

New in version 1.7.0.

Before:

rc['projection_mat'] = Window.render_context['projection_mat']

Now:

rc = RenderContext(use_parent_projection=True)

	
class kivy.graphics.Rotate(*args, **kwargs)

	Bases: kivy.graphics.context_instructions.Transform

on the modelview matrix. You can set the properties of the instructions
afterwards with e.g.

rot.angle = 90
rot.axis = (0, 0, 1)

	
angle

	Property for getting/setting the angle of the rotation.

	
axis

	Property for getting/setting the axis of the rotation.

The format of the axis is (x, y, z).

	
origin

	Origin of the rotation.

New in version 1.7.0.

The format of the origin can be either (x, y) or (x, y, z).

	
set(float angle, float ax, float ay, float az)

	Set the angle and axis of rotation.

>>> rotationobject.set(90, 0, 0, 1)

Deprecated since version 1.7.0: The set() method doesn’t use the new origin property.

	
class kivy.graphics.Scale(*args, **kwargs)

	Bases: kivy.graphics.context_instructions.Transform

Create using one or three arguments:

Scale(s) # scale all three axes the same
Scale(x, y, z) # scale the axes independently

Deprecated since version 1.6.0: Deprecated single scale property in favor of x, y, z, xyz axis
independent scaled factors.

	
origin

	Origin of the scale.

New in version 1.9.0.

The format of the origin can be either (x, y) or (x, y, z).

	
scale

	Property for getting/setting the scale.

Deprecated since version 1.6.0: Deprecated in favor of per axis scale properties x,y,z, xyz, etc.

	
x

	Property for getting/setting the scale on the X axis.

Changed in version 1.6.0.

	
xyz

	3 tuple scale vector in 3D in x, y, and z axis.

Changed in version 1.6.0.

	
y

	Property for getting/setting the scale on the Y axis.

Changed in version 1.6.0.

	
z

	Property for getting/setting the scale on Z axis.

Changed in version 1.6.0.

	
class kivy.graphics.SmoothLine(**kwargs)

	Bases: kivy.graphics.vertex_instructions.Line

results. It has few drawbacks:

	drawing a line with alpha will probably not have the intended result if
the line crosses itself.

	cap, joint and dash properties
are not supported.

	it uses a custom texture with a premultiplied alpha.

	lines under 1px in width are not supported: they will look the same.

Warning

This is an unfinished work, experimental, and subject to crashes.

New in version 1.9.0.

	
overdraw_width

	Determine the overdraw width of the line, defaults to 1.2.

	
premultiplied_texture()

	

	
class kivy.graphics.StencilPop

	Bases: kivy.graphics.instructions.Instruction

Pop the stencil stack. See the module documentation for more information.

	
class kivy.graphics.StencilPush

	Bases: kivy.graphics.instructions.Instruction

Push the stencil stack. See the module documentation for more
information.

	
class kivy.graphics.StencilUnUse

	Bases: kivy.graphics.instructions.Instruction

Use current stencil buffer to unset the mask.

	
class kivy.graphics.StencilUse(**kwargs)

	Bases: kivy.graphics.instructions.Instruction

more information.

	
func_op

	Determine the stencil operation to use for glStencilFunc(). Can be
one of ‘never’, ‘less’, ‘equal’, ‘lequal’, ‘greater’, ‘notequal’,
‘gequal’ or ‘always’.

By default, the operator is set to ‘equal’.

New in version 1.5.0.

	
class kivy.graphics.Translate(*args, **kwargs)

	Bases: kivy.graphics.context_instructions.Transform

Construct by either:

Translate(x, y) # translate in just the two axes
Translate(x, y, z) # translate in all three axes

	
x

	Property for getting/setting the translation on the X axis.

	
xy

	2 tuple with translation vector in 2D for x and y axis.

	
xyz

	3 tuple translation vector in 3D in x, y, and z axis.

	
y

	Property for getting/setting the translation on the Y axis.

	
z

	Property for getting/setting the translation on the Z axis.

	
class kivy.graphics.Triangle(**kwargs)

	Bases: kivy.graphics.instructions.VertexInstruction

	Parameters:

	
	points: list
	List of points in the format (x1, y1, x2, y2, x3, y3).

	
points

	Property for getting/settings points of the triangle.

	
class kivy.graphics.UpdateNormalMatrix

	Bases: kivy.graphics.instructions.ContextInstruction

Update the normal matrix ‘normal_mat’ based on the current
modelview matrix. This will compute ‘normal_mat’ uniform as:
inverse(transpose(mat3(mvm)))

New in version 1.6.0.

	
class kivy.graphics.VertexInstruction(**kwargs)

	Bases: kivy.graphics.instructions.Instruction

that have a direct visual representation on the canvas, such as Rectangles,
Triangles, Lines, Ellipse and so on.

	
source

	This property represents the filename to load the texture from.
If you want to use an image as source, do it like this:

with self.canvas:
 Rectangle(source='mylogo.png', pos=self.pos, size=self.size)

Here’s the equivalent in Kivy language:

<MyWidget>:
 canvas:
 Rectangle:
 source: 'mylogo.png'
 pos: self.pos
 size: self.size

Note

The filename will be searched for using the
kivy.resources.resource_find() function.

	
tex_coords

	This property represents the texture coordinates used for drawing the
vertex instruction. The value must be a list of 8 values.

A texture coordinate has a position (u, v), and a size (w, h). The size
can be negative, and would represent the ‘flipped’ texture. By default,
the tex_coords are:

[u, v, u + w, v, u + w, v + h, u, v + h]

You can pass your own texture coordinates if you want to achieve fancy
effects.

Warning

The default values just mentioned can be negative. Depending
on the image and label providers, the coordinates are flipped
vertically because of the order in which the image is internally
stored. Instead of flipping the image data, we are just flipping
the texture coordinates to be faster.

	
texture

	Property that represents the texture used for drawing this
Instruction. You can set a new texture like this:

from kivy.core.image import Image

texture = Image('logo.png').texture
with self.canvas:
 Rectangle(texture=texture, pos=self.pos, size=self.size)

Usually, you will use the source attribute instead of the
texture.

	
kivy.graphics.gl_init_resources()

	

	BoxShadow
	Example:

	BoxShadow
	BoxShadow.blur_radius

	BoxShadow.border_radius

	BoxShadow.inset

	BoxShadow.offset

	BoxShadow.pos

	BoxShadow.size

	BoxShadow.spread_radius

	Canvas
	Callback
	Callback.ask_update()

	Callback.callback

	Callback.reset_context

	Canvas
	Canvas.add()

	Canvas.after

	Canvas.ask_update()

	Canvas.before

	Canvas.clear()

	Canvas.draw()

	Canvas.has_after

	Canvas.has_before

	Canvas.opacity

	Canvas.remove()

	CanvasBase

	ContextInstruction

	Instruction
	Instruction.flag_data_update()

	Instruction.flag_update()

	Instruction.group

	Instruction.proxy_ref

	InstructionGroup
	InstructionGroup.add()

	InstructionGroup.children

	InstructionGroup.clear()

	InstructionGroup.get_group()

	InstructionGroup.indexof()

	InstructionGroup.insert()

	InstructionGroup.length()

	InstructionGroup.remove()

	InstructionGroup.remove_group()

	RenderContext
	RenderContext.shader

	RenderContext.use_parent_frag_modelview

	RenderContext.use_parent_modelview

	RenderContext.use_parent_projection

	VertexInstruction
	VertexInstruction.source

	VertexInstruction.tex_coords

	VertexInstruction.texture

	CGL: standard C interface for OpenGL
	cgl_get_backend_name()

	cgl_get_initialized_backend_name()

	cgl_init()

	Context instructions
	BindTexture
	BindTexture.source

	Color
	Color.a

	Color.b

	Color.g

	Color.h

	Color.hsv

	Color.r

	Color.rgb

	Color.rgba

	Color.s

	Color.v

	MatrixInstruction
	MatrixInstruction.matrix

	MatrixInstruction.stack

	PopMatrix
	PopMatrix.stack

	PushMatrix
	PushMatrix.stack

	Rotate
	Rotate.angle

	Rotate.axis

	Rotate.origin

	Rotate.set()

	Scale
	Scale.origin

	Scale.scale

	Scale.x

	Scale.xyz

	Scale.y

	Scale.z

	Translate
	Translate.x

	Translate.xy

	Translate.xyz

	Translate.y

	Translate.z

	gl_init_resources()

	Context management
	Context
	Context.add_reload_observer()

	Context.flag_update_canvas()

	Context.flush()

	Context.gl_dealloc()

	Context.reload()

	Context.remove_reload_observer()

	Context.trigger_gl_dealloc()

	Framebuffer
	Reloading the FBO content

	Fbo
	Fbo.add_reload_observer()

	Fbo.bind()

	Fbo.clear_buffer()

	Fbo.clear_color

	Fbo.get_pixel_color()

	Fbo.pixels

	Fbo.release()

	Fbo.remove_reload_observer()

	Fbo.size

	Fbo.texture

	GL instructions
	Clearing an FBO

	ClearBuffers
	ClearBuffers.clear_color

	ClearBuffers.clear_depth

	ClearBuffers.clear_stencil

	ClearColor
	ClearColor.a

	ClearColor.b

	ClearColor.g

	ClearColor.r

	ClearColor.rgb

	ClearColor.rgba

	Graphics compiler
	Reducing the context instructions

	OpenGL
	glActiveTexture()

	glAttachShader()

	glBindAttribLocation()

	glBindBuffer()

	glBindFramebuffer()

	glBindRenderbuffer()

	glBindTexture()

	glBlendColor()

	glBlendEquation()

	glBlendEquationSeparate()

	glBlendFunc()

	glBlendFuncSeparate()

	glBufferData()

	glBufferSubData()

	glCheckFramebufferStatus()

	glClear()

	glClearColor()

	glClearStencil()

	glColorMask()

	glCompileShader()

	glCompressedTexImage2D()

	glCompressedTexSubImage2D()

	glCopyTexImage2D()

	glCopyTexSubImage2D()

	glCreateProgram()

	glCreateShader()

	glCullFace()

	glDeleteBuffers()

	glDeleteFramebuffers()

	glDeleteProgram()

	glDeleteRenderbuffers()

	glDeleteShader()

	glDeleteTextures()

	glDepthFunc()

	glDepthMask()

	glDetachShader()

	glDisable()

	glDisableVertexAttribArray()

	glDrawArrays()

	glDrawElements()

	glEnable()

	glEnableVertexAttribArray()

	glFinish()

	glFlush()

	glFramebufferRenderbuffer()

	glFramebufferTexture2D()

	glFrontFace()

	glGenBuffers()

	glGenFramebuffers()

	glGenRenderbuffers()

	glGenTextures()

	glGenerateMipmap()

	glGetActiveAttrib()

	glGetActiveUniform()

	glGetAttachedShaders()

	glGetAttribLocation()

	glGetBooleanv()

	glGetBufferParameteriv()

	glGetError()

	glGetFloatv()

	glGetFramebufferAttachmentParameteriv()

	glGetIntegerv()

	glGetProgramInfoLog()

	glGetProgramiv()

	glGetRenderbufferParameteriv()

	glGetShaderInfoLog()

	glGetShaderPrecisionFormat()

	glGetShaderSource()

	glGetShaderiv()

	glGetString()

	glGetTexParameterfv()

	glGetTexParameteriv()

	glGetUniformLocation()

	glGetUniformfv()

	glGetUniformiv()

	glGetVertexAttribPointerv()

	glGetVertexAttribfv()

	glGetVertexAttribiv()

	glHint()

	glIsBuffer()

	glIsEnabled()

	glIsFramebuffer()

	glIsProgram()

	glIsRenderbuffer()

	glIsShader()

	glIsTexture()

	glLineWidth()

	glLinkProgram()

	glPixelStorei()

	glPolygonOffset()

	glReadPixels()

	glReleaseShaderCompiler()

	glRenderbufferStorage()

	glSampleCoverage()

	glScissor()

	glShaderBinary()

	glShaderSource()

	glStencilFunc()

	glStencilFuncSeparate()

	glStencilMask()

	glStencilMaskSeparate()

	glStencilOp()

	glStencilOpSeparate()

	glTexImage2D()

	glTexParameterf()

	glTexParameterfv()

	glTexParameteri()

	glTexParameteriv()

	glTexSubImage2D()

	glUniform1f()

	glUniform1fv()

	glUniform1i()

	glUniform1iv()

	glUniform2f()

	glUniform2fv()

	glUniform2i()

	glUniform2iv()

	glUniform3f()

	glUniform3fv()

	glUniform3i()

	glUniform3iv()

	glUniform4f()

	glUniform4fv()

	glUniform4i()

	glUniform4iv()

	glUniformMatrix2fv()

	glUniformMatrix3fv()

	glUniformMatrix4fv()

	glUseProgram()

	glValidateProgram()

	glVertexAttrib1f()

	glVertexAttrib1fv()

	glVertexAttrib2f()

	glVertexAttrib2fv()

	glVertexAttrib3f()

	glVertexAttrib3fv()

	glVertexAttrib4f()

	glVertexAttrib4fv()

	glVertexAttribPointer()

	glViewport()

	gl_init_symbols()

	OpenGL utilities
	gl_get_extensions()

	gl_get_texture_formats()

	gl_get_version()

	gl_get_version_major()

	gl_get_version_minor()

	gl_has_capability()

	gl_has_extension()

	gl_has_texture_conversion()

	gl_has_texture_format()

	gl_has_texture_native_format()

	gl_register_get_size()

	Scissor Instructions
	Rect
	Rect.intersect()

	ScissorPop

	ScissorPush

	ScissorStack
	ScissorStack.pop()

	ScissorStack.push()

	Shader
	Header inclusion

	Single file glsl shader programs

	Shader
	Shader.fs

	Shader.source

	Shader.success

	Shader.vs

	Stencil instructions
	Limitations

	Example of stencil usage

	StencilPop

	StencilPush

	StencilUnUse

	StencilUse
	StencilUse.func_op

	SVG
	Svg
	Svg.anchor_x

	Svg.anchor_y

	Svg.color

	Svg.current_color

	Svg.gradients

	Svg.height

	Svg.set_tree()

	Svg.source

	Svg.width

	Tesselator
	Usage

	Tesselator
	Tesselator.add_contour()

	Tesselator.element_count

	Tesselator.meshes

	Tesselator.tesselate()

	Tesselator.vertex_count

	Tesselator.vertices

	Texture
	Blitting custom data

	BGR/BGRA support

	NPOT texture

	Texture atlas

	Mipmapping

	Reloading the Texture

	Texture
	Texture.add_reload_observer()

	Texture.ask_update()

	Texture.bind()

	Texture.blit_buffer()

	Texture.blit_data()

	Texture.bufferfmt

	Texture.colorfmt

	Texture.create()

	Texture.create_from_data()

	Texture.flip_horizontal()

	Texture.flip_vertical()

	Texture.get_region()

	Texture.height

	Texture.id

	Texture.mag_filter

	Texture.min_filter

	Texture.mipmap

	Texture.pixels

	Texture.remove_reload_observer()

	Texture.save()

	Texture.size

	Texture.target

	Texture.tex_coords

	Texture.uvpos

	Texture.uvsize

	Texture.width

	Texture.wrap

	TextureRegion
	TextureRegion.ask_update()

	TextureRegion.bind()

	TextureRegion.pixels

	Transformation
	Matrix
	Matrix.get()

	Matrix.identity()

	Matrix.inverse()

	Matrix.look_at()

	Matrix.multiply()

	Matrix.normal_matrix()

	Matrix.perspective()

	Matrix.project()

	Matrix.rotate()

	Matrix.scale()

	Matrix.set()

	Matrix.tolist()

	Matrix.transform_point()

	Matrix.translate()

	Matrix.transpose()

	Matrix.view_clip()

	Vertex Instructions
	Updating properties

	Bezier
	Bezier.dash_length

	Bezier.dash_offset

	Bezier.points

	Bezier.segments

	BorderImage
	BorderImage.auto_scale

	BorderImage.border

	BorderImage.display_border

	Ellipse
	Ellipse.angle_end

	Ellipse.angle_start

	Ellipse.segments

	GraphicException

	Line
	Line.bezier

	Line.bezier_precision

	Line.cap

	Line.cap_precision

	Line.circle

	Line.close

	Line.close_mode

	Line.dash_length

	Line.dash_offset

	Line.dashes

	Line.ellipse

	Line.joint

	Line.joint_precision

	Line.points

	Line.rectangle

	Line.rounded_rectangle

	Line.width

	Mesh
	Mesh.indices

	Mesh.mode

	Mesh.vertices

	Point
	Point.add_point()

	Point.points

	Point.pointsize

	Quad
	Quad.points

	Rectangle
	Rectangle.pos

	Rectangle.size

	RoundedRectangle
	RoundedRectangle.radius

	RoundedRectangle.segments

	SmoothLine
	SmoothLine.overdraw_width

	SmoothLine.premultiplied_texture()

	Triangle
	Triangle.points

BoxShadow

New in version 2.2.0.

BoxShadow is a graphical instruction used to add a shadow effect to an element.

Its behavior is similar to the concept of a CSS3 box-shadow.

[image: _images/boxshadow.png]
The BoxShadow declaration must occur inside a Canvas statement. It works
similarly to other graphical instructions such as Rectangle,
RoundedRectangle, etc.

Note

Although the BoxShadow graphical instruction has a visually similar behavior to box-shadow (CSS), the hierarchy
of the drawing layer of BoxShadow in relation to the target element must be defined following the same layer
hierarchy rules as when declaring other canvas instructions.

For more details, refer to the inset mode.

Example:

[image: _images/boxshadow_demo.gif]
<MyWidget>:
 Button:
 pos_hint: {"center_x": 0.5, "center_y": 0.5}
 size_hint: None, None
 size: 200, 150
 background_down: self.background_normal
 canvas.before:
 Color:
 rgba: 0, 0, 1, 0.85
 BoxShadow:
 pos: self.pos
 size: self.size
 offset: 0, -10
 spread_radius: -20, -20
 border_radius: 10, 10, 10, 10
 blur_radius: 80 if self.state == "normal" else 50

	
class kivy.graphics.boxshadow.BoxShadow(*args, **kwargs)

	Bases: kivy.graphics.fbo.Fbo

New in version 2.2.0.

	Parameters:

	
	inset: bool, defaults to False.
	Defines whether the shadow is drawn from the inside out or from the
outline to the inside of the BoxShadow instruction.

	size: list | tuple, defaults to (100.0, 100.0).
	Define the raw size of the shadow, that is, you should not take into account
changes in the value of blur_radius and spread_radius
properties when setting this parameter.

	pos: list | tuple, defaults to (0.0, 0.0).
	Define the raw position of the shadow, that is, you should not take into account
changes in the value of the offset property when setting this parameter.

	offset: list | tuple, defaults to (0.0, 0.0).
	Specifies shadow offsets in (horizontal, vertical) format.
Positive values for the offset indicate that the shadow should move to the right and/or top.
The negative ones indicate that the shadow should move to the left and/or down.

	blur_radius: float, defaults to 15.0.
	Define the shadow blur radius. Controls shadow expansion and softness.

	spread_radius: list | tuple, defaults to (0.0, 0.0).
	Define the shrink/expansion of the shadow.

	border_radius: list | tuple, defaults to (0.0, 0.0, 0.0, 0.0).
	Specifies the radii used for the rounded corners clockwise:
top-left, top-right, bottom-right, bottom-left.

	
blur_radius

	Define the shadow blur radius. Controls shadow expansion and softness.

Defaults to 15.0.

In the images below, the start and end positions of the shadow blur
effect length are indicated.
The transition between color and transparency is seamless, and although
the shadow appears to end before before the dotted rectangle, its end
is made to be as smooth as possible.

	
	inset OFF:
	[image: _images/boxshadow_blur_radius.svg]

	
	inset ON:
	[image: _images/boxshadow_blur_radius_inset.svg]

Note

In some cases (if this is not your intention), placing an element
above the shadow (before the blur radius ends) will result in a unwanted
cropping/overlay behavior rather than continuity, breaking the
shadow’s soft ending, as shown in the image below.

[image: _images/boxshadow_common_mistake_1.svg]

	
border_radius

	Specifies the radii used for the rounded corners clockwise:
top-left, top-right, bottom-right, bottom-left.

Defaults to (0.0, 0.0, 0.0, 0.0).

	
	inset OFF:
	[image: _images/boxshadow_border_radius.svg]

	
	inset ON:
	[image: _images/boxshadow_border_radius_inset.svg]

	
inset

	Defines whether the shadow is drawn from the inside out or from the outline to the inside of the BoxShadow instruction.

Defaults to False.

Note

Although the inset mode determines the drawing behavior of the shadow, the position of the BoxShadow
instruction in the canvas hierarchy depends on the other graphic instructions present in the
Canvas instruction tree.

In other words, if the target is in the canvas layer and you want to use the default inset = False
mode to create an elevation effect, you must declare the BoxShadow instruction in canvas.before layer.

[image: _images/boxshadow_example_1.png]
<MyWidget@Widget>:
 size_hint: None, None
 size: 100, 100
 pos: 100, 100

 canvas.before:
 # BoxShadow statements
 Color:
 rgba: 0, 0, 0, 0.65
 BoxShadow:
 pos: self.pos
 size: self.size
 offset: 0, -10
 blur_radius: 25
 spread_radius: -10, -10
 border_radius: 10, 10, 10, 10

 canvas:
 # target element statements
 Color:
 rgba: 1, 1, 1, 1
 Rectangle:
 pos: self.pos
 size: self.size

Or, if the target is in the canvas layer and you want to use the inset = True mode to create an
insertion effect, you must declare the BoxShadow instruction in the canvas layer, immediately after
the target canvas declaration, or declare it in canvas.after.

[image: _images/boxshadow_example_2.png]
<MyWidget@Widget>:
 size_hint: None, None
 size: 100, 100
 pos: 100, 100

 canvas:
 # target element statements
 Color:
 rgba: 1, 1, 1, 1
 Rectangle:
 pos: self.pos
 size: self.size

 # BoxShadow statements
 Color:
 rgba: 0, 0, 0, 0.65
 BoxShadow:
 inset: True
 pos: self.pos
 size: self.size
 offset: 0, -10
 blur_radius: 25
 spread_radius: -10, -10
 border_radius: 10, 10, 10, 10

In summary:

	Elevation effect - inset = False: the BoxShadow instruction needs to be drawn before the target element.

	Insertion effect - inset = True: the BoxShadow instruction needs to be drawn after the target element.

In general, BoxShadow is more flexible than box-shadow (CSS) because the inset = False and
inset = True modes do not limit the drawing of the shadow below and above the target element,
respectively. Actually, you can define any hierarchy you want in the Canvas
declaration tree, to create more complex effects that go beyond common shadow effects.

Modes:

	False (default) - The shadow is drawn inside out the BoxShadow instruction, creating a raised effect.

	True - The shadow is drawn from the outline to the inside of the BoxShadow instruction, creating a inset effect.

[image: _images/boxshadow_inset.svg]

	
offset

	Specifies shadow offsets in [horizontal, vertical] format.
Positive values for the offset indicate that the shadow should move to
the right and/or top.
The negative ones indicate that the shadow should move to the left
and/or down.

Defaults to (0.0, 0.0).

For this property to work as expected, it is indicated that the value
of pos coincides with the position of the target element of the
shadow, as in the example below:

	
	inset OFF:
	[image: _images/boxshadow_offset.svg]

	
	inset ON:
	[image: _images/boxshadow_offset_inset.svg]

	
pos

	Define the raw position of the shadow, that is, you should not take
into account changes in the value of the offset property when
setting this property.

	
	inset OFF:
	Returns the adjusted position of the shadow according to the
adjusted size of the shadow and offset property.

	
	inset ON:
	Returns the raw position (the same as specified).

Defaults to (0.0, 0.0).

Note

It is recommended that this property matches the raw position of
the shadow target element. To manipulate horizontal and vertical
offset, use offset instead.

	
size

	Define the raw size of the shadow, that is, you should not take into
account changes in the value of blur_radius and spread_radius properties.

	
	inset OFF:
	Returns the adjusted size of the shadow according to the
blur_radius and spread_radius properties.

	
	inset ON:
	Returns the raw size (the same as specified).

Defaults to (100.0, 100.0).

Note

It is recommended that this property matches the raw size of
the shadow target element. To control the shrink/expansion of
the shadow’s raw size, use spread_radius instead.

	
spread_radius

	Define the shrink/expansion of the shadow in [horizontal, vertical] format.

Defaults to (0.0, 0.0).

This property is especially useful for cases where you want to achieve
a softer shadow around the element, by setting negative values for
spread_radius and a larger value for blur_radius as
in the example.

	
	inset OFF:
	In the image below, the target element has a raw size of 200 x 150px.
Positive changes to the spread_radius values will cause the raw
size of the shadow to increase, while negative values will cause
the shadow to shrink.

[image: _images/boxshadow_spread_radius.svg]

	
	inset ON:
	Positive values will cause the shadow to grow into the bounding box,
while negative values will cause the shadow to shrink.

[image: _images/boxshadow_spread_radius_inset.svg]

Canvas

The Canvas is the root object used for drawing by a
Widget. Check the class documentation for more
information about the usage of Canvas.

	
class kivy.graphics.instructions.Callback(callback=None, **kwargs)

	Bases: kivy.graphics.instructions.Instruction

A Callback is an instruction that will be called when the drawing
operation is performed. When adding instructions to a canvas, you can do
this:

with self.canvas:
 Color(1, 1, 1)
 Rectangle(pos=self.pos, size=self.size)
 Callback(self.my_callback)

The definition of the callback must be:

def my_callback(self, instr):
 print('I have been called!')

Warning

Note that if you perform many and/or costly calls to callbacks, you
might potentially slow down the rendering performance significantly.

The updating of your canvas does not occur until something new happens.
From your callback, you can ask for an update:

with self.canvas:
 self.cb = Callback(self.my_callback)
then later in the code
self.cb.ask_update()

If you use the Callback class to call rendering methods of another
toolkit, you will have issues with the OpenGL context. The OpenGL state may
have been manipulated by the other toolkit, and as soon as program flow
returns to Kivy, it will just break. You can have glitches, crashes, black
holes might occur, etc.
To avoid that, you can activate the reset_context option. It will
reset the OpenGL context state to make Kivy’s rendering correct after the
call to your callback.

Warning

The reset_context is not a full OpenGL reset. If you have issues
regarding that, please contact us.

	
ask_update()

	Inform the parent canvas that we’d like it to update on the next
frame. This is useful when you need to trigger a redraw due to some
value having changed for example.

New in version 1.0.4.

	
callback

	Property for getting/setting func.

	
reset_context

	Set this to True if you want to reset the OpenGL context for Kivy
after the callback has been called.

	
class kivy.graphics.instructions.Canvas(**kwargs)

	Bases: kivy.graphics.instructions.CanvasBase

instructions that you want to be used for drawing.

Note

The Canvas supports Python’s with statement and its enter & exit
semantics.

Usage of a canvas without the with statement:

self.canvas.add(Color(1., 1., 0))
self.canvas.add(Rectangle(size=(50, 50)))

Usage of a canvas with Python’s with statement:

with self.canvas:
 Color(1., 1., 0)
 Rectangle(size=(50, 50))

	
add(Instruction c)

	Append an Instruction to our list. If the canvas contains
an after group, then this instruction is inserted just before the
after group, which remains last. This is different from how
insert() works, which can insert anywhere.

	
after

	Property for getting the ‘after’ group.

	
ask_update()

	Inform the canvas that we’d like it to update on the next frame.
This is useful when you need to trigger a redraw due to some value
having changed for example.

	
before

	Property for getting the ‘before’ group.

	
clear()

	Clears every Instruction in the canvas, leaving it clean.

	
draw()

	Apply the instruction to our window.

	
has_after

	Property to see if the after group has already been created.

New in version 1.7.0.

	
has_before

	Property to see if the before group has already been created.

New in version 1.7.0.

	
opacity

	Property to get/set the opacity value of the canvas.

New in version 1.4.1.

The opacity attribute controls the opacity of the canvas and its
children. Be careful, it’s a cumulative attribute: the value is
multiplied to the current global opacity and the result is applied to
the current context color.

For example: if your parent has an opacity of 0.5 and a child has an
opacity of 0.2, the real opacity of the child will be 0.5 * 0.2 = 0.1.

Then, the opacity is applied on the shader as:

frag_color = color * vec4(1.0, 1.0, 1.0, opacity);

	
remove(Instruction c)

	

	
class kivy.graphics.instructions.CanvasBase

	Bases: kivy.graphics.instructions.InstructionGroup

CanvasBase provides the context manager methods for the
Canvas.

	
class kivy.graphics.instructions.ContextInstruction(**kwargs)

	Bases: kivy.graphics.instructions.Instruction

that don’t have a direct visual representation, but instead modify the
current Canvas’ state, e.g. texture binding, setting color parameters,
matrix manipulation and so on.

	
class kivy.graphics.instructions.Instruction(**kwargs)

	Bases: kivy.event.ObjectWithUid

usage only, don’t use it directly.

	
flag_data_update()

	

	
flag_update(int do_parent=1)

	

	
group

	group: unicode

	
proxy_ref

	Return a proxy reference to the Instruction i.e. without creating a
reference of the widget. See weakref.proxy [http://docs.python.org/2/library/weakref.html?highlight=proxy#weakref.proxy]
for more information.

New in version 1.7.2.

	
class kivy.graphics.instructions.InstructionGroup(**kwargs)

	Bases: kivy.graphics.instructions.Instruction

of graphics instructions. It can be used directly as follows:

blue = InstructionGroup()
blue.add(Color(0, 0, 1, 0.2))
blue.add(Rectangle(pos=self.pos, size=(100, 100)))

green = InstructionGroup()
green.add(Color(0, 1, 0, 0.4))
green.add(Rectangle(pos=(100, 100), size=(100, 100)))

Here, self should be a Widget or subclass
[self.canvas.add(group) for group in [blue, green]]

	
add(Instruction c)

	Add a new Instruction to our list.

	
children

	children: list

	
clear()

	Remove all the Instructions.

	
get_group(unicode groupname)

	Return an iterable for all the Instructions
with a specific group name.

	
indexof(Instruction c)

	

	
insert(int index, Instruction c)

	Insert a new Instruction into our list at index.

	
length()

	

	
remove(Instruction c)

	Remove an existing Instruction from our list.

	
remove_group(unicode groupname)

	Remove all Instructions with a specific group
name.

	
class kivy.graphics.instructions.RenderContext(*args, **kwargs)

	Bases: kivy.graphics.instructions.Canvas

	The vertex shader

	The fragment shader

	The default texture

	The state stack (color, texture, matrix…)

	
shader

	Return the shader attached to the render context.

	
use_parent_frag_modelview

	If True, the parent fragment modelview matrix will be used.

New in version 1.10.1: rc = RenderContext(use_parent_frag_modelview=True)

	
use_parent_modelview

	If True, the parent modelview matrix will be used.

New in version 1.7.0.

Before:

rc['modelview_mat'] = Window.render_context['modelview_mat']

Now:

rc = RenderContext(use_parent_modelview=True)

	
use_parent_projection

	If True, the parent projection matrix will be used.

New in version 1.7.0.

Before:

rc['projection_mat'] = Window.render_context['projection_mat']

Now:

rc = RenderContext(use_parent_projection=True)

	
class kivy.graphics.instructions.VertexInstruction(**kwargs)

	Bases: kivy.graphics.instructions.Instruction

that have a direct visual representation on the canvas, such as Rectangles,
Triangles, Lines, Ellipse and so on.

	
source

	This property represents the filename to load the texture from.
If you want to use an image as source, do it like this:

with self.canvas:
 Rectangle(source='mylogo.png', pos=self.pos, size=self.size)

Here’s the equivalent in Kivy language:

<MyWidget>:
 canvas:
 Rectangle:
 source: 'mylogo.png'
 pos: self.pos
 size: self.size

Note

The filename will be searched for using the
kivy.resources.resource_find() function.

	
tex_coords

	This property represents the texture coordinates used for drawing the
vertex instruction. The value must be a list of 8 values.

A texture coordinate has a position (u, v), and a size (w, h). The size
can be negative, and would represent the ‘flipped’ texture. By default,
the tex_coords are:

[u, v, u + w, v, u + w, v + h, u, v + h]

You can pass your own texture coordinates if you want to achieve fancy
effects.

Warning

The default values just mentioned can be negative. Depending
on the image and label providers, the coordinates are flipped
vertically because of the order in which the image is internally
stored. Instead of flipping the image data, we are just flipping
the texture coordinates to be faster.

	
texture

	Property that represents the texture used for drawing this
Instruction. You can set a new texture like this:

from kivy.core.image import Image

texture = Image('logo.png').texture
with self.canvas:
 Rectangle(texture=texture, pos=self.pos, size=self.size)

Usually, you will use the source attribute instead of the
texture.

CGL: standard C interface for OpenGL

Kivy uses OpenGL and therefore requires a backend that provides it.
The backend used is controlled through the USE_OPENGL_MOCK and USE_SDL2
compile-time variables and through the KIVY_GL_BACKEND runtime
environmental variable.

Currently, OpenGL is used through direct linking (gl/glew), sdl2,
or by mocking it. Setting USE_OPENGL_MOCK disables gl/glew.
Similarly, setting USE_SDL2 to 0 will disable sdl2. Mocking
is always available.

At runtime the following backends are available and can be set using
KIVY_GL_BACKEND:

	gl – Available on unix (the default backend). Unavailable when
USE_OPENGL_MOCK=0. Requires gl be installed.

	glew – Available on Windows (the default backend). Unavailable when
USE_OPENGL_MOCK=0. Requires glew be installed.

	sdl2 – Available on Windows/unix (the default when gl/glew is disabled).
Unavailable when USE_SDL2=0. Requires kivy_deps.sdl2 be installed.

	angle_sdl2 – Available on Windows with Python 3.5+.
Unavailable when USE_SDL2=0. Requires kivy_deps.sdl2 and
kivy_deps.angle be installed.

	mock – Always available. Doesn’t actually do anything.

Additionally, the following environmental runtime variables control the graphics
system:

	KIVY_GL_DEBUG – Logs al gl calls when 1.

	KIVY_GRAPHICS – Forces OpenGL ES2 when it is gles. OpenGL ES2 is always
used on the android, ios, rpi, and mali OSs.

	
kivy.graphics.cgl.cgl_get_backend_name(allowed=[], ignored=[])

	

	
kivy.graphics.cgl.cgl_get_initialized_backend_name()

	

	
kivy.graphics.cgl.cgl_init(allowed=[], ignored=[])

	

Context instructions

The context instructions represent non graphics elements such as:

	Matrix manipulations (PushMatrix, PopMatrix, Rotate, Translate, Scale,
MatrixInstruction)

	Color manipulations (Color)

	Texture bindings (BindTexture)

Changed in version 1.0.8: The LineWidth instruction has been removed. It wasn’t working before and we
actually have no working implementation. We need to do more experimentation
to get it right. Check the bug
#207 [https://github.com/kivy/kivy/issues/207] for more information.

	
class kivy.graphics.context_instructions.BindTexture(**kwargs)

	Bases: kivy.graphics.instructions.ContextInstruction

The BindTexture Instruction will bind a texture and enable
GL_TEXTURE_2D for subsequent drawing.

	Parameters:

	
	texture: Texture
	Specifies the texture to bind to the given index.

	
source

	Set/get the source (filename) to load for the texture.

	
class kivy.graphics.context_instructions.Color(*args, **kwargs)

	Bases: kivy.graphics.instructions.ContextInstruction

drawn after it.

This represents a color between 0 and 1, but is applied as a
multiplier to the texture of any vertex instructions following
it in a canvas. If no texture is set, the vertex instruction
takes the precise color of the Color instruction.

For instance, if a Rectangle has a texture with uniform color
(0.5, 0.5, 0.5, 1.0) and the preceding Color has
rgba=(1, 0.5, 2, 1), the actual visible color will be
(0.5, 0.25, 1.0, 1.0) since the Color instruction is applied as
a multiplier to every rgba component. In this case, a Color
component outside the 0-1 range gives a visible result as the
intensity of the blue component is doubled.

To declare a Color in Python, you can do:

from kivy.graphics import Color

create red v
c = Color(1, 0, 0)
create blue color
c = Color(0, 1, 0)
create blue color with 50% alpha
c = Color(0, 1, 0, .5)

using hsv mode
c = Color(0, 1, 1, mode='hsv')
using hsv mode + alpha
c = Color(0, 1, 1, .2, mode='hsv')

You can also set color components that are available as properties
by passing them as keyword arguments:

c = Color(b=0.5) # sets the blue component only

In kv lang you can set the color properties directly:

<Rule>:
 canvas:
 # red color
 Color:
 rgb: 1, 0, 0
 # blue color
 Color:
 rgb: 0, 1, 0
 # blue color with 50% alpha
 Color:
 rgba: 0, 1, 0, .5

 # using hsv mode
 Color:
 hsv: 0, 1, 1
 # using hsv mode + alpha
 Color:
 hsv: 0, 1, 1
 a: .5

	
a

	Alpha component, between 0 and 1.

	
b

	Blue component, between 0 and 1.

	
g

	Green component, between 0 and 1.

	
h

	Hue component, between 0 and 1.

	
hsv

	HSV color, list of 3 values in 0-1 range, alpha will be 1.

	
r

	Red component, between 0 and 1.

	
rgb

	RGB color, list of 3 values in 0-1 range. The alpha will be 1.

	
rgba

	RGBA color, list of 4 values in 0-1 range.

	
s

	Saturation component, between 0 and 1.

	
v

	Value component, between 0 and 1.

	
class kivy.graphics.context_instructions.MatrixInstruction(*args, **kwargs)

	Bases: kivy.graphics.instructions.ContextInstruction

	
matrix

	Matrix property. Matrix from the transformation module.
Setting the matrix using this property when a change is made
is important because it will notify the context about the update.

	
stack

	Name of the matrix stack to use. Can be ‘modelview_mat’,
‘projection_mat’ or ‘frag_modelview_mat’.

New in version 1.6.0.

	
class kivy.graphics.context_instructions.PopMatrix(*args, **kwargs)

	Bases: kivy.graphics.instructions.ContextInstruction

	
stack

	Name of the matrix stack to use. Can be ‘modelview_mat’,
‘projection_mat’ or ‘frag_modelview_mat’.

New in version 1.6.0.

	
class kivy.graphics.context_instructions.PushMatrix(*args, **kwargs)

	Bases: kivy.graphics.instructions.ContextInstruction

	
stack

	Name of the matrix stack to use. Can be ‘modelview_mat’,
‘projection_mat’ or ‘frag_modelview_mat’.

New in version 1.6.0.

	
class kivy.graphics.context_instructions.Rotate(*args, **kwargs)

	Bases: kivy.graphics.context_instructions.Transform

on the modelview matrix. You can set the properties of the instructions
afterwards with e.g.

rot.angle = 90
rot.axis = (0, 0, 1)

	
angle

	Property for getting/setting the angle of the rotation.

	
axis

	Property for getting/setting the axis of the rotation.

The format of the axis is (x, y, z).

	
origin

	Origin of the rotation.

New in version 1.7.0.

The format of the origin can be either (x, y) or (x, y, z).

	
set(float angle, float ax, float ay, float az)

	Set the angle and axis of rotation.

>>> rotationobject.set(90, 0, 0, 1)

Deprecated since version 1.7.0: The set() method doesn’t use the new origin property.

	
class kivy.graphics.context_instructions.Scale(*args, **kwargs)

	Bases: kivy.graphics.context_instructions.Transform

Create using one or three arguments:

Scale(s) # scale all three axes the same
Scale(x, y, z) # scale the axes independently

Deprecated since version 1.6.0: Deprecated single scale property in favor of x, y, z, xyz axis
independent scaled factors.

	
origin

	Origin of the scale.

New in version 1.9.0.

The format of the origin can be either (x, y) or (x, y, z).

	
scale

	Property for getting/setting the scale.

Deprecated since version 1.6.0: Deprecated in favor of per axis scale properties x,y,z, xyz, etc.

	
x

	Property for getting/setting the scale on the X axis.

Changed in version 1.6.0.

	
xyz

	3 tuple scale vector in 3D in x, y, and z axis.

Changed in version 1.6.0.

	
y

	Property for getting/setting the scale on the Y axis.

Changed in version 1.6.0.

	
z

	Property for getting/setting the scale on Z axis.

Changed in version 1.6.0.

	
class kivy.graphics.context_instructions.Translate(*args, **kwargs)

	Bases: kivy.graphics.context_instructions.Transform

Construct by either:

Translate(x, y) # translate in just the two axes
Translate(x, y, z) # translate in all three axes

	
x

	Property for getting/setting the translation on the X axis.

	
xy

	2 tuple with translation vector in 2D for x and y axis.

	
xyz

	3 tuple translation vector in 3D in x, y, and z axis.

	
y

	Property for getting/setting the translation on the Y axis.

	
z

	Property for getting/setting the translation on the Z axis.

	
kivy.graphics.context_instructions.gl_init_resources()

	

Context management

New in version 1.2.0.

This class manages a registry of all created graphics instructions. It has
the ability to flush and delete them.

You can read more about Kivy graphics contexts in the Graphics
module documentation. These are based on
OpenGL graphics contexts [http://www.opengl.org/wiki/OpenGL_Context].

	
class kivy.graphics.context.Context

	Bases: builtins.object

observer callbacks. See add_reload_observer() and remove_reload_observer()
for more information.

	
add_reload_observer(callback, before=False)

	(internal) Add a callback to be called after the whole graphics context has
been reloaded. This is where you can reupload your custom data into the
GPU.

	Parameters:

	
	callback: func(context) -> return None
	The first parameter will be the context itself

	before: boolean, defaults to False
	If True, the callback will be executed before all the
reloading processes. Use it if you want to clear your cache for
example.

Changed in version 1.4.0: before parameter added.

	
flag_update_canvas()

	

	
flush() → void

	

	
gl_dealloc(*largs)

	

	
reload()

	

	
remove_reload_observer(callback, before=False)

	(internal) Remove a callback from the observer list previously added by
add_reload_observer().

	
trigger_gl_dealloc()

	

Framebuffer

The Fbo is like an offscreen window. You can activate the fbo for rendering into
a texture and use your fbo as a texture for other drawing.

The Fbo acts as a kivy.graphics.instructions.Canvas.

Here is an example of using an fbo for some colored rectangles:

from kivy.graphics import Fbo, Color, Rectangle

class FboTest(Widget):
 def __init__(self, **kwargs):
 super(FboTest, self).__init__(**kwargs)

 # first step is to create the fbo and use the fbo texture on other
 # rectangle

 with self.canvas:
 # create the fbo
 self.fbo = Fbo(size=(256, 256))

 # show our fbo on the widget in different size
 Color(1, 1, 1)
 Rectangle(size=(32, 32), texture=self.fbo.texture)
 Rectangle(pos=(32, 0), size=(64, 64), texture=self.fbo.texture)
 Rectangle(pos=(96, 0), size=(128, 128), texture=self.fbo.texture)

 # in the second step, you can draw whatever you want on the fbo
 with self.fbo:
 Color(1, 0, 0, .8)
 Rectangle(size=(256, 64))
 Color(0, 1, 0, .8)
 Rectangle(size=(64, 256))

If you change anything in the self.fbo object, it will be automatically updated.
The canvas where the fbo is put will be automatically updated as well.

Reloading the FBO content

New in version 1.2.0.

If the OpenGL context is lost, then the FBO is lost too. You need to reupload
data on it yourself. Use the Fbo.add_reload_observer() to add a reloading
function that will be automatically called when needed:

def __init__(self, **kwargs):
 super(...).__init__(**kwargs)
 self.fbo = Fbo(size=(512, 512))
 self.fbo.add_reload_observer(self.populate_fbo)

 # and load the data now.
 self.populate_fbo(self.fbo)

def populate_fbo(self, fbo):
 with fbo:
 # .. put your Color / Rectangle / ... here

This way, you could use the same method for initialization and for reloading.
But it’s up to you.

	
class kivy.graphics.fbo.Fbo(*args, **kwargs)

	Bases: kivy.graphics.instructions.RenderContext

“with” statement.

	Parameters:

	
	clear_color: tuple, defaults to (0, 0, 0, 0)
	Define the default color for clearing the framebuffer

	size: tuple, defaults to (1024, 1024)
	Default size of the framebuffer

	push_viewport: bool, defaults to True
	If True, the OpenGL viewport will be set to the framebuffer size,
and will be automatically restored when the framebuffer released.

	with_depthbuffer: bool, defaults to False
	If True, the framebuffer will be allocated with a Z buffer.

	with_stencilbuffer: bool, defaults to False
	
New in version 1.9.0.

If True, the framebuffer will be allocated with a stencil buffer.

	texture: Texture, defaults to None
	If None, a default texture will be created.

Note

Using both of with_stencilbuffer and with_depthbuffer is not
supported in kivy 1.9.0

	
add_reload_observer(callback)

	Add a callback to be called after the whole graphics context has
been reloaded. This is where you can reupload your custom data in GPU.

New in version 1.2.0.

	Parameters:

	
	callback: func(context) -> return None
	The first parameter will be the context itself

	
bind()

	Bind the FBO to the current opengl context.
Bind mean that you enable the Framebuffer, and all the drawing
operations will act inside the Framebuffer, until release() is
called.

The bind/release operations are automatically called when you add
graphics objects into it. If you want to manipulate a Framebuffer
yourself, you can use it like this:

self.fbo = FBO()
self.fbo.bind()
do any drawing command
self.fbo.release()

then, your fbo texture is available at
print(self.fbo.texture)

	
clear_buffer()

	Clear the framebuffer with the clear_color.

You need to bind the framebuffer yourself before calling this
method:

fbo.bind()
fbo.clear_buffer()
fbo.release()

	
clear_color

	Clear color in (red, green, blue, alpha) format.

	
get_pixel_color(int wx, int wy)

	Get the color of the pixel with specified window
coordinates wx, wy. It returns result in RGBA format.

New in version 1.8.0.

	
pixels

	Get the pixels texture, in RGBA format only, unsigned byte. The
origin of the image is at bottom left.

New in version 1.7.0.

	
release()

	Release the Framebuffer (unbind).

	
remove_reload_observer(callback)

	Remove a callback from the observer list, previously added by
add_reload_observer().

New in version 1.2.0.

	
size

	Size of the framebuffer, in (width, height) format.

If you change the size, the framebuffer content will be lost.

	
texture

	Return the framebuffer texture

GL instructions

New in version 1.3.0.

Clearing an FBO

To clear an FBO, you can use ClearColor and ClearBuffers
instructions like this example:

self.fbo = Fbo(size=self.size)
with self.fbo:
 ClearColor(0, 0, 0, 0)
 ClearBuffers()

	
class kivy.graphics.gl_instructions.ClearBuffers(*args, **kwargs)

	Bases: kivy.graphics.instructions.Instruction

New in version 1.3.0.

Clear the buffers specified by the instructions buffer mask property.
By default, only the coloc buffer is cleared.

	
clear_color

	If True, the color buffer will be cleared.

	
clear_depth

	If True, the depth buffer will be cleared.

	
clear_stencil

	If True, the stencil buffer will be cleared.

	
class kivy.graphics.gl_instructions.ClearColor(r, g, b, a, **kwargs)

	Bases: kivy.graphics.instructions.Instruction

New in version 1.3.0.

Sets the clear color used to clear buffers with the glClear function or
ClearBuffers graphics instructions.

	
a

	Alpha component, between 0 and 1.

	
b

	Blue component, between 0 and 1.

	
g

	Green component, between 0 and 1.

	
r

	Red component, between 0 and 1.

	
rgb

	RGB color, a list of 3 values in 0-1 range where alpha will be 1.

	
rgba

	RGBA color used for the clear color, a list of 4 values in the 0-1
range.

Graphics compiler

Before rendering an InstructionGroup, we
compile the group in order to reduce the number of instructions executed
at rendering time.

Reducing the context instructions

Imagine that you have a scheme like this:

Color(1, 1, 1)
Rectangle(source='button.png', pos=(0, 0), size=(20, 20))
Color(1, 1, 1)
Rectangle(source='button.png', pos=(10, 10), size=(20, 20))
Color(1, 1, 1)
Rectangle(source='button.png', pos=(10, 20), size=(20, 20))

The real instructions seen by the graphics canvas would be:

Color: change 'color' context to 1, 1, 1
BindTexture: change 'texture0' to `button.png texture`
Rectangle: push vertices (x1, y1...) to vbo & draw
Color: change 'color' context to 1, 1, 1
BindTexture: change 'texture0' to `button.png texture`
Rectangle: push vertices (x1, y1...) to vbo & draw
Color: change 'color' context to 1, 1, 1
BindTexture: change 'texture0' to `button.png texture`
Rectangle: push vertices (x1, y1...) to vbo & draw

Only the first Color and
BindTexture are useful and really
change the context. We can reduce them to:

Color: change 'color' context to 1, 1, 1
BindTexture: change 'texture0' to `button.png texture`
Rectangle: push vertices (x1, y1...) to vbo & draw
Rectangle: push vertices (x1, y1...) to vbo & draw
Rectangle: push vertices (x1, y1...) to vbo & draw

This is what the compiler does in the first place, by flagging all the unused
instruction with GI_IGNORE flag. As soon as a Color content changes, the whole
InstructionGroup will be recompiled and a previously unused Color might be
used for the next compilation.

Note to any Kivy contributor / internal developer:

	All context instructions are checked to see if they change anything in the
cache.

	We must ensure that a context instruction is needed for our current Canvas.

	We must ensure that we don’t depend of any other canvas.

	We must reset our cache if one of our children is another instruction group
because we don’t know whether it might do weird things or not.

OpenGL

This module is a Python wrapper for OpenGL commands.

Warning

Not every OpenGL command has been wrapped and because we are using the C
binding for higher performance, and you should rather stick to the Kivy
Graphics API. By using OpenGL commands directly, you might change
the OpenGL context and introduce inconsistency between the Kivy state and
the OpenGL state.

	
kivy.graphics.opengl.glActiveTexture(GLenum texture)

	See: glActiveTexture() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glActiveTexture.xml]

	
kivy.graphics.opengl.glAttachShader(GLuint program, GLuint shader)

	See: glAttachShader() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glAttachShader.xml]

	
kivy.graphics.opengl.glBindAttribLocation(GLuint program, GLuint index, bytes name)

	See: glBindAttribLocation() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBindAttribLocation.xml]

	
kivy.graphics.opengl.glBindBuffer(GLenum target, GLuint buffer)

	See: glBindBuffer() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBindBuffer.xml]

	
kivy.graphics.opengl.glBindFramebuffer(GLenum target, GLuint framebuffer)

	See: glBindFramebuffer() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBindFramebuffer.xml]

	
kivy.graphics.opengl.glBindRenderbuffer(GLenum target, GLuint renderbuffer)

	See: glBindRenderbuffer() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBindRenderbuffer.xml]

	
kivy.graphics.opengl.glBindTexture(GLenum target, GLuint texture)

	See: glBindTexture() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBindTexture.xml]

	
kivy.graphics.opengl.glBlendColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha)

	See: glBlendColor() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBlendColor.xml]

	
kivy.graphics.opengl.glBlendEquation(GLenum mode)

	See: glBlendEquation() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBlendEquation.xml]

	
kivy.graphics.opengl.glBlendEquationSeparate(GLenum modeRGB, GLenum modeAlpha)

	See: glBlendEquationSeparate() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBlendEquationSeparate.xml]

	
kivy.graphics.opengl.glBlendFunc(GLenum sfactor, GLenum dfactor)

	See: glBlendFunc() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBlendFunc.xml]

	
kivy.graphics.opengl.glBlendFuncSeparate(GLenum srcRGB, GLenum dstRGB, GLenum srcAlpha, GLenum dstAlpha)

	See: glBlendFuncSeparate() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBlendFuncSeparate.xml]

	
kivy.graphics.opengl.glBufferData(GLenum target, GLsizeiptr size, bytes data, GLenum usage)

	See: glBufferData() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBufferData.xml]

	
kivy.graphics.opengl.glBufferSubData(GLenum target, GLintptr offset, GLsizeiptr size, bytes data)

	See: glBufferSubData() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBufferSubData.xml]

	
kivy.graphics.opengl.glCheckFramebufferStatus(GLenum target)

	See: glCheckFramebufferStatus() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glCheckFramebufferStatus.xml]

	
kivy.graphics.opengl.glClear(GLbitfield mask)

	See: glClear() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glClear.xml]

	
kivy.graphics.opengl.glClearColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha)

	See: glClearColor() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glClearColor.xml]

	
kivy.graphics.opengl.glClearStencil(GLint s)

	See: glClearStencil() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glClearStencil.xml]

	
kivy.graphics.opengl.glColorMask(GLboolean red, GLboolean green, GLboolean blue, GLboolean alpha)

	See: glColorMask() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glColorMask.xml]

	
kivy.graphics.opengl.glCompileShader(GLuint shader)

	See: glCompileShader() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glCompileShader.xml]

	
kivy.graphics.opengl.glCompressedTexImage2D(GLenum target, GLint level, GLenum internalformat, GLsizei width, GLsizei height, GLint border, GLsizei imageSize, bytes data)

	See: glCompressedTexImage2D() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glCompressedTexImage2D.xml]

	
kivy.graphics.opengl.glCompressedTexSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLsizei imageSize, bytes data)

	See: glCompressedTexSubImage2D() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glCompressedTexSubImage2D.xml]

	
kivy.graphics.opengl.glCopyTexImage2D(GLenum target, GLint level, GLenum internalformat, GLint x, GLint y, GLsizei width, GLsizei height, GLint border)

	See: glCopyTexImage2D() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glCopyTexImage2D.xml]

	
kivy.graphics.opengl.glCopyTexSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint x, GLint y, GLsizei width, GLsizei height)

	See: glCopyTexSubImage2D() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glCopyTexSubImage2D.xml]

	
kivy.graphics.opengl.glCreateProgram()

	See: glCreateProgram() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glCreateProgram.xml]

	
kivy.graphics.opengl.glCreateShader(GLenum type)

	See: glCreateShader() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glCreateShader.xml]

	
kivy.graphics.opengl.glCullFace(GLenum mode)

	See: glCullFace() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glCullFace.xml]

	
kivy.graphics.opengl.glDeleteBuffers(GLsizei n, bytes buffers)

	See: glDeleteBuffers() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glDeleteBuffers.xml]

	
kivy.graphics.opengl.glDeleteFramebuffers(GLsizei n, bytes framebuffers)

	See: glDeleteFramebuffers() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glDeleteFramebuffers.xml]

	
kivy.graphics.opengl.glDeleteProgram(GLuint program)

	See: glDeleteProgram() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glDeleteProgram.xml]

	
kivy.graphics.opengl.glDeleteRenderbuffers(GLsizei n, bytes renderbuffers)

	See: glDeleteRenderbuffers() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glDeleteRenderbuffers.xml]

	
kivy.graphics.opengl.glDeleteShader(GLuint shader)

	See: glDeleteShader() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glDeleteShader.xml]

	
kivy.graphics.opengl.glDeleteTextures(GLsizei n, bytes textures)

	See: glDeleteTextures() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glDeleteTextures.xml]

	
kivy.graphics.opengl.glDepthFunc(GLenum func)

	See: glDepthFunc() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glDepthFunc.xml]

	
kivy.graphics.opengl.glDepthMask(GLboolean flag)

	See: glDepthMask() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glDepthMask.xml]

	
kivy.graphics.opengl.glDetachShader(GLuint program, GLuint shader)

	See: glDetachShader() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glDetachShader.xml]

	
kivy.graphics.opengl.glDisable(GLenum cap)

	See: glDisable() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glDisable.xml]

	
kivy.graphics.opengl.glDisableVertexAttribArray(GLuint index)

	See: glDisableVertexAttribArray() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glDisableVertexAttribArray.xml]

	
kivy.graphics.opengl.glDrawArrays(GLenum mode, GLint first, GLsizei count)

	See: glDrawArrays() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glDrawArrays.xml]

	
kivy.graphics.opengl.glDrawElements(GLenum mode, GLsizei count, GLenum type, indices)

	See: glDrawElements() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glDrawElements.xml]

	
kivy.graphics.opengl.glEnable(GLenum cap)

	See: glEnable() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glEnable.xml]

	
kivy.graphics.opengl.glEnableVertexAttribArray(GLuint index)

	See: glEnableVertexAttribArray() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glEnableVertexAttribArray.xml]

	
kivy.graphics.opengl.glFinish()

	See: glFinish() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glFinish.xml]

	
kivy.graphics.opengl.glFlush()

	See: glFlush() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glFlush.xml]

	
kivy.graphics.opengl.glFramebufferRenderbuffer(GLenum target, GLenum attachment, GLenum renderbuffertarget, GLuint renderbuffer)

	See: glFramebufferRenderbuffer() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glFramebufferRenderbuffer.xml]

	
kivy.graphics.opengl.glFramebufferTexture2D(GLenum target, GLenum attachment, GLenum textarget, GLuint texture, GLint level)

	See: glFramebufferTexture2D() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glFramebufferTexture2D.xml]

	
kivy.graphics.opengl.glFrontFace(GLenum mode)

	See: glFrontFace() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glFrontFace.xml]

	
kivy.graphics.opengl.glGenBuffers(GLsizei n)

	See: glGenBuffers() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGenBuffers.xml]

Unlike the C specification, the value will be the result of call.

	
kivy.graphics.opengl.glGenFramebuffers(GLsizei n)

	See: glGenFramebuffers() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGenFramebuffers.xml]

Unlike the C specification, the value will be the result of call.

	
kivy.graphics.opengl.glGenRenderbuffers(GLsizei n)

	See: glGenRenderbuffers() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGenRenderbuffers.xml]

Unlike the C specification, the value will be the result of call.

	
kivy.graphics.opengl.glGenTextures(GLsizei n)

	See: glGenTextures() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGenTextures.xml]

Unlike the C specification, the value will be the result of call.

	
kivy.graphics.opengl.glGenerateMipmap(GLenum target)

	See: glGenerateMipmap() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGenerateMipmap.xml]

	
kivy.graphics.opengl.glGetActiveAttrib(GLuint program, GLuint index)

	See: glGetActiveAttrib() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetActiveAttrib.xml]

Unlike the C specification, the value will be the result of call.

	
kivy.graphics.opengl.glGetActiveUniform(GLuint program, GLuint index)

	See: glGetActiveUniform() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetActiveUniform.xml]

Unlike the C specification, the value will be the result of call.

	
kivy.graphics.opengl.glGetAttachedShaders(GLuint program, GLsizei maxcount)

	See: glGetAttachedShaders() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetAttachedShaders.xml]

Unlike the C specification, the value will be the result of call.

	
kivy.graphics.opengl.glGetAttribLocation(GLuint program, bytes name)

	See: glGetAttribLocation() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetAttribLocation.xml]

Unlike the C specification, the value will be the result of call.

	
kivy.graphics.opengl.glGetBooleanv(GLenum pname)

	See: glGetBooleanv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetBooleanv.xml]

Unlike the C specification, the value will be the result of call.

	
kivy.graphics.opengl.glGetBufferParameteriv(GLenum target, GLenum pname)

	See: glGetBufferParameteriv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetBufferParameteriv.xml]

Unlike the C specification, the value will be the result of call.

	
kivy.graphics.opengl.glGetError()

	See: glGetError() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetError.xml]

Unlike the C specification, the value will be the result of call.

	
kivy.graphics.opengl.glGetFloatv(GLenum pname)

	See: glGetFloatv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetFloatv.xml]

Unlike the C specification, the value will be the result of call.

	
kivy.graphics.opengl.glGetFramebufferAttachmentParameteriv(GLenum target, GLenum attachment, GLenum pname)

	See: glGetFramebufferAttachmentParameteriv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetFramebufferAttachmentParameteriv.xml]

Unlike the C specification, the value will be the result of call.

	
kivy.graphics.opengl.glGetIntegerv(GLenum pname)

	See: glGetIntegerv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetIntegerv.xml]

Unlike the C specification, the value(s) will be the result of the call

	
kivy.graphics.opengl.glGetProgramInfoLog(GLuint program, GLsizei bufsize)

	See: glGetProgramInfoLog() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetProgramInfoLog.xml]

Unlike the C specification, the source code will be returned as a string.

	
kivy.graphics.opengl.glGetProgramiv(GLuint program, GLenum pname)

	See: glGetProgramiv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetProgramiv.xml]

Unlike the C specification, the value(s) will be the result of the call

	
kivy.graphics.opengl.glGetRenderbufferParameteriv(GLenum target, GLenum pname)

	See: glGetRenderbufferParameteriv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetRenderbufferParameteriv.xml]

Unlike the C specification, the value will be the result of call.

	
kivy.graphics.opengl.glGetShaderInfoLog(GLuint shader, GLsizei bufsize)

	See: glGetShaderInfoLog() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetShaderInfoLog.xml]

Unlike the C specification, the source code will be returned as a string.

	
kivy.graphics.opengl.glGetShaderPrecisionFormat(GLenum shadertype, GLenum precisiontype)

	See: glGetShaderPrecisionFormat() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetShaderPrecisionFormat.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glGetShaderSource(GLuint shader)

	See: glGetShaderSource() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetShaderSource.xml]

Unlike the C specification, the source code will be returned as a string.

	
kivy.graphics.opengl.glGetShaderiv(GLuint shader, GLenum pname)

	See: glGetShaderiv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetShaderiv.xml]

Unlike the C specification, the value will be the result of call.

	
kivy.graphics.opengl.glGetString(GLenum name)

	See: glGetString() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetString.xml]

Unlike the C specification, the value will be returned as a string.

	
kivy.graphics.opengl.glGetTexParameterfv(GLenum target, GLenum pname)

	See: glGetTexParameterfv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetTexParameterfv.xml]

	
kivy.graphics.opengl.glGetTexParameteriv(GLenum target, GLenum pname)

	See: glGetTexParameteriv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetTexParameteriv.xml]

	
kivy.graphics.opengl.glGetUniformLocation(GLuint program, bytes name)

	See: glGetUniformLocation() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetUniformLocation.xml]

	
kivy.graphics.opengl.glGetUniformfv(GLuint program, GLint location)

	See: glGetUniformfv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetUniformfv.xml]

	
kivy.graphics.opengl.glGetUniformiv(GLuint program, GLint location)

	See: glGetUniformiv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetUniformiv.xml]

	
kivy.graphics.opengl.glGetVertexAttribPointerv(GLuint index, GLenum pname)

	See: glGetVertexAttribPointerv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetVertexAttribPointerv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glGetVertexAttribfv(GLuint index, GLenum pname)

	See: glGetVertexAttribfv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetVertexAttribfv.xml]

	
kivy.graphics.opengl.glGetVertexAttribiv(GLuint index, GLenum pname)

	See: glGetVertexAttribiv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetVertexAttribiv.xml]

	
kivy.graphics.opengl.glHint(GLenum target, GLenum mode)

	See: glHint() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glHint.xml]

	
kivy.graphics.opengl.glIsBuffer(GLuint buffer)

	See: glIsBuffer() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glIsBuffer.xml]

	
kivy.graphics.opengl.glIsEnabled(GLenum cap)

	See: glIsEnabled() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glIsEnabled.xml]

	
kivy.graphics.opengl.glIsFramebuffer(GLuint framebuffer)

	See: glIsFramebuffer() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glIsFramebuffer.xml]

	
kivy.graphics.opengl.glIsProgram(GLuint program)

	See: glIsProgram() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glIsProgram.xml]

	
kivy.graphics.opengl.glIsRenderbuffer(GLuint renderbuffer)

	See: glIsRenderbuffer() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glIsRenderbuffer.xml]

	
kivy.graphics.opengl.glIsShader(GLuint shader)

	See: glIsShader() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glIsShader.xml]

	
kivy.graphics.opengl.glIsTexture(GLuint texture)

	See: glIsTexture() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glIsTexture.xml]

	
kivy.graphics.opengl.glLineWidth(GLfloat width)

	See: glLineWidth() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glLineWidth.xml]

	
kivy.graphics.opengl.glLinkProgram(GLuint program)

	See: glLinkProgram() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glLinkProgram.xml]

	
kivy.graphics.opengl.glPixelStorei(GLenum pname, GLint param)

	See: glPixelStorei() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml]

	
kivy.graphics.opengl.glPolygonOffset(GLfloat factor, GLfloat units)

	See: glPolygonOffset() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPolygonOffset.xml]

	
kivy.graphics.opengl.glReadPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type)

	See: glReadPixels() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glReadPixels.xml]

We support only GL_RGB/GL_RGBA as a format and GL_UNSIGNED_BYTE as a
type.

	
kivy.graphics.opengl.glReleaseShaderCompiler()

	See: glReleaseShaderCompiler() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glReleaseShaderCompiler.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glRenderbufferStorage(GLenum target, GLenum internalformat, GLsizei width, GLsizei height)

	See: glRenderbufferStorage() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glRenderbufferStorage.xml]

	
kivy.graphics.opengl.glSampleCoverage(GLclampf value, GLboolean invert)

	See: glSampleCoverage() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glSampleCoverage.xml]

	
kivy.graphics.opengl.glScissor(GLint x, GLint y, GLsizei width, GLsizei height)

	See: glScissor() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glScissor.xml]

	
kivy.graphics.opengl.glShaderBinary()

	See: glShaderBinary() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glShaderBinary.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glShaderSource(GLuint shader, bytes source)

	See: glShaderSource() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glShaderSource.xml]

	
kivy.graphics.opengl.glStencilFunc(GLenum func, GLint ref, GLuint mask)

	See: glStencilFunc() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glStencilFunc.xml]

	
kivy.graphics.opengl.glStencilFuncSeparate(GLenum face, GLenum func, GLint ref, GLuint mask)

	See: glStencilFuncSeparate() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glStencilFuncSeparate.xml]

	
kivy.graphics.opengl.glStencilMask(GLuint mask)

	See: glStencilMask() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glStencilMask.xml]

	
kivy.graphics.opengl.glStencilMaskSeparate(GLenum face, GLuint mask)

	See: glStencilMaskSeparate() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glStencilMaskSeparate.xml]

	
kivy.graphics.opengl.glStencilOp(GLenum fail, GLenum zfail, GLenum zpass)

	See: glStencilOp() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glStencilOp.xml]

	
kivy.graphics.opengl.glStencilOpSeparate(GLenum face, GLenum fail, GLenum zfail, GLenum zpass)

	See: glStencilOpSeparate() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glStencilOpSeparate.xml]

	
kivy.graphics.opengl.glTexImage2D(GLenum target, GLint level, GLint internalformat, GLsizei width, GLsizei height, GLint border, GLenum format, GLenum type, bytes pixels)

	See: glTexImage2D() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glTexImage2D.xml]

	
kivy.graphics.opengl.glTexParameterf(GLenum target, GLenum pname, GLfloat param)

	See: glTexParameterf() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glTexParameterf.xml]

	
kivy.graphics.opengl.glTexParameterfv(GLenum target, GLenum pname)

	See: glTexParameterfv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glTexParameterfv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glTexParameteri(GLenum target, GLenum pname, GLint param)

	See: glTexParameteri() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glTexParameteri.xml]

	
kivy.graphics.opengl.glTexParameteriv(GLenum target, GLenum pname)

	See: glTexParameteriv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glTexParameteriv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glTexSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, bytes pixels)

	See: glTexSubImage2D() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glTexSubImage2D.xml]

	
kivy.graphics.opengl.glUniform1f(GLint location, GLfloat x)

	See: glUniform1f() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform1f.xml]

	
kivy.graphics.opengl.glUniform1fv(GLint location, GLsizei count)

	See: glUniform1fv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform1fv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glUniform1i(GLint location, GLint x)

	See: glUniform1i() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform1i.xml]

	
kivy.graphics.opengl.glUniform1iv(GLint location, GLsizei count)

	See: glUniform1iv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform1iv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glUniform2f(GLint location, GLfloat x, GLfloat y)

	See: glUniform2f() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform2f.xml]

	
kivy.graphics.opengl.glUniform2fv(GLint location, GLsizei count)

	See: glUniform2fv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform2fv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glUniform2i(GLint location, GLint x, GLint y)

	See: glUniform2i() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform2i.xml]

	
kivy.graphics.opengl.glUniform2iv(GLint location, GLsizei count)

	See: glUniform2iv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform2iv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glUniform3f(GLint location, GLfloat x, GLfloat y, GLfloat z)

	See: glUniform3f() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform3f.xml]

	
kivy.graphics.opengl.glUniform3fv(GLint location, GLsizei count)

	See: glUniform3fv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform3fv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glUniform3i(GLint location, GLint x, GLint y, GLint z)

	See: glUniform3i() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform3i.xml]

	
kivy.graphics.opengl.glUniform3iv(GLint location, GLsizei count)

	See: glUniform3iv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform3iv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glUniform4f(GLint location, GLfloat x, GLfloat y, GLfloat z, GLfloat w)

	See: glUniform4f() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform4f.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glUniform4fv(GLint location, GLsizei count)

	See: glUniform4fv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform4fv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glUniform4i(GLint location, GLint x, GLint y, GLint z, GLint w)

	See: glUniform4i() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform4i.xml]

	
kivy.graphics.opengl.glUniform4iv(GLint location, GLsizei count)

	See: glUniform4iv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform4iv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glUniformMatrix2fv(GLint location, GLsizei count)

	See: glUniformMatrix2fv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniformMatrix2fv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glUniformMatrix3fv(GLint location, GLsizei count)

	See: glUniformMatrix3fv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniformMatrix3fv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glUniformMatrix4fv(GLint location, GLsizei count, GLboolean transpose, bytes value)

	See: glUniformMatrix4fv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniformMatrix4fv.xml]

	
kivy.graphics.opengl.glUseProgram(GLuint program)

	See: glUseProgram() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUseProgram.xml]

	
kivy.graphics.opengl.glValidateProgram(GLuint program)

	See: glValidateProgram() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glValidateProgram.xml]

	
kivy.graphics.opengl.glVertexAttrib1f(GLuint indx, GLfloat x)

	See: glVertexAttrib1f() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glVertexAttrib1f.xml]

	
kivy.graphics.opengl.glVertexAttrib1fv(GLuint indx, list values)

	See: glVertexAttrib1fv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glVertexAttrib1fv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glVertexAttrib2f(GLuint indx, GLfloat x, GLfloat y)

	See: glVertexAttrib2f() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glVertexAttrib2f.xml]

	
kivy.graphics.opengl.glVertexAttrib2fv(GLuint indx, list values)

	See: glVertexAttrib2fv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glVertexAttrib2fv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glVertexAttrib3f(GLuint indx, GLfloat x, GLfloat y, GLfloat z)

	See: glVertexAttrib3f() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glVertexAttrib3f.xml]

	
kivy.graphics.opengl.glVertexAttrib3fv(GLuint indx, list values)

	See: glVertexAttrib3fv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glVertexAttrib3fv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glVertexAttrib4f(GLuint indx, GLfloat x, GLfloat y, GLfloat z, GLfloat w)

	See: glVertexAttrib4f() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glVertexAttrib4f.xml]

	
kivy.graphics.opengl.glVertexAttrib4fv(GLuint indx, list values)

	See: glVertexAttrib4fv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glVertexAttrib4fv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glVertexAttribPointer(GLuint index, GLint size, GLenum type, GLboolean normalized, GLsizei stride, data)

	See: glVertexAttribPointer() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glVertexAttribPointer.xml]

	
kivy.graphics.opengl.glViewport(GLint x, GLint y, GLsizei width, GLsizei height)

	See: glViewport() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glViewport.xml]

	
kivy.graphics.opengl.gl_init_symbols(allowed=[], ignored=[])

	

OpenGL utilities

New in version 1.0.7.

	
kivy.graphics.opengl_utils.gl_get_extensions() → list

	Return a list of OpenGL extensions available. All the names in the list
have the GL_ stripped at the start (if it exists) and are in lowercase.

>>> print(gl_get_extensions())
['arb_blend_func_extended', 'arb_color_buffer_float', 'arb_compatibility',
 'arb_copy_buffer'...]

	
kivy.graphics.opengl_utils.gl_get_texture_formats() → tuple

	Return a list of texture formats recognized by kivy.
The texture list is informative but might not been supported by your
hardware. If you want a list of supported textures, you must filter that
list as follows:

supported_fmts = [gl_has_texture_format(x) for x in gl_get_texture_formats()]

	
kivy.graphics.opengl_utils.gl_get_version() → tuple

	Return the (major, minor) OpenGL version, parsed from the GL_VERSION.

New in version 1.2.0.

	
kivy.graphics.opengl_utils.gl_get_version_major() → int

	Return the major component of the OpenGL version.

New in version 1.2.0.

	
kivy.graphics.opengl_utils.gl_get_version_minor() → int

	Return the minor component of the OpenGL version.

New in version 1.2.0.

	
kivy.graphics.opengl_utils.gl_has_capability(int cap) → int

	Return the status of a OpenGL Capability. This is a wrapper that
auto-discovers all the capabilities that Kivy might need. The current
capabilities tested are:

	GLCAP_BGRA: Test the support of BGRA texture format

	GLCAP_NPOT: Test the support of Non Power of Two texture

	GLCAP_S3TC: Test the support of S3TC texture (DXT1, DXT3, DXT5)

	GLCAP_DXT1: Test the support of DXT texture (subset of S3TC)

	GLCAP_ETC1: Test the support of ETC1 texture

	
kivy.graphics.opengl_utils.gl_has_extension(name) → int

	Check if an OpenGL extension is available. If the name starts with GL_,
it will be stripped for the test and converted to lowercase.

>>> gl_has_extension('NV_get_tex_image')
False
>>> gl_has_extension('OES_texture_npot')
True

	
kivy.graphics.opengl_utils.gl_has_texture_conversion(fmt) → int

	Return 1 if the texture can be converted to a native format.

	
kivy.graphics.opengl_utils.gl_has_texture_format(fmt) → int

	Return whether a texture format is supported by your system, natively or
by conversion. For example, if your card doesn’t support ‘bgra’, we are able
to convert to ‘rgba’ but only in software mode.

	
kivy.graphics.opengl_utils.gl_has_texture_native_format(fmt) → int

	Return 1 if the texture format is handled natively.

>>> gl_has_texture_format('azdmok')
0
>>> gl_has_texture_format('rgba')
1
>>> gl_has_texture_format('s3tc_dxt1')
[INFO] [GL] S3TC texture support is available
[INFO] [GL] DXT1 texture support is available
1

	
kivy.graphics.opengl_utils.gl_register_get_size(int constid, int size)

	Register an association between an OpenGL Const used in glGet* to a number
of elements.

By example, the GPU_MEMORY_INFO_DEDICATED_VIDMEM_NVX is a special pname that
will return the integer 1 (nvidia only).

>>> GPU_MEMORY_INFO_DEDICATED_VIDMEM_NVX = 0x9047
>>> gl_register_get_size(GPU_MEMORY_INFO_DEDICATED_VIDMEM_NVX, 1)
>>> glGetIntegerv(GPU_MEMORY_INFO_DEDICATED_VIDMEM_NVX)[0]
524288

Scissor Instructions

New in version 1.9.1.

Scissor instructions clip your drawing area into a rectangular region.

	ScissorPush: Begins clipping, sets the bounds of the clip space

	ScissorPop: Ends clipping

The area provided to clip is in screenspace pixels and must be provided as
integer values not floats.

The following code will draw a circle on top of our widget while clipping
the circle so it does not expand beyond the widget borders.

with self.canvas.after:
 #If our widget is inside another widget that modified the coordinates
 #spacing (such as ScrollView) we will want to convert to Window coords
 x,y = self.to_window(*self.pos)
 width, height = self.size
 #We must convert from the possible float values provided by kivy
 #widgets to an integer screenspace, in python3 round returns an int so
 #the int cast will be unnecessary.
 ScissorPush(x=int(round(x)), y=int(round(y)),
 width=int(round(width)), height=int(round(height)))
 Color(rgba=(1., 0., 0., .5))
 Ellipse(size=(width*2., height*2.),
 pos=self.center)
 ScissorPop()

	
class kivy.graphics.scissor_instructions.Rect(int x, int y, int width, int height)

	Bases: builtins.object

Rect class used internally by ScissorStack and ScissorPush to determine
correct clipping area.

	
intersect(Rect other)

	

	
class kivy.graphics.scissor_instructions.ScissorPop

	Bases: kivy.graphics.instructions.Instruction

Pop the scissor stack. Call after ScissorPush, once you have completed
the drawing you wish to be clipped.

	
class kivy.graphics.scissor_instructions.ScissorPush(**kwargs)

	Bases: kivy.graphics.instructions.Instruction

to control the area and position of the scissoring region. Defaults to
0, 0, 100, 100

Scissor works by clipping all drawing outside of a rectangle starting at
int x, int y position and having sides of int width by int height in Window
space coordinates

	
class kivy.graphics.scissor_instructions.ScissorStack

	Bases: builtins.object

Class used internally to keep track of the current state of
glScissors regions. Do not instantiate, prefer to inspect the module’s
scissor_stack.

	
pop()

	

	
push(element)

	

Shader

The Shader class handles the compilation of the vertex and fragment
shader as well as the creation of the program in OpenGL.

Todo

Include more complete documentation about the shader.

Header inclusion

New in version 1.0.7.

When you are creating a Shader, Kivy will always include default parameters. If
you don’t want to rewrite this each time you want to customize / write a new
shader, you can add the “$HEADER$” token and it will be replaced by the
corresponding shader header.

Here is the header for the fragment Shader:

#ifdef GL_ES
 precision highp float;
#endif

/* Outputs from the vertex shader */
varying vec4 frag_color;
varying vec2 tex_coord0;

/* uniform texture samplers */
uniform sampler2D texture0;

uniform mat4 frag_modelview_mat;

And the header for vertex Shader:

#ifdef GL_ES
 precision highp float;
#endif

/* Outputs to the fragment shader */
varying vec4 frag_color;
varying vec2 tex_coord0;

/* vertex attributes */
attribute vec2 vPosition;
attribute vec2 vTexCoords0;

/* uniform variables */
uniform mat4 modelview_mat;
uniform mat4 projection_mat;
uniform vec4 color;
uniform float opacity;

Single file glsl shader programs

New in version 1.6.0.

To simplify shader management, the vertex and fragment shaders can be loaded
automatically from a single glsl source file (plain text). The file should
contain sections identified by a line starting with ‘—vertex’ and
‘—fragment’ respectively (case insensitive), e.g.

// anything before a meaningful section such as this comment are ignored

---VERTEX SHADER--- // vertex shader starts here
void main(){
 ...
}

---FRAGMENT SHADER--- // fragment shader starts here
void main(){
 ...
}

The source property of the Shader should be set to the filename of a glsl
shader file (of the above format), e.g. phong.glsl

	
class kivy.graphics.shader.Shader(unicode vs=None, unicode fs=None, unicode source=None)

	Bases: builtins.object

	Parameters:

	
	vs: string, defaults to None
	Source code for vertex shader

	fs: string, defaults to None
	Source code for fragment shader

	
fs

	Fragment shader source code.

If you set a new fragment shader code source, it will be automatically
compiled and will replace the current fragment shader.

	
source

	glsl source code.

source should be the filename of a glsl shader that contains both the
vertex and fragment shader sourcecode, each designated by a section
header consisting of one line starting with either “–VERTEX” or
“–FRAGMENT” (case insensitive).

New in version 1.6.0.

	
success

	Indicate whether the shader loaded successfully and is ready for
usage or not.

	
vs

	Vertex shader source code.

If you set a new vertex shader code source, it will be automatically
compiled and will replace the current vertex shader.

Stencil instructions

New in version 1.0.4.

Changed in version 1.3.0: The stencil operation has been updated to resolve some issues that appeared
when nested. You must now have a StencilUnUse and repeat the same
operation as you did after StencilPush.

Stencil instructions permit you to draw and use the current drawing as a mask.
They don’t give as much control as pure OpenGL, but you can still do fancy
things!

The stencil buffer can be controlled using these 3 instructions:

	StencilPush: push a new stencil layer.
Any drawing that happens after this will be used as a mask.

	StencilUse : now draw the next instructions and use the stencil
for masking them.

	StencilUnUse : stop using the stencil i.e. remove the mask and
draw normally.

	StencilPop : pop the current stencil layer.

You should always respect this scheme:

StencilPush

PHASE 1: put any drawing instructions to use as a mask here.

StencilUse

PHASE 2: all the drawing here will be automatically clipped by the
mask created in PHASE 1.

StencilUnUse

PHASE 3: put the same drawing instruction here as you did in PHASE 1

StencilPop

PHASE 4: the stencil is now removed from the stack and unloaded.

Limitations

	Drawing in PHASE 1 and PHASE 3 must not collide or you
will get unexpected results

	The stencil is activated as soon as you perform a StencilPush

	The stencil is deactivated as soon as you’ve correctly popped all the stencil
layers

	You must not play with stencils yourself between a StencilPush / StencilPop

	You can push another stencil after a StencilUse / before the StencilPop

	You can push up to 128 layers of stencils (8 for kivy < 1.3.0)

Example of stencil usage

Here is an example, in kv style:

StencilPush

create a rectangular mask with a pos of (100, 100) and a (100, 100) size.
Rectangle:
 pos: 100, 100
 size: 100, 100

StencilUse

we want to show a big green rectangle, however, the previous stencil
mask will crop us :)
Color:
 rgb: 0, 1, 0
Rectangle:
 size: 900, 900

StencilUnUse

you must redraw the stencil mask to remove it
Rectangle:
 pos: 100, 100
 size: 100, 100

StencilPop

	
class kivy.graphics.stencil_instructions.StencilPop

	Bases: kivy.graphics.instructions.Instruction

Pop the stencil stack. See the module documentation for more information.

	
class kivy.graphics.stencil_instructions.StencilPush

	Bases: kivy.graphics.instructions.Instruction

Push the stencil stack. See the module documentation for more
information.

	
class kivy.graphics.stencil_instructions.StencilUnUse

	Bases: kivy.graphics.instructions.Instruction

Use current stencil buffer to unset the mask.

	
class kivy.graphics.stencil_instructions.StencilUse(**kwargs)

	Bases: kivy.graphics.instructions.Instruction

more information.

	
func_op

	Determine the stencil operation to use for glStencilFunc(). Can be
one of ‘never’, ‘less’, ‘equal’, ‘lequal’, ‘greater’, ‘notequal’,
‘gequal’ or ‘always’.

By default, the operator is set to ‘equal’.

New in version 1.5.0.

SVG

New in version 1.9.0.

Warning

This is highly experimental and subject to change. Don’t use it in
production.

Load an SVG as a graphics instruction:

from kivy.graphics.svg import Svg
with widget.canvas:
 svg = Svg("image.svg")

There is no widget that can display Svg directly, you have to make your own for
now. Check the examples/svg for more information.

	
class kivy.graphics.svg.Svg(source=None, anchor_x=0, anchor_y=0, bezier_points=64, circle_points=64, color=None)

	Bases: kivy.graphics.instructions.RenderContext

	
anchor_x

	Horizontal anchor position for scaling and rotations. Defaults to 0. The
symbolic values ‘left’, ‘center’ and ‘right’ are also accepted.

	
anchor_y

	Vertical anchor position for scaling and rotations. Defaults to 0. The
symbolic values ‘bottom’, ‘center’ and ‘top’ are also accepted.

	
color

	The default color

Used for SvgElements that specify “currentColor”

Changed in version 1.10.3: The color is gettable and settable

New in version 1.9.1.

	
current_color

	current_color: object

	
gradients

	gradients: object

	
height

	height: ‘double’

	
set_tree(tree)

	sets the tree used to render the Svg and triggers reloading.

	Parameters:

	tree (xml.etree.cElementTree) – the tree parsed from the SVG source

New in version 2.0.0.

	
source

	Filename / source to load.

The parsing and rendering is done as soon as you set the source.

Changed in version 2.0.0: The property name is now source instead of filename

Changed in version 1.10.3: You can get the used filename

	
width

	width: ‘double’

Tesselator

New in version 1.9.0.

[image: _images/tesselator-filled.png]
[image: _images/tesselator-debug.png]

Warning

This is experimental and subject to change as long as this warning notice
is present. Only TYPE_POLYGONS is currently supported.

Tesselator is a library for tesselating polygons, based on
libtess2 [https://github.com/memononen/libtess2]. It renders concave filled
polygons by first tesselating them into convex polygons. It also supports holes.

Usage

First, you need to create a Tesselator object and add contours. The
first one is the external contour of your shape and all of the following ones
should be holes:

from kivy.graphics.tesselator import Tesselator

tess = Tesselator()
tess.add_contour([0, 0, 200, 0, 200, 200, 0, 200])
tess.add_contour([50, 50, 150, 50, 150, 150, 50, 150])

Second, call the Tesselator.tesselate() method to compute the points. It
is possible that the tesselator won’t work. In that case, it can return
False:

if not tess.tesselate():
 print("Tesselator didn't work :(")
 return

After the tessellation, you have multiple ways to iterate over the result. The
best approach is using Tesselator.meshes to get a format directly usable
for a Mesh:

for vertices, indices in tess.meshes:
 self.canvas.add(Mesh(
 vertices=vertices,
 indices=indices,
 mode="triangle_fan"
))

Or, you can get the “raw” result, with just polygons and x/y coordinates with
Tesselator.vertices():

for vertices in tess.vertices:
 print("got polygon", vertices)

	
class kivy.graphics.tesselator.Tesselator

	Bases: builtins.object

Tesselator class. See module for more information about the usage.

	
add_contour(points)

	Add a contour to the tesselator. It can be:

	a list of [x, y, x2, y2, …] coordinates

	a float array: array(“f”, [x, y, x2, y2, …])

	any buffer with floats in it.

	
element_count

	Returns the number of convex polygon.

	
meshes

	Iterate through the result of the tesselate() to give a result
that can be easily pushed into Kivy`s Mesh object.

It’s a list of: [[vertices, indices], [vertices, indices], …].
The vertices in the format [x, y, u, v, x2, y2, u2, v2].

Careful, u/v coordinates are the same as x/y.
You are responsible to change them for texture mapping if you need to.

You can create Mesh objects like that:

tess = Tesselator()
add contours here
tess.tesselate()
for vertices, indices in self.meshes:
 self.canvas.add(Mesh(
 vertices=vertices,
 indices=indices,
 mode="triangle_fan"))

	
tesselate(int winding_rule=WINDING_ODD, int element_type=TYPE_POLYGONS, int polysize=65535) → int

	Compute all the contours added with add_contour(), and generate
polygons.

	Parameters:

	
	winding_rule: enum
	The winding rule classifies a region as inside if its winding
number belongs to the chosen category. Can be one of
WINDING_ODD, WINDING_NONZERO, WINDING_POSITIVE,
WINDING_NEGATIVE, WINDING_ABS_GEQ_TWO. Defaults to WINDING_ODD.

	element_type: enum
	The result type, you can generate the polygons with
TYPE_POLYGONS, or the contours with TYPE_BOUNDARY_CONTOURS.
Defaults to TYPE_POLYGONS.

	Returns:

	1 if the tessellation happened, 0 otherwise.

	Return type:

	int

	
vertex_count

	Returns the number of vertex generated.

This is the raw result, however, because the Tesselator format the
result for you with meshes or vertices per polygon,
you’ll have more vertices in the result

	
vertices

	Iterate through the result of the tesselate() in order to give
only a list of [x, y, x2, y2, …] polygons.

Texture

Changed in version 1.6.0: Added support for paletted texture on OES: ‘palette4_rgb8’,
‘palette4_rgba8’, ‘palette4_r5_g6_b5’, ‘palette4_rgba4’, ‘palette4_rgb5_a1’,
‘palette8_rgb8’, ‘palette8_rgba8’, ‘palette8_r5_g6_b5’, ‘palette8_rgba4’
and ‘palette8_rgb5_a1’.

Texture is a class that handles OpenGL textures. Depending on the
hardware,
some OpenGL capabilities might not be available (BGRA support, NPOT support,
etc.)

You cannot instantiate this class yourself. You must use the function
Texture.create() to create a new texture:

texture = Texture.create(size=(640, 480))

When you create a texture, you should be aware of the default color
and buffer format:

	the color/pixel format (Texture.colorfmt) that can be one of
‘rgb’, ‘rgba’, ‘luminance’, ‘luminance_alpha’, ‘bgr’ or ‘bgra’.
The default value is ‘rgb’

	the buffer format determines how a color component is stored into memory.
This can be one of ‘ubyte’, ‘ushort’, ‘uint’, ‘byte’, ‘short’, ‘int’ or
‘float’. The default value and the most commonly used is ‘ubyte’.

So, if you want to create an RGBA texture:

texture = Texture.create(size=(640, 480), colorfmt='rgba')

You can use your texture in almost all vertex instructions with the
kivy.graphics.VertexIntruction.texture parameter. If you want to use
your texture in kv lang, you can save it in an
ObjectProperty inside your widget.

Warning

Using Texture before OpenGL has been initialized will lead to a crash. If
you need to create textures before the application has started, import
Window first: from kivy.core.window import Window

Blitting custom data

You can create your own data and blit it to the texture using
Texture.blit_buffer().

For example, to blit immutable bytes data:

create a 64x64 texture, defaults to rgba / ubyte
texture = Texture.create(size=(64, 64))

create 64x64 rgb tab, and fill with values from 0 to 255
we'll have a gradient from black to white
size = 64 * 64 * 3
buf = [int(x * 255 / size) for x in range(size)]

then, convert the array to a ubyte string
buf = bytes(buf)

then blit the buffer
texture.blit_buffer(buf, colorfmt='rgb', bufferfmt='ubyte')

that's all ! you can use it in your graphics now :)
if self is a widget, you can do this
with self.canvas:
 Rectangle(texture=texture, pos=self.pos, size=(64, 64))

Since 1.9.0, you can blit data stored in a instance that implements the python
buffer interface, or a memoryview thereof, such as numpy arrays, python
array.array, a bytearray, or a cython array. This is beneficial if you
expect to blit similar data, with perhaps a few changes in the data.

When using a bytes representation of the data, for every change you have to
regenerate the bytes instance, from perhaps a list, which is very inefficient.
When using a buffer object, you can simply edit parts of the original data.
Similarly, unless starting with a bytes object, converting to bytes requires a
full copy, however, when using a buffer instance, no memory is copied, except
to upload it to the GPU.

Continuing with the example above:

from array import array

size = 64 * 64 * 3
buf = [int(x * 255 / size) for x in range(size)]
initialize the array with the buffer values
arr = array('B', buf)
now blit the array
texture.blit_buffer(arr, colorfmt='rgb', bufferfmt='ubyte')

now change some elements in the original array
arr[24] = arr[50] = 99
blit again the buffer
texture.blit_buffer(arr, colorfmt='rgb', bufferfmt='ubyte')

BGR/BGRA support

The first time you try to create a BGR or BGRA texture, we check whether
your hardware supports BGR / BGRA textures by checking the extension
‘GL_EXT_bgra’.

If the extension is not found, the conversion to RGB / RGBA will be done in
software.

NPOT texture

Changed in version 1.0.7: If your hardware supports NPOT, no POT is created.

As the OpenGL documentation says, a texture must be power-of-two sized. That
means
your width and height can be one of 64, 32, 256… but not 3, 68, 42. NPOT means
non-power-of-two. OpenGL ES 2 supports NPOT textures natively but with some
drawbacks. Another type of NPOT texture is called a rectangle texture.
POT, NPOT and textures all have their own pro/cons.

	Features

	POT

	NPOT

	Rectangle

	OpenGL Target

	GL_TEXTURE_2D

	GL_TEXTURE_2D

	GL_TEXTURE_RECTANGLE_(NV|ARB|EXT)

	Texture coords

	0-1 range

	0-1 range

	width-height range

	Mipmapping

	Supported

	Partially

	No

	Wrap mode

	Supported

	Supported

	No

If you create a NPOT texture, we first check whether your hardware
supports it by checking the extensions GL_ARB_texture_non_power_of_two or
OES_texture_npot. If none of these are available, we create the nearest
POT texture that can contain your NPOT texture. The Texture.create() will
return a TextureRegion instead.

Texture atlas

A texture atlas is a single texture that contains many images.
If you want to separate the original texture into many single ones, you don’t
need to. You can get a region of the original texture. That will return the
original texture with custom texture coordinates:

for example, load a 128x128 image that contain 4 64x64 images
from kivy.core.image import Image
texture = Image('mycombinedimage.png').texture

bottomleft = texture.get_region(0, 0, 64, 64)
bottomright = texture.get_region(0, 64, 64, 64)
topleft = texture.get_region(0, 64, 64, 64)
topright = texture.get_region(64, 64, 64, 64)

Mipmapping

New in version 1.0.7.

Mipmapping is an OpenGL technique for enhancing the rendering of large textures
to small surfaces. Without mipmapping, you might see pixelation when you
render to small surfaces.
The idea is to precalculate the subtexture and apply some image filter as a
linear filter. Then, when you render a small surface, instead of using the
biggest texture, it will use a lower filtered texture. The result can look
better this way.

To make that happen, you need to specify mipmap=True when you create a
texture. Some widgets already give you the ability to create mipmapped
textures, such as the Label and
Image.

From the OpenGL Wiki : “So a 64x16 2D texture can have 5 mip-maps: 32x8, 16x4,
8x2, 4x1, 2x1, and 1x1”. Check http://www.opengl.org/wiki/Texture for more
information.

Note

As the table in previous section said, if your texture is NPOT, we
create the nearest POT texture and generate a mipmap from it. This
might change in the future.

Reloading the Texture

New in version 1.2.0.

If the OpenGL context is lost, the Texture must be reloaded. Textures that have
a source are automatically reloaded but generated textures must
be reloaded by the user.

Use the Texture.add_reload_observer() to add a reloading function that
will be automatically called when needed:

def __init__(self, **kwargs):
 super(...).__init__(**kwargs)
 self.texture = Texture.create(size=(512, 512), colorfmt='RGB',
 bufferfmt='ubyte')
 self.texture.add_reload_observer(self.populate_texture)

 # and load the data now.
 self.cbuffer = '\x00\xf0\xff' * 512 * 512
 self.populate_texture(self.texture)

def populate_texture(self, texture):
 texture.blit_buffer(self.cbuffer)

This way, you can use the same method for initialization and reloading.

Note

For all text rendering with our core text renderer, the texture is generated
but we already bind a method to redo the text rendering and reupload
the text to the texture. You don’t have to do anything.

	
class kivy.graphics.texture.Texture(width, height, target, texid=0, colorfmt='rgb', bufferfmt='ubyte', mipmap=False, source=None, callback=None, icolorfmt='rgb')

	Bases: builtins.object

textures or complex textures based on ImageData.

	
add_reload_observer(callback)

	Add a callback to be called after the whole graphics context has
been reloaded. This is where you can reupload your custom data into
the GPU.

New in version 1.2.0.

	Parameters:

	
	callback: func(context) -> return None
	The first parameter will be the context itself.

	
ask_update(callback)

	Indicate that the content of the texture should be updated and the
callback function needs to be called when the texture will be
used.

	
bind()

	Bind the texture to the current opengl state.

	
blit_buffer(pbuffer, size=None, colorfmt=None, pos=None, bufferfmt=None, mipmap_level=0, mipmap_generation=True, int rowlength=0)

	Blit a buffer into the texture.

Note

Unless the canvas will be updated due to other changes,
ask_update() should be
called in order to update the texture.

	Parameters:

	
	pbuffer: bytes, or a class that implements the buffer interface (including memoryview).
	A buffer containing the image data. It can be either a bytes
object or a instance of a class that implements the python
buffer interface, e.g. array.array, bytearray, numpy arrays
etc. If it’s not a bytes object, the underlying buffer must
be contiguous, have only one dimension and must not be
readonly, even though the data is not modified, due to a cython
limitation. See module description for usage details.

	size: tuple, defaults to texture size
	Size of the image (width, height)

	colorfmt: str, defaults to ‘rgb’
	Image format, can be one of ‘rgb’, ‘rgba’, ‘bgr’, ‘bgra’,
‘luminance’ or ‘luminance_alpha’.

	pos: tuple, defaults to (0, 0)
	Position to blit in the texture.

	bufferfmt: str, defaults to ‘ubyte’
	Type of the data buffer, can be one of ‘ubyte’, ‘ushort’,
‘uint’, ‘byte’, ‘short’, ‘int’ or ‘float’.

	mipmap_level: int, defaults to 0
	Indicate which mipmap level we are going to update.

	mipmap_generation: bool, defaults to True
	Indicate if we need to regenerate the mipmap from level 0.

Changed in version 1.0.7: added mipmap_level and mipmap_generation

Changed in version 1.9.0: pbuffer can now be any class instance that implements the python
buffer interface and / or memoryviews thereof.

	
blit_data(im, pos=None)

	Replace a whole texture with image data.

	
bufferfmt

	Return the buffer format used in this texture (readonly).

New in version 1.2.0.

	
colorfmt

	Return the color format used in this texture (readonly).

New in version 1.0.7.

	
static create(size=None, colorfmt=None, bufferfmt=None, mipmap=False, callback=None, icolorfmt=None)

	texture_create(size=None, colorfmt=None, bufferfmt=None, mipmap=False, callback=None, icolorfmt=None)
Create a texture based on size.

	Parameters:

	
	size: tuple, defaults to (128, 128)
	Size of the texture.

	colorfmt: str, defaults to ‘rgba’
	Color format of the texture. Can be ‘rgba’ or ‘rgb’,
‘luminance’ or ‘luminance_alpha’. On desktop, additional values are
available: ‘red’, ‘rg’.

	icolorfmt: str, defaults to the value of colorfmt
	Internal format storage of the texture. Can be ‘rgba’ or ‘rgb’,
‘luminance’ or ‘luminance_alpha’. On desktop, additional values are
available: ‘r8’, ‘rg8’, ‘rgba8’.

	bufferfmt: str, defaults to ‘ubyte’
	Internal buffer format of the texture. Can be ‘ubyte’, ‘ushort’,
‘uint’, ‘bute’, ‘short’, ‘int’ or ‘float’.

	mipmap: bool, defaults to False
	If True, it will automatically generate the mipmap texture.

	callback: callable(), defaults to False
	If a function is provided, it will be called when data is
needed in the texture.

Changed in version 1.7.0: callback has been added

	
static create_from_data(im, mipmap=False)

	texture_create_from_data(im, mipmap=False)
Create a texture from an ImageData class.

	
flip_horizontal()

	Flip tex_coords for horizontal display.

New in version 1.9.0.

	
flip_vertical()

	Flip tex_coords for vertical display.

	
get_region(x, y, width, height)

	Return a part of the texture defined by the rectangular arguments
(x, y, width, height). Returns a TextureRegion instance.

	
height

	Return the height of the texture (readonly).

	
id

	Return the OpenGL ID of the texture (readonly).

	
mag_filter

	Get/set the mag filter texture. Available values:

	linear

	nearest

Check the opengl documentation for more information about the behavior
of these values :
http://www.khronos.org/opengles/sdk/docs/man/xhtml/glTexParameter.xml.

	
min_filter

	Get/set the min filter texture. Available values:

	linear

	nearest

	linear_mipmap_linear

	linear_mipmap_nearest

	nearest_mipmap_nearest

	nearest_mipmap_linear

Check the opengl documentation for more information about the behavior
of these values :
http://www.khronos.org/opengles/sdk/docs/man/xhtml/glTexParameter.xml.

	
mipmap

	Return True if the texture has mipmap enabled (readonly).

	
pixels

	Get the pixels texture, in RGBA format only, unsigned byte. The
origin of the image is at bottom left.

New in version 1.7.0.

	
remove_reload_observer(callback)

	Remove a callback from the observer list, previously added by
add_reload_observer().

New in version 1.2.0.

	
save(filename, flipped=True, fmt=None)

	Save the texture content to a file. Check
kivy.core.image.Image.save() for more information.

The flipped parameter flips the saved image vertically, and
defaults to True.

New in version 1.7.0.

Changed in version 1.8.0: Parameter flipped added, defaults to True. All the OpenGL Texture
are read from bottom / left, it need to be flipped before saving.
If you don’t want to flip the image, set flipped to False.

Changed in version 1.11.0: Parameter fmt added, to pass the final format to the image provider.
Used if filename is a BytesIO

	
size

	Return the (width, height) of the texture (readonly).

	
target

	Return the OpenGL target of the texture (readonly).

	
tex_coords

	Return the list of tex_coords (opengl).

	
uvpos

	Get/set the UV position inside the texture.

	
uvsize

	Get/set the UV size inside the texture.

Warning

The size can be negative if the texture is flipped.

	
width

	Return the width of the texture (readonly).

	
wrap

	Get/set the wrap texture. Available values:

	repeat

	mirrored_repeat

	clamp_to_edge

Check the opengl documentation for more information about the behavior
of these values :
http://www.khronos.org/opengles/sdk/docs/man/xhtml/glTexParameter.xml.

	
class kivy.graphics.texture.TextureRegion(int x, int y, int width, int height, Texture origin)

	Bases: kivy.graphics.texture.Texture

texture handling.

	
ask_update(callback)

	

	
bind()

	

	
pixels

	

Transformation

This module contains a Matrix class used for our Graphics calculations. We
currently support:

	rotation, translation and scaling matrices

	multiplication matrix

	clip matrix (with or without perspective)

	transformation matrix for 3d touch

For more information on transformation matrices, please see the
OpenGL Matrices Tutorial [http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/].

Changed in version 1.6.0: Added Matrix.perspective(), Matrix.look_at() and
Matrix.transpose().

	
class kivy.graphics.transformation.Matrix

	Bases: builtins.object

>>> from kivy.graphics.transformation import Matrix
>>> m = Matrix()
>>> print(m)
[[1.000000 0.000000 0.000000 0.000000]
[0.000000 1.000000 0.000000 0.000000]
[0.000000 0.000000 1.000000 0.000000]
[0.000000 0.000000 0.000000 1.000000]]

[0 1 2 3]
[4 5 6 7]
[8 9 10 11]
[12 13 14 15]

	
get()

	Retrieve the value of the current as a flat list.

New in version 1.9.1.

	
identity() → Matrix

	Reset the matrix to the identity matrix (inplace).

	
inverse() → Matrix

	Return the inverse of the matrix as a new Matrix.

	
look_at(double eyex, double eyey, double eyez, double centerx, double centery, double centerz, double upx, double upy, double upz)

	Returns a new lookat Matrix (similar to
gluLookAt [http://www.opengl.org/sdk/docs/man2/xhtml/gluLookAt.xml]).

	Parameters:

	
	eyex: float
	Eyes X co-ordinate

	eyey: float
	Eyes Y co-ordinate

	eyez: float
	Eyes Z co-ordinate

	centerx: float
	The X position of the reference point

	centery: float
	The Y position of the reference point

	centerz: float
	The Z position of the reference point

	upx: float
	The X value up vector.

	upy: float
	The Y value up vector.

	upz: float
	The Z value up vector.

New in version 1.6.0.

	
multiply(mb, Matrix ma) → Matrix

	Multiply the given matrix with self (from the left)
i.e. we premultiply the given matrix by the current matrix and return
the result (not inplace):

m.multiply(n) -> n * m

	Parameters:

	
	ma: Matrix
	The matrix to multiply by

	
normal_matrix() → Matrix

	Computes the normal matrix, which is the inverse transpose
of the top left 3x3 modelview matrix used to transform normals
into eye/camera space.

New in version 1.6.0.

	
perspective(double fovy, double aspect, double zNear, double zFar) → Matrix

	Creates a perspective matrix (inplace).

	Parameters:

	
	fovy: float
	“Field Of View” angle

	aspect: float
	Aspect ratio

	zNear: float
	Near clipping plane

	zFar: float
	Far clippin plane

New in version 1.6.0.

	
project(double objx, double objy, double objz, Matrix model, Matrix proj, double vx, double vy, double vw, double vh)

	Project a point from 3d space into a 2d viewport.

	Parameters:

	
	objx: float
	Points X co-ordinate

	objy: float
	Points Y co-ordinate

	objz: float
	Points Z co-ordinate

	model: Matrix
	The model matrix

	proj: Matrix
	The projection matrix

	vx: float
	Viewports X co-ordinate

	vy: float
	Viewports y co-ordinate

	vw: float
	Viewports width

	vh: float
	Viewports height

New in version 1.7.0.

	
rotate(double angle, double x, double y, double z) → Matrix

	Rotate the matrix through the angle around the axis (x, y, z)
(inplace).

	Parameters:

	
	angle: float
	The angle through which to rotate the matrix

	x: float
	X position of the point

	y: float
	Y position of the point

	z: float
	Z position of the point

	
scale(double x, double y, double z) → Matrix

	Scale the current matrix by the specified factors over
each dimension (inplace).

	Parameters:

	
	x: float
	The scale factor along the X axis

	y: float
	The scale factor along the Y axis

	z: float
	The scale factor along the Z axis

	
set(flat=None, array=None)

	Insert custom values into the matrix in a flat list format
or 4x4 array format like below:

m.set(array=[
 [1.0, 0.0, 0.0, 0.0],
 [0.0, 1.0, 0.0, 0.0],
 [0.0, 0.0, 1.0, 0.0],
 [0.0, 0.0, 0.0, 1.0]]
)

New in version 1.9.0.

	
tolist()

	Retrieve the value of the current matrix in numpy format.
for example m.tolist() will return:

[[1.000000, 0.000000, 0.000000, 0.000000],
[0.000000, 1.000000, 0.000000, 0.000000],
[0.000000, 0.000000, 1.000000, 0.000000],
[0.000000, 0.000000, 0.000000, 1.000000]]

you can use this format to plug the result straight into numpy
in this way numpy.array(m.tolist())

New in version 1.9.0.

	
transform_point(double x, double y, double z, t=None) → tuple

	Transforms the point by the matrix and returns the transformed point
as a (x, y, z) tuple. If the point is a vector v, the returned
values is v2 = matrix * v.

If t is provided, it multiplies it with the last column of the matrix
and returns the transformed (x, y, z, t).

	
translate(double x, double y, double z) → Matrix

	Translate the matrix.

	Parameters:

	
	x: float
	The translation factor along the X axis

	y: float
	The translation factor along the Y axis

	z: float
	The translation factor along the Z axis

	
transpose() → Matrix

	Return the transposed matrix as a new Matrix.

New in version 1.6.0.

	
view_clip(double left, double right, double bottom, double top, double near, double far, int perspective) → Matrix

	Create a clip matrix (inplace).

	Parameters:

	
	left: float
	Co-ordinate

	right: float
	Co-ordinate

	bottom: float
	Co-ordinate

	top: float
	Co-ordinate

	near: float
	Co-ordinate

	far: float
	Co-ordinate

	perpective: int
	Co-ordinate

Changed in version 1.6.0: Enable support for perspective parameter.

Vertex Instructions

This module includes all the classes for drawing simple vertex objects.

Updating properties

The list attributes of the graphics instruction classes (e.g.
Triangle.points, Mesh.indices etc.) are not Kivy
properties but Python properties. As a consequence, the graphics will only
be updated when the list object itself is changed and not when list values
are modified.

For example in python:

class MyWidget(Button):

 triangle = ObjectProperty(None)
 def __init__(self, **kwargs):
 super(MyWidget, self).__init__(**kwargs)
 with self.canvas:
 self.triangle = Triangle(points=[0,0, 100,100, 200,0])

and in kv:

<MyWidget>:
 text: 'Update'
 on_press:
 self.triangle.points[3] = 400

Although pressing the button will change the triangle coordinates,
the graphics will not be updated because the list itself has not
changed. Similarly, no updates will occur using any syntax that changes
only elements of the list e.g. self.triangle.points[0:2] = [10,10] or
self.triangle.points.insert(10) etc.
To force an update after a change, the list variable itself must be
changed, which in this case can be achieved with:

<MyWidget>:
 text: 'Update'
 on_press:
 self.triangle.points[3] = 400
 self.triangle.points = self.triangle.points

	
class kivy.graphics.vertex_instructions.Bezier(**kwargs)

	Bases: kivy.graphics.instructions.VertexInstruction

New in version 1.0.8.

	Parameters:

	
	points: list
	List of points in the format (x1, y1, x2, y2…)

	segments: int, defaults to 180
	Define how many segments are needed for drawing the curve.
The drawing will be smoother if you have many segments.

	loop: bool, defaults to False
	Set the bezier curve to join the last point to the first.

	dash_length: int
	Length of a segment (if dashed), defaults to 1.

	dash_offset: int
	Distance between the end of a segment and the start of the
next one, defaults to 0. Changing this makes it dashed.

	
dash_length

	Property for getting/setting the length of the dashes in the curve.

	
dash_offset

	Property for getting/setting the offset between the dashes in the
curve.

	
points

	Property for getting/settings the points of the triangle.

Warning

This will always reconstruct the whole graphic from the new points
list. It can be very CPU intensive.

	
segments

	Property for getting/setting the number of segments of the curve.

	
class kivy.graphics.vertex_instructions.BorderImage(**kwargs)

	Bases: kivy.graphics.vertex_instructions.Rectangle

concept of a CSS3 border-image.

	Parameters:

	
	border: list
	Border information in the format (bottom, right, top, left).
Each value is in pixels.

	auto_scale: string
	
New in version 1.9.1.

Changed in version 1.9.2: This used to be a bool and has been changed to be a string
state.

Can be one of ‘off’, ‘both’, ‘x_only’, ‘y_only’, ‘y_full_x_lower’,
‘x_full_y_lower’, ‘both_lower’.

Autoscale controls the behavior of the 9-slice.

By default the border values are preserved exactly, meaning that
if the total size of the object is smaller than the border values
you will have some ‘rendering errors’ where your texture appears
inside out. This also makes it impossible to achieve a rounded
button that scales larger than the size of its source texture. The
various options for auto_scale will let you achieve some mixes of
the 2 types of rendering.

‘off’: is the default and behaves as BorderImage did when auto_scale
was False before.

‘both’: Scales both x and y dimension borders according to the size
of the BorderImage, this disables the BorderImage making it render
the same as a regular Image.

‘x_only’: The Y dimension functions as the default, and the X
scales to the size of the BorderImage’s width.

‘y_only’: The X dimension functions as the default, and the Y
scales to the size of the BorderImage’s height.

‘y_full_x_lower’: Y scales as in ‘y_only’, Y scales if the
size of the scaled version would be smaller than the provided
border only.

‘x_full_y_lower’: X scales as in ‘x_only’, Y scales if the
size of the scaled version would be smaller than the provided
border only.

‘both_lower’: This is what auto_scale did when it was True in 1.9.1
Both X and Y dimensions will be scaled if the BorderImage is
smaller than the source.

If the BorderImage’s size is less than the sum of its
borders, horizontally or vertically, and this property is
set to True, the borders will be rescaled to accommodate for
the smaller size.

	
auto_scale

	Property for setting if the corners are automatically scaled
when the BorderImage is too small.

	
border

	Property for getting/setting the border of the class.

	
display_border

	Property for getting/setting the border display size.

	
class kivy.graphics.vertex_instructions.Ellipse(*args, **kwargs)

	Bases: kivy.graphics.vertex_instructions.Rectangle

	Parameters:

	
	segments: int, the default value is calculated from the range between angle.
	Define how many segments are needed for drawing the ellipse.
The ellipse drawing will be smoother if you have many segments,
however you can also use this property to create polygons with 3 or more sides.

	angle_start: float, defaults to 0.0
	Specifies the starting angle, in degrees, of the disk portion.

	angle_end: float, defaults to 360.0
	Specifies the ending angle, in degrees, of the disk portion.

Changed in version 1.0.7: Added angle_start and angle_end.

Changed in version 2.2.0: The default number of segments is no longer 180, it is now calculated
according to the angle range, as this is a more efficient approach.

	
angle_end

	End angle of the ellipse in degrees, defaults to 360.

	
angle_start

	Start angle of the ellipse in degrees, defaults to 0.

	
segments

	Property for getting/setting the number of segments of the ellipse.
The ellipse drawing will be smoother if you have many segments, however
you can also use this property to create polygons with 3 or more sides.
Values smaller than 3 will not be represented and the number of
segments will be automatically calculated.

Changed in version 2.2.0: The minimum number of segments allowed is 3. Smaller values will be
ignored and the number of segments will be automatically calculated.

	
exception kivy.graphics.vertex_instructions.GraphicException

	Bases: Exception

Exception raised when a graphics error is fired.

	
class kivy.graphics.vertex_instructions.Line(**kwargs)

	Bases: kivy.graphics.instructions.VertexInstruction

Drawing a line can be done easily:

with self.canvas:
 Line(points=[100, 100, 200, 100, 100, 200], width=10)

The line has 3 internal drawing modes that you should be aware of
for optimal results:

	If the width is 1.0, then the standard GL_LINE drawing from
OpenGL will be used. dash_length, dash_offset, and dashes will
work, while properties for cap and joint have no meaning here.

	If the width is greater than 1.0, then a custom drawing method,
based on triangulation, will be used. dash_length,
dash_offset, and dashes do not work in this mode.
Additionally, if the current color has an alpha less than 1.0, a
stencil will be used internally to draw the line.

[image: _images/line-instruction.png]

	Parameters:

	
	points: list
	List of points in the format (x1, y1, x2, y2…)

	dash_length: int
	Length of a segment (if dashed), defaults to 1.

	dash_offset: int
	Offset between the end of a segment and the beginning of the
next one, defaults to 0. Changing this makes it dashed.

	dashes: list of ints
	List of [ON length, offset, ON length, offset, …]. E.g. [2,4,1,6,8,2]
would create a line with the first dash length 2 then an offset of 4 then
a dash length of 1 then an offset of 6 and so on. Defaults to [].
Changing this makes it dashed and overrides dash_length and dash_offset.

	width: float
	Width of the line, defaults to 1.0.

	cap: str, defaults to ‘round’
	See cap for more information.

	joint: str, defaults to ‘round’
	See joint for more information.

	cap_precision: int, defaults to 10
	See cap_precision for more information

	joint_precision: int, defaults to 10
	See joint_precision for more information
See cap_precision for more information.

	joint_precision: int, defaults to 10
	See joint_precision for more information.

	close: bool, defaults to False
	If True, the line will be closed.

	circle: list
	If set, the points will be set to build a circle. See
circle for more information.

	ellipse: list
	If set, the points will be set to build an ellipse. See
ellipse for more information.

	rectangle: list
	If set, the points will be set to build a rectangle. See
rectangle for more information.

	bezier: list
	If set, the points will be set to build a bezier line. See
bezier for more information.

	bezier_precision: int, defaults to 180
	Precision of the Bezier drawing.

Changed in version 1.0.8: dash_offset and dash_length have been added.

Changed in version 1.4.1: width, cap, joint, cap_precision, joint_precision, close,
ellipse, rectangle have been added.

Changed in version 1.4.1: bezier, bezier_precision have been added.

Changed in version 1.11.0: dashes have been added

	
bezier

	Use this property to build a bezier line, without calculating the
points. You can only set this property, not get it.

The argument must be a tuple of 2n elements, n being the number of points.

Usage:

Line(bezier=(x1, y1, x2, y2, x3, y3)

New in version 1.4.2.

Note

Bezier lines calculations are inexpensive for a low number of
points, but complexity is quadratic, so lines with a lot of points
can be very expensive to build, use with care!

	
bezier_precision

	Number of iteration for drawing the bezier between 2 segments,
defaults to 180. The bezier_precision must be at least 1.

New in version 1.4.2.

	
cap

	Determine the cap of the line, defaults to ‘round’. Can be one of
‘none’, ‘square’ or ‘round’

New in version 1.4.1.

	
cap_precision

	Number of iteration for drawing the “round” cap, defaults to 10.
The cap_precision must be at least 1.

New in version 1.4.1.

	
circle

	Use this property to build a circle, without calculating the
points.

The argument must be a tuple of (center_x, center_y, radius, angle_start,
angle_end, segments):

	center_x and center_y represent the center of the circle

	radius represent the radius of the circle

	(optional) angle_start and angle_end are in degree. The default
value is 0 and 360.

	(optional) segments is the precision of the ellipse. The default
value is calculated from the range between angle.

Note that it’s up to you to close the circle or not.

For example, for building a simple ellipse, in python:

simple circle
Line(circle=(150, 150, 50))

only from 90 to 180 degrees
Line(circle=(150, 150, 50, 90, 180))

only from 90 to 180 degrees, with few segments
Line(circle=(150, 150, 50, 90, 180, 20))

New in version 1.4.1.

Changed in version 2.2.0: Now you can get the circle generated through the property.

	
close

	If True, the line will be closed by joining the two ends, according to close_mode.

New in version 1.4.1.

	
close_mode

	Defines how the ends of the line will be connected.
Defaults to "straight-line".

Note

Support for the different closing modes depends on drawing shapes.

Available modes:

	"straight-line" (all drawing shapes): the ends will be closed by a straight line.

	"center-connected" (ellipse specific): the ends will be closed by a line passing through the center of the ellipse.

New in version 2.2.0.

	
dash_length

	Property for getting/setting the length of the dashes in the curve

New in version 1.0.8.

	
dash_offset

	Property for getting/setting the offset between the dashes in the curve

New in version 1.0.8.

	
dashes

	Property for getting/setting dashes.

List of [ON length, offset, ON length, offset, …]. E.g. [2,4,1,6,8,2]
would create a line with the first dash length 2 then an offset of 4 then
a dash length of 1 then an offset of 6 and so on.

New in version 1.11.0.

	
ellipse

	Use this property to build an ellipse, without calculating the
points.

The argument must be a tuple of (x, y, width, height, angle_start,
angle_end, segments):

	x and y represent the bottom left of the ellipse

	width and height represent the size of the ellipse

	(optional) angle_start and angle_end are in degree. The default
value is 0 and 360.

	(optional) segments is the precision of the ellipse. The default
value is calculated from the range between angle. You can use this
property to create polygons with 3 or more sides. Values smaller than
3 will not be represented and the number of segments will be
automatically calculated.

Note that it’s up to you to close or not.
If you choose to close, use close_mode to define how the figure
will be closed. Whether it will be by closed by a "straight-line"
or by "center-connected".

For example, for building a simple ellipse, in python:

simple ellipse
Line(ellipse=(0, 0, 150, 150))

only from 90 to 180 degrees
Line(ellipse=(0, 0, 150, 150, 90, 180))

only from 90 to 180 degrees, with few segments
Line(ellipse=(0, 0, 150, 150, 90, 180, 20))

New in version 1.4.1.

Changed in version 2.2.0: Now you can get the ellipse generated through the property.

The minimum number of segments allowed is 3. Smaller values will be
ignored and the number of segments will be automatically calculated.

	
joint

	Determine the join of the line, defaults to ‘round’. Can be one of
‘none’, ‘round’, ‘bevel’, ‘miter’.

New in version 1.4.1.

	
joint_precision

	Number of iteration for drawing the “round” joint, defaults to 10.
The joint_precision must be at least 1.

New in version 1.4.1.

	
points

	Property for getting/settings points of the line

Warning

This will always reconstruct the whole graphics from the new points
list. It can be very CPU expensive.

	
rectangle

	Use this property to build a rectangle, without calculating the
points.

The argument must be a tuple of (x, y, width, height):

	x and y represent the bottom-left position of the rectangle

	width and height represent the size

The line is automatically closed.

Usage:

Line(rectangle=(0, 0, 200, 200))

New in version 1.4.1.

Changed in version 2.2.0: Now you can get the rectangle generated through the property.

	
rounded_rectangle

	Use this property to build a rectangle, without calculating the
points.

The argument must be a tuple of one of the following forms:

	(x, y, width, height, corner_radius)

	(x, y, width, height, corner_radius, resolution)

	(x, y, width, height, corner_radius1, corner_radius2, corner_radius3, corner_radius4)

	(x, y, width, height, corner_radius1, corner_radius2, corner_radius3, corner_radius4, resolution)

	x and y represent the bottom-left position of the rectangle.

	width and height represent the size.

	corner_radius specifies the radius used for the rounded corners clockwise: top-left, top-right, bottom-right, bottom-left.

	resolution is the number of line segment that will be used to draw the circle arc at each corner (defaults to 45).

The line is automatically closed.

Usage:

Line(rounded_rectangle=(0, 0, 200, 200, 10, 20, 30, 40, 100))

New in version 1.9.0.

Changed in version 2.2.0: Default value of resolution changed from 30 to 45.

Now you can get the rounded rectangle generated through the property.

The order of corner_radius has been changed to match the RoundedRectangle radius property (clockwise).
It was bottom-left, bottom-right, top-right, top-left in previous versions.
Now both are clockwise: top-left, top-right, bottom-right, bottom-left.
To keep the corner radius order without changing the order manually, you can use python’s built-in method reversed or [::-1],
to reverse the order of the corner radius.

	
width

	Determine the width of the line, defaults to 1.0.

New in version 1.4.1.

	
class kivy.graphics.vertex_instructions.Mesh(**kwargs)

	Bases: kivy.graphics.instructions.VertexInstruction

In OpenGL ES 2.0 and in our graphics implementation, you cannot have more
than 65535 indices.

A list of vertices is described as:

vertices = [x1, y1, u1, v1, x2, y2, u2, v2, ...]
 | | | |
 +---- i1 ----+ +---- i2 ----+

If you want to draw a triangle, add 3 vertices. You can then make an
indices list as follows:

indices = [0, 1, 2]

New in version 1.1.0.

	Parameters:

	
	vertices: iterable
	List of vertices in the format (x1, y1, u1, v1, x2, y2, u2, v2…).

	indices: iterable
	List of indices in the format (i1, i2, i3…).

	mode: str
	Mode of the vbo. Check mode for more information. Defaults to
‘points’.

	fmt: list
	The format for vertices, by default, each vertex is described by 2D
coordinates (x, y) and 2D texture coordinate (u, v).
Each element of the list should be a tuple or list, of the form

(variable_name, size, type)

which will allow mapping vertex data to the glsl instructions.

[(b’v_pos’, 2, ‘float’), (b’v_tc’, 2, ‘float’),]

will allow using

attribute vec2 v_pos;
attribute vec2 v_tc;

in glsl’s vertex shader.

Changed in version 1.8.1: Before, vertices and indices would always be converted to a list,
now, they are only converted to a list if they do not implement the
buffer interface. So e.g. numpy arrays, python arrays etc. are used
in place, without creating any additional copies. However, the
buffers cannot be readonly (even though they are not changed, due to
a cython limitation) and must be contiguous in memory.

Note

When passing a memoryview or a instance that implements the buffer
interface, vertices should be a buffer of floats (‘f’ code in
python array) and indices should be a buffer of unsigned short (‘H’
code in python array). Arrays in other formats will still have to be
converted internally, negating any potential gain.

	
indices

	Vertex indices used to specify the order when drawing the
mesh.

	
mode

	VBO Mode used for drawing vertices/indices. Can be one of ‘points’,
‘line_strip’, ‘line_loop’, ‘lines’, ‘triangles’, ‘triangle_strip’ or
‘triangle_fan’.

	
vertices

	List of x, y, u, v coordinates used to construct the Mesh. Right now,
the Mesh instruction doesn’t allow you to change the format of the
vertices, which means it’s only x, y + one texture coordinate.

	
class kivy.graphics.vertex_instructions.Point(**kwargs)

	Bases: kivy.graphics.instructions.VertexInstruction

width/height of 2 times the pointsize.

	Parameters:

	
	points: list
	List of points in the format (x1, y1, x2, y2…), where each pair
of coordinates specifies the center of a new point.

	pointsize: float, defaults to 1.
	The size of the point, measured from the center to the edge. A
value of 1.0 therefore means the real size will be 2.0 x 2.0.

Warning

Starting from version 1.0.7, vertex instruction have a limit of 65535
vertices (indices of vertex to be accurate).
2 entries in the list (x, y) will be converted to 4 vertices. So the
limit inside Point() class is 2^15-2.

	
add_point(float x, float y)

	Add a point to the current points list.

If you intend to add multiple points, prefer to use this method instead
of reassigning a new points list. Assigning a new points
list will recalculate and reupload the whole buffer into the GPU.
If you use add_point, it will only upload the changes.

	
points

	Property for getting/settings the center points in the points list.
Each pair of coordinates specifies the center of a new point.

	
pointsize

	Property for getting/setting point size.
The size is measured from the center to the edge, so a value of 1.0
means the real size will be 2.0 x 2.0.

	
class kivy.graphics.vertex_instructions.Quad(**kwargs)

	Bases: kivy.graphics.instructions.VertexInstruction

	Parameters:

	
	points: list
	List of point in the format (x1, y1, x2, y2, x3, y3, x4, y4).

	
points

	Property for getting/settings points of the quad.

	
class kivy.graphics.vertex_instructions.Rectangle(**kwargs)

	Bases: kivy.graphics.instructions.VertexInstruction

	Parameters:

	
	pos: list
	Position of the rectangle, in the format (x, y).

	size: list
	Size of the rectangle, in the format (width, height).

	
pos

	Property for getting/settings the position of the rectangle.

	
size

	Property for getting/settings the size of the rectangle.

	
class kivy.graphics.vertex_instructions.RoundedRectangle(**kwargs)

	Bases: kivy.graphics.vertex_instructions.Rectangle

New in version 1.9.1.

	Parameters:

	
	segments: int, defaults to 10
	Define how many segments are needed for drawing the rounded corner.
The drawing will be smoother if you have many segments.

	radius: list, defaults to [(10.0, 10.0), (10.0, 10.0), (10.0, 10.0), (10.0, 10.0)]
	Specifies the radii used for the rounded corners clockwise:
top-left, top-right, bottom-right, bottom-left.
Elements of the list can be numbers or tuples of two numbers to specify different x,y dimensions.
One value will define all corner radii to be of this value.
Four values will define each corner radius separately.
Higher numbers of values will be truncated to four.
The first value will be used for all corners if there are fewer than four values.

	
radius

	Corner radii of the rounded rectangle, defaults to [10,].

	
segments

	Property for getting/setting the number of segments for each corner.

	
class kivy.graphics.vertex_instructions.SmoothLine(**kwargs)

	Bases: kivy.graphics.vertex_instructions.Line

results. It has few drawbacks:

	drawing a line with alpha will probably not have the intended result if
the line crosses itself.

	cap, joint and dash properties
are not supported.

	it uses a custom texture with a premultiplied alpha.

	lines under 1px in width are not supported: they will look the same.

Warning

This is an unfinished work, experimental, and subject to crashes.

New in version 1.9.0.

	
overdraw_width

	Determine the overdraw width of the line, defaults to 1.2.

	
premultiplied_texture()

	

	
class kivy.graphics.vertex_instructions.Triangle(**kwargs)

	Bases: kivy.graphics.instructions.VertexInstruction

	Parameters:

	
	points: list
	List of points in the format (x1, y1, x2, y2, x3, y3).

	
points

	Property for getting/settings points of the triangle.

BoxShadow

New in version 2.2.0.

BoxShadow is a graphical instruction used to add a shadow effect to an element.

Its behavior is similar to the concept of a CSS3 box-shadow.

[image: _images/boxshadow.png]
The BoxShadow declaration must occur inside a Canvas statement. It works
similarly to other graphical instructions such as Rectangle,
RoundedRectangle, etc.

Note

Although the BoxShadow graphical instruction has a visually similar behavior to box-shadow (CSS), the hierarchy
of the drawing layer of BoxShadow in relation to the target element must be defined following the same layer
hierarchy rules as when declaring other canvas instructions.

For more details, refer to the inset mode.

Example:

[image: _images/boxshadow_demo.gif]
<MyWidget>:
 Button:
 pos_hint: {"center_x": 0.5, "center_y": 0.5}
 size_hint: None, None
 size: 200, 150
 background_down: self.background_normal
 canvas.before:
 Color:
 rgba: 0, 0, 1, 0.85
 BoxShadow:
 pos: self.pos
 size: self.size
 offset: 0, -10
 spread_radius: -20, -20
 border_radius: 10, 10, 10, 10
 blur_radius: 80 if self.state == "normal" else 50

	
class kivy.graphics.boxshadow.BoxShadow(*args, **kwargs)

	Bases: kivy.graphics.fbo.Fbo

New in version 2.2.0.

	Parameters:

	
	inset: bool, defaults to False.
	Defines whether the shadow is drawn from the inside out or from the
outline to the inside of the BoxShadow instruction.

	size: list | tuple, defaults to (100.0, 100.0).
	Define the raw size of the shadow, that is, you should not take into account
changes in the value of blur_radius and spread_radius
properties when setting this parameter.

	pos: list | tuple, defaults to (0.0, 0.0).
	Define the raw position of the shadow, that is, you should not take into account
changes in the value of the offset property when setting this parameter.

	offset: list | tuple, defaults to (0.0, 0.0).
	Specifies shadow offsets in (horizontal, vertical) format.
Positive values for the offset indicate that the shadow should move to the right and/or top.
The negative ones indicate that the shadow should move to the left and/or down.

	blur_radius: float, defaults to 15.0.
	Define the shadow blur radius. Controls shadow expansion and softness.

	spread_radius: list | tuple, defaults to (0.0, 0.0).
	Define the shrink/expansion of the shadow.

	border_radius: list | tuple, defaults to (0.0, 0.0, 0.0, 0.0).
	Specifies the radii used for the rounded corners clockwise:
top-left, top-right, bottom-right, bottom-left.

	
blur_radius

	Define the shadow blur radius. Controls shadow expansion and softness.

Defaults to 15.0.

In the images below, the start and end positions of the shadow blur
effect length are indicated.
The transition between color and transparency is seamless, and although
the shadow appears to end before before the dotted rectangle, its end
is made to be as smooth as possible.

	
	inset OFF:
	[image: _images/boxshadow_blur_radius.svg]

	
	inset ON:
	[image: _images/boxshadow_blur_radius_inset.svg]

Note

In some cases (if this is not your intention), placing an element
above the shadow (before the blur radius ends) will result in a unwanted
cropping/overlay behavior rather than continuity, breaking the
shadow’s soft ending, as shown in the image below.

[image: _images/boxshadow_common_mistake_1.svg]

	
border_radius

	Specifies the radii used for the rounded corners clockwise:
top-left, top-right, bottom-right, bottom-left.

Defaults to (0.0, 0.0, 0.0, 0.0).

	
	inset OFF:
	[image: _images/boxshadow_border_radius.svg]

	
	inset ON:
	[image: _images/boxshadow_border_radius_inset.svg]

	
inset

	Defines whether the shadow is drawn from the inside out or from the outline to the inside of the BoxShadow instruction.

Defaults to False.

Note

Although the inset mode determines the drawing behavior of the shadow, the position of the BoxShadow
instruction in the canvas hierarchy depends on the other graphic instructions present in the
Canvas instruction tree.

In other words, if the target is in the canvas layer and you want to use the default inset = False
mode to create an elevation effect, you must declare the BoxShadow instruction in canvas.before layer.

[image: _images/boxshadow_example_1.png]
<MyWidget@Widget>:
 size_hint: None, None
 size: 100, 100
 pos: 100, 100

 canvas.before:
 # BoxShadow statements
 Color:
 rgba: 0, 0, 0, 0.65
 BoxShadow:
 pos: self.pos
 size: self.size
 offset: 0, -10
 blur_radius: 25
 spread_radius: -10, -10
 border_radius: 10, 10, 10, 10

 canvas:
 # target element statements
 Color:
 rgba: 1, 1, 1, 1
 Rectangle:
 pos: self.pos
 size: self.size

Or, if the target is in the canvas layer and you want to use the inset = True mode to create an
insertion effect, you must declare the BoxShadow instruction in the canvas layer, immediately after
the target canvas declaration, or declare it in canvas.after.

[image: _images/boxshadow_example_2.png]
<MyWidget@Widget>:
 size_hint: None, None
 size: 100, 100
 pos: 100, 100

 canvas:
 # target element statements
 Color:
 rgba: 1, 1, 1, 1
 Rectangle:
 pos: self.pos
 size: self.size

 # BoxShadow statements
 Color:
 rgba: 0, 0, 0, 0.65
 BoxShadow:
 inset: True
 pos: self.pos
 size: self.size
 offset: 0, -10
 blur_radius: 25
 spread_radius: -10, -10
 border_radius: 10, 10, 10, 10

In summary:

	Elevation effect - inset = False: the BoxShadow instruction needs to be drawn before the target element.

	Insertion effect - inset = True: the BoxShadow instruction needs to be drawn after the target element.

In general, BoxShadow is more flexible than box-shadow (CSS) because the inset = False and
inset = True modes do not limit the drawing of the shadow below and above the target element,
respectively. Actually, you can define any hierarchy you want in the Canvas
declaration tree, to create more complex effects that go beyond common shadow effects.

Modes:

	False (default) - The shadow is drawn inside out the BoxShadow instruction, creating a raised effect.

	True - The shadow is drawn from the outline to the inside of the BoxShadow instruction, creating a inset effect.

[image: _images/boxshadow_inset.svg]

	
offset

	Specifies shadow offsets in [horizontal, vertical] format.
Positive values for the offset indicate that the shadow should move to
the right and/or top.
The negative ones indicate that the shadow should move to the left
and/or down.

Defaults to (0.0, 0.0).

For this property to work as expected, it is indicated that the value
of pos coincides with the position of the target element of the
shadow, as in the example below:

	
	inset OFF:
	[image: _images/boxshadow_offset.svg]

	
	inset ON:
	[image: _images/boxshadow_offset_inset.svg]

	
pos

	Define the raw position of the shadow, that is, you should not take
into account changes in the value of the offset property when
setting this property.

	
	inset OFF:
	Returns the adjusted position of the shadow according to the
adjusted size of the shadow and offset property.

	
	inset ON:
	Returns the raw position (the same as specified).

Defaults to (0.0, 0.0).

Note

It is recommended that this property matches the raw position of
the shadow target element. To manipulate horizontal and vertical
offset, use offset instead.

	
size

	Define the raw size of the shadow, that is, you should not take into
account changes in the value of blur_radius and spread_radius properties.

	
	inset OFF:
	Returns the adjusted size of the shadow according to the
blur_radius and spread_radius properties.

	
	inset ON:
	Returns the raw size (the same as specified).

Defaults to (100.0, 100.0).

Note

It is recommended that this property matches the raw size of
the shadow target element. To control the shrink/expansion of
the shadow’s raw size, use spread_radius instead.

	
spread_radius

	Define the shrink/expansion of the shadow in [horizontal, vertical] format.

Defaults to (0.0, 0.0).

This property is especially useful for cases where you want to achieve
a softer shadow around the element, by setting negative values for
spread_radius and a larger value for blur_radius as
in the example.

	
	inset OFF:
	In the image below, the target element has a raw size of 200 x 150px.
Positive changes to the spread_radius values will cause the raw
size of the shadow to increase, while negative values will cause
the shadow to shrink.

[image: _images/boxshadow_spread_radius.svg]

	
	inset ON:
	Positive values will cause the shadow to grow into the bounding box,
while negative values will cause the shadow to shrink.

[image: _images/boxshadow_spread_radius_inset.svg]

CGL: standard C interface for OpenGL

Kivy uses OpenGL and therefore requires a backend that provides it.
The backend used is controlled through the USE_OPENGL_MOCK and USE_SDL2
compile-time variables and through the KIVY_GL_BACKEND runtime
environmental variable.

Currently, OpenGL is used through direct linking (gl/glew), sdl2,
or by mocking it. Setting USE_OPENGL_MOCK disables gl/glew.
Similarly, setting USE_SDL2 to 0 will disable sdl2. Mocking
is always available.

At runtime the following backends are available and can be set using
KIVY_GL_BACKEND:

	gl – Available on unix (the default backend). Unavailable when
USE_OPENGL_MOCK=0. Requires gl be installed.

	glew – Available on Windows (the default backend). Unavailable when
USE_OPENGL_MOCK=0. Requires glew be installed.

	sdl2 – Available on Windows/unix (the default when gl/glew is disabled).
Unavailable when USE_SDL2=0. Requires kivy_deps.sdl2 be installed.

	angle_sdl2 – Available on Windows with Python 3.5+.
Unavailable when USE_SDL2=0. Requires kivy_deps.sdl2 and
kivy_deps.angle be installed.

	mock – Always available. Doesn’t actually do anything.

Additionally, the following environmental runtime variables control the graphics
system:

	KIVY_GL_DEBUG – Logs al gl calls when 1.

	KIVY_GRAPHICS – Forces OpenGL ES2 when it is gles. OpenGL ES2 is always
used on the android, ios, rpi, and mali OSs.

	
kivy.graphics.cgl.cgl_get_backend_name(allowed=[], ignored=[])

	

	
kivy.graphics.cgl.cgl_get_initialized_backend_name()

	

	
kivy.graphics.cgl.cgl_init(allowed=[], ignored=[])

	

Graphics compiler

Before rendering an InstructionGroup, we
compile the group in order to reduce the number of instructions executed
at rendering time.

Reducing the context instructions

Imagine that you have a scheme like this:

Color(1, 1, 1)
Rectangle(source='button.png', pos=(0, 0), size=(20, 20))
Color(1, 1, 1)
Rectangle(source='button.png', pos=(10, 10), size=(20, 20))
Color(1, 1, 1)
Rectangle(source='button.png', pos=(10, 20), size=(20, 20))

The real instructions seen by the graphics canvas would be:

Color: change 'color' context to 1, 1, 1
BindTexture: change 'texture0' to `button.png texture`
Rectangle: push vertices (x1, y1...) to vbo & draw
Color: change 'color' context to 1, 1, 1
BindTexture: change 'texture0' to `button.png texture`
Rectangle: push vertices (x1, y1...) to vbo & draw
Color: change 'color' context to 1, 1, 1
BindTexture: change 'texture0' to `button.png texture`
Rectangle: push vertices (x1, y1...) to vbo & draw

Only the first Color and
BindTexture are useful and really
change the context. We can reduce them to:

Color: change 'color' context to 1, 1, 1
BindTexture: change 'texture0' to `button.png texture`
Rectangle: push vertices (x1, y1...) to vbo & draw
Rectangle: push vertices (x1, y1...) to vbo & draw
Rectangle: push vertices (x1, y1...) to vbo & draw

This is what the compiler does in the first place, by flagging all the unused
instruction with GI_IGNORE flag. As soon as a Color content changes, the whole
InstructionGroup will be recompiled and a previously unused Color might be
used for the next compilation.

Note to any Kivy contributor / internal developer:

	All context instructions are checked to see if they change anything in the
cache.

	We must ensure that a context instruction is needed for our current Canvas.

	We must ensure that we don’t depend of any other canvas.

	We must reset our cache if one of our children is another instruction group
because we don’t know whether it might do weird things or not.

Context management

New in version 1.2.0.

This class manages a registry of all created graphics instructions. It has
the ability to flush and delete them.

You can read more about Kivy graphics contexts in the Graphics
module documentation. These are based on
OpenGL graphics contexts [http://www.opengl.org/wiki/OpenGL_Context].

	
class kivy.graphics.context.Context

	Bases: builtins.object

observer callbacks. See add_reload_observer() and remove_reload_observer()
for more information.

	
add_reload_observer(callback, before=False)

	(internal) Add a callback to be called after the whole graphics context has
been reloaded. This is where you can reupload your custom data into the
GPU.

	Parameters:

	
	callback: func(context) -> return None
	The first parameter will be the context itself

	before: boolean, defaults to False
	If True, the callback will be executed before all the
reloading processes. Use it if you want to clear your cache for
example.

Changed in version 1.4.0: before parameter added.

	
flag_update_canvas()

	

	
flush() → void

	

	
gl_dealloc(*largs)

	

	
reload()

	

	
remove_reload_observer(callback, before=False)

	(internal) Remove a callback from the observer list previously added by
add_reload_observer().

	
trigger_gl_dealloc()

	

Context instructions

The context instructions represent non graphics elements such as:

	Matrix manipulations (PushMatrix, PopMatrix, Rotate, Translate, Scale,
MatrixInstruction)

	Color manipulations (Color)

	Texture bindings (BindTexture)

Changed in version 1.0.8: The LineWidth instruction has been removed. It wasn’t working before and we
actually have no working implementation. We need to do more experimentation
to get it right. Check the bug
#207 [https://github.com/kivy/kivy/issues/207] for more information.

	
class kivy.graphics.context_instructions.BindTexture(**kwargs)

	Bases: kivy.graphics.instructions.ContextInstruction

The BindTexture Instruction will bind a texture and enable
GL_TEXTURE_2D for subsequent drawing.

	Parameters:

	
	texture: Texture
	Specifies the texture to bind to the given index.

	
source

	Set/get the source (filename) to load for the texture.

	
class kivy.graphics.context_instructions.Color(*args, **kwargs)

	Bases: kivy.graphics.instructions.ContextInstruction

drawn after it.

This represents a color between 0 and 1, but is applied as a
multiplier to the texture of any vertex instructions following
it in a canvas. If no texture is set, the vertex instruction
takes the precise color of the Color instruction.

For instance, if a Rectangle has a texture with uniform color
(0.5, 0.5, 0.5, 1.0) and the preceding Color has
rgba=(1, 0.5, 2, 1), the actual visible color will be
(0.5, 0.25, 1.0, 1.0) since the Color instruction is applied as
a multiplier to every rgba component. In this case, a Color
component outside the 0-1 range gives a visible result as the
intensity of the blue component is doubled.

To declare a Color in Python, you can do:

from kivy.graphics import Color

create red v
c = Color(1, 0, 0)
create blue color
c = Color(0, 1, 0)
create blue color with 50% alpha
c = Color(0, 1, 0, .5)

using hsv mode
c = Color(0, 1, 1, mode='hsv')
using hsv mode + alpha
c = Color(0, 1, 1, .2, mode='hsv')

You can also set color components that are available as properties
by passing them as keyword arguments:

c = Color(b=0.5) # sets the blue component only

In kv lang you can set the color properties directly:

<Rule>:
 canvas:
 # red color
 Color:
 rgb: 1, 0, 0
 # blue color
 Color:
 rgb: 0, 1, 0
 # blue color with 50% alpha
 Color:
 rgba: 0, 1, 0, .5

 # using hsv mode
 Color:
 hsv: 0, 1, 1
 # using hsv mode + alpha
 Color:
 hsv: 0, 1, 1
 a: .5

	
a

	Alpha component, between 0 and 1.

	
b

	Blue component, between 0 and 1.

	
g

	Green component, between 0 and 1.

	
h

	Hue component, between 0 and 1.

	
hsv

	HSV color, list of 3 values in 0-1 range, alpha will be 1.

	
r

	Red component, between 0 and 1.

	
rgb

	RGB color, list of 3 values in 0-1 range. The alpha will be 1.

	
rgba

	RGBA color, list of 4 values in 0-1 range.

	
s

	Saturation component, between 0 and 1.

	
v

	Value component, between 0 and 1.

	
class kivy.graphics.context_instructions.MatrixInstruction(*args, **kwargs)

	Bases: kivy.graphics.instructions.ContextInstruction

	
matrix

	Matrix property. Matrix from the transformation module.
Setting the matrix using this property when a change is made
is important because it will notify the context about the update.

	
stack

	Name of the matrix stack to use. Can be ‘modelview_mat’,
‘projection_mat’ or ‘frag_modelview_mat’.

New in version 1.6.0.

	
class kivy.graphics.context_instructions.PopMatrix(*args, **kwargs)

	Bases: kivy.graphics.instructions.ContextInstruction

	
stack

	Name of the matrix stack to use. Can be ‘modelview_mat’,
‘projection_mat’ or ‘frag_modelview_mat’.

New in version 1.6.0.

	
class kivy.graphics.context_instructions.PushMatrix(*args, **kwargs)

	Bases: kivy.graphics.instructions.ContextInstruction

	
stack

	Name of the matrix stack to use. Can be ‘modelview_mat’,
‘projection_mat’ or ‘frag_modelview_mat’.

New in version 1.6.0.

	
class kivy.graphics.context_instructions.Rotate(*args, **kwargs)

	Bases: kivy.graphics.context_instructions.Transform

on the modelview matrix. You can set the properties of the instructions
afterwards with e.g.

rot.angle = 90
rot.axis = (0, 0, 1)

	
angle

	Property for getting/setting the angle of the rotation.

	
axis

	Property for getting/setting the axis of the rotation.

The format of the axis is (x, y, z).

	
origin

	Origin of the rotation.

New in version 1.7.0.

The format of the origin can be either (x, y) or (x, y, z).

	
set(float angle, float ax, float ay, float az)

	Set the angle and axis of rotation.

>>> rotationobject.set(90, 0, 0, 1)

Deprecated since version 1.7.0: The set() method doesn’t use the new origin property.

	
class kivy.graphics.context_instructions.Scale(*args, **kwargs)

	Bases: kivy.graphics.context_instructions.Transform

Create using one or three arguments:

Scale(s) # scale all three axes the same
Scale(x, y, z) # scale the axes independently

Deprecated since version 1.6.0: Deprecated single scale property in favor of x, y, z, xyz axis
independent scaled factors.

	
origin

	Origin of the scale.

New in version 1.9.0.

The format of the origin can be either (x, y) or (x, y, z).

	
scale

	Property for getting/setting the scale.

Deprecated since version 1.6.0: Deprecated in favor of per axis scale properties x,y,z, xyz, etc.

	
x

	Property for getting/setting the scale on the X axis.

Changed in version 1.6.0.

	
xyz

	3 tuple scale vector in 3D in x, y, and z axis.

Changed in version 1.6.0.

	
y

	Property for getting/setting the scale on the Y axis.

Changed in version 1.6.0.

	
z

	Property for getting/setting the scale on Z axis.

Changed in version 1.6.0.

	
class kivy.graphics.context_instructions.Translate(*args, **kwargs)

	Bases: kivy.graphics.context_instructions.Transform

Construct by either:

Translate(x, y) # translate in just the two axes
Translate(x, y, z) # translate in all three axes

	
x

	Property for getting/setting the translation on the X axis.

	
xy

	2 tuple with translation vector in 2D for x and y axis.

	
xyz

	3 tuple translation vector in 3D in x, y, and z axis.

	
y

	Property for getting/setting the translation on the Y axis.

	
z

	Property for getting/setting the translation on the Z axis.

	
kivy.graphics.context_instructions.gl_init_resources()

	

Framebuffer

The Fbo is like an offscreen window. You can activate the fbo for rendering into
a texture and use your fbo as a texture for other drawing.

The Fbo acts as a kivy.graphics.instructions.Canvas.

Here is an example of using an fbo for some colored rectangles:

from kivy.graphics import Fbo, Color, Rectangle

class FboTest(Widget):
 def __init__(self, **kwargs):
 super(FboTest, self).__init__(**kwargs)

 # first step is to create the fbo and use the fbo texture on other
 # rectangle

 with self.canvas:
 # create the fbo
 self.fbo = Fbo(size=(256, 256))

 # show our fbo on the widget in different size
 Color(1, 1, 1)
 Rectangle(size=(32, 32), texture=self.fbo.texture)
 Rectangle(pos=(32, 0), size=(64, 64), texture=self.fbo.texture)
 Rectangle(pos=(96, 0), size=(128, 128), texture=self.fbo.texture)

 # in the second step, you can draw whatever you want on the fbo
 with self.fbo:
 Color(1, 0, 0, .8)
 Rectangle(size=(256, 64))
 Color(0, 1, 0, .8)
 Rectangle(size=(64, 256))

If you change anything in the self.fbo object, it will be automatically updated.
The canvas where the fbo is put will be automatically updated as well.

Reloading the FBO content

New in version 1.2.0.

If the OpenGL context is lost, then the FBO is lost too. You need to reupload
data on it yourself. Use the Fbo.add_reload_observer() to add a reloading
function that will be automatically called when needed:

def __init__(self, **kwargs):
 super(...).__init__(**kwargs)
 self.fbo = Fbo(size=(512, 512))
 self.fbo.add_reload_observer(self.populate_fbo)

 # and load the data now.
 self.populate_fbo(self.fbo)

def populate_fbo(self, fbo):
 with fbo:
 # .. put your Color / Rectangle / ... here

This way, you could use the same method for initialization and for reloading.
But it’s up to you.

	
class kivy.graphics.fbo.Fbo(*args, **kwargs)

	Bases: kivy.graphics.instructions.RenderContext

“with” statement.

	Parameters:

	
	clear_color: tuple, defaults to (0, 0, 0, 0)
	Define the default color for clearing the framebuffer

	size: tuple, defaults to (1024, 1024)
	Default size of the framebuffer

	push_viewport: bool, defaults to True
	If True, the OpenGL viewport will be set to the framebuffer size,
and will be automatically restored when the framebuffer released.

	with_depthbuffer: bool, defaults to False
	If True, the framebuffer will be allocated with a Z buffer.

	with_stencilbuffer: bool, defaults to False
	
New in version 1.9.0.

If True, the framebuffer will be allocated with a stencil buffer.

	texture: Texture, defaults to None
	If None, a default texture will be created.

Note

Using both of with_stencilbuffer and with_depthbuffer is not
supported in kivy 1.9.0

	
add_reload_observer(callback)

	Add a callback to be called after the whole graphics context has
been reloaded. This is where you can reupload your custom data in GPU.

New in version 1.2.0.

	Parameters:

	
	callback: func(context) -> return None
	The first parameter will be the context itself

	
bind()

	Bind the FBO to the current opengl context.
Bind mean that you enable the Framebuffer, and all the drawing
operations will act inside the Framebuffer, until release() is
called.

The bind/release operations are automatically called when you add
graphics objects into it. If you want to manipulate a Framebuffer
yourself, you can use it like this:

self.fbo = FBO()
self.fbo.bind()
do any drawing command
self.fbo.release()

then, your fbo texture is available at
print(self.fbo.texture)

	
clear_buffer()

	Clear the framebuffer with the clear_color.

You need to bind the framebuffer yourself before calling this
method:

fbo.bind()
fbo.clear_buffer()
fbo.release()

	
clear_color

	Clear color in (red, green, blue, alpha) format.

	
get_pixel_color(int wx, int wy)

	Get the color of the pixel with specified window
coordinates wx, wy. It returns result in RGBA format.

New in version 1.8.0.

	
pixels

	Get the pixels texture, in RGBA format only, unsigned byte. The
origin of the image is at bottom left.

New in version 1.7.0.

	
release()

	Release the Framebuffer (unbind).

	
remove_reload_observer(callback)

	Remove a callback from the observer list, previously added by
add_reload_observer().

New in version 1.2.0.

	
size

	Size of the framebuffer, in (width, height) format.

If you change the size, the framebuffer content will be lost.

	
texture

	Return the framebuffer texture

GL instructions

New in version 1.3.0.

Clearing an FBO

To clear an FBO, you can use ClearColor and ClearBuffers
instructions like this example:

self.fbo = Fbo(size=self.size)
with self.fbo:
 ClearColor(0, 0, 0, 0)
 ClearBuffers()

	
class kivy.graphics.gl_instructions.ClearBuffers(*args, **kwargs)

	Bases: kivy.graphics.instructions.Instruction

New in version 1.3.0.

Clear the buffers specified by the instructions buffer mask property.
By default, only the coloc buffer is cleared.

	
clear_color

	If True, the color buffer will be cleared.

	
clear_depth

	If True, the depth buffer will be cleared.

	
clear_stencil

	If True, the stencil buffer will be cleared.

	
class kivy.graphics.gl_instructions.ClearColor(r, g, b, a, **kwargs)

	Bases: kivy.graphics.instructions.Instruction

New in version 1.3.0.

Sets the clear color used to clear buffers with the glClear function or
ClearBuffers graphics instructions.

	
a

	Alpha component, between 0 and 1.

	
b

	Blue component, between 0 and 1.

	
g

	Green component, between 0 and 1.

	
r

	Red component, between 0 and 1.

	
rgb

	RGB color, a list of 3 values in 0-1 range where alpha will be 1.

	
rgba

	RGBA color used for the clear color, a list of 4 values in the 0-1
range.

Canvas

The Canvas is the root object used for drawing by a
Widget. Check the class documentation for more
information about the usage of Canvas.

	
class kivy.graphics.instructions.Callback(callback=None, **kwargs)

	Bases: kivy.graphics.instructions.Instruction

A Callback is an instruction that will be called when the drawing
operation is performed. When adding instructions to a canvas, you can do
this:

with self.canvas:
 Color(1, 1, 1)
 Rectangle(pos=self.pos, size=self.size)
 Callback(self.my_callback)

The definition of the callback must be:

def my_callback(self, instr):
 print('I have been called!')

Warning

Note that if you perform many and/or costly calls to callbacks, you
might potentially slow down the rendering performance significantly.

The updating of your canvas does not occur until something new happens.
From your callback, you can ask for an update:

with self.canvas:
 self.cb = Callback(self.my_callback)
then later in the code
self.cb.ask_update()

If you use the Callback class to call rendering methods of another
toolkit, you will have issues with the OpenGL context. The OpenGL state may
have been manipulated by the other toolkit, and as soon as program flow
returns to Kivy, it will just break. You can have glitches, crashes, black
holes might occur, etc.
To avoid that, you can activate the reset_context option. It will
reset the OpenGL context state to make Kivy’s rendering correct after the
call to your callback.

Warning

The reset_context is not a full OpenGL reset. If you have issues
regarding that, please contact us.

	
ask_update()

	Inform the parent canvas that we’d like it to update on the next
frame. This is useful when you need to trigger a redraw due to some
value having changed for example.

New in version 1.0.4.

	
callback

	Property for getting/setting func.

	
reset_context

	Set this to True if you want to reset the OpenGL context for Kivy
after the callback has been called.

	
class kivy.graphics.instructions.Canvas(**kwargs)

	Bases: kivy.graphics.instructions.CanvasBase

instructions that you want to be used for drawing.

Note

The Canvas supports Python’s with statement and its enter & exit
semantics.

Usage of a canvas without the with statement:

self.canvas.add(Color(1., 1., 0))
self.canvas.add(Rectangle(size=(50, 50)))

Usage of a canvas with Python’s with statement:

with self.canvas:
 Color(1., 1., 0)
 Rectangle(size=(50, 50))

	
add(Instruction c)

	Append an Instruction to our list. If the canvas contains
an after group, then this instruction is inserted just before the
after group, which remains last. This is different from how
insert() works, which can insert anywhere.

	
after

	Property for getting the ‘after’ group.

	
ask_update()

	Inform the canvas that we’d like it to update on the next frame.
This is useful when you need to trigger a redraw due to some value
having changed for example.

	
before

	Property for getting the ‘before’ group.

	
clear()

	Clears every Instruction in the canvas, leaving it clean.

	
draw()

	Apply the instruction to our window.

	
has_after

	Property to see if the after group has already been created.

New in version 1.7.0.

	
has_before

	Property to see if the before group has already been created.

New in version 1.7.0.

	
opacity

	Property to get/set the opacity value of the canvas.

New in version 1.4.1.

The opacity attribute controls the opacity of the canvas and its
children. Be careful, it’s a cumulative attribute: the value is
multiplied to the current global opacity and the result is applied to
the current context color.

For example: if your parent has an opacity of 0.5 and a child has an
opacity of 0.2, the real opacity of the child will be 0.5 * 0.2 = 0.1.

Then, the opacity is applied on the shader as:

frag_color = color * vec4(1.0, 1.0, 1.0, opacity);

	
remove(Instruction c)

	

	
class kivy.graphics.instructions.CanvasBase

	Bases: kivy.graphics.instructions.InstructionGroup

CanvasBase provides the context manager methods for the
Canvas.

	
class kivy.graphics.instructions.ContextInstruction(**kwargs)

	Bases: kivy.graphics.instructions.Instruction

that don’t have a direct visual representation, but instead modify the
current Canvas’ state, e.g. texture binding, setting color parameters,
matrix manipulation and so on.

	
class kivy.graphics.instructions.Instruction(**kwargs)

	Bases: kivy.event.ObjectWithUid

usage only, don’t use it directly.

	
flag_data_update()

	

	
flag_update(int do_parent=1)

	

	
group

	group: unicode

	
proxy_ref

	Return a proxy reference to the Instruction i.e. without creating a
reference of the widget. See weakref.proxy [http://docs.python.org/2/library/weakref.html?highlight=proxy#weakref.proxy]
for more information.

New in version 1.7.2.

	
class kivy.graphics.instructions.InstructionGroup(**kwargs)

	Bases: kivy.graphics.instructions.Instruction

of graphics instructions. It can be used directly as follows:

blue = InstructionGroup()
blue.add(Color(0, 0, 1, 0.2))
blue.add(Rectangle(pos=self.pos, size=(100, 100)))

green = InstructionGroup()
green.add(Color(0, 1, 0, 0.4))
green.add(Rectangle(pos=(100, 100), size=(100, 100)))

Here, self should be a Widget or subclass
[self.canvas.add(group) for group in [blue, green]]

	
add(Instruction c)

	Add a new Instruction to our list.

	
children

	children: list

	
clear()

	Remove all the Instructions.

	
get_group(unicode groupname)

	Return an iterable for all the Instructions
with a specific group name.

	
indexof(Instruction c)

	

	
insert(int index, Instruction c)

	Insert a new Instruction into our list at index.

	
length()

	

	
remove(Instruction c)

	Remove an existing Instruction from our list.

	
remove_group(unicode groupname)

	Remove all Instructions with a specific group
name.

	
class kivy.graphics.instructions.RenderContext(*args, **kwargs)

	Bases: kivy.graphics.instructions.Canvas

	The vertex shader

	The fragment shader

	The default texture

	The state stack (color, texture, matrix…)

	
shader

	Return the shader attached to the render context.

	
use_parent_frag_modelview

	If True, the parent fragment modelview matrix will be used.

New in version 1.10.1: rc = RenderContext(use_parent_frag_modelview=True)

	
use_parent_modelview

	If True, the parent modelview matrix will be used.

New in version 1.7.0.

Before:

rc['modelview_mat'] = Window.render_context['modelview_mat']

Now:

rc = RenderContext(use_parent_modelview=True)

	
use_parent_projection

	If True, the parent projection matrix will be used.

New in version 1.7.0.

Before:

rc['projection_mat'] = Window.render_context['projection_mat']

Now:

rc = RenderContext(use_parent_projection=True)

	
class kivy.graphics.instructions.VertexInstruction(**kwargs)

	Bases: kivy.graphics.instructions.Instruction

that have a direct visual representation on the canvas, such as Rectangles,
Triangles, Lines, Ellipse and so on.

	
source

	This property represents the filename to load the texture from.
If you want to use an image as source, do it like this:

with self.canvas:
 Rectangle(source='mylogo.png', pos=self.pos, size=self.size)

Here’s the equivalent in Kivy language:

<MyWidget>:
 canvas:
 Rectangle:
 source: 'mylogo.png'
 pos: self.pos
 size: self.size

Note

The filename will be searched for using the
kivy.resources.resource_find() function.

	
tex_coords

	This property represents the texture coordinates used for drawing the
vertex instruction. The value must be a list of 8 values.

A texture coordinate has a position (u, v), and a size (w, h). The size
can be negative, and would represent the ‘flipped’ texture. By default,
the tex_coords are:

[u, v, u + w, v, u + w, v + h, u, v + h]

You can pass your own texture coordinates if you want to achieve fancy
effects.

Warning

The default values just mentioned can be negative. Depending
on the image and label providers, the coordinates are flipped
vertically because of the order in which the image is internally
stored. Instead of flipping the image data, we are just flipping
the texture coordinates to be faster.

	
texture

	Property that represents the texture used for drawing this
Instruction. You can set a new texture like this:

from kivy.core.image import Image

texture = Image('logo.png').texture
with self.canvas:
 Rectangle(texture=texture, pos=self.pos, size=self.size)

Usually, you will use the source attribute instead of the
texture.

OpenGL

This module is a Python wrapper for OpenGL commands.

Warning

Not every OpenGL command has been wrapped and because we are using the C
binding for higher performance, and you should rather stick to the Kivy
Graphics API. By using OpenGL commands directly, you might change
the OpenGL context and introduce inconsistency between the Kivy state and
the OpenGL state.

	
kivy.graphics.opengl.glActiveTexture(GLenum texture)

	See: glActiveTexture() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glActiveTexture.xml]

	
kivy.graphics.opengl.glAttachShader(GLuint program, GLuint shader)

	See: glAttachShader() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glAttachShader.xml]

	
kivy.graphics.opengl.glBindAttribLocation(GLuint program, GLuint index, bytes name)

	See: glBindAttribLocation() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBindAttribLocation.xml]

	
kivy.graphics.opengl.glBindBuffer(GLenum target, GLuint buffer)

	See: glBindBuffer() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBindBuffer.xml]

	
kivy.graphics.opengl.glBindFramebuffer(GLenum target, GLuint framebuffer)

	See: glBindFramebuffer() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBindFramebuffer.xml]

	
kivy.graphics.opengl.glBindRenderbuffer(GLenum target, GLuint renderbuffer)

	See: glBindRenderbuffer() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBindRenderbuffer.xml]

	
kivy.graphics.opengl.glBindTexture(GLenum target, GLuint texture)

	See: glBindTexture() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBindTexture.xml]

	
kivy.graphics.opengl.glBlendColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha)

	See: glBlendColor() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBlendColor.xml]

	
kivy.graphics.opengl.glBlendEquation(GLenum mode)

	See: glBlendEquation() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBlendEquation.xml]

	
kivy.graphics.opengl.glBlendEquationSeparate(GLenum modeRGB, GLenum modeAlpha)

	See: glBlendEquationSeparate() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBlendEquationSeparate.xml]

	
kivy.graphics.opengl.glBlendFunc(GLenum sfactor, GLenum dfactor)

	See: glBlendFunc() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBlendFunc.xml]

	
kivy.graphics.opengl.glBlendFuncSeparate(GLenum srcRGB, GLenum dstRGB, GLenum srcAlpha, GLenum dstAlpha)

	See: glBlendFuncSeparate() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBlendFuncSeparate.xml]

	
kivy.graphics.opengl.glBufferData(GLenum target, GLsizeiptr size, bytes data, GLenum usage)

	See: glBufferData() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBufferData.xml]

	
kivy.graphics.opengl.glBufferSubData(GLenum target, GLintptr offset, GLsizeiptr size, bytes data)

	See: glBufferSubData() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBufferSubData.xml]

	
kivy.graphics.opengl.glCheckFramebufferStatus(GLenum target)

	See: glCheckFramebufferStatus() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glCheckFramebufferStatus.xml]

	
kivy.graphics.opengl.glClear(GLbitfield mask)

	See: glClear() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glClear.xml]

	
kivy.graphics.opengl.glClearColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha)

	See: glClearColor() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glClearColor.xml]

	
kivy.graphics.opengl.glClearStencil(GLint s)

	See: glClearStencil() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glClearStencil.xml]

	
kivy.graphics.opengl.glColorMask(GLboolean red, GLboolean green, GLboolean blue, GLboolean alpha)

	See: glColorMask() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glColorMask.xml]

	
kivy.graphics.opengl.glCompileShader(GLuint shader)

	See: glCompileShader() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glCompileShader.xml]

	
kivy.graphics.opengl.glCompressedTexImage2D(GLenum target, GLint level, GLenum internalformat, GLsizei width, GLsizei height, GLint border, GLsizei imageSize, bytes data)

	See: glCompressedTexImage2D() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glCompressedTexImage2D.xml]

	
kivy.graphics.opengl.glCompressedTexSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLsizei imageSize, bytes data)

	See: glCompressedTexSubImage2D() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glCompressedTexSubImage2D.xml]

	
kivy.graphics.opengl.glCopyTexImage2D(GLenum target, GLint level, GLenum internalformat, GLint x, GLint y, GLsizei width, GLsizei height, GLint border)

	See: glCopyTexImage2D() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glCopyTexImage2D.xml]

	
kivy.graphics.opengl.glCopyTexSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint x, GLint y, GLsizei width, GLsizei height)

	See: glCopyTexSubImage2D() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glCopyTexSubImage2D.xml]

	
kivy.graphics.opengl.glCreateProgram()

	See: glCreateProgram() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glCreateProgram.xml]

	
kivy.graphics.opengl.glCreateShader(GLenum type)

	See: glCreateShader() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glCreateShader.xml]

	
kivy.graphics.opengl.glCullFace(GLenum mode)

	See: glCullFace() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glCullFace.xml]

	
kivy.graphics.opengl.glDeleteBuffers(GLsizei n, bytes buffers)

	See: glDeleteBuffers() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glDeleteBuffers.xml]

	
kivy.graphics.opengl.glDeleteFramebuffers(GLsizei n, bytes framebuffers)

	See: glDeleteFramebuffers() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glDeleteFramebuffers.xml]

	
kivy.graphics.opengl.glDeleteProgram(GLuint program)

	See: glDeleteProgram() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glDeleteProgram.xml]

	
kivy.graphics.opengl.glDeleteRenderbuffers(GLsizei n, bytes renderbuffers)

	See: glDeleteRenderbuffers() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glDeleteRenderbuffers.xml]

	
kivy.graphics.opengl.glDeleteShader(GLuint shader)

	See: glDeleteShader() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glDeleteShader.xml]

	
kivy.graphics.opengl.glDeleteTextures(GLsizei n, bytes textures)

	See: glDeleteTextures() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glDeleteTextures.xml]

	
kivy.graphics.opengl.glDepthFunc(GLenum func)

	See: glDepthFunc() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glDepthFunc.xml]

	
kivy.graphics.opengl.glDepthMask(GLboolean flag)

	See: glDepthMask() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glDepthMask.xml]

	
kivy.graphics.opengl.glDetachShader(GLuint program, GLuint shader)

	See: glDetachShader() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glDetachShader.xml]

	
kivy.graphics.opengl.glDisable(GLenum cap)

	See: glDisable() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glDisable.xml]

	
kivy.graphics.opengl.glDisableVertexAttribArray(GLuint index)

	See: glDisableVertexAttribArray() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glDisableVertexAttribArray.xml]

	
kivy.graphics.opengl.glDrawArrays(GLenum mode, GLint first, GLsizei count)

	See: glDrawArrays() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glDrawArrays.xml]

	
kivy.graphics.opengl.glDrawElements(GLenum mode, GLsizei count, GLenum type, indices)

	See: glDrawElements() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glDrawElements.xml]

	
kivy.graphics.opengl.glEnable(GLenum cap)

	See: glEnable() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glEnable.xml]

	
kivy.graphics.opengl.glEnableVertexAttribArray(GLuint index)

	See: glEnableVertexAttribArray() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glEnableVertexAttribArray.xml]

	
kivy.graphics.opengl.glFinish()

	See: glFinish() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glFinish.xml]

	
kivy.graphics.opengl.glFlush()

	See: glFlush() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glFlush.xml]

	
kivy.graphics.opengl.glFramebufferRenderbuffer(GLenum target, GLenum attachment, GLenum renderbuffertarget, GLuint renderbuffer)

	See: glFramebufferRenderbuffer() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glFramebufferRenderbuffer.xml]

	
kivy.graphics.opengl.glFramebufferTexture2D(GLenum target, GLenum attachment, GLenum textarget, GLuint texture, GLint level)

	See: glFramebufferTexture2D() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glFramebufferTexture2D.xml]

	
kivy.graphics.opengl.glFrontFace(GLenum mode)

	See: glFrontFace() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glFrontFace.xml]

	
kivy.graphics.opengl.glGenBuffers(GLsizei n)

	See: glGenBuffers() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGenBuffers.xml]

Unlike the C specification, the value will be the result of call.

	
kivy.graphics.opengl.glGenFramebuffers(GLsizei n)

	See: glGenFramebuffers() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGenFramebuffers.xml]

Unlike the C specification, the value will be the result of call.

	
kivy.graphics.opengl.glGenRenderbuffers(GLsizei n)

	See: glGenRenderbuffers() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGenRenderbuffers.xml]

Unlike the C specification, the value will be the result of call.

	
kivy.graphics.opengl.glGenTextures(GLsizei n)

	See: glGenTextures() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGenTextures.xml]

Unlike the C specification, the value will be the result of call.

	
kivy.graphics.opengl.glGenerateMipmap(GLenum target)

	See: glGenerateMipmap() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGenerateMipmap.xml]

	
kivy.graphics.opengl.glGetActiveAttrib(GLuint program, GLuint index)

	See: glGetActiveAttrib() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetActiveAttrib.xml]

Unlike the C specification, the value will be the result of call.

	
kivy.graphics.opengl.glGetActiveUniform(GLuint program, GLuint index)

	See: glGetActiveUniform() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetActiveUniform.xml]

Unlike the C specification, the value will be the result of call.

	
kivy.graphics.opengl.glGetAttachedShaders(GLuint program, GLsizei maxcount)

	See: glGetAttachedShaders() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetAttachedShaders.xml]

Unlike the C specification, the value will be the result of call.

	
kivy.graphics.opengl.glGetAttribLocation(GLuint program, bytes name)

	See: glGetAttribLocation() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetAttribLocation.xml]

Unlike the C specification, the value will be the result of call.

	
kivy.graphics.opengl.glGetBooleanv(GLenum pname)

	See: glGetBooleanv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetBooleanv.xml]

Unlike the C specification, the value will be the result of call.

	
kivy.graphics.opengl.glGetBufferParameteriv(GLenum target, GLenum pname)

	See: glGetBufferParameteriv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetBufferParameteriv.xml]

Unlike the C specification, the value will be the result of call.

	
kivy.graphics.opengl.glGetError()

	See: glGetError() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetError.xml]

Unlike the C specification, the value will be the result of call.

	
kivy.graphics.opengl.glGetFloatv(GLenum pname)

	See: glGetFloatv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetFloatv.xml]

Unlike the C specification, the value will be the result of call.

	
kivy.graphics.opengl.glGetFramebufferAttachmentParameteriv(GLenum target, GLenum attachment, GLenum pname)

	See: glGetFramebufferAttachmentParameteriv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetFramebufferAttachmentParameteriv.xml]

Unlike the C specification, the value will be the result of call.

	
kivy.graphics.opengl.glGetIntegerv(GLenum pname)

	See: glGetIntegerv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetIntegerv.xml]

Unlike the C specification, the value(s) will be the result of the call

	
kivy.graphics.opengl.glGetProgramInfoLog(GLuint program, GLsizei bufsize)

	See: glGetProgramInfoLog() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetProgramInfoLog.xml]

Unlike the C specification, the source code will be returned as a string.

	
kivy.graphics.opengl.glGetProgramiv(GLuint program, GLenum pname)

	See: glGetProgramiv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetProgramiv.xml]

Unlike the C specification, the value(s) will be the result of the call

	
kivy.graphics.opengl.glGetRenderbufferParameteriv(GLenum target, GLenum pname)

	See: glGetRenderbufferParameteriv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetRenderbufferParameteriv.xml]

Unlike the C specification, the value will be the result of call.

	
kivy.graphics.opengl.glGetShaderInfoLog(GLuint shader, GLsizei bufsize)

	See: glGetShaderInfoLog() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetShaderInfoLog.xml]

Unlike the C specification, the source code will be returned as a string.

	
kivy.graphics.opengl.glGetShaderPrecisionFormat(GLenum shadertype, GLenum precisiontype)

	See: glGetShaderPrecisionFormat() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetShaderPrecisionFormat.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glGetShaderSource(GLuint shader)

	See: glGetShaderSource() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetShaderSource.xml]

Unlike the C specification, the source code will be returned as a string.

	
kivy.graphics.opengl.glGetShaderiv(GLuint shader, GLenum pname)

	See: glGetShaderiv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetShaderiv.xml]

Unlike the C specification, the value will be the result of call.

	
kivy.graphics.opengl.glGetString(GLenum name)

	See: glGetString() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetString.xml]

Unlike the C specification, the value will be returned as a string.

	
kivy.graphics.opengl.glGetTexParameterfv(GLenum target, GLenum pname)

	See: glGetTexParameterfv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetTexParameterfv.xml]

	
kivy.graphics.opengl.glGetTexParameteriv(GLenum target, GLenum pname)

	See: glGetTexParameteriv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetTexParameteriv.xml]

	
kivy.graphics.opengl.glGetUniformLocation(GLuint program, bytes name)

	See: glGetUniformLocation() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetUniformLocation.xml]

	
kivy.graphics.opengl.glGetUniformfv(GLuint program, GLint location)

	See: glGetUniformfv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetUniformfv.xml]

	
kivy.graphics.opengl.glGetUniformiv(GLuint program, GLint location)

	See: glGetUniformiv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetUniformiv.xml]

	
kivy.graphics.opengl.glGetVertexAttribPointerv(GLuint index, GLenum pname)

	See: glGetVertexAttribPointerv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetVertexAttribPointerv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glGetVertexAttribfv(GLuint index, GLenum pname)

	See: glGetVertexAttribfv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetVertexAttribfv.xml]

	
kivy.graphics.opengl.glGetVertexAttribiv(GLuint index, GLenum pname)

	See: glGetVertexAttribiv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glGetVertexAttribiv.xml]

	
kivy.graphics.opengl.glHint(GLenum target, GLenum mode)

	See: glHint() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glHint.xml]

	
kivy.graphics.opengl.glIsBuffer(GLuint buffer)

	See: glIsBuffer() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glIsBuffer.xml]

	
kivy.graphics.opengl.glIsEnabled(GLenum cap)

	See: glIsEnabled() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glIsEnabled.xml]

	
kivy.graphics.opengl.glIsFramebuffer(GLuint framebuffer)

	See: glIsFramebuffer() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glIsFramebuffer.xml]

	
kivy.graphics.opengl.glIsProgram(GLuint program)

	See: glIsProgram() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glIsProgram.xml]

	
kivy.graphics.opengl.glIsRenderbuffer(GLuint renderbuffer)

	See: glIsRenderbuffer() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glIsRenderbuffer.xml]

	
kivy.graphics.opengl.glIsShader(GLuint shader)

	See: glIsShader() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glIsShader.xml]

	
kivy.graphics.opengl.glIsTexture(GLuint texture)

	See: glIsTexture() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glIsTexture.xml]

	
kivy.graphics.opengl.glLineWidth(GLfloat width)

	See: glLineWidth() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glLineWidth.xml]

	
kivy.graphics.opengl.glLinkProgram(GLuint program)

	See: glLinkProgram() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glLinkProgram.xml]

	
kivy.graphics.opengl.glPixelStorei(GLenum pname, GLint param)

	See: glPixelStorei() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml]

	
kivy.graphics.opengl.glPolygonOffset(GLfloat factor, GLfloat units)

	See: glPolygonOffset() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPolygonOffset.xml]

	
kivy.graphics.opengl.glReadPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type)

	See: glReadPixels() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glReadPixels.xml]

We support only GL_RGB/GL_RGBA as a format and GL_UNSIGNED_BYTE as a
type.

	
kivy.graphics.opengl.glReleaseShaderCompiler()

	See: glReleaseShaderCompiler() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glReleaseShaderCompiler.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glRenderbufferStorage(GLenum target, GLenum internalformat, GLsizei width, GLsizei height)

	See: glRenderbufferStorage() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glRenderbufferStorage.xml]

	
kivy.graphics.opengl.glSampleCoverage(GLclampf value, GLboolean invert)

	See: glSampleCoverage() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glSampleCoverage.xml]

	
kivy.graphics.opengl.glScissor(GLint x, GLint y, GLsizei width, GLsizei height)

	See: glScissor() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glScissor.xml]

	
kivy.graphics.opengl.glShaderBinary()

	See: glShaderBinary() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glShaderBinary.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glShaderSource(GLuint shader, bytes source)

	See: glShaderSource() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glShaderSource.xml]

	
kivy.graphics.opengl.glStencilFunc(GLenum func, GLint ref, GLuint mask)

	See: glStencilFunc() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glStencilFunc.xml]

	
kivy.graphics.opengl.glStencilFuncSeparate(GLenum face, GLenum func, GLint ref, GLuint mask)

	See: glStencilFuncSeparate() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glStencilFuncSeparate.xml]

	
kivy.graphics.opengl.glStencilMask(GLuint mask)

	See: glStencilMask() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glStencilMask.xml]

	
kivy.graphics.opengl.glStencilMaskSeparate(GLenum face, GLuint mask)

	See: glStencilMaskSeparate() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glStencilMaskSeparate.xml]

	
kivy.graphics.opengl.glStencilOp(GLenum fail, GLenum zfail, GLenum zpass)

	See: glStencilOp() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glStencilOp.xml]

	
kivy.graphics.opengl.glStencilOpSeparate(GLenum face, GLenum fail, GLenum zfail, GLenum zpass)

	See: glStencilOpSeparate() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glStencilOpSeparate.xml]

	
kivy.graphics.opengl.glTexImage2D(GLenum target, GLint level, GLint internalformat, GLsizei width, GLsizei height, GLint border, GLenum format, GLenum type, bytes pixels)

	See: glTexImage2D() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glTexImage2D.xml]

	
kivy.graphics.opengl.glTexParameterf(GLenum target, GLenum pname, GLfloat param)

	See: glTexParameterf() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glTexParameterf.xml]

	
kivy.graphics.opengl.glTexParameterfv(GLenum target, GLenum pname)

	See: glTexParameterfv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glTexParameterfv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glTexParameteri(GLenum target, GLenum pname, GLint param)

	See: glTexParameteri() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glTexParameteri.xml]

	
kivy.graphics.opengl.glTexParameteriv(GLenum target, GLenum pname)

	See: glTexParameteriv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glTexParameteriv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glTexSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, bytes pixels)

	See: glTexSubImage2D() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glTexSubImage2D.xml]

	
kivy.graphics.opengl.glUniform1f(GLint location, GLfloat x)

	See: glUniform1f() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform1f.xml]

	
kivy.graphics.opengl.glUniform1fv(GLint location, GLsizei count)

	See: glUniform1fv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform1fv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glUniform1i(GLint location, GLint x)

	See: glUniform1i() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform1i.xml]

	
kivy.graphics.opengl.glUniform1iv(GLint location, GLsizei count)

	See: glUniform1iv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform1iv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glUniform2f(GLint location, GLfloat x, GLfloat y)

	See: glUniform2f() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform2f.xml]

	
kivy.graphics.opengl.glUniform2fv(GLint location, GLsizei count)

	See: glUniform2fv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform2fv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glUniform2i(GLint location, GLint x, GLint y)

	See: glUniform2i() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform2i.xml]

	
kivy.graphics.opengl.glUniform2iv(GLint location, GLsizei count)

	See: glUniform2iv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform2iv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glUniform3f(GLint location, GLfloat x, GLfloat y, GLfloat z)

	See: glUniform3f() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform3f.xml]

	
kivy.graphics.opengl.glUniform3fv(GLint location, GLsizei count)

	See: glUniform3fv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform3fv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glUniform3i(GLint location, GLint x, GLint y, GLint z)

	See: glUniform3i() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform3i.xml]

	
kivy.graphics.opengl.glUniform3iv(GLint location, GLsizei count)

	See: glUniform3iv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform3iv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glUniform4f(GLint location, GLfloat x, GLfloat y, GLfloat z, GLfloat w)

	See: glUniform4f() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform4f.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glUniform4fv(GLint location, GLsizei count)

	See: glUniform4fv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform4fv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glUniform4i(GLint location, GLint x, GLint y, GLint z, GLint w)

	See: glUniform4i() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform4i.xml]

	
kivy.graphics.opengl.glUniform4iv(GLint location, GLsizei count)

	See: glUniform4iv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniform4iv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glUniformMatrix2fv(GLint location, GLsizei count)

	See: glUniformMatrix2fv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniformMatrix2fv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glUniformMatrix3fv(GLint location, GLsizei count)

	See: glUniformMatrix3fv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniformMatrix3fv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glUniformMatrix4fv(GLint location, GLsizei count, GLboolean transpose, bytes value)

	See: glUniformMatrix4fv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUniformMatrix4fv.xml]

	
kivy.graphics.opengl.glUseProgram(GLuint program)

	See: glUseProgram() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glUseProgram.xml]

	
kivy.graphics.opengl.glValidateProgram(GLuint program)

	See: glValidateProgram() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glValidateProgram.xml]

	
kivy.graphics.opengl.glVertexAttrib1f(GLuint indx, GLfloat x)

	See: glVertexAttrib1f() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glVertexAttrib1f.xml]

	
kivy.graphics.opengl.glVertexAttrib1fv(GLuint indx, list values)

	See: glVertexAttrib1fv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glVertexAttrib1fv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glVertexAttrib2f(GLuint indx, GLfloat x, GLfloat y)

	See: glVertexAttrib2f() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glVertexAttrib2f.xml]

	
kivy.graphics.opengl.glVertexAttrib2fv(GLuint indx, list values)

	See: glVertexAttrib2fv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glVertexAttrib2fv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glVertexAttrib3f(GLuint indx, GLfloat x, GLfloat y, GLfloat z)

	See: glVertexAttrib3f() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glVertexAttrib3f.xml]

	
kivy.graphics.opengl.glVertexAttrib3fv(GLuint indx, list values)

	See: glVertexAttrib3fv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glVertexAttrib3fv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glVertexAttrib4f(GLuint indx, GLfloat x, GLfloat y, GLfloat z, GLfloat w)

	See: glVertexAttrib4f() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glVertexAttrib4f.xml]

	
kivy.graphics.opengl.glVertexAttrib4fv(GLuint indx, list values)

	See: glVertexAttrib4fv() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glVertexAttrib4fv.xml]

Warning

Not implemented yet.

	
kivy.graphics.opengl.glVertexAttribPointer(GLuint index, GLint size, GLenum type, GLboolean normalized, GLsizei stride, data)

	See: glVertexAttribPointer() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glVertexAttribPointer.xml]

	
kivy.graphics.opengl.glViewport(GLint x, GLint y, GLsizei width, GLsizei height)

	See: glViewport() on Kronos website [http://www.khronos.org/opengles/sdk/docs/man/xhtml/glViewport.xml]

	
kivy.graphics.opengl.gl_init_symbols(allowed=[], ignored=[])

	

OpenGL utilities

New in version 1.0.7.

	
kivy.graphics.opengl_utils.gl_get_extensions() → list

	Return a list of OpenGL extensions available. All the names in the list
have the GL_ stripped at the start (if it exists) and are in lowercase.

>>> print(gl_get_extensions())
['arb_blend_func_extended', 'arb_color_buffer_float', 'arb_compatibility',
 'arb_copy_buffer'...]

	
kivy.graphics.opengl_utils.gl_get_texture_formats() → tuple

	Return a list of texture formats recognized by kivy.
The texture list is informative but might not been supported by your
hardware. If you want a list of supported textures, you must filter that
list as follows:

supported_fmts = [gl_has_texture_format(x) for x in gl_get_texture_formats()]

	
kivy.graphics.opengl_utils.gl_get_version() → tuple

	Return the (major, minor) OpenGL version, parsed from the GL_VERSION.

New in version 1.2.0.

	
kivy.graphics.opengl_utils.gl_get_version_major() → int

	Return the major component of the OpenGL version.

New in version 1.2.0.

	
kivy.graphics.opengl_utils.gl_get_version_minor() → int

	Return the minor component of the OpenGL version.

New in version 1.2.0.

	
kivy.graphics.opengl_utils.gl_has_capability(int cap) → int

	Return the status of a OpenGL Capability. This is a wrapper that
auto-discovers all the capabilities that Kivy might need. The current
capabilities tested are:

	GLCAP_BGRA: Test the support of BGRA texture format

	GLCAP_NPOT: Test the support of Non Power of Two texture

	GLCAP_S3TC: Test the support of S3TC texture (DXT1, DXT3, DXT5)

	GLCAP_DXT1: Test the support of DXT texture (subset of S3TC)

	GLCAP_ETC1: Test the support of ETC1 texture

	
kivy.graphics.opengl_utils.gl_has_extension(name) → int

	Check if an OpenGL extension is available. If the name starts with GL_,
it will be stripped for the test and converted to lowercase.

>>> gl_has_extension('NV_get_tex_image')
False
>>> gl_has_extension('OES_texture_npot')
True

	
kivy.graphics.opengl_utils.gl_has_texture_conversion(fmt) → int

	Return 1 if the texture can be converted to a native format.

	
kivy.graphics.opengl_utils.gl_has_texture_format(fmt) → int

	Return whether a texture format is supported by your system, natively or
by conversion. For example, if your card doesn’t support ‘bgra’, we are able
to convert to ‘rgba’ but only in software mode.

	
kivy.graphics.opengl_utils.gl_has_texture_native_format(fmt) → int

	Return 1 if the texture format is handled natively.

>>> gl_has_texture_format('azdmok')
0
>>> gl_has_texture_format('rgba')
1
>>> gl_has_texture_format('s3tc_dxt1')
[INFO] [GL] S3TC texture support is available
[INFO] [GL] DXT1 texture support is available
1

	
kivy.graphics.opengl_utils.gl_register_get_size(int constid, int size)

	Register an association between an OpenGL Const used in glGet* to a number
of elements.

By example, the GPU_MEMORY_INFO_DEDICATED_VIDMEM_NVX is a special pname that
will return the integer 1 (nvidia only).

>>> GPU_MEMORY_INFO_DEDICATED_VIDMEM_NVX = 0x9047
>>> gl_register_get_size(GPU_MEMORY_INFO_DEDICATED_VIDMEM_NVX, 1)
>>> glGetIntegerv(GPU_MEMORY_INFO_DEDICATED_VIDMEM_NVX)[0]
524288

Scissor Instructions

New in version 1.9.1.

Scissor instructions clip your drawing area into a rectangular region.

	ScissorPush: Begins clipping, sets the bounds of the clip space

	ScissorPop: Ends clipping

The area provided to clip is in screenspace pixels and must be provided as
integer values not floats.

The following code will draw a circle on top of our widget while clipping
the circle so it does not expand beyond the widget borders.

with self.canvas.after:
 #If our widget is inside another widget that modified the coordinates
 #spacing (such as ScrollView) we will want to convert to Window coords
 x,y = self.to_window(*self.pos)
 width, height = self.size
 #We must convert from the possible float values provided by kivy
 #widgets to an integer screenspace, in python3 round returns an int so
 #the int cast will be unnecessary.
 ScissorPush(x=int(round(x)), y=int(round(y)),
 width=int(round(width)), height=int(round(height)))
 Color(rgba=(1., 0., 0., .5))
 Ellipse(size=(width*2., height*2.),
 pos=self.center)
 ScissorPop()

	
class kivy.graphics.scissor_instructions.Rect(int x, int y, int width, int height)

	Bases: builtins.object

Rect class used internally by ScissorStack and ScissorPush to determine
correct clipping area.

	
intersect(Rect other)

	

	
class kivy.graphics.scissor_instructions.ScissorPop

	Bases: kivy.graphics.instructions.Instruction

Pop the scissor stack. Call after ScissorPush, once you have completed
the drawing you wish to be clipped.

	
class kivy.graphics.scissor_instructions.ScissorPush(**kwargs)

	Bases: kivy.graphics.instructions.Instruction

to control the area and position of the scissoring region. Defaults to
0, 0, 100, 100

Scissor works by clipping all drawing outside of a rectangle starting at
int x, int y position and having sides of int width by int height in Window
space coordinates

	
class kivy.graphics.scissor_instructions.ScissorStack

	Bases: builtins.object

Class used internally to keep track of the current state of
glScissors regions. Do not instantiate, prefer to inspect the module’s
scissor_stack.

	
pop()

	

	
push(element)

	

Shader

The Shader class handles the compilation of the vertex and fragment
shader as well as the creation of the program in OpenGL.

Todo

Include more complete documentation about the shader.

Header inclusion

New in version 1.0.7.

When you are creating a Shader, Kivy will always include default parameters. If
you don’t want to rewrite this each time you want to customize / write a new
shader, you can add the “$HEADER$” token and it will be replaced by the
corresponding shader header.

Here is the header for the fragment Shader:

#ifdef GL_ES
 precision highp float;
#endif

/* Outputs from the vertex shader */
varying vec4 frag_color;
varying vec2 tex_coord0;

/* uniform texture samplers */
uniform sampler2D texture0;

uniform mat4 frag_modelview_mat;

And the header for vertex Shader:

#ifdef GL_ES
 precision highp float;
#endif

/* Outputs to the fragment shader */
varying vec4 frag_color;
varying vec2 tex_coord0;

/* vertex attributes */
attribute vec2 vPosition;
attribute vec2 vTexCoords0;

/* uniform variables */
uniform mat4 modelview_mat;
uniform mat4 projection_mat;
uniform vec4 color;
uniform float opacity;

Single file glsl shader programs

New in version 1.6.0.

To simplify shader management, the vertex and fragment shaders can be loaded
automatically from a single glsl source file (plain text). The file should
contain sections identified by a line starting with ‘—vertex’ and
‘—fragment’ respectively (case insensitive), e.g.

// anything before a meaningful section such as this comment are ignored

---VERTEX SHADER--- // vertex shader starts here
void main(){
 ...
}

---FRAGMENT SHADER--- // fragment shader starts here
void main(){
 ...
}

The source property of the Shader should be set to the filename of a glsl
shader file (of the above format), e.g. phong.glsl

	
class kivy.graphics.shader.Shader(unicode vs=None, unicode fs=None, unicode source=None)

	Bases: builtins.object

	Parameters:

	
	vs: string, defaults to None
	Source code for vertex shader

	fs: string, defaults to None
	Source code for fragment shader

	
fs

	Fragment shader source code.

If you set a new fragment shader code source, it will be automatically
compiled and will replace the current fragment shader.

	
source

	glsl source code.

source should be the filename of a glsl shader that contains both the
vertex and fragment shader sourcecode, each designated by a section
header consisting of one line starting with either “–VERTEX” or
“–FRAGMENT” (case insensitive).

New in version 1.6.0.

	
success

	Indicate whether the shader loaded successfully and is ready for
usage or not.

	
vs

	Vertex shader source code.

If you set a new vertex shader code source, it will be automatically
compiled and will replace the current vertex shader.

Stencil instructions

New in version 1.0.4.

Changed in version 1.3.0: The stencil operation has been updated to resolve some issues that appeared
when nested. You must now have a StencilUnUse and repeat the same
operation as you did after StencilPush.

Stencil instructions permit you to draw and use the current drawing as a mask.
They don’t give as much control as pure OpenGL, but you can still do fancy
things!

The stencil buffer can be controlled using these 3 instructions:

	StencilPush: push a new stencil layer.
Any drawing that happens after this will be used as a mask.

	StencilUse : now draw the next instructions and use the stencil
for masking them.

	StencilUnUse : stop using the stencil i.e. remove the mask and
draw normally.

	StencilPop : pop the current stencil layer.

You should always respect this scheme:

StencilPush

PHASE 1: put any drawing instructions to use as a mask here.

StencilUse

PHASE 2: all the drawing here will be automatically clipped by the
mask created in PHASE 1.

StencilUnUse

PHASE 3: put the same drawing instruction here as you did in PHASE 1

StencilPop

PHASE 4: the stencil is now removed from the stack and unloaded.

Limitations

	Drawing in PHASE 1 and PHASE 3 must not collide or you
will get unexpected results

	The stencil is activated as soon as you perform a StencilPush

	The stencil is deactivated as soon as you’ve correctly popped all the stencil
layers

	You must not play with stencils yourself between a StencilPush / StencilPop

	You can push another stencil after a StencilUse / before the StencilPop

	You can push up to 128 layers of stencils (8 for kivy < 1.3.0)

Example of stencil usage

Here is an example, in kv style:

StencilPush

create a rectangular mask with a pos of (100, 100) and a (100, 100) size.
Rectangle:
 pos: 100, 100
 size: 100, 100

StencilUse

we want to show a big green rectangle, however, the previous stencil
mask will crop us :)
Color:
 rgb: 0, 1, 0
Rectangle:
 size: 900, 900

StencilUnUse

you must redraw the stencil mask to remove it
Rectangle:
 pos: 100, 100
 size: 100, 100

StencilPop

	
class kivy.graphics.stencil_instructions.StencilPop

	Bases: kivy.graphics.instructions.Instruction

Pop the stencil stack. See the module documentation for more information.

	
class kivy.graphics.stencil_instructions.StencilPush

	Bases: kivy.graphics.instructions.Instruction

Push the stencil stack. See the module documentation for more
information.

	
class kivy.graphics.stencil_instructions.StencilUnUse

	Bases: kivy.graphics.instructions.Instruction

Use current stencil buffer to unset the mask.

	
class kivy.graphics.stencil_instructions.StencilUse(**kwargs)

	Bases: kivy.graphics.instructions.Instruction

more information.

	
func_op

	Determine the stencil operation to use for glStencilFunc(). Can be
one of ‘never’, ‘less’, ‘equal’, ‘lequal’, ‘greater’, ‘notequal’,
‘gequal’ or ‘always’.

By default, the operator is set to ‘equal’.

New in version 1.5.0.

SVG

New in version 1.9.0.

Warning

This is highly experimental and subject to change. Don’t use it in
production.

Load an SVG as a graphics instruction:

from kivy.graphics.svg import Svg
with widget.canvas:
 svg = Svg("image.svg")

There is no widget that can display Svg directly, you have to make your own for
now. Check the examples/svg for more information.

	
class kivy.graphics.svg.Svg(source=None, anchor_x=0, anchor_y=0, bezier_points=64, circle_points=64, color=None)

	Bases: kivy.graphics.instructions.RenderContext

	
anchor_x

	Horizontal anchor position for scaling and rotations. Defaults to 0. The
symbolic values ‘left’, ‘center’ and ‘right’ are also accepted.

	
anchor_y

	Vertical anchor position for scaling and rotations. Defaults to 0. The
symbolic values ‘bottom’, ‘center’ and ‘top’ are also accepted.

	
color

	The default color

Used for SvgElements that specify “currentColor”

Changed in version 1.10.3: The color is gettable and settable

New in version 1.9.1.

	
current_color

	current_color: object

	
gradients

	gradients: object

	
height

	height: ‘double’

	
set_tree(tree)

	sets the tree used to render the Svg and triggers reloading.

	Parameters:

	tree (xml.etree.cElementTree) – the tree parsed from the SVG source

New in version 2.0.0.

	
source

	Filename / source to load.

The parsing and rendering is done as soon as you set the source.

Changed in version 2.0.0: The property name is now source instead of filename

Changed in version 1.10.3: You can get the used filename

	
width

	width: ‘double’

Tesselator

New in version 1.9.0.

[image: _images/tesselator-filled.png]
[image: _images/tesselator-debug.png]

Warning

This is experimental and subject to change as long as this warning notice
is present. Only TYPE_POLYGONS is currently supported.

Tesselator is a library for tesselating polygons, based on
libtess2 [https://github.com/memononen/libtess2]. It renders concave filled
polygons by first tesselating them into convex polygons. It also supports holes.

Usage

First, you need to create a Tesselator object and add contours. The
first one is the external contour of your shape and all of the following ones
should be holes:

from kivy.graphics.tesselator import Tesselator

tess = Tesselator()
tess.add_contour([0, 0, 200, 0, 200, 200, 0, 200])
tess.add_contour([50, 50, 150, 50, 150, 150, 50, 150])

Second, call the Tesselator.tesselate() method to compute the points. It
is possible that the tesselator won’t work. In that case, it can return
False:

if not tess.tesselate():
 print("Tesselator didn't work :(")
 return

After the tessellation, you have multiple ways to iterate over the result. The
best approach is using Tesselator.meshes to get a format directly usable
for a Mesh:

for vertices, indices in tess.meshes:
 self.canvas.add(Mesh(
 vertices=vertices,
 indices=indices,
 mode="triangle_fan"
))

Or, you can get the “raw” result, with just polygons and x/y coordinates with
Tesselator.vertices():

for vertices in tess.vertices:
 print("got polygon", vertices)

	
class kivy.graphics.tesselator.Tesselator

	Bases: builtins.object

Tesselator class. See module for more information about the usage.

	
add_contour(points)

	Add a contour to the tesselator. It can be:

	a list of [x, y, x2, y2, …] coordinates

	a float array: array(“f”, [x, y, x2, y2, …])

	any buffer with floats in it.

	
element_count

	Returns the number of convex polygon.

	
meshes

	Iterate through the result of the tesselate() to give a result
that can be easily pushed into Kivy`s Mesh object.

It’s a list of: [[vertices, indices], [vertices, indices], …].
The vertices in the format [x, y, u, v, x2, y2, u2, v2].

Careful, u/v coordinates are the same as x/y.
You are responsible to change them for texture mapping if you need to.

You can create Mesh objects like that:

tess = Tesselator()
add contours here
tess.tesselate()
for vertices, indices in self.meshes:
 self.canvas.add(Mesh(
 vertices=vertices,
 indices=indices,
 mode="triangle_fan"))

	
tesselate(int winding_rule=WINDING_ODD, int element_type=TYPE_POLYGONS, int polysize=65535) → int

	Compute all the contours added with add_contour(), and generate
polygons.

	Parameters:

	
	winding_rule: enum
	The winding rule classifies a region as inside if its winding
number belongs to the chosen category. Can be one of
WINDING_ODD, WINDING_NONZERO, WINDING_POSITIVE,
WINDING_NEGATIVE, WINDING_ABS_GEQ_TWO. Defaults to WINDING_ODD.

	element_type: enum
	The result type, you can generate the polygons with
TYPE_POLYGONS, or the contours with TYPE_BOUNDARY_CONTOURS.
Defaults to TYPE_POLYGONS.

	Returns:

	1 if the tessellation happened, 0 otherwise.

	Return type:

	int

	
vertex_count

	Returns the number of vertex generated.

This is the raw result, however, because the Tesselator format the
result for you with meshes or vertices per polygon,
you’ll have more vertices in the result

	
vertices

	Iterate through the result of the tesselate() in order to give
only a list of [x, y, x2, y2, …] polygons.

Texture

Changed in version 1.6.0: Added support for paletted texture on OES: ‘palette4_rgb8’,
‘palette4_rgba8’, ‘palette4_r5_g6_b5’, ‘palette4_rgba4’, ‘palette4_rgb5_a1’,
‘palette8_rgb8’, ‘palette8_rgba8’, ‘palette8_r5_g6_b5’, ‘palette8_rgba4’
and ‘palette8_rgb5_a1’.

Texture is a class that handles OpenGL textures. Depending on the
hardware,
some OpenGL capabilities might not be available (BGRA support, NPOT support,
etc.)

You cannot instantiate this class yourself. You must use the function
Texture.create() to create a new texture:

texture = Texture.create(size=(640, 480))

When you create a texture, you should be aware of the default color
and buffer format:

	the color/pixel format (Texture.colorfmt) that can be one of
‘rgb’, ‘rgba’, ‘luminance’, ‘luminance_alpha’, ‘bgr’ or ‘bgra’.
The default value is ‘rgb’

	the buffer format determines how a color component is stored into memory.
This can be one of ‘ubyte’, ‘ushort’, ‘uint’, ‘byte’, ‘short’, ‘int’ or
‘float’. The default value and the most commonly used is ‘ubyte’.

So, if you want to create an RGBA texture:

texture = Texture.create(size=(640, 480), colorfmt='rgba')

You can use your texture in almost all vertex instructions with the
kivy.graphics.VertexIntruction.texture parameter. If you want to use
your texture in kv lang, you can save it in an
ObjectProperty inside your widget.

Warning

Using Texture before OpenGL has been initialized will lead to a crash. If
you need to create textures before the application has started, import
Window first: from kivy.core.window import Window

Blitting custom data

You can create your own data and blit it to the texture using
Texture.blit_buffer().

For example, to blit immutable bytes data:

create a 64x64 texture, defaults to rgba / ubyte
texture = Texture.create(size=(64, 64))

create 64x64 rgb tab, and fill with values from 0 to 255
we'll have a gradient from black to white
size = 64 * 64 * 3
buf = [int(x * 255 / size) for x in range(size)]

then, convert the array to a ubyte string
buf = bytes(buf)

then blit the buffer
texture.blit_buffer(buf, colorfmt='rgb', bufferfmt='ubyte')

that's all ! you can use it in your graphics now :)
if self is a widget, you can do this
with self.canvas:
 Rectangle(texture=texture, pos=self.pos, size=(64, 64))

Since 1.9.0, you can blit data stored in a instance that implements the python
buffer interface, or a memoryview thereof, such as numpy arrays, python
array.array, a bytearray, or a cython array. This is beneficial if you
expect to blit similar data, with perhaps a few changes in the data.

When using a bytes representation of the data, for every change you have to
regenerate the bytes instance, from perhaps a list, which is very inefficient.
When using a buffer object, you can simply edit parts of the original data.
Similarly, unless starting with a bytes object, converting to bytes requires a
full copy, however, when using a buffer instance, no memory is copied, except
to upload it to the GPU.

Continuing with the example above:

from array import array

size = 64 * 64 * 3
buf = [int(x * 255 / size) for x in range(size)]
initialize the array with the buffer values
arr = array('B', buf)
now blit the array
texture.blit_buffer(arr, colorfmt='rgb', bufferfmt='ubyte')

now change some elements in the original array
arr[24] = arr[50] = 99
blit again the buffer
texture.blit_buffer(arr, colorfmt='rgb', bufferfmt='ubyte')

BGR/BGRA support

The first time you try to create a BGR or BGRA texture, we check whether
your hardware supports BGR / BGRA textures by checking the extension
‘GL_EXT_bgra’.

If the extension is not found, the conversion to RGB / RGBA will be done in
software.

NPOT texture

Changed in version 1.0.7: If your hardware supports NPOT, no POT is created.

As the OpenGL documentation says, a texture must be power-of-two sized. That
means
your width and height can be one of 64, 32, 256… but not 3, 68, 42. NPOT means
non-power-of-two. OpenGL ES 2 supports NPOT textures natively but with some
drawbacks. Another type of NPOT texture is called a rectangle texture.
POT, NPOT and textures all have their own pro/cons.

	Features

	POT

	NPOT

	Rectangle

	OpenGL Target

	GL_TEXTURE_2D

	GL_TEXTURE_2D

	GL_TEXTURE_RECTANGLE_(NV|ARB|EXT)

	Texture coords

	0-1 range

	0-1 range

	width-height range

	Mipmapping

	Supported

	Partially

	No

	Wrap mode

	Supported

	Supported

	No

If you create a NPOT texture, we first check whether your hardware
supports it by checking the extensions GL_ARB_texture_non_power_of_two or
OES_texture_npot. If none of these are available, we create the nearest
POT texture that can contain your NPOT texture. The Texture.create() will
return a TextureRegion instead.

Texture atlas

A texture atlas is a single texture that contains many images.
If you want to separate the original texture into many single ones, you don’t
need to. You can get a region of the original texture. That will return the
original texture with custom texture coordinates:

for example, load a 128x128 image that contain 4 64x64 images
from kivy.core.image import Image
texture = Image('mycombinedimage.png').texture

bottomleft = texture.get_region(0, 0, 64, 64)
bottomright = texture.get_region(0, 64, 64, 64)
topleft = texture.get_region(0, 64, 64, 64)
topright = texture.get_region(64, 64, 64, 64)

Mipmapping

New in version 1.0.7.

Mipmapping is an OpenGL technique for enhancing the rendering of large textures
to small surfaces. Without mipmapping, you might see pixelation when you
render to small surfaces.
The idea is to precalculate the subtexture and apply some image filter as a
linear filter. Then, when you render a small surface, instead of using the
biggest texture, it will use a lower filtered texture. The result can look
better this way.

To make that happen, you need to specify mipmap=True when you create a
texture. Some widgets already give you the ability to create mipmapped
textures, such as the Label and
Image.

From the OpenGL Wiki : “So a 64x16 2D texture can have 5 mip-maps: 32x8, 16x4,
8x2, 4x1, 2x1, and 1x1”. Check http://www.opengl.org/wiki/Texture for more
information.

Note

As the table in previous section said, if your texture is NPOT, we
create the nearest POT texture and generate a mipmap from it. This
might change in the future.

Reloading the Texture

New in version 1.2.0.

If the OpenGL context is lost, the Texture must be reloaded. Textures that have
a source are automatically reloaded but generated textures must
be reloaded by the user.

Use the Texture.add_reload_observer() to add a reloading function that
will be automatically called when needed:

def __init__(self, **kwargs):
 super(...).__init__(**kwargs)
 self.texture = Texture.create(size=(512, 512), colorfmt='RGB',
 bufferfmt='ubyte')
 self.texture.add_reload_observer(self.populate_texture)

 # and load the data now.
 self.cbuffer = '\x00\xf0\xff' * 512 * 512
 self.populate_texture(self.texture)

def populate_texture(self, texture):
 texture.blit_buffer(self.cbuffer)

This way, you can use the same method for initialization and reloading.

Note

For all text rendering with our core text renderer, the texture is generated
but we already bind a method to redo the text rendering and reupload
the text to the texture. You don’t have to do anything.

	
class kivy.graphics.texture.Texture(width, height, target, texid=0, colorfmt='rgb', bufferfmt='ubyte', mipmap=False, source=None, callback=None, icolorfmt='rgb')

	Bases: builtins.object

textures or complex textures based on ImageData.

	
add_reload_observer(callback)

	Add a callback to be called after the whole graphics context has
been reloaded. This is where you can reupload your custom data into
the GPU.

New in version 1.2.0.

	Parameters:

	
	callback: func(context) -> return None
	The first parameter will be the context itself.

	
ask_update(callback)

	Indicate that the content of the texture should be updated and the
callback function needs to be called when the texture will be
used.

	
bind()

	Bind the texture to the current opengl state.

	
blit_buffer(pbuffer, size=None, colorfmt=None, pos=None, bufferfmt=None, mipmap_level=0, mipmap_generation=True, int rowlength=0)

	Blit a buffer into the texture.

Note

Unless the canvas will be updated due to other changes,
ask_update() should be
called in order to update the texture.

	Parameters:

	
	pbuffer: bytes, or a class that implements the buffer interface (including memoryview).
	A buffer containing the image data. It can be either a bytes
object or a instance of a class that implements the python
buffer interface, e.g. array.array, bytearray, numpy arrays
etc. If it’s not a bytes object, the underlying buffer must
be contiguous, have only one dimension and must not be
readonly, even though the data is not modified, due to a cython
limitation. See module description for usage details.

	size: tuple, defaults to texture size
	Size of the image (width, height)

	colorfmt: str, defaults to ‘rgb’
	Image format, can be one of ‘rgb’, ‘rgba’, ‘bgr’, ‘bgra’,
‘luminance’ or ‘luminance_alpha’.

	pos: tuple, defaults to (0, 0)
	Position to blit in the texture.

	bufferfmt: str, defaults to ‘ubyte’
	Type of the data buffer, can be one of ‘ubyte’, ‘ushort’,
‘uint’, ‘byte’, ‘short’, ‘int’ or ‘float’.

	mipmap_level: int, defaults to 0
	Indicate which mipmap level we are going to update.

	mipmap_generation: bool, defaults to True
	Indicate if we need to regenerate the mipmap from level 0.

Changed in version 1.0.7: added mipmap_level and mipmap_generation

Changed in version 1.9.0: pbuffer can now be any class instance that implements the python
buffer interface and / or memoryviews thereof.

	
blit_data(im, pos=None)

	Replace a whole texture with image data.

	
bufferfmt

	Return the buffer format used in this texture (readonly).

New in version 1.2.0.

	
colorfmt

	Return the color format used in this texture (readonly).

New in version 1.0.7.

	
static create(size=None, colorfmt=None, bufferfmt=None, mipmap=False, callback=None, icolorfmt=None)

	texture_create(size=None, colorfmt=None, bufferfmt=None, mipmap=False, callback=None, icolorfmt=None)
Create a texture based on size.

	Parameters:

	
	size: tuple, defaults to (128, 128)
	Size of the texture.

	colorfmt: str, defaults to ‘rgba’
	Color format of the texture. Can be ‘rgba’ or ‘rgb’,
‘luminance’ or ‘luminance_alpha’. On desktop, additional values are
available: ‘red’, ‘rg’.

	icolorfmt: str, defaults to the value of colorfmt
	Internal format storage of the texture. Can be ‘rgba’ or ‘rgb’,
‘luminance’ or ‘luminance_alpha’. On desktop, additional values are
available: ‘r8’, ‘rg8’, ‘rgba8’.

	bufferfmt: str, defaults to ‘ubyte’
	Internal buffer format of the texture. Can be ‘ubyte’, ‘ushort’,
‘uint’, ‘bute’, ‘short’, ‘int’ or ‘float’.

	mipmap: bool, defaults to False
	If True, it will automatically generate the mipmap texture.

	callback: callable(), defaults to False
	If a function is provided, it will be called when data is
needed in the texture.

Changed in version 1.7.0: callback has been added

	
static create_from_data(im, mipmap=False)

	texture_create_from_data(im, mipmap=False)
Create a texture from an ImageData class.

	
flip_horizontal()

	Flip tex_coords for horizontal display.

New in version 1.9.0.

	
flip_vertical()

	Flip tex_coords for vertical display.

	
get_region(x, y, width, height)

	Return a part of the texture defined by the rectangular arguments
(x, y, width, height). Returns a TextureRegion instance.

	
height

	Return the height of the texture (readonly).

	
id

	Return the OpenGL ID of the texture (readonly).

	
mag_filter

	Get/set the mag filter texture. Available values:

	linear

	nearest

Check the opengl documentation for more information about the behavior
of these values :
http://www.khronos.org/opengles/sdk/docs/man/xhtml/glTexParameter.xml.

	
min_filter

	Get/set the min filter texture. Available values:

	linear

	nearest

	linear_mipmap_linear

	linear_mipmap_nearest

	nearest_mipmap_nearest

	nearest_mipmap_linear

Check the opengl documentation for more information about the behavior
of these values :
http://www.khronos.org/opengles/sdk/docs/man/xhtml/glTexParameter.xml.

	
mipmap

	Return True if the texture has mipmap enabled (readonly).

	
pixels

	Get the pixels texture, in RGBA format only, unsigned byte. The
origin of the image is at bottom left.

New in version 1.7.0.

	
remove_reload_observer(callback)

	Remove a callback from the observer list, previously added by
add_reload_observer().

New in version 1.2.0.

	
save(filename, flipped=True, fmt=None)

	Save the texture content to a file. Check
kivy.core.image.Image.save() for more information.

The flipped parameter flips the saved image vertically, and
defaults to True.

New in version 1.7.0.

Changed in version 1.8.0: Parameter flipped added, defaults to True. All the OpenGL Texture
are read from bottom / left, it need to be flipped before saving.
If you don’t want to flip the image, set flipped to False.

Changed in version 1.11.0: Parameter fmt added, to pass the final format to the image provider.
Used if filename is a BytesIO

	
size

	Return the (width, height) of the texture (readonly).

	
target

	Return the OpenGL target of the texture (readonly).

	
tex_coords

	Return the list of tex_coords (opengl).

	
uvpos

	Get/set the UV position inside the texture.

	
uvsize

	Get/set the UV size inside the texture.

Warning

The size can be negative if the texture is flipped.

	
width

	Return the width of the texture (readonly).

	
wrap

	Get/set the wrap texture. Available values:

	repeat

	mirrored_repeat

	clamp_to_edge

Check the opengl documentation for more information about the behavior
of these values :
http://www.khronos.org/opengles/sdk/docs/man/xhtml/glTexParameter.xml.

	
class kivy.graphics.texture.TextureRegion(int x, int y, int width, int height, Texture origin)

	Bases: kivy.graphics.texture.Texture

texture handling.

	
ask_update(callback)

	

	
bind()

	

	
pixels

	

Transformation

This module contains a Matrix class used for our Graphics calculations. We
currently support:

	rotation, translation and scaling matrices

	multiplication matrix

	clip matrix (with or without perspective)

	transformation matrix for 3d touch

For more information on transformation matrices, please see the
OpenGL Matrices Tutorial [http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/].

Changed in version 1.6.0: Added Matrix.perspective(), Matrix.look_at() and
Matrix.transpose().

	
class kivy.graphics.transformation.Matrix

	Bases: builtins.object

>>> from kivy.graphics.transformation import Matrix
>>> m = Matrix()
>>> print(m)
[[1.000000 0.000000 0.000000 0.000000]
[0.000000 1.000000 0.000000 0.000000]
[0.000000 0.000000 1.000000 0.000000]
[0.000000 0.000000 0.000000 1.000000]]

[0 1 2 3]
[4 5 6 7]
[8 9 10 11]
[12 13 14 15]

	
get()

	Retrieve the value of the current as a flat list.

New in version 1.9.1.

	
identity() → Matrix

	Reset the matrix to the identity matrix (inplace).

	
inverse() → Matrix

	Return the inverse of the matrix as a new Matrix.

	
look_at(double eyex, double eyey, double eyez, double centerx, double centery, double centerz, double upx, double upy, double upz)

	Returns a new lookat Matrix (similar to
gluLookAt [http://www.opengl.org/sdk/docs/man2/xhtml/gluLookAt.xml]).

	Parameters:

	
	eyex: float
	Eyes X co-ordinate

	eyey: float
	Eyes Y co-ordinate

	eyez: float
	Eyes Z co-ordinate

	centerx: float
	The X position of the reference point

	centery: float
	The Y position of the reference point

	centerz: float
	The Z position of the reference point

	upx: float
	The X value up vector.

	upy: float
	The Y value up vector.

	upz: float
	The Z value up vector.

New in version 1.6.0.

	
multiply(mb, Matrix ma) → Matrix

	Multiply the given matrix with self (from the left)
i.e. we premultiply the given matrix by the current matrix and return
the result (not inplace):

m.multiply(n) -> n * m

	Parameters:

	
	ma: Matrix
	The matrix to multiply by

	
normal_matrix() → Matrix

	Computes the normal matrix, which is the inverse transpose
of the top left 3x3 modelview matrix used to transform normals
into eye/camera space.

New in version 1.6.0.

	
perspective(double fovy, double aspect, double zNear, double zFar) → Matrix

	Creates a perspective matrix (inplace).

	Parameters:

	
	fovy: float
	“Field Of View” angle

	aspect: float
	Aspect ratio

	zNear: float
	Near clipping plane

	zFar: float
	Far clippin plane

New in version 1.6.0.

	
project(double objx, double objy, double objz, Matrix model, Matrix proj, double vx, double vy, double vw, double vh)

	Project a point from 3d space into a 2d viewport.

	Parameters:

	
	objx: float
	Points X co-ordinate

	objy: float
	Points Y co-ordinate

	objz: float
	Points Z co-ordinate

	model: Matrix
	The model matrix

	proj: Matrix
	The projection matrix

	vx: float
	Viewports X co-ordinate

	vy: float
	Viewports y co-ordinate

	vw: float
	Viewports width

	vh: float
	Viewports height

New in version 1.7.0.

	
rotate(double angle, double x, double y, double z) → Matrix

	Rotate the matrix through the angle around the axis (x, y, z)
(inplace).

	Parameters:

	
	angle: float
	The angle through which to rotate the matrix

	x: float
	X position of the point

	y: float
	Y position of the point

	z: float
	Z position of the point

	
scale(double x, double y, double z) → Matrix

	Scale the current matrix by the specified factors over
each dimension (inplace).

	Parameters:

	
	x: float
	The scale factor along the X axis

	y: float
	The scale factor along the Y axis

	z: float
	The scale factor along the Z axis

	
set(flat=None, array=None)

	Insert custom values into the matrix in a flat list format
or 4x4 array format like below:

m.set(array=[
 [1.0, 0.0, 0.0, 0.0],
 [0.0, 1.0, 0.0, 0.0],
 [0.0, 0.0, 1.0, 0.0],
 [0.0, 0.0, 0.0, 1.0]]
)

New in version 1.9.0.

	
tolist()

	Retrieve the value of the current matrix in numpy format.
for example m.tolist() will return:

[[1.000000, 0.000000, 0.000000, 0.000000],
[0.000000, 1.000000, 0.000000, 0.000000],
[0.000000, 0.000000, 1.000000, 0.000000],
[0.000000, 0.000000, 0.000000, 1.000000]]

you can use this format to plug the result straight into numpy
in this way numpy.array(m.tolist())

New in version 1.9.0.

	
transform_point(double x, double y, double z, t=None) → tuple

	Transforms the point by the matrix and returns the transformed point
as a (x, y, z) tuple. If the point is a vector v, the returned
values is v2 = matrix * v.

If t is provided, it multiplies it with the last column of the matrix
and returns the transformed (x, y, z, t).

	
translate(double x, double y, double z) → Matrix

	Translate the matrix.

	Parameters:

	
	x: float
	The translation factor along the X axis

	y: float
	The translation factor along the Y axis

	z: float
	The translation factor along the Z axis

	
transpose() → Matrix

	Return the transposed matrix as a new Matrix.

New in version 1.6.0.

	
view_clip(double left, double right, double bottom, double top, double near, double far, int perspective) → Matrix

	Create a clip matrix (inplace).

	Parameters:

	
	left: float
	Co-ordinate

	right: float
	Co-ordinate

	bottom: float
	Co-ordinate

	top: float
	Co-ordinate

	near: float
	Co-ordinate

	far: float
	Co-ordinate

	perpective: int
	Co-ordinate

Changed in version 1.6.0: Enable support for perspective parameter.

Input management

Our input system is wide and simple at the same time. We are currently able to
natively support :

	Windows multitouch events (pencil and finger)

	OS X touchpads

	Linux multitouch events (kernel and mtdev)

	Linux wacom drivers (pencil and finger)

	TUIO

All the input management is configurable in the Kivy config. You
can easily use many multitouch devices in one Kivy application.

When the events have been read from the devices, they are dispatched through
a post processing module before being sent to your application. We also have
several default modules for :

	Double tap detection

	Decreasing jittering

	Decreasing the inaccuracy of touch on “bad” DIY hardware

	Ignoring regions

	
class kivy.input.MotionEvent(device, id, args, is_touch=False, type_id=None)

	Bases: kivy.input.motionevent.MotionEvent

Abstract class that represents an input event.

	Parameters:

	
	id: str
	unique ID of the MotionEvent

	args: list
	list of parameters, passed to the depack() function

	
apply_transform_2d(transform)

	Apply a transformation on x, y, z, px, py, pz,
ox, oy, oz, dx, dy, dz.

	
button

	Currently pressed button.

	
copy_to(to)

	Copy some attribute to another motion event object.

	
depack(args)

	Depack args into attributes of the class

	
device

	Device used for creating this event.

	
dispatch_done()

	Notify that dispatch to the listeners is done.

Called by the EventLoopBase.post_dispatch_input().

New in version 2.1.0.

	
dispatch_mode

	(Experimental) Used by a event manager or a widget to assign
the dispatching mode. Defaults to
MODE_DEFAULT_DISPATCH. See
eventmanager for available modes.

New in version 2.1.0.

	
distance(other_touch)

	Return the distance between the two events.

	
double_tap_time

	If the touch is a is_double_tap, this is the time
between the previous tap and the current touch.

	
property dpos

	Return delta between last position and current position, in the
screen coordinate system (self.dx, self.dy).

	
dsx

	Delta between self.sx and self.psx, in 0-1 range.

	
dsy

	Delta between self.sy and self.psy, in 0-1 range.

	
dsz

	Delta between self.sz and self.psz, in 0-1 range.

	
dx

	Delta between self.x and self.px, in window range.

	
dy

	Delta between self.y and self.py, in window range.

	
dz

	Delta between self.z and self.pz, in window range.

	
grab(class_instance, exclusive=False)

	Grab this motion event.

If this event is a touch you can grab it if you want to receive
subsequent on_touch_move() and
on_touch_up() events, even if the touch
is not dispatched by the parent:

def on_touch_down(self, touch):
 touch.grab(self)

def on_touch_move(self, touch):
 if touch.grab_current is self:
 # I received my grabbed touch
 else:
 # it's a normal touch

def on_touch_up(self, touch):
 if touch.grab_current is self:
 # I receive my grabbed touch, I must ungrab it!
 touch.ungrab(self)
 else:
 # it's a normal touch
 pass

Changed in version 2.1.0: Allowed grab for non-touch events.

	
grab_current

	Used to determine which widget the event is being dispatched to.
Check the grab() function for more information.

	
id

	Id of the event, not unique. This is generally the Id set by the
input provider, like ID in TUIO. If you have multiple TUIO sources,
then same id can be used. Prefer to use uid attribute
instead.

	
is_double_tap

	Indicate if the touch event is a double tap or not.

	
property is_mouse_scrolling

	Returns True if the touch event is a mousewheel scrolling

New in version 1.6.0.

	
is_touch

	True if the MotionEvent is a touch.

	
is_triple_tap

	Indicate if the touch event is a triple tap or not.

New in version 1.7.0.

	
move(args)

	Move to another position.

	
property opos

	Return the initial position of the motion event in the screen
coordinate system (self.ox, self.oy).

	
osx

	Origin X position, in 0-1 range.

	
osy

	Origin Y position, in 0-1 range.

	
osz

	Origin Z position, in 0-1 range.

	
ox

	Origin X position, in window range.

	
oy

	Origin Y position, in window range.

	
oz

	Origin Z position, in window range.

	
pop()

	Pop attributes values from the stack.

	
pos

	Position (X, Y), in window range.

	
property ppos

	Return the previous position of the motion event in the screen
coordinate system (self.px, self.py).

	
profile

	Profiles currently used in the event.

	
psx

	Previous X position, in 0-1 range.

	
psy

	Previous Y position, in 0-1 range.

	
psz

	Previous Z position, in 0-1 range.

	
push(attrs=None)

	Push attribute values in attrs onto the stack.

	
push_attrs_stack

	Attributes to push by default, when we use push() : x, y, z,
dx, dy, dz, ox, oy, oz, px, py, pz.

	
px

	Previous X position, in window range.

	
py

	Previous Y position, in window range.

	
pz

	Previous Z position, in window range.

	
scale_for_screen(w, h, p=None, rotation=0, smode='None', kheight=0)

	Scale position for the screen.

Changed in version 2.1.0: Max value for x, y and z is changed respectively to w - 1,
h - 1 and p - 1.

	
shape

	Shape of the touch event, subclass of
Shape.
By default, the property is set to None.

	
property spos

	Return the position in the 0-1 coordinate system (self.sx, self.sy).

	
sx

	X position, in 0-1 range.

	
sy

	Y position, in 0-1 range.

	
sync_with_dispatch

	If set to True (default) keeps first previous position
(X, Y, Z in 0-1 range) and ignore all other until
MotionEvent.dispatch_done() is called from the EventLoop.

This attribute is needed because event provider can make many calls
to MotionEvent.move(), but for all those calls event is
dispatched to the listeners only once. Assigning False will keep
latest previous position. See MotionEvent.move().

New in version 2.1.0.

	
sz

	Z position, in 0-1 range.

	
time_end

	Time of the end event (last event usage).

	
time_start

	Initial time of the event creation.

	
time_update

	Time of the last update.

	
to_absolute_pos(nx, ny, x_max, y_max, rotation)

	Transforms normalized (0-1) coordinates nx and ny to absolute
coordinates using x_max, y_max and rotation.

	Raises:

	ValueError: If rotation is not one of: 0, 90, 180 or 270

New in version 2.1.0.

	
triple_tap_time

	If the touch is a is_triple_tap, this is the time
between the first tap and the current touch.

New in version 1.7.0.

	
type_id

	(Experimental) String to identify event type.

New in version 2.1.0.

	
ud

	User data dictionary. Use this dictionary to save your own data on
the event.

	
uid

	Uniq ID of the event. You can safely use this property, it will be
never the same across all existing events.

	
ungrab(class_instance)

	Ungrab a previously grabbed motion event.

	
x

	X position, in window range.

	
y

	Y position, in window range.

	
z

	Z position, in window range.

	
class kivy.input.MotionEventFactory

	Bases: builtins.object

MotionEvent factory is a class that registers all availables input
factories. If you create a new input factory, you need to register
it here:

MotionEventFactory.register('myproviderid', MyInputProvider)

	
static get(name)

	Get a provider class from the provider id

	
static list()

	Get a list of all available providers

	
static register(name, classname)

	Register a input provider in the database

	
class kivy.input.MotionEventProvider(device, args)

	Bases: builtins.object

Base class for a provider.

	
start()

	Start the provider. This method is automatically called when the
application is started and if the configuration uses the current
provider.

	
stop()

	Stop the provider.

	
update(dispatch_fn)

	Update the provider and dispatch all the new touch events though the
dispatch_fn argument.

	Input Postprocessing
	Calibration
	InputPostprocCalibration

	Dejitter
	InputPostprocDejitter

	Double Tap
	InputPostprocDoubleTap
	InputPostprocDoubleTap.find_double_tap()

	Ignore list
	InputPostprocIgnoreList

	Retain Touch
	InputPostprocRetainTouch

	Triple Tap
	InputPostprocTripleTap
	InputPostprocTripleTap.find_triple_tap()

	Providers
	Android Joystick Input Provider
	AndroidMotionEventProvider
	AndroidMotionEventProvider.start()

	AndroidMotionEventProvider.stop()

	AndroidMotionEventProvider.update()

	Auto Create Input Provider Config Entry for Available MT Hardware (linux only).

	Common definitions for a Windows provider

	Leap Motion - finger only
	LeapFingerEvent
	LeapFingerEvent.depack()

	LeapFingerEventProvider
	LeapFingerEventProvider.start()

	LeapFingerEventProvider.update()

	Mouse provider implementation
	Using multitouch interaction with the mouse

	MouseMotionEventProvider
	MouseMotionEventProvider.disable_hover

	MouseMotionEventProvider.start()

	MouseMotionEventProvider.stop()

	MouseMotionEventProvider.update()

	Native support for HID input from the linux kernel
	HIDMotionEvent
	HIDMotionEvent.depack()

	Native support for Multitouch devices on Linux, using libmtdev.
	MTDMotionEvent
	MTDMotionEvent.depack()

	Native support of MultitouchSupport framework for MacBook (MaxOSX platform)
	MacMotionEventProvider
	MacMotionEventProvider.start()

	MacMotionEventProvider.stop()

	MacMotionEventProvider.update()

	Native support of Wacom tablet from linuxwacom driver
	LinuxWacomMotionEvent
	LinuxWacomMotionEvent.depack()

	TUIO Input Provider
	Configure a TUIO provider in the config.ini

	Configure a TUIO provider in the App

	Tuio2dCurMotionEvent
	Tuio2dCurMotionEvent.depack()

	Tuio2dObjMotionEvent
	Tuio2dObjMotionEvent.depack()

	TuioMotionEventProvider
	TuioMotionEventProvider.create()

	TuioMotionEventProvider.register()

	TuioMotionEventProvider.start()

	TuioMotionEventProvider.stop()

	TuioMotionEventProvider.unregister()

	TuioMotionEventProvider.update()

	Input recorder
	Recording events

	Manual play

	Recording more attributes

	Known limitations

	Recorder
	Recorder.counter

	Recorder.filename

	Recorder.play

	Recorder.record

	Recorder.record_attrs

	Recorder.record_profile_mask

	Recorder.window

	Motion Event
	Flow of the motion events

	Motion events and event managers

	Listening to a motion event

	Profiles

	MotionEvent
	MotionEvent.apply_transform_2d()

	MotionEvent.button

	MotionEvent.copy_to()

	MotionEvent.depack()

	MotionEvent.device

	MotionEvent.dispatch_done()

	MotionEvent.dispatch_mode

	MotionEvent.distance()

	MotionEvent.double_tap_time

	MotionEvent.dpos

	MotionEvent.dsx

	MotionEvent.dsy

	MotionEvent.dsz

	MotionEvent.dx

	MotionEvent.dy

	MotionEvent.dz

	MotionEvent.grab()

	MotionEvent.grab_current

	MotionEvent.id

	MotionEvent.is_double_tap

	MotionEvent.is_mouse_scrolling

	MotionEvent.is_touch

	MotionEvent.is_triple_tap

	MotionEvent.move()

	MotionEvent.opos

	MotionEvent.osx

	MotionEvent.osy

	MotionEvent.osz

	MotionEvent.ox

	MotionEvent.oy

	MotionEvent.oz

	MotionEvent.pop()

	MotionEvent.pos

	MotionEvent.ppos

	MotionEvent.profile

	MotionEvent.psx

	MotionEvent.psy

	MotionEvent.psz

	MotionEvent.push()

	MotionEvent.push_attrs_stack

	MotionEvent.px

	MotionEvent.py

	MotionEvent.pz

	MotionEvent.scale_for_screen()

	MotionEvent.shape

	MotionEvent.spos

	MotionEvent.sx

	MotionEvent.sy

	MotionEvent.sync_with_dispatch

	MotionEvent.sz

	MotionEvent.time_end

	MotionEvent.time_start

	MotionEvent.time_update

	MotionEvent.to_absolute_pos()

	MotionEvent.triple_tap_time

	MotionEvent.type_id

	MotionEvent.ud

	MotionEvent.uid

	MotionEvent.ungrab()

	MotionEvent.x

	MotionEvent.y

	MotionEvent.z

	Motion Event Factory
	MotionEventFactory
	MotionEventFactory.get()

	MotionEventFactory.list()

	MotionEventFactory.register()

	Motion Event Provider
	MotionEventProvider
	MotionEventProvider.start()

	MotionEventProvider.stop()

	MotionEventProvider.update()

	Motion Event Shape
	Shape

	ShapeRect
	ShapeRect.height

	ShapeRect.width

Input Postprocessing

	Calibration
	InputPostprocCalibration

	Dejitter
	InputPostprocDejitter

	Double Tap
	InputPostprocDoubleTap
	InputPostprocDoubleTap.find_double_tap()

	Ignore list
	InputPostprocIgnoreList

	Retain Touch
	InputPostprocRetainTouch

	Triple Tap
	InputPostprocTripleTap
	InputPostprocTripleTap.find_triple_tap()

Calibration

New in version 1.9.0.

Recalibrate input device to a specific range / offset.

Let’s say you have 3 1080p displays, the 2 firsts are multitouch. By default,
both will have mixed touch, the range will conflict with each others: the 0-1
range will goes to 0-5760 px (remember, 3 * 1920 = 5760.)

To fix it, you need to manually reference them. For example:

[input]
left = mtdev,/dev/input/event17
middle = mtdev,/dev/input/event15
the right screen is just a display.

Then, you can use the calibration postproc module:

[postproc:calibration]
left = xratio=0.3333
middle = xratio=0.3333,xoffset=0.3333

Now, the touches from the left screen will be within 0-0.3333 range, and the
touches from the middle screen will be within 0.3333-0.6666 range.

You can also match calibration rules to devices based on their provider type.
This is useful when probesysfs is used to match devices. For example:

[input]
mtdev_%(name)s = probesysfs,provider=mtdev

Then to apply calibration to any mtdev device, you can assign rules to the
provider name enclosed by parentheses:

[postproc:calibration]
(mtdev) = xratio=0.3333,xoffset=0.3333

Calibrating devices like this means the device’s path doesn’t need to be
configured ahead of time. Note that with this method, all mtdev inputs will
have the same calibration applied to them. For this reason, matching by
provider will typically be useful when expecting only one input device.

	
class kivy.input.postproc.calibration.InputPostprocCalibration

	Bases: builtins.object

Recalibrate the inputs.

The configuration must go within a section named postproc:calibration.
Within the section, you must have a line like:

devicename = param=value,param=value

If you wish to match by provider, you must have a line like:

(provider) = param=value,param=value

	Parameters:

	
	xratio: float
	Value to multiply X

	yratio: float
	Value to multiply Y

	xoffset: float
	Value to add to X

	yoffset: float
	Value to add to Y

	auto: str
	If set, then the touch is transformed from screen-relative
to window-relative The value is used as an indication of
screen size, e.g for fullHD:

auto=1920x1080

If present, this setting overrides all the others.
This assumes the input device exactly covers the display
area, if they are different, the computations will be wrong.

Changed in version 1.11.0: Added auto parameter

Dejitter

Prevent blob jittering.

A problem that is often faced (esp. in optical MT setups) is that of
jitterish BLOBs caused by bad camera characteristics. With this module
you can get rid of that jitter. You just define a threshold
jitter_distance in your config, and all touch movements that move
the touch by less than the jitter distance are considered ‘bad’
movements caused by jitter and will be discarded.

	
class kivy.input.postproc.dejitter.InputPostprocDejitter

	Bases: builtins.object

Get rid of jitterish BLOBs.
Example:

[postproc]
jitter_distance = 0.004
jitter_ignore_devices = mouse,mactouch

	Configuration:

	
	jitter_distance: float
	A float in range 0-1.

	jitter_ignore_devices: string
	A comma-separated list of device identifiers that
should not be processed by dejitter (because they’re
very precise already).

Double Tap

Search touch for a double tap

	
class kivy.input.postproc.doubletap.InputPostprocDoubleTap

	Bases: builtins.object

InputPostProcDoubleTap is a post-processor to check if
a touch is a double tap or not.
Double tap can be configured in the Kivy config file:

[postproc]
double_tap_time = 250
double_tap_distance = 20

Distance parameter is in the range 0-1000 and time is in milliseconds.

	
find_double_tap(ref)

	Find a double tap touch within self.touches.
The touch must be not a previous double tap and the distance must be
within the specified threshold. Additionally, the touch profiles
must be the same kind of touch.

Ignore list

Ignore touch on some areas of the screen

	
class kivy.input.postproc.ignorelist.InputPostprocIgnoreList

	Bases: builtins.object

InputPostprocIgnoreList is a post-processor which removes touches in the
Ignore list. The Ignore list can be configured in the Kivy config file:

[postproc]
Format: [(xmin, ymin, xmax, ymax), ...]
ignore = [(0.1, 0.1, 0.15, 0.15)]

The Ignore list coordinates are in the range 0-1, not in screen pixels.

Retain Touch

Reuse touch to counter lost finger behavior

	
class kivy.input.postproc.retaintouch.InputPostprocRetainTouch

	Bases: builtins.object

InputPostprocRetainTouch is a post-processor to delay the ‘up’ event of a
touch, to reuse it under certains conditions. This module is designed to
prevent lost finger touches on some hardware/setups.

Retain touch can be configured in the Kivy config file:

[postproc]
 retain_time = 100
 retain_distance = 50

The distance parameter is in the range 0-1000 and time is in milliseconds.

Triple Tap

New in version 1.7.0.

Search touch for a triple tap

	
class kivy.input.postproc.tripletap.InputPostprocTripleTap

	Bases: builtins.object

InputPostProcTripleTap is a post-processor to check if
a touch is a triple tap or not.
Triple tap can be configured in the Kivy config file:

[postproc]
triple_tap_time = 250
triple_tap_distance = 20

The distance parameter is in the range 0-1000 and time is in milliseconds.

	
find_triple_tap(ref)

	Find a triple tap touch within self.touches.
The touch must be not be a previous triple tap and the distance
must be be within the bounds specified. Additionally, the touch profile
must be the same kind of touch.

Providers

	Android Joystick Input Provider
	AndroidMotionEventProvider
	AndroidMotionEventProvider.start()

	AndroidMotionEventProvider.stop()

	AndroidMotionEventProvider.update()

	Auto Create Input Provider Config Entry for Available MT Hardware (linux only).

	Common definitions for a Windows provider

	Leap Motion - finger only
	LeapFingerEvent
	LeapFingerEvent.depack()

	LeapFingerEventProvider
	LeapFingerEventProvider.start()

	LeapFingerEventProvider.update()

	Mouse provider implementation
	Using multitouch interaction with the mouse

	MouseMotionEventProvider
	MouseMotionEventProvider.disable_hover

	MouseMotionEventProvider.start()

	MouseMotionEventProvider.stop()

	MouseMotionEventProvider.update()

	Native support for HID input from the linux kernel
	HIDMotionEvent
	HIDMotionEvent.depack()

	Native support for Multitouch devices on Linux, using libmtdev.
	MTDMotionEvent
	MTDMotionEvent.depack()

	Native support of MultitouchSupport framework for MacBook (MaxOSX platform)
	MacMotionEventProvider
	MacMotionEventProvider.start()

	MacMotionEventProvider.stop()

	MacMotionEventProvider.update()

	Native support of Wacom tablet from linuxwacom driver
	LinuxWacomMotionEvent
	LinuxWacomMotionEvent.depack()

	TUIO Input Provider
	Configure a TUIO provider in the config.ini

	Configure a TUIO provider in the App

	Tuio2dCurMotionEvent
	Tuio2dCurMotionEvent.depack()

	Tuio2dObjMotionEvent
	Tuio2dObjMotionEvent.depack()

	TuioMotionEventProvider
	TuioMotionEventProvider.create()

	TuioMotionEventProvider.register()

	TuioMotionEventProvider.start()

	TuioMotionEventProvider.stop()

	TuioMotionEventProvider.unregister()

	TuioMotionEventProvider.update()

Android Joystick Input Provider

This module is based on the PyGame JoyStick Input Provider. For more
information, please refer to
http://www.pygame.org/docs/ref/joystick.html

	
class kivy.input.providers.androidjoystick.AndroidMotionEventProvider(device, args)

	Bases: kivy.input.provider.MotionEventProvider

	
start()

	Start the provider. This method is automatically called when the
application is started and if the configuration uses the current
provider.

	
stop()

	Stop the provider.

	
update(dispatch_fn)

	Update the provider and dispatch all the new touch events though the
dispatch_fn argument.

Auto Create Input Provider Config Entry for Available MT Hardware (linux only).

Thanks to Marc Tardif for the probing code, taken from scan-for-mt-device.

The device discovery is done by this provider. However, the reading of
input can be performed by other providers like: hidinput, mtdev and
linuxwacom. mtdev is used prior to other providers. For more
information about mtdev, check mtdev.

Here is an example of auto creation:

[input]
using mtdev
device_%(name)s = probesysfs,provider=mtdev
using hidinput
device_%(name)s = probesysfs,provider=hidinput
using mtdev with a match on name
device_%(name)s = probesysfs,provider=mtdev,match=acer

using hidinput with custom parameters to hidinput (all on one line)
%(name)s = probesysfs,
 provider=hidinput,param=min_pressure=1,param=max_pressure=99

you can also match your wacom touchscreen
touch = probesysfs,match=E3 Finger,provider=linuxwacom,
 select_all=1,param=mode=touch
and your wacom pen
pen = probesysfs,match=E3 Pen,provider=linuxwacom,
 select_all=1,param=mode=pen

By default, ProbeSysfs module will enumerate hardware from the /sys/class/input
device, and configure hardware with ABS_MT_POSITION_X capability. But for
example, the wacom screen doesn’t support this capability. You can prevent this
behavior by putting select_all=1 in your config line. Add use_mouse=1 to also
include touchscreen hardware that offers core pointer functionality.

Common definitions for a Windows provider

This file provides common definitions for constants used by WM_Touch / WM_Pen.

Leap Motion - finger only

	
class kivy.input.providers.leapfinger.LeapFingerEvent(*args, **kwargs)

	Bases: kivy.input.motionevent.MotionEvent

	
depack(args)

	Depack args into attributes of the class

	
class kivy.input.providers.leapfinger.LeapFingerEventProvider(device, args)

	Bases: kivy.input.provider.MotionEventProvider

	
start()

	Start the provider. This method is automatically called when the
application is started and if the configuration uses the current
provider.

	
update(dispatch_fn)

	Update the provider and dispatch all the new touch events though the
dispatch_fn argument.

Mouse provider implementation

On linux systems, the mouse provider can be annoying when used with another
multitouch provider (hidinput or mtdev). The Mouse can conflict with them: a
single touch can generate one event from the mouse provider and another
from the multitouch provider.

To avoid this behavior, you can activate the “disable_on_activity” token in
the mouse configuration. Then, if any touches are created by another
provider, the mouse event will be discarded. Add this to your configuration:

[input]
mouse = mouse,disable_on_activity

Using multitouch interaction with the mouse

New in version 1.3.0.

By default, the middle and right mouse buttons, as well as a combination of
ctrl + left mouse button are used for multitouch emulation.
If you want to use them for other purposes, you can disable this behavior by
activating the “disable_multitouch” token:

[input]
mouse = mouse,disable_multitouch

Changed in version 1.9.0.

You can now selectively control whether a click initiated as described above
will emulate multi-touch. If the touch has been initiated in the above manner
(e.g. right mouse button), a multitouch_sim value will be added to the
touch’s profile, and a multitouch_sim property will be added to the touch.
By default, multitouch_sim is True and multitouch will be emulated for that
touch. If, however, multitouch_on_demand is added to the config:

[input]
mouse = mouse,multitouch_on_demand

then multitouch_sim defaults to False. In that case, if multitouch_sim
is set to True before the mouse is released (e.g. in on_touch_down/move), the
touch will simulate a multi-touch event. For example:

if 'multitouch_sim' in touch.profile:
 touch.multitouch_sim = True

Changed in version 2.1.0.

Provider dispatches hover events by listening to properties/events in
Window. Dispatching can be disabled by setting
MouseMotionEventProvider.disable_hover to True or by adding
disable_hover in the config:

[input]
mouse = mouse,disable_hover

It’s also possible to enable/disable hover events at runtime with
MouseMotionEventProvider.disable_hover property.

Following is a list of the supported values for the
profile property list.

	Profile value

	Description

	button

	Mouse button (one of left, right, middle, scrollup
or scrolldown). Accessed via the ‘button’ property.

	pos

	2D position. Also reflected in the
x,
y
and pos
properties.

	multitouch_sim

	Specifies whether multitouch is simulated or not. Accessed
via the ‘multitouch_sim’ property.

	
class kivy.input.providers.mouse.MouseMotionEventProvider(device, args)

	Bases: kivy.input.provider.MotionEventProvider

	
property disable_hover

	Disables dispatching of hover events if set to True.

Hover events are enabled by default (disable_hover is False). See
module documentation if you want to enable/disable hover events through
config file.

New in version 2.1.0.

	
start()

	Start the mouse provider

	
stop()

	Stop the mouse provider

	
update(dispatch_fn)

	Update the mouse provider (pop event from the queue)

Native support for HID input from the linux kernel

Support starts from 2.6.32-ubuntu, or 2.6.34.

To configure HIDInput, add this to your configuration:

[input]
devicename = hidinput,/dev/input/eventXX
example with Stantum MTP4.3" screen
stantum = hidinput,/dev/input/event2

Note

You must have read access to the input event.

You can use a custom range for the X, Y and pressure values.
For some drivers, the range reported is invalid.
To fix that, you can add these options to the argument line:

	invert_x : 1 to invert X axis

	invert_y : 1 to invert Y axis

	min_position_x : X relative minimum

	max_position_x : X relative maximum

	min_position_y : Y relative minimum

	max_position_y : Y relative maximum

	min_abs_x : X absolute minimum

	min_abs_y : Y absolute minimum

	max_abs_x : X absolute maximum

	max_abs_y : Y absolute maximum

	min_pressure : pressure minimum

	max_pressure : pressure maximum

	rotation : rotate the input coordinate (0, 90, 180, 270)

For example, on the Asus T101M, the touchscreen reports a range from 0-4095 for
the X and Y values, but the real values are in a range from 0-32768. To correct
this, you can add the following to the configuration:

[input]
t101m = hidinput,/dev/input/event7,max_position_x=32768,max_position_y=32768

New in version 1.9.1: rotation configuration token added.

	
class kivy.input.providers.hidinput.HIDMotionEvent(*args, **kwargs)

	Bases: kivy.input.motionevent.MotionEvent

	
depack(args)

	Depack args into attributes of the class

Native support for Multitouch devices on Linux, using libmtdev.

The Mtdev project is a part of the Ubuntu Maverick multitouch architecture.
You can read more on http://wiki.ubuntu.com/Multitouch

To configure MTDev, it’s preferable to use probesysfs providers.
Check probesysfs for more information.

Otherwise, add this to your configuration:

[input]
devicename = hidinput,/dev/input/eventXX
acert230h = mtdev,/dev/input/event2

Note

You must have read access to the input event.

You can use a custom range for the X, Y and pressure values.
On some drivers, the range reported is invalid.
To fix that, you can add these options to the argument line:

	invert_x : 1 to invert X axis

	invert_y : 1 to invert Y axis

	min_position_x : X minimum

	max_position_x : X maximum

	min_position_y : Y minimum

	max_position_y : Y maximum

	min_pressure : pressure minimum

	max_pressure : pressure maximum

	min_touch_major : width shape minimum

	max_touch_major : width shape maximum

	min_touch_minor : width shape minimum

	max_touch_minor : height shape maximum

	rotation : 0,90,180 or 270 to rotate

An inverted display configuration will look like this:

[input]
example for inverting touch events
display = mtdev,/dev/input/event0,invert_x=1,invert_y=1

	
class kivy.input.providers.mtdev.MTDMotionEvent(*args, **kwargs)

	Bases: kivy.input.motionevent.MotionEvent

	
depack(args)

	Depack args into attributes of the class

Native support of MultitouchSupport framework for MacBook (MaxOSX platform)

	
class kivy.input.providers.mactouch.MacMotionEventProvider(*largs, **kwargs)

	Bases: kivy.input.provider.MotionEventProvider

	
start()

	Start the provider. This method is automatically called when the
application is started and if the configuration uses the current
provider.

	
stop()

	Stop the provider.

	
update(dispatch_fn)

	Update the provider and dispatch all the new touch events though the
dispatch_fn argument.

Native support of Wacom tablet from linuxwacom driver

To configure LinuxWacom, add this to your configuration:

[input]
pen = linuxwacom,/dev/input/event2,mode=pen
finger = linuxwacom,/dev/input/event3,mode=touch

Note

You must have read access to the input event.

You can use a custom range for the X, Y and pressure values.
On some drivers, the range reported is invalid.
To fix that, you can add these options to the argument line:

	invert_x : 1 to invert X axis

	invert_y : 1 to invert Y axis

	min_position_x : X minimum

	max_position_x : X maximum

	min_position_y : Y minimum

	max_position_y : Y maximum

	min_pressure : pressure minimum

	max_pressure : pressure maximum

	
class kivy.input.providers.linuxwacom.LinuxWacomMotionEvent(*args, **kwargs)

	Bases: kivy.input.motionevent.MotionEvent

	
depack(args)

	Depack args into attributes of the class

TUIO Input Provider

TUIO is the de facto standard network protocol for the transmission of
touch and fiducial information between a server and a client. To learn
more about TUIO (which is itself based on the OSC protocol), please
refer to http://tuio.org – The specification should be of special
interest.

Configure a TUIO provider in the config.ini

The TUIO provider can be configured in the configuration file in the
[input] section:

[input]
name = tuio,<ip>:<port>
multitouchtable = tuio,192.168.0.1:3333

Configure a TUIO provider in the App

You must add the provider before your application is run, like this:

from kivy.app import App
from kivy.config import Config

class TestApp(App):
 def build(self):
 Config.set('input', 'multitouchscreen1', 'tuio,0.0.0.0:3333')
 # You can also add a second TUIO listener
 # Config.set('input', 'source2', 'tuio,0.0.0.0:3334')
 # Then do the usual things
 # ...
 return

	
class kivy.input.providers.tuio.Tuio2dCurMotionEvent(*args, **kwargs)

	Bases: kivy.input.providers.tuio.TuioMotionEvent

A 2dCur TUIO touch.

	
depack(args)

	Depack args into attributes of the class

	
class kivy.input.providers.tuio.Tuio2dObjMotionEvent(*args, **kwargs)

	Bases: kivy.input.providers.tuio.TuioMotionEvent

A 2dObj TUIO object.

	
depack(args)

	Depack args into attributes of the class

	
class kivy.input.providers.tuio.TuioMotionEventProvider(device, args)

	Bases: kivy.input.provider.MotionEventProvider

The TUIO provider listens to a socket and handles some of the incoming
OSC messages:

	/tuio/2Dcur

	/tuio/2Dobj

You can easily extend the provider to handle new TUIO paths like so:

Create a class to handle the new TUIO type/path
Replace NEWPATH with the pathname you want to handle
class TuioNEWPATHMotionEvent(MotionEvent):

 def depack(self, args):
 # In this method, implement 'unpacking' for the received
 # arguments. you basically translate from TUIO args to Kivy
 # MotionEvent variables. If all you receive are x and y
 # values, you can do it like this:
 if len(args) == 2:
 self.sx, self.sy = args
 self.profile = ('pos',)
 self.sy = 1 - self.sy
 super().depack(args)

Register it with the TUIO MotionEvent provider.
You obviously need to replace the PATH placeholders appropriately.
TuioMotionEventProvider.register('/tuio/PATH', TuioNEWPATHMotionEvent)

Note

The class name is of no technical importance. Your class will be
associated with the path that you pass to the register()
function. To keep things simple, you should name your class after the
path that it handles, though.

	
static create(oscpath, **kwargs)

	Create a touch event from a TUIO path

	
static register(oscpath, classname)

	Register a new path to handle in TUIO provider

	
start()

	Start the TUIO provider

	
stop()

	Stop the TUIO provider

	
static unregister(oscpath, classname)

	Unregister a path to stop handling it in the TUIO provider

	
update(dispatch_fn)

	Update the TUIO provider (pop events from the queue)

Input recorder

New in version 1.1.0.

Warning

This part of Kivy is still experimental and this API is subject to
change in a future version.

This is a class that can record and replay some input events. This can
be used for test cases, screen savers etc.

Once activated, the recorder will listen for any input event and save its
properties in a file with the delta time. Later, you can play the input
file: it will generate fake touch events with the saved properties and
dispatch it to the event loop.

By default, only the position is saved (‘pos’ profile and ‘sx’, ‘sy’,
attributes). Change it only if you understand how input handling works.

Recording events

The best way is to use the “recorder” module. Check the Modules
documentation to see how to activate a module.

Once activated, you can press F8 to start the recording. By default,
events will be written to <currentpath>/recorder.kvi. When you want to
stop recording, press F8 again.

You can replay the file by pressing F7.

Check the Recorder module module for more information.

Manual play

You can manually open a recorder file, and play it by doing:

from kivy.input.recorder import Recorder

rec = Recorder(filename='myrecorder.kvi')
rec.play = True

If you want to loop over that file, you can do:

from kivy.input.recorder import Recorder

def recorder_loop(instance, value):
 if value is False:
 instance.play = True

rec = Recorder(filename='myrecorder.kvi')
rec.bind(play=recorder_loop)
rec.play = True

Recording more attributes

You can extend the attributes to save on one condition: attributes values must
be simple values, not instances of complex classes.

Let’s say you want to save the angle and pressure of the touch, if available:

from kivy.input.recorder import Recorder

rec = Recorder(filename='myrecorder.kvi',
 record_attrs=['is_touch', 'sx', 'sy', 'angle', 'pressure'],
 record_profile_mask=['pos', 'angle', 'pressure'])
rec.record = True

Or with modules variables:

$ python main.py -m recorder,attrs=is_touch:sx:sy:angle:pressure, profile_mask=pos:angle:pressure

Known limitations

	Unable to save attributes with instances of complex classes.

	Values that represent time will not be adjusted.

	Can replay only complete records. If a begin/update/end event is missing,
this could lead to ghost touches.

	Stopping the replay before the end can lead to ghost touches.

	
class kivy.input.recorder.Recorder(**kwargs)

	Bases: kivy.event.EventDispatcher

Recorder class. Please check module documentation for more information.

	Events:

	
	on_stop:
	Fired when the playing stops.

Changed in version 1.10.0: Event on_stop added.

	
counter

	Number of events recorded in the last session.

counter is a NumericProperty and defaults
to 0, read-only.

	
filename

	Filename to save the output of the recorder.

filename is a StringProperty and defaults
to ‘recorder.kvi’.

	
play

	Boolean to start/stop the replay of the current file (if it exists).

play is a BooleanProperty and defaults to
False.

	
record

	Boolean to start/stop the recording of input events.

record is a BooleanProperty and defaults
to False.

	
record_attrs

	Attributes to record from the motion event.

record_attrs is a ListProperty and
defaults to [‘is_touch’, ‘sx’, ‘sy’].

	
record_profile_mask

	Profile to save in the fake motion event when replayed.

record_profile_mask is a ListProperty and
defaults to [‘pos’].

	
window

	Window instance to attach the recorder. If None, it will use the
default instance.

window is a ObjectProperty and
defaults to None.

Motion Event

The MotionEvent is the base class used for events provided by
pointing devices (touch and non-touch). This class defines all the properties
and methods needed to handle 2D and 3D movements but has many more
capabilities.

Usually you would never need to create the MotionEvent yourself as
this is the role of the providers.

Flow of the motion events

	The MotionEvent ‘s are gathered from input providers by
EventLoopBase.

	Post processing is performed by registered processors
postproc.

	EventLoopBase dispatches all motion events using
on_motion event to all registered listeners including the
WindowBase.

	Once received in on_motion() events
(touch or non-touch) are all registered managers. If a touch event is not
handled by at least one manager, then it is dispatched through
on_touch_down(),
on_touch_move() and
on_touch_up().

	Widgets receive events in on_motion() method
(if passed by a manager) or on on_touch_xxx methods.

Motion events and event managers

A motion event is a touch event if its MotionEvent.is_touch is set to
True. Beside is_touch attribute, MotionEvent.type_id can be used to
check for event’s general type. Currently two types are dispatched by
input providers: “touch” and “hover”.

Event managers can be used to dispatch any motion event throughout the widget
tree and a manager uses type_id to specify which event types it want to
receive. See eventmanager to learn how to define and register
an event manager.

A manager can also assign a new type_id to
MotionEvent.type_id before dispatching it to the widgets. This useful
when dispatching a specific event:

class MouseTouchManager(EventManagerBase):

 type_ids = ('touch',)

 def dispatch(self, etype, me):
 accepted = False
 if me.device == 'mouse':
 me.push() # Save current type_id and other values
 me.type_id = 'mouse_touch'
 self.window.transform_motion_event_2d(me)
 # Dispatch mouse touch event to widgets which registered
 # to receive 'mouse_touch'
 for widget in self.window.children[:]:
 if widget.dispatch('on_motion', etype, me):
 accepted = True
 break
 me.pop() # Restore
 return accepted

Listening to a motion event

If you want to receive all motion events, touch or not, you can bind the
MotionEvent from the Window to your own callback:

def on_motion(self, etype, me):
 # will receive all motion events.
 pass

Window.bind(on_motion=on_motion)

You can also listen to changes of the mouse position by watching
mouse_pos.

Profiles

The MotionEvent stores device specific information in various
properties listed in the profile.
For example, you can receive a MotionEvent that has an angle, a fiducial
ID, or even a shape. You can check the profile
attribute to see what is currently supported by the MotionEvent provider.

This is a short list of the profile values supported by default. Please check
the MotionEvent.profile property to see what profile values are
available.

	Profile value

	Description

	angle

	2D angle. Accessed via the a property.

	button

	Mouse button (‘left’, ‘right’, ‘middle’, ‘scrollup’ or
‘scrolldown’). Accessed via the button property.

	markerid

	Marker or Fiducial ID. Accessed via the fid property.

	pos

	2D position. Accessed via the x, y or pos properties.

	pos3d

	3D position. Accessed via the x, y or z properties.

	pressure

	Pressure of the contact. Accessed via the pressure property.

	shape

	Contact shape. Accessed via the shape property .

If you want to know whether the current MotionEvent has an angle:

def on_touch_move(self, touch):
 if 'angle' in touch.profile:
 print('The touch angle is', touch.a)

If you want to select only the fiducials:

def on_touch_move(self, touch):
 if 'markerid' not in touch.profile:
 return

	
class kivy.input.motionevent.MotionEvent(device, id, args, is_touch=False, type_id=None)

	Bases: kivy.input.motionevent.MotionEvent

Abstract class that represents an input event.

	Parameters:

	
	id: str
	unique ID of the MotionEvent

	args: list
	list of parameters, passed to the depack() function

	
apply_transform_2d(transform)

	Apply a transformation on x, y, z, px, py, pz,
ox, oy, oz, dx, dy, dz.

	
button

	Currently pressed button.

	
copy_to(to)

	Copy some attribute to another motion event object.

	
depack(args)

	Depack args into attributes of the class

	
device

	Device used for creating this event.

	
dispatch_done()

	Notify that dispatch to the listeners is done.

Called by the EventLoopBase.post_dispatch_input().

New in version 2.1.0.

	
dispatch_mode

	(Experimental) Used by a event manager or a widget to assign
the dispatching mode. Defaults to
MODE_DEFAULT_DISPATCH. See
eventmanager for available modes.

New in version 2.1.0.

	
distance(other_touch)

	Return the distance between the two events.

	
double_tap_time

	If the touch is a is_double_tap, this is the time
between the previous tap and the current touch.

	
property dpos

	Return delta between last position and current position, in the
screen coordinate system (self.dx, self.dy).

	
dsx

	Delta between self.sx and self.psx, in 0-1 range.

	
dsy

	Delta between self.sy and self.psy, in 0-1 range.

	
dsz

	Delta between self.sz and self.psz, in 0-1 range.

	
dx

	Delta between self.x and self.px, in window range.

	
dy

	Delta between self.y and self.py, in window range.

	
dz

	Delta between self.z and self.pz, in window range.

	
grab(class_instance, exclusive=False)

	Grab this motion event.

If this event is a touch you can grab it if you want to receive
subsequent on_touch_move() and
on_touch_up() events, even if the touch
is not dispatched by the parent:

def on_touch_down(self, touch):
 touch.grab(self)

def on_touch_move(self, touch):
 if touch.grab_current is self:
 # I received my grabbed touch
 else:
 # it's a normal touch

def on_touch_up(self, touch):
 if touch.grab_current is self:
 # I receive my grabbed touch, I must ungrab it!
 touch.ungrab(self)
 else:
 # it's a normal touch
 pass

Changed in version 2.1.0: Allowed grab for non-touch events.

	
grab_current

	Used to determine which widget the event is being dispatched to.
Check the grab() function for more information.

	
id

	Id of the event, not unique. This is generally the Id set by the
input provider, like ID in TUIO. If you have multiple TUIO sources,
then same id can be used. Prefer to use uid attribute
instead.

	
is_double_tap

	Indicate if the touch event is a double tap or not.

	
property is_mouse_scrolling

	Returns True if the touch event is a mousewheel scrolling

New in version 1.6.0.

	
is_touch

	True if the MotionEvent is a touch.

	
is_triple_tap

	Indicate if the touch event is a triple tap or not.

New in version 1.7.0.

	
move(args)

	Move to another position.

	
property opos

	Return the initial position of the motion event in the screen
coordinate system (self.ox, self.oy).

	
osx

	Origin X position, in 0-1 range.

	
osy

	Origin Y position, in 0-1 range.

	
osz

	Origin Z position, in 0-1 range.

	
ox

	Origin X position, in window range.

	
oy

	Origin Y position, in window range.

	
oz

	Origin Z position, in window range.

	
pop()

	Pop attributes values from the stack.

	
pos

	Position (X, Y), in window range.

	
property ppos

	Return the previous position of the motion event in the screen
coordinate system (self.px, self.py).

	
profile

	Profiles currently used in the event.

	
psx

	Previous X position, in 0-1 range.

	
psy

	Previous Y position, in 0-1 range.

	
psz

	Previous Z position, in 0-1 range.

	
push(attrs=None)

	Push attribute values in attrs onto the stack.

	
push_attrs_stack

	Attributes to push by default, when we use push() : x, y, z,
dx, dy, dz, ox, oy, oz, px, py, pz.

	
px

	Previous X position, in window range.

	
py

	Previous Y position, in window range.

	
pz

	Previous Z position, in window range.

	
scale_for_screen(w, h, p=None, rotation=0, smode='None', kheight=0)

	Scale position for the screen.

Changed in version 2.1.0: Max value for x, y and z is changed respectively to w - 1,
h - 1 and p - 1.

	
shape

	Shape of the touch event, subclass of
Shape.
By default, the property is set to None.

	
property spos

	Return the position in the 0-1 coordinate system (self.sx, self.sy).

	
sx

	X position, in 0-1 range.

	
sy

	Y position, in 0-1 range.

	
sync_with_dispatch

	If set to True (default) keeps first previous position
(X, Y, Z in 0-1 range) and ignore all other until
MotionEvent.dispatch_done() is called from the EventLoop.

This attribute is needed because event provider can make many calls
to MotionEvent.move(), but for all those calls event is
dispatched to the listeners only once. Assigning False will keep
latest previous position. See MotionEvent.move().

New in version 2.1.0.

	
sz

	Z position, in 0-1 range.

	
time_end

	Time of the end event (last event usage).

	
time_start

	Initial time of the event creation.

	
time_update

	Time of the last update.

	
to_absolute_pos(nx, ny, x_max, y_max, rotation)

	Transforms normalized (0-1) coordinates nx and ny to absolute
coordinates using x_max, y_max and rotation.

	Raises:

	ValueError: If rotation is not one of: 0, 90, 180 or 270

New in version 2.1.0.

	
triple_tap_time

	If the touch is a is_triple_tap, this is the time
between the first tap and the current touch.

New in version 1.7.0.

	
type_id

	(Experimental) String to identify event type.

New in version 2.1.0.

	
ud

	User data dictionary. Use this dictionary to save your own data on
the event.

	
uid

	Uniq ID of the event. You can safely use this property, it will be
never the same across all existing events.

	
ungrab(class_instance)

	Ungrab a previously grabbed motion event.

	
x

	X position, in window range.

	
y

	Y position, in window range.

	
z

	Z position, in window range.

Motion Event Factory

Factory of MotionEvent providers.

	
class kivy.input.factory.MotionEventFactory

	Bases: builtins.object

MotionEvent factory is a class that registers all availables input
factories. If you create a new input factory, you need to register
it here:

MotionEventFactory.register('myproviderid', MyInputProvider)

	
static get(name)

	Get a provider class from the provider id

	
static list()

	Get a list of all available providers

	
static register(name, classname)

	Register a input provider in the database

Motion Event Provider

Abstract class for the implementation of a
MotionEvent
provider. The implementation must support the
start(), stop() and
update() methods.

	
class kivy.input.provider.MotionEventProvider(device, args)

	Bases: builtins.object

Base class for a provider.

	
start()

	Start the provider. This method is automatically called when the
application is started and if the configuration uses the current
provider.

	
stop()

	Stop the provider.

	
update(dispatch_fn)

	Update the provider and dispatch all the new touch events though the
dispatch_fn argument.

Motion Event Shape

Represent the shape of the MotionEvent

	
class kivy.input.shape.Shape

	Bases: builtins.object

Abstract class for all implementations of a shape

	
class kivy.input.shape.ShapeRect

	Bases: kivy.input.shape.Shape

Class for the representation of a rectangle.

	
height

	Height of the rect

	
width

	Width of the rect

Motion Event Factory

Factory of MotionEvent providers.

	
class kivy.input.factory.MotionEventFactory

	Bases: builtins.object

MotionEvent factory is a class that registers all availables input
factories. If you create a new input factory, you need to register
it here:

MotionEventFactory.register('myproviderid', MyInputProvider)

	
static get(name)

	Get a provider class from the provider id

	
static list()

	Get a list of all available providers

	
static register(name, classname)

	Register a input provider in the database

Motion Event

The MotionEvent is the base class used for events provided by
pointing devices (touch and non-touch). This class defines all the properties
and methods needed to handle 2D and 3D movements but has many more
capabilities.

Usually you would never need to create the MotionEvent yourself as
this is the role of the providers.

Flow of the motion events

	The MotionEvent ‘s are gathered from input providers by
EventLoopBase.

	Post processing is performed by registered processors
postproc.

	EventLoopBase dispatches all motion events using
on_motion event to all registered listeners including the
WindowBase.

	Once received in on_motion() events
(touch or non-touch) are all registered managers. If a touch event is not
handled by at least one manager, then it is dispatched through
on_touch_down(),
on_touch_move() and
on_touch_up().

	Widgets receive events in on_motion() method
(if passed by a manager) or on on_touch_xxx methods.

Motion events and event managers

A motion event is a touch event if its MotionEvent.is_touch is set to
True. Beside is_touch attribute, MotionEvent.type_id can be used to
check for event’s general type. Currently two types are dispatched by
input providers: “touch” and “hover”.

Event managers can be used to dispatch any motion event throughout the widget
tree and a manager uses type_id to specify which event types it want to
receive. See eventmanager to learn how to define and register
an event manager.

A manager can also assign a new type_id to
MotionEvent.type_id before dispatching it to the widgets. This useful
when dispatching a specific event:

class MouseTouchManager(EventManagerBase):

 type_ids = ('touch',)

 def dispatch(self, etype, me):
 accepted = False
 if me.device == 'mouse':
 me.push() # Save current type_id and other values
 me.type_id = 'mouse_touch'
 self.window.transform_motion_event_2d(me)
 # Dispatch mouse touch event to widgets which registered
 # to receive 'mouse_touch'
 for widget in self.window.children[:]:
 if widget.dispatch('on_motion', etype, me):
 accepted = True
 break
 me.pop() # Restore
 return accepted

Listening to a motion event

If you want to receive all motion events, touch or not, you can bind the
MotionEvent from the Window to your own callback:

def on_motion(self, etype, me):
 # will receive all motion events.
 pass

Window.bind(on_motion=on_motion)

You can also listen to changes of the mouse position by watching
mouse_pos.

Profiles

The MotionEvent stores device specific information in various
properties listed in the profile.
For example, you can receive a MotionEvent that has an angle, a fiducial
ID, or even a shape. You can check the profile
attribute to see what is currently supported by the MotionEvent provider.

This is a short list of the profile values supported by default. Please check
the MotionEvent.profile property to see what profile values are
available.

	Profile value

	Description

	angle

	2D angle. Accessed via the a property.

	button

	Mouse button (‘left’, ‘right’, ‘middle’, ‘scrollup’ or
‘scrolldown’). Accessed via the button property.

	markerid

	Marker or Fiducial ID. Accessed via the fid property.

	pos

	2D position. Accessed via the x, y or pos properties.

	pos3d

	3D position. Accessed via the x, y or z properties.

	pressure

	Pressure of the contact. Accessed via the pressure property.

	shape

	Contact shape. Accessed via the shape property .

If you want to know whether the current MotionEvent has an angle:

def on_touch_move(self, touch):
 if 'angle' in touch.profile:
 print('The touch angle is', touch.a)

If you want to select only the fiducials:

def on_touch_move(self, touch):
 if 'markerid' not in touch.profile:
 return

	
class kivy.input.motionevent.MotionEvent(device, id, args, is_touch=False, type_id=None)

	Bases: kivy.input.motionevent.MotionEvent

Abstract class that represents an input event.

	Parameters:

	
	id: str
	unique ID of the MotionEvent

	args: list
	list of parameters, passed to the depack() function

	
apply_transform_2d(transform)

	Apply a transformation on x, y, z, px, py, pz,
ox, oy, oz, dx, dy, dz.

	
button

	Currently pressed button.

	
copy_to(to)

	Copy some attribute to another motion event object.

	
depack(args)

	Depack args into attributes of the class

	
device

	Device used for creating this event.

	
dispatch_done()

	Notify that dispatch to the listeners is done.

Called by the EventLoopBase.post_dispatch_input().

New in version 2.1.0.

	
dispatch_mode

	(Experimental) Used by a event manager or a widget to assign
the dispatching mode. Defaults to
MODE_DEFAULT_DISPATCH. See
eventmanager for available modes.

New in version 2.1.0.

	
distance(other_touch)

	Return the distance between the two events.

	
double_tap_time

	If the touch is a is_double_tap, this is the time
between the previous tap and the current touch.

	
property dpos

	Return delta between last position and current position, in the
screen coordinate system (self.dx, self.dy).

	
dsx

	Delta between self.sx and self.psx, in 0-1 range.

	
dsy

	Delta between self.sy and self.psy, in 0-1 range.

	
dsz

	Delta between self.sz and self.psz, in 0-1 range.

	
dx

	Delta between self.x and self.px, in window range.

	
dy

	Delta between self.y and self.py, in window range.

	
dz

	Delta between self.z and self.pz, in window range.

	
grab(class_instance, exclusive=False)

	Grab this motion event.

If this event is a touch you can grab it if you want to receive
subsequent on_touch_move() and
on_touch_up() events, even if the touch
is not dispatched by the parent:

def on_touch_down(self, touch):
 touch.grab(self)

def on_touch_move(self, touch):
 if touch.grab_current is self:
 # I received my grabbed touch
 else:
 # it's a normal touch

def on_touch_up(self, touch):
 if touch.grab_current is self:
 # I receive my grabbed touch, I must ungrab it!
 touch.ungrab(self)
 else:
 # it's a normal touch
 pass

Changed in version 2.1.0: Allowed grab for non-touch events.

	
grab_current

	Used to determine which widget the event is being dispatched to.
Check the grab() function for more information.

	
id

	Id of the event, not unique. This is generally the Id set by the
input provider, like ID in TUIO. If you have multiple TUIO sources,
then same id can be used. Prefer to use uid attribute
instead.

	
is_double_tap

	Indicate if the touch event is a double tap or not.

	
property is_mouse_scrolling

	Returns True if the touch event is a mousewheel scrolling

New in version 1.6.0.

	
is_touch

	True if the MotionEvent is a touch.

	
is_triple_tap

	Indicate if the touch event is a triple tap or not.

New in version 1.7.0.

	
move(args)

	Move to another position.

	
property opos

	Return the initial position of the motion event in the screen
coordinate system (self.ox, self.oy).

	
osx

	Origin X position, in 0-1 range.

	
osy

	Origin Y position, in 0-1 range.

	
osz

	Origin Z position, in 0-1 range.

	
ox

	Origin X position, in window range.

	
oy

	Origin Y position, in window range.

	
oz

	Origin Z position, in window range.

	
pop()

	Pop attributes values from the stack.

	
pos

	Position (X, Y), in window range.

	
property ppos

	Return the previous position of the motion event in the screen
coordinate system (self.px, self.py).

	
profile

	Profiles currently used in the event.

	
psx

	Previous X position, in 0-1 range.

	
psy

	Previous Y position, in 0-1 range.

	
psz

	Previous Z position, in 0-1 range.

	
push(attrs=None)

	Push attribute values in attrs onto the stack.

	
push_attrs_stack

	Attributes to push by default, when we use push() : x, y, z,
dx, dy, dz, ox, oy, oz, px, py, pz.

	
px

	Previous X position, in window range.

	
py

	Previous Y position, in window range.

	
pz

	Previous Z position, in window range.

	
scale_for_screen(w, h, p=None, rotation=0, smode='None', kheight=0)

	Scale position for the screen.

Changed in version 2.1.0: Max value for x, y and z is changed respectively to w - 1,
h - 1 and p - 1.

	
shape

	Shape of the touch event, subclass of
Shape.
By default, the property is set to None.

	
property spos

	Return the position in the 0-1 coordinate system (self.sx, self.sy).

	
sx

	X position, in 0-1 range.

	
sy

	Y position, in 0-1 range.

	
sync_with_dispatch

	If set to True (default) keeps first previous position
(X, Y, Z in 0-1 range) and ignore all other until
MotionEvent.dispatch_done() is called from the EventLoop.

This attribute is needed because event provider can make many calls
to MotionEvent.move(), but for all those calls event is
dispatched to the listeners only once. Assigning False will keep
latest previous position. See MotionEvent.move().

New in version 2.1.0.

	
sz

	Z position, in 0-1 range.

	
time_end

	Time of the end event (last event usage).

	
time_start

	Initial time of the event creation.

	
time_update

	Time of the last update.

	
to_absolute_pos(nx, ny, x_max, y_max, rotation)

	Transforms normalized (0-1) coordinates nx and ny to absolute
coordinates using x_max, y_max and rotation.

	Raises:

	ValueError: If rotation is not one of: 0, 90, 180 or 270

New in version 2.1.0.

	
triple_tap_time

	If the touch is a is_triple_tap, this is the time
between the first tap and the current touch.

New in version 1.7.0.

	
type_id

	(Experimental) String to identify event type.

New in version 2.1.0.

	
ud

	User data dictionary. Use this dictionary to save your own data on
the event.

	
uid

	Uniq ID of the event. You can safely use this property, it will be
never the same across all existing events.

	
ungrab(class_instance)

	Ungrab a previously grabbed motion event.

	
x

	X position, in window range.

	
y

	Y position, in window range.

	
z

	Z position, in window range.

Input Postprocessing

	Calibration
	InputPostprocCalibration

	Dejitter
	InputPostprocDejitter

	Double Tap
	InputPostprocDoubleTap
	InputPostprocDoubleTap.find_double_tap()

	Ignore list
	InputPostprocIgnoreList

	Retain Touch
	InputPostprocRetainTouch

	Triple Tap
	InputPostprocTripleTap
	InputPostprocTripleTap.find_triple_tap()

Calibration

New in version 1.9.0.

Recalibrate input device to a specific range / offset.

Let’s say you have 3 1080p displays, the 2 firsts are multitouch. By default,
both will have mixed touch, the range will conflict with each others: the 0-1
range will goes to 0-5760 px (remember, 3 * 1920 = 5760.)

To fix it, you need to manually reference them. For example:

[input]
left = mtdev,/dev/input/event17
middle = mtdev,/dev/input/event15
the right screen is just a display.

Then, you can use the calibration postproc module:

[postproc:calibration]
left = xratio=0.3333
middle = xratio=0.3333,xoffset=0.3333

Now, the touches from the left screen will be within 0-0.3333 range, and the
touches from the middle screen will be within 0.3333-0.6666 range.

You can also match calibration rules to devices based on their provider type.
This is useful when probesysfs is used to match devices. For example:

[input]
mtdev_%(name)s = probesysfs,provider=mtdev

Then to apply calibration to any mtdev device, you can assign rules to the
provider name enclosed by parentheses:

[postproc:calibration]
(mtdev) = xratio=0.3333,xoffset=0.3333

Calibrating devices like this means the device’s path doesn’t need to be
configured ahead of time. Note that with this method, all mtdev inputs will
have the same calibration applied to them. For this reason, matching by
provider will typically be useful when expecting only one input device.

	
class kivy.input.postproc.calibration.InputPostprocCalibration

	Bases: builtins.object

Recalibrate the inputs.

The configuration must go within a section named postproc:calibration.
Within the section, you must have a line like:

devicename = param=value,param=value

If you wish to match by provider, you must have a line like:

(provider) = param=value,param=value

	Parameters:

	
	xratio: float
	Value to multiply X

	yratio: float
	Value to multiply Y

	xoffset: float
	Value to add to X

	yoffset: float
	Value to add to Y

	auto: str
	If set, then the touch is transformed from screen-relative
to window-relative The value is used as an indication of
screen size, e.g for fullHD:

auto=1920x1080

If present, this setting overrides all the others.
This assumes the input device exactly covers the display
area, if they are different, the computations will be wrong.

Changed in version 1.11.0: Added auto parameter

Dejitter

Prevent blob jittering.

A problem that is often faced (esp. in optical MT setups) is that of
jitterish BLOBs caused by bad camera characteristics. With this module
you can get rid of that jitter. You just define a threshold
jitter_distance in your config, and all touch movements that move
the touch by less than the jitter distance are considered ‘bad’
movements caused by jitter and will be discarded.

	
class kivy.input.postproc.dejitter.InputPostprocDejitter

	Bases: builtins.object

Get rid of jitterish BLOBs.
Example:

[postproc]
jitter_distance = 0.004
jitter_ignore_devices = mouse,mactouch

	Configuration:

	
	jitter_distance: float
	A float in range 0-1.

	jitter_ignore_devices: string
	A comma-separated list of device identifiers that
should not be processed by dejitter (because they’re
very precise already).

Double Tap

Search touch for a double tap

	
class kivy.input.postproc.doubletap.InputPostprocDoubleTap

	Bases: builtins.object

InputPostProcDoubleTap is a post-processor to check if
a touch is a double tap or not.
Double tap can be configured in the Kivy config file:

[postproc]
double_tap_time = 250
double_tap_distance = 20

Distance parameter is in the range 0-1000 and time is in milliseconds.

	
find_double_tap(ref)

	Find a double tap touch within self.touches.
The touch must be not a previous double tap and the distance must be
within the specified threshold. Additionally, the touch profiles
must be the same kind of touch.

Ignore list

Ignore touch on some areas of the screen

	
class kivy.input.postproc.ignorelist.InputPostprocIgnoreList

	Bases: builtins.object

InputPostprocIgnoreList is a post-processor which removes touches in the
Ignore list. The Ignore list can be configured in the Kivy config file:

[postproc]
Format: [(xmin, ymin, xmax, ymax), ...]
ignore = [(0.1, 0.1, 0.15, 0.15)]

The Ignore list coordinates are in the range 0-1, not in screen pixels.

Retain Touch

Reuse touch to counter lost finger behavior

	
class kivy.input.postproc.retaintouch.InputPostprocRetainTouch

	Bases: builtins.object

InputPostprocRetainTouch is a post-processor to delay the ‘up’ event of a
touch, to reuse it under certains conditions. This module is designed to
prevent lost finger touches on some hardware/setups.

Retain touch can be configured in the Kivy config file:

[postproc]
 retain_time = 100
 retain_distance = 50

The distance parameter is in the range 0-1000 and time is in milliseconds.

Triple Tap

New in version 1.7.0.

Search touch for a triple tap

	
class kivy.input.postproc.tripletap.InputPostprocTripleTap

	Bases: builtins.object

InputPostProcTripleTap is a post-processor to check if
a touch is a triple tap or not.
Triple tap can be configured in the Kivy config file:

[postproc]
triple_tap_time = 250
triple_tap_distance = 20

The distance parameter is in the range 0-1000 and time is in milliseconds.

	
find_triple_tap(ref)

	Find a triple tap touch within self.touches.
The touch must be not be a previous triple tap and the distance
must be be within the bounds specified. Additionally, the touch profile
must be the same kind of touch.

Calibration

New in version 1.9.0.

Recalibrate input device to a specific range / offset.

Let’s say you have 3 1080p displays, the 2 firsts are multitouch. By default,
both will have mixed touch, the range will conflict with each others: the 0-1
range will goes to 0-5760 px (remember, 3 * 1920 = 5760.)

To fix it, you need to manually reference them. For example:

[input]
left = mtdev,/dev/input/event17
middle = mtdev,/dev/input/event15
the right screen is just a display.

Then, you can use the calibration postproc module:

[postproc:calibration]
left = xratio=0.3333
middle = xratio=0.3333,xoffset=0.3333

Now, the touches from the left screen will be within 0-0.3333 range, and the
touches from the middle screen will be within 0.3333-0.6666 range.

You can also match calibration rules to devices based on their provider type.
This is useful when probesysfs is used to match devices. For example:

[input]
mtdev_%(name)s = probesysfs,provider=mtdev

Then to apply calibration to any mtdev device, you can assign rules to the
provider name enclosed by parentheses:

[postproc:calibration]
(mtdev) = xratio=0.3333,xoffset=0.3333

Calibrating devices like this means the device’s path doesn’t need to be
configured ahead of time. Note that with this method, all mtdev inputs will
have the same calibration applied to them. For this reason, matching by
provider will typically be useful when expecting only one input device.

	
class kivy.input.postproc.calibration.InputPostprocCalibration

	Bases: builtins.object

Recalibrate the inputs.

The configuration must go within a section named postproc:calibration.
Within the section, you must have a line like:

devicename = param=value,param=value

If you wish to match by provider, you must have a line like:

(provider) = param=value,param=value

	Parameters:

	
	xratio: float
	Value to multiply X

	yratio: float
	Value to multiply Y

	xoffset: float
	Value to add to X

	yoffset: float
	Value to add to Y

	auto: str
	If set, then the touch is transformed from screen-relative
to window-relative The value is used as an indication of
screen size, e.g for fullHD:

auto=1920x1080

If present, this setting overrides all the others.
This assumes the input device exactly covers the display
area, if they are different, the computations will be wrong.

Changed in version 1.11.0: Added auto parameter

Dejitter

Prevent blob jittering.

A problem that is often faced (esp. in optical MT setups) is that of
jitterish BLOBs caused by bad camera characteristics. With this module
you can get rid of that jitter. You just define a threshold
jitter_distance in your config, and all touch movements that move
the touch by less than the jitter distance are considered ‘bad’
movements caused by jitter and will be discarded.

	
class kivy.input.postproc.dejitter.InputPostprocDejitter

	Bases: builtins.object

Get rid of jitterish BLOBs.
Example:

[postproc]
jitter_distance = 0.004
jitter_ignore_devices = mouse,mactouch

	Configuration:

	
	jitter_distance: float
	A float in range 0-1.

	jitter_ignore_devices: string
	A comma-separated list of device identifiers that
should not be processed by dejitter (because they’re
very precise already).

Double Tap

Search touch for a double tap

	
class kivy.input.postproc.doubletap.InputPostprocDoubleTap

	Bases: builtins.object

InputPostProcDoubleTap is a post-processor to check if
a touch is a double tap or not.
Double tap can be configured in the Kivy config file:

[postproc]
double_tap_time = 250
double_tap_distance = 20

Distance parameter is in the range 0-1000 and time is in milliseconds.

	
find_double_tap(ref)

	Find a double tap touch within self.touches.
The touch must be not a previous double tap and the distance must be
within the specified threshold. Additionally, the touch profiles
must be the same kind of touch.

Ignore list

Ignore touch on some areas of the screen

	
class kivy.input.postproc.ignorelist.InputPostprocIgnoreList

	Bases: builtins.object

InputPostprocIgnoreList is a post-processor which removes touches in the
Ignore list. The Ignore list can be configured in the Kivy config file:

[postproc]
Format: [(xmin, ymin, xmax, ymax), ...]
ignore = [(0.1, 0.1, 0.15, 0.15)]

The Ignore list coordinates are in the range 0-1, not in screen pixels.

Retain Touch

Reuse touch to counter lost finger behavior

	
class kivy.input.postproc.retaintouch.InputPostprocRetainTouch

	Bases: builtins.object

InputPostprocRetainTouch is a post-processor to delay the ‘up’ event of a
touch, to reuse it under certains conditions. This module is designed to
prevent lost finger touches on some hardware/setups.

Retain touch can be configured in the Kivy config file:

[postproc]
 retain_time = 100
 retain_distance = 50

The distance parameter is in the range 0-1000 and time is in milliseconds.

Triple Tap

New in version 1.7.0.

Search touch for a triple tap

	
class kivy.input.postproc.tripletap.InputPostprocTripleTap

	Bases: builtins.object

InputPostProcTripleTap is a post-processor to check if
a touch is a triple tap or not.
Triple tap can be configured in the Kivy config file:

[postproc]
triple_tap_time = 250
triple_tap_distance = 20

The distance parameter is in the range 0-1000 and time is in milliseconds.

	
find_triple_tap(ref)

	Find a triple tap touch within self.touches.
The touch must be not be a previous triple tap and the distance
must be be within the bounds specified. Additionally, the touch profile
must be the same kind of touch.

Motion Event Provider

Abstract class for the implementation of a
MotionEvent
provider. The implementation must support the
start(), stop() and
update() methods.

	
class kivy.input.provider.MotionEventProvider(device, args)

	Bases: builtins.object

Base class for a provider.

	
start()

	Start the provider. This method is automatically called when the
application is started and if the configuration uses the current
provider.

	
stop()

	Stop the provider.

	
update(dispatch_fn)

	Update the provider and dispatch all the new touch events though the
dispatch_fn argument.

Providers

	Android Joystick Input Provider
	AndroidMotionEventProvider
	AndroidMotionEventProvider.start()

	AndroidMotionEventProvider.stop()

	AndroidMotionEventProvider.update()

	Auto Create Input Provider Config Entry for Available MT Hardware (linux only).

	Common definitions for a Windows provider

	Leap Motion - finger only
	LeapFingerEvent
	LeapFingerEvent.depack()

	LeapFingerEventProvider
	LeapFingerEventProvider.start()

	LeapFingerEventProvider.update()

	Mouse provider implementation
	Using multitouch interaction with the mouse

	MouseMotionEventProvider
	MouseMotionEventProvider.disable_hover

	MouseMotionEventProvider.start()

	MouseMotionEventProvider.stop()

	MouseMotionEventProvider.update()

	Native support for HID input from the linux kernel
	HIDMotionEvent
	HIDMotionEvent.depack()

	Native support for Multitouch devices on Linux, using libmtdev.
	MTDMotionEvent
	MTDMotionEvent.depack()

	Native support of MultitouchSupport framework for MacBook (MaxOSX platform)
	MacMotionEventProvider
	MacMotionEventProvider.start()

	MacMotionEventProvider.stop()

	MacMotionEventProvider.update()

	Native support of Wacom tablet from linuxwacom driver
	LinuxWacomMotionEvent
	LinuxWacomMotionEvent.depack()

	TUIO Input Provider
	Configure a TUIO provider in the config.ini

	Configure a TUIO provider in the App

	Tuio2dCurMotionEvent
	Tuio2dCurMotionEvent.depack()

	Tuio2dObjMotionEvent
	Tuio2dObjMotionEvent.depack()

	TuioMotionEventProvider
	TuioMotionEventProvider.create()

	TuioMotionEventProvider.register()

	TuioMotionEventProvider.start()

	TuioMotionEventProvider.stop()

	TuioMotionEventProvider.unregister()

	TuioMotionEventProvider.update()

Android Joystick Input Provider

This module is based on the PyGame JoyStick Input Provider. For more
information, please refer to
http://www.pygame.org/docs/ref/joystick.html

	
class kivy.input.providers.androidjoystick.AndroidMotionEventProvider(device, args)

	Bases: kivy.input.provider.MotionEventProvider

	
start()

	Start the provider. This method is automatically called when the
application is started and if the configuration uses the current
provider.

	
stop()

	Stop the provider.

	
update(dispatch_fn)

	Update the provider and dispatch all the new touch events though the
dispatch_fn argument.

Auto Create Input Provider Config Entry for Available MT Hardware (linux only).

Thanks to Marc Tardif for the probing code, taken from scan-for-mt-device.

The device discovery is done by this provider. However, the reading of
input can be performed by other providers like: hidinput, mtdev and
linuxwacom. mtdev is used prior to other providers. For more
information about mtdev, check mtdev.

Here is an example of auto creation:

[input]
using mtdev
device_%(name)s = probesysfs,provider=mtdev
using hidinput
device_%(name)s = probesysfs,provider=hidinput
using mtdev with a match on name
device_%(name)s = probesysfs,provider=mtdev,match=acer

using hidinput with custom parameters to hidinput (all on one line)
%(name)s = probesysfs,
 provider=hidinput,param=min_pressure=1,param=max_pressure=99

you can also match your wacom touchscreen
touch = probesysfs,match=E3 Finger,provider=linuxwacom,
 select_all=1,param=mode=touch
and your wacom pen
pen = probesysfs,match=E3 Pen,provider=linuxwacom,
 select_all=1,param=mode=pen

By default, ProbeSysfs module will enumerate hardware from the /sys/class/input
device, and configure hardware with ABS_MT_POSITION_X capability. But for
example, the wacom screen doesn’t support this capability. You can prevent this
behavior by putting select_all=1 in your config line. Add use_mouse=1 to also
include touchscreen hardware that offers core pointer functionality.

Common definitions for a Windows provider

This file provides common definitions for constants used by WM_Touch / WM_Pen.

Leap Motion - finger only

	
class kivy.input.providers.leapfinger.LeapFingerEvent(*args, **kwargs)

	Bases: kivy.input.motionevent.MotionEvent

	
depack(args)

	Depack args into attributes of the class

	
class kivy.input.providers.leapfinger.LeapFingerEventProvider(device, args)

	Bases: kivy.input.provider.MotionEventProvider

	
start()

	Start the provider. This method is automatically called when the
application is started and if the configuration uses the current
provider.

	
update(dispatch_fn)

	Update the provider and dispatch all the new touch events though the
dispatch_fn argument.

Mouse provider implementation

On linux systems, the mouse provider can be annoying when used with another
multitouch provider (hidinput or mtdev). The Mouse can conflict with them: a
single touch can generate one event from the mouse provider and another
from the multitouch provider.

To avoid this behavior, you can activate the “disable_on_activity” token in
the mouse configuration. Then, if any touches are created by another
provider, the mouse event will be discarded. Add this to your configuration:

[input]
mouse = mouse,disable_on_activity

Using multitouch interaction with the mouse

New in version 1.3.0.

By default, the middle and right mouse buttons, as well as a combination of
ctrl + left mouse button are used for multitouch emulation.
If you want to use them for other purposes, you can disable this behavior by
activating the “disable_multitouch” token:

[input]
mouse = mouse,disable_multitouch

Changed in version 1.9.0.

You can now selectively control whether a click initiated as described above
will emulate multi-touch. If the touch has been initiated in the above manner
(e.g. right mouse button), a multitouch_sim value will be added to the
touch’s profile, and a multitouch_sim property will be added to the touch.
By default, multitouch_sim is True and multitouch will be emulated for that
touch. If, however, multitouch_on_demand is added to the config:

[input]
mouse = mouse,multitouch_on_demand

then multitouch_sim defaults to False. In that case, if multitouch_sim
is set to True before the mouse is released (e.g. in on_touch_down/move), the
touch will simulate a multi-touch event. For example:

if 'multitouch_sim' in touch.profile:
 touch.multitouch_sim = True

Changed in version 2.1.0.

Provider dispatches hover events by listening to properties/events in
Window. Dispatching can be disabled by setting
MouseMotionEventProvider.disable_hover to True or by adding
disable_hover in the config:

[input]
mouse = mouse,disable_hover

It’s also possible to enable/disable hover events at runtime with
MouseMotionEventProvider.disable_hover property.

Following is a list of the supported values for the
profile property list.

	Profile value

	Description

	button

	Mouse button (one of left, right, middle, scrollup
or scrolldown). Accessed via the ‘button’ property.

	pos

	2D position. Also reflected in the
x,
y
and pos
properties.

	multitouch_sim

	Specifies whether multitouch is simulated or not. Accessed
via the ‘multitouch_sim’ property.

	
class kivy.input.providers.mouse.MouseMotionEventProvider(device, args)

	Bases: kivy.input.provider.MotionEventProvider

	
property disable_hover

	Disables dispatching of hover events if set to True.

Hover events are enabled by default (disable_hover is False). See
module documentation if you want to enable/disable hover events through
config file.

New in version 2.1.0.

	
start()

	Start the mouse provider

	
stop()

	Stop the mouse provider

	
update(dispatch_fn)

	Update the mouse provider (pop event from the queue)

Native support for HID input from the linux kernel

Support starts from 2.6.32-ubuntu, or 2.6.34.

To configure HIDInput, add this to your configuration:

[input]
devicename = hidinput,/dev/input/eventXX
example with Stantum MTP4.3" screen
stantum = hidinput,/dev/input/event2

Note

You must have read access to the input event.

You can use a custom range for the X, Y and pressure values.
For some drivers, the range reported is invalid.
To fix that, you can add these options to the argument line:

	invert_x : 1 to invert X axis

	invert_y : 1 to invert Y axis

	min_position_x : X relative minimum

	max_position_x : X relative maximum

	min_position_y : Y relative minimum

	max_position_y : Y relative maximum

	min_abs_x : X absolute minimum

	min_abs_y : Y absolute minimum

	max_abs_x : X absolute maximum

	max_abs_y : Y absolute maximum

	min_pressure : pressure minimum

	max_pressure : pressure maximum

	rotation : rotate the input coordinate (0, 90, 180, 270)

For example, on the Asus T101M, the touchscreen reports a range from 0-4095 for
the X and Y values, but the real values are in a range from 0-32768. To correct
this, you can add the following to the configuration:

[input]
t101m = hidinput,/dev/input/event7,max_position_x=32768,max_position_y=32768

New in version 1.9.1: rotation configuration token added.

	
class kivy.input.providers.hidinput.HIDMotionEvent(*args, **kwargs)

	Bases: kivy.input.motionevent.MotionEvent

	
depack(args)

	Depack args into attributes of the class

Native support for Multitouch devices on Linux, using libmtdev.

The Mtdev project is a part of the Ubuntu Maverick multitouch architecture.
You can read more on http://wiki.ubuntu.com/Multitouch

To configure MTDev, it’s preferable to use probesysfs providers.
Check probesysfs for more information.

Otherwise, add this to your configuration:

[input]
devicename = hidinput,/dev/input/eventXX
acert230h = mtdev,/dev/input/event2

Note

You must have read access to the input event.

You can use a custom range for the X, Y and pressure values.
On some drivers, the range reported is invalid.
To fix that, you can add these options to the argument line:

	invert_x : 1 to invert X axis

	invert_y : 1 to invert Y axis

	min_position_x : X minimum

	max_position_x : X maximum

	min_position_y : Y minimum

	max_position_y : Y maximum

	min_pressure : pressure minimum

	max_pressure : pressure maximum

	min_touch_major : width shape minimum

	max_touch_major : width shape maximum

	min_touch_minor : width shape minimum

	max_touch_minor : height shape maximum

	rotation : 0,90,180 or 270 to rotate

An inverted display configuration will look like this:

[input]
example for inverting touch events
display = mtdev,/dev/input/event0,invert_x=1,invert_y=1

	
class kivy.input.providers.mtdev.MTDMotionEvent(*args, **kwargs)

	Bases: kivy.input.motionevent.MotionEvent

	
depack(args)

	Depack args into attributes of the class

Native support of MultitouchSupport framework for MacBook (MaxOSX platform)

	
class kivy.input.providers.mactouch.MacMotionEventProvider(*largs, **kwargs)

	Bases: kivy.input.provider.MotionEventProvider

	
start()

	Start the provider. This method is automatically called when the
application is started and if the configuration uses the current
provider.

	
stop()

	Stop the provider.

	
update(dispatch_fn)

	Update the provider and dispatch all the new touch events though the
dispatch_fn argument.

Native support of Wacom tablet from linuxwacom driver

To configure LinuxWacom, add this to your configuration:

[input]
pen = linuxwacom,/dev/input/event2,mode=pen
finger = linuxwacom,/dev/input/event3,mode=touch

Note

You must have read access to the input event.

You can use a custom range for the X, Y and pressure values.
On some drivers, the range reported is invalid.
To fix that, you can add these options to the argument line:

	invert_x : 1 to invert X axis

	invert_y : 1 to invert Y axis

	min_position_x : X minimum

	max_position_x : X maximum

	min_position_y : Y minimum

	max_position_y : Y maximum

	min_pressure : pressure minimum

	max_pressure : pressure maximum

	
class kivy.input.providers.linuxwacom.LinuxWacomMotionEvent(*args, **kwargs)

	Bases: kivy.input.motionevent.MotionEvent

	
depack(args)

	Depack args into attributes of the class

TUIO Input Provider

TUIO is the de facto standard network protocol for the transmission of
touch and fiducial information between a server and a client. To learn
more about TUIO (which is itself based on the OSC protocol), please
refer to http://tuio.org – The specification should be of special
interest.

Configure a TUIO provider in the config.ini

The TUIO provider can be configured in the configuration file in the
[input] section:

[input]
name = tuio,<ip>:<port>
multitouchtable = tuio,192.168.0.1:3333

Configure a TUIO provider in the App

You must add the provider before your application is run, like this:

from kivy.app import App
from kivy.config import Config

class TestApp(App):
 def build(self):
 Config.set('input', 'multitouchscreen1', 'tuio,0.0.0.0:3333')
 # You can also add a second TUIO listener
 # Config.set('input', 'source2', 'tuio,0.0.0.0:3334')
 # Then do the usual things
 # ...
 return

	
class kivy.input.providers.tuio.Tuio2dCurMotionEvent(*args, **kwargs)

	Bases: kivy.input.providers.tuio.TuioMotionEvent

A 2dCur TUIO touch.

	
depack(args)

	Depack args into attributes of the class

	
class kivy.input.providers.tuio.Tuio2dObjMotionEvent(*args, **kwargs)

	Bases: kivy.input.providers.tuio.TuioMotionEvent

A 2dObj TUIO object.

	
depack(args)

	Depack args into attributes of the class

	
class kivy.input.providers.tuio.TuioMotionEventProvider(device, args)

	Bases: kivy.input.provider.MotionEventProvider

The TUIO provider listens to a socket and handles some of the incoming
OSC messages:

	/tuio/2Dcur

	/tuio/2Dobj

You can easily extend the provider to handle new TUIO paths like so:

Create a class to handle the new TUIO type/path
Replace NEWPATH with the pathname you want to handle
class TuioNEWPATHMotionEvent(MotionEvent):

 def depack(self, args):
 # In this method, implement 'unpacking' for the received
 # arguments. you basically translate from TUIO args to Kivy
 # MotionEvent variables. If all you receive are x and y
 # values, you can do it like this:
 if len(args) == 2:
 self.sx, self.sy = args
 self.profile = ('pos',)
 self.sy = 1 - self.sy
 super().depack(args)

Register it with the TUIO MotionEvent provider.
You obviously need to replace the PATH placeholders appropriately.
TuioMotionEventProvider.register('/tuio/PATH', TuioNEWPATHMotionEvent)

Note

The class name is of no technical importance. Your class will be
associated with the path that you pass to the register()
function. To keep things simple, you should name your class after the
path that it handles, though.

	
static create(oscpath, **kwargs)

	Create a touch event from a TUIO path

	
static register(oscpath, classname)

	Register a new path to handle in TUIO provider

	
start()

	Start the TUIO provider

	
stop()

	Stop the TUIO provider

	
static unregister(oscpath, classname)

	Unregister a path to stop handling it in the TUIO provider

	
update(dispatch_fn)

	Update the TUIO provider (pop events from the queue)

Android Joystick Input Provider

This module is based on the PyGame JoyStick Input Provider. For more
information, please refer to
http://www.pygame.org/docs/ref/joystick.html

	
class kivy.input.providers.androidjoystick.AndroidMotionEventProvider(device, args)

	Bases: kivy.input.provider.MotionEventProvider

	
start()

	Start the provider. This method is automatically called when the
application is started and if the configuration uses the current
provider.

	
stop()

	Stop the provider.

	
update(dispatch_fn)

	Update the provider and dispatch all the new touch events though the
dispatch_fn argument.

Native support for HID input from the linux kernel

Support starts from 2.6.32-ubuntu, or 2.6.34.

To configure HIDInput, add this to your configuration:

[input]
devicename = hidinput,/dev/input/eventXX
example with Stantum MTP4.3" screen
stantum = hidinput,/dev/input/event2

Note

You must have read access to the input event.

You can use a custom range for the X, Y and pressure values.
For some drivers, the range reported is invalid.
To fix that, you can add these options to the argument line:

	invert_x : 1 to invert X axis

	invert_y : 1 to invert Y axis

	min_position_x : X relative minimum

	max_position_x : X relative maximum

	min_position_y : Y relative minimum

	max_position_y : Y relative maximum

	min_abs_x : X absolute minimum

	min_abs_y : Y absolute minimum

	max_abs_x : X absolute maximum

	max_abs_y : Y absolute maximum

	min_pressure : pressure minimum

	max_pressure : pressure maximum

	rotation : rotate the input coordinate (0, 90, 180, 270)

For example, on the Asus T101M, the touchscreen reports a range from 0-4095 for
the X and Y values, but the real values are in a range from 0-32768. To correct
this, you can add the following to the configuration:

[input]
t101m = hidinput,/dev/input/event7,max_position_x=32768,max_position_y=32768

New in version 1.9.1: rotation configuration token added.

	
class kivy.input.providers.hidinput.HIDMotionEvent(*args, **kwargs)

	Bases: kivy.input.motionevent.MotionEvent

	
depack(args)

	Depack args into attributes of the class

Leap Motion - finger only

	
class kivy.input.providers.leapfinger.LeapFingerEvent(*args, **kwargs)

	Bases: kivy.input.motionevent.MotionEvent

	
depack(args)

	Depack args into attributes of the class

	
class kivy.input.providers.leapfinger.LeapFingerEventProvider(device, args)

	Bases: kivy.input.provider.MotionEventProvider

	
start()

	Start the provider. This method is automatically called when the
application is started and if the configuration uses the current
provider.

	
update(dispatch_fn)

	Update the provider and dispatch all the new touch events though the
dispatch_fn argument.

Native support of Wacom tablet from linuxwacom driver

To configure LinuxWacom, add this to your configuration:

[input]
pen = linuxwacom,/dev/input/event2,mode=pen
finger = linuxwacom,/dev/input/event3,mode=touch

Note

You must have read access to the input event.

You can use a custom range for the X, Y and pressure values.
On some drivers, the range reported is invalid.
To fix that, you can add these options to the argument line:

	invert_x : 1 to invert X axis

	invert_y : 1 to invert Y axis

	min_position_x : X minimum

	max_position_x : X maximum

	min_position_y : Y minimum

	max_position_y : Y maximum

	min_pressure : pressure minimum

	max_pressure : pressure maximum

	
class kivy.input.providers.linuxwacom.LinuxWacomMotionEvent(*args, **kwargs)

	Bases: kivy.input.motionevent.MotionEvent

	
depack(args)

	Depack args into attributes of the class

Native support of MultitouchSupport framework for MacBook (MaxOSX platform)

	
class kivy.input.providers.mactouch.MacMotionEventProvider(*largs, **kwargs)

	Bases: kivy.input.provider.MotionEventProvider

	
start()

	Start the provider. This method is automatically called when the
application is started and if the configuration uses the current
provider.

	
stop()

	Stop the provider.

	
update(dispatch_fn)

	Update the provider and dispatch all the new touch events though the
dispatch_fn argument.

Mouse provider implementation

On linux systems, the mouse provider can be annoying when used with another
multitouch provider (hidinput or mtdev). The Mouse can conflict with them: a
single touch can generate one event from the mouse provider and another
from the multitouch provider.

To avoid this behavior, you can activate the “disable_on_activity” token in
the mouse configuration. Then, if any touches are created by another
provider, the mouse event will be discarded. Add this to your configuration:

[input]
mouse = mouse,disable_on_activity

Using multitouch interaction with the mouse

New in version 1.3.0.

By default, the middle and right mouse buttons, as well as a combination of
ctrl + left mouse button are used for multitouch emulation.
If you want to use them for other purposes, you can disable this behavior by
activating the “disable_multitouch” token:

[input]
mouse = mouse,disable_multitouch

Changed in version 1.9.0.

You can now selectively control whether a click initiated as described above
will emulate multi-touch. If the touch has been initiated in the above manner
(e.g. right mouse button), a multitouch_sim value will be added to the
touch’s profile, and a multitouch_sim property will be added to the touch.
By default, multitouch_sim is True and multitouch will be emulated for that
touch. If, however, multitouch_on_demand is added to the config:

[input]
mouse = mouse,multitouch_on_demand

then multitouch_sim defaults to False. In that case, if multitouch_sim
is set to True before the mouse is released (e.g. in on_touch_down/move), the
touch will simulate a multi-touch event. For example:

if 'multitouch_sim' in touch.profile:
 touch.multitouch_sim = True

Changed in version 2.1.0.

Provider dispatches hover events by listening to properties/events in
Window. Dispatching can be disabled by setting
MouseMotionEventProvider.disable_hover to True or by adding
disable_hover in the config:

[input]
mouse = mouse,disable_hover

It’s also possible to enable/disable hover events at runtime with
MouseMotionEventProvider.disable_hover property.

Following is a list of the supported values for the
profile property list.

	Profile value

	Description

	button

	Mouse button (one of left, right, middle, scrollup
or scrolldown). Accessed via the ‘button’ property.

	pos

	2D position. Also reflected in the
x,
y
and pos
properties.

	multitouch_sim

	Specifies whether multitouch is simulated or not. Accessed
via the ‘multitouch_sim’ property.

	
class kivy.input.providers.mouse.MouseMotionEventProvider(device, args)

	Bases: kivy.input.provider.MotionEventProvider

	
property disable_hover

	Disables dispatching of hover events if set to True.

Hover events are enabled by default (disable_hover is False). See
module documentation if you want to enable/disable hover events through
config file.

New in version 2.1.0.

	
start()

	Start the mouse provider

	
stop()

	Stop the mouse provider

	
update(dispatch_fn)

	Update the mouse provider (pop event from the queue)

Native support for Multitouch devices on Linux, using libmtdev.

The Mtdev project is a part of the Ubuntu Maverick multitouch architecture.
You can read more on http://wiki.ubuntu.com/Multitouch

To configure MTDev, it’s preferable to use probesysfs providers.
Check probesysfs for more information.

Otherwise, add this to your configuration:

[input]
devicename = hidinput,/dev/input/eventXX
acert230h = mtdev,/dev/input/event2

Note

You must have read access to the input event.

You can use a custom range for the X, Y and pressure values.
On some drivers, the range reported is invalid.
To fix that, you can add these options to the argument line:

	invert_x : 1 to invert X axis

	invert_y : 1 to invert Y axis

	min_position_x : X minimum

	max_position_x : X maximum

	min_position_y : Y minimum

	max_position_y : Y maximum

	min_pressure : pressure minimum

	max_pressure : pressure maximum

	min_touch_major : width shape minimum

	max_touch_major : width shape maximum

	min_touch_minor : width shape minimum

	max_touch_minor : height shape maximum

	rotation : 0,90,180 or 270 to rotate

An inverted display configuration will look like this:

[input]
example for inverting touch events
display = mtdev,/dev/input/event0,invert_x=1,invert_y=1

	
class kivy.input.providers.mtdev.MTDMotionEvent(*args, **kwargs)

	Bases: kivy.input.motionevent.MotionEvent

	
depack(args)

	Depack args into attributes of the class

Auto Create Input Provider Config Entry for Available MT Hardware (linux only).

Thanks to Marc Tardif for the probing code, taken from scan-for-mt-device.

The device discovery is done by this provider. However, the reading of
input can be performed by other providers like: hidinput, mtdev and
linuxwacom. mtdev is used prior to other providers. For more
information about mtdev, check mtdev.

Here is an example of auto creation:

[input]
using mtdev
device_%(name)s = probesysfs,provider=mtdev
using hidinput
device_%(name)s = probesysfs,provider=hidinput
using mtdev with a match on name
device_%(name)s = probesysfs,provider=mtdev,match=acer

using hidinput with custom parameters to hidinput (all on one line)
%(name)s = probesysfs,
 provider=hidinput,param=min_pressure=1,param=max_pressure=99

you can also match your wacom touchscreen
touch = probesysfs,match=E3 Finger,provider=linuxwacom,
 select_all=1,param=mode=touch
and your wacom pen
pen = probesysfs,match=E3 Pen,provider=linuxwacom,
 select_all=1,param=mode=pen

By default, ProbeSysfs module will enumerate hardware from the /sys/class/input
device, and configure hardware with ABS_MT_POSITION_X capability. But for
example, the wacom screen doesn’t support this capability. You can prevent this
behavior by putting select_all=1 in your config line. Add use_mouse=1 to also
include touchscreen hardware that offers core pointer functionality.

TUIO Input Provider

TUIO is the de facto standard network protocol for the transmission of
touch and fiducial information between a server and a client. To learn
more about TUIO (which is itself based on the OSC protocol), please
refer to http://tuio.org – The specification should be of special
interest.

Configure a TUIO provider in the config.ini

The TUIO provider can be configured in the configuration file in the
[input] section:

[input]
name = tuio,<ip>:<port>
multitouchtable = tuio,192.168.0.1:3333

Configure a TUIO provider in the App

You must add the provider before your application is run, like this:

from kivy.app import App
from kivy.config import Config

class TestApp(App):
 def build(self):
 Config.set('input', 'multitouchscreen1', 'tuio,0.0.0.0:3333')
 # You can also add a second TUIO listener
 # Config.set('input', 'source2', 'tuio,0.0.0.0:3334')
 # Then do the usual things
 # ...
 return

	
class kivy.input.providers.tuio.Tuio2dCurMotionEvent(*args, **kwargs)

	Bases: kivy.input.providers.tuio.TuioMotionEvent

A 2dCur TUIO touch.

	
depack(args)

	Depack args into attributes of the class

	
class kivy.input.providers.tuio.Tuio2dObjMotionEvent(*args, **kwargs)

	Bases: kivy.input.providers.tuio.TuioMotionEvent

A 2dObj TUIO object.

	
depack(args)

	Depack args into attributes of the class

	
class kivy.input.providers.tuio.TuioMotionEventProvider(device, args)

	Bases: kivy.input.provider.MotionEventProvider

The TUIO provider listens to a socket and handles some of the incoming
OSC messages:

	/tuio/2Dcur

	/tuio/2Dobj

You can easily extend the provider to handle new TUIO paths like so:

Create a class to handle the new TUIO type/path
Replace NEWPATH with the pathname you want to handle
class TuioNEWPATHMotionEvent(MotionEvent):

 def depack(self, args):
 # In this method, implement 'unpacking' for the received
 # arguments. you basically translate from TUIO args to Kivy
 # MotionEvent variables. If all you receive are x and y
 # values, you can do it like this:
 if len(args) == 2:
 self.sx, self.sy = args
 self.profile = ('pos',)
 self.sy = 1 - self.sy
 super().depack(args)

Register it with the TUIO MotionEvent provider.
You obviously need to replace the PATH placeholders appropriately.
TuioMotionEventProvider.register('/tuio/PATH', TuioNEWPATHMotionEvent)

Note

The class name is of no technical importance. Your class will be
associated with the path that you pass to the register()
function. To keep things simple, you should name your class after the
path that it handles, though.

	
static create(oscpath, **kwargs)

	Create a touch event from a TUIO path

	
static register(oscpath, classname)

	Register a new path to handle in TUIO provider

	
start()

	Start the TUIO provider

	
stop()

	Stop the TUIO provider

	
static unregister(oscpath, classname)

	Unregister a path to stop handling it in the TUIO provider

	
update(dispatch_fn)

	Update the TUIO provider (pop events from the queue)

Common definitions for a Windows provider

This file provides common definitions for constants used by WM_Touch / WM_Pen.

Input recorder

New in version 1.1.0.

Warning

This part of Kivy is still experimental and this API is subject to
change in a future version.

This is a class that can record and replay some input events. This can
be used for test cases, screen savers etc.

Once activated, the recorder will listen for any input event and save its
properties in a file with the delta time. Later, you can play the input
file: it will generate fake touch events with the saved properties and
dispatch it to the event loop.

By default, only the position is saved (‘pos’ profile and ‘sx’, ‘sy’,
attributes). Change it only if you understand how input handling works.

Recording events

The best way is to use the “recorder” module. Check the Modules
documentation to see how to activate a module.

Once activated, you can press F8 to start the recording. By default,
events will be written to <currentpath>/recorder.kvi. When you want to
stop recording, press F8 again.

You can replay the file by pressing F7.

Check the Recorder module module for more information.

Manual play

You can manually open a recorder file, and play it by doing:

from kivy.input.recorder import Recorder

rec = Recorder(filename='myrecorder.kvi')
rec.play = True

If you want to loop over that file, you can do:

from kivy.input.recorder import Recorder

def recorder_loop(instance, value):
 if value is False:
 instance.play = True

rec = Recorder(filename='myrecorder.kvi')
rec.bind(play=recorder_loop)
rec.play = True

Recording more attributes

You can extend the attributes to save on one condition: attributes values must
be simple values, not instances of complex classes.

Let’s say you want to save the angle and pressure of the touch, if available:

from kivy.input.recorder import Recorder

rec = Recorder(filename='myrecorder.kvi',
 record_attrs=['is_touch', 'sx', 'sy', 'angle', 'pressure'],
 record_profile_mask=['pos', 'angle', 'pressure'])
rec.record = True

Or with modules variables:

$ python main.py -m recorder,attrs=is_touch:sx:sy:angle:pressure, profile_mask=pos:angle:pressure

Known limitations

	Unable to save attributes with instances of complex classes.

	Values that represent time will not be adjusted.

	Can replay only complete records. If a begin/update/end event is missing,
this could lead to ghost touches.

	Stopping the replay before the end can lead to ghost touches.

	
class kivy.input.recorder.Recorder(**kwargs)

	Bases: kivy.event.EventDispatcher

Recorder class. Please check module documentation for more information.

	Events:

	
	on_stop:
	Fired when the playing stops.

Changed in version 1.10.0: Event on_stop added.

	
counter

	Number of events recorded in the last session.

counter is a NumericProperty and defaults
to 0, read-only.

	
filename

	Filename to save the output of the recorder.

filename is a StringProperty and defaults
to ‘recorder.kvi’.

	
play

	Boolean to start/stop the replay of the current file (if it exists).

play is a BooleanProperty and defaults to
False.

	
record

	Boolean to start/stop the recording of input events.

record is a BooleanProperty and defaults
to False.

	
record_attrs

	Attributes to record from the motion event.

record_attrs is a ListProperty and
defaults to [‘is_touch’, ‘sx’, ‘sy’].

	
record_profile_mask

	Profile to save in the fake motion event when replayed.

record_profile_mask is a ListProperty and
defaults to [‘pos’].

	
window

	Window instance to attach the recorder. If None, it will use the
default instance.

window is a ObjectProperty and
defaults to None.

Motion Event Shape

Represent the shape of the MotionEvent

	
class kivy.input.shape.Shape

	Bases: builtins.object

Abstract class for all implementations of a shape

	
class kivy.input.shape.ShapeRect

	Bases: kivy.input.shape.Shape

Class for the representation of a rectangle.

	
height

	Height of the rect

	
width

	Width of the rect

Interactive launcher

New in version 1.3.0.

Deprecated since version 1.10.0: The interactive launcher has been deprecated.

The InteractiveLauncher provides a user-friendly python shell
interface to an App so that it can be prototyped and debugged
interactively.

Note

The Kivy API intends for some functions to only be run once or before the
main EventLoop has started. Methods that can normally be called during the
course of an application will work as intended, but specifically overriding
methods such as on_touch() dynamically leads to trouble.

Creating an InteractiveLauncher

Take your existing subclass of App (this can be production code) and
pass an instance to the InteractiveLauncher constructor.

from kivy.interactive import InteractiveLauncher
from kivy.app import App
from kivy.uix.button import Button

class MyApp(App):
 def build(self):
 return Button(text='Hello Shell')

launcher = InteractiveLauncher(MyApp())
launcher.run()

After pressing enter, the script will return. This allows the interpreter to
continue running. Inspection or modification of the App can be done
safely through the InteractiveLauncher instance or the provided
SafeMembrane class instances.

Note

If you want to test this example, start Python without any file to have
already an interpreter, and copy/paste all the lines. You’ll still have the
interpreter at the end + the kivy application running.

Interactive Development

IPython provides a fast way to learn the Kivy API. The App instance
and all of its attributes, including methods and the entire widget tree,
can be quickly listed by using the ‘.’ operator and pressing ‘tab’. Try this
code in an Ipython shell.

from kivy.interactive import InteractiveLauncher
from kivy.app import App
from kivy.uix.widget import Widget
from kivy.graphics import Color, Ellipse

class MyPaintWidget(Widget):
 def on_touch_down(self, touch):
 with self.canvas:
 Color(1, 1, 0)
 d = 30.
 Ellipse(pos=(touch.x - d/2, touch.y - d/2), size=(d, d))

class TestApp(App):
 def build(self):
 return Widget()

i = InteractiveLauncher(TestApp())
i.run()
i. # press 'tab' to list attributes of the app
i.root. # press 'tab' to list attributes of the root widget

App is boring. Attach a new widget!
i.root.add_widget(MyPaintWidget())

i.safeIn()
The application is now blocked.
Click on the screen several times.
i.safeOut()
The clicks will show up now

Erase artwork and start over
i.root.canvas.clear()

Note

All of the proxies used in the module store their referent in the
_ref attribute, which can be accessed directly if needed, such as
for getting doc strings. help() and type() will access the
proxy, not its referent.

Directly Pausing the Application

Both the InteractiveLauncher and SafeMembrane hold internal
references to the EventLoop’s ‘safe’ and ‘confirmed’
threading.Event objects. You can use their safing methods to control
the application manually.

SafeMembrane.safeIn() will cause the application to pause and
SafeMembrane.safeOut() will allow a paused application
to continue running. This is potentially useful for scripting actions into
functions that need the screen to update etc.

Note

The pausing is implemented via the
Clocks'
schedule_once() method
and occurs before the start of each frame.

Adding Attributes Dynamically

Note

This module uses threading and object proxies to encapsulate the running
App. Deadlocks and memory corruption can occur if making direct
references inside the thread without going through the provided proxy(s).

The InteractiveLauncher can have attributes added to it exactly like a
normal object and if these were created from outside the membrane, they will
not be threadsafe because the external references to them in the python
interpreter do not go through InteractiveLauncher’s membrane behavior,
inherited from SafeMembrane.

To threadsafe these external references, simply assign them to
SafeMembrane instances of themselves like so:

from kivy.interactive import SafeMembrane

interactiveLauncher.attribute = myNewObject
myNewObject is unsafe
myNewObject = SafeMembrane(myNewObject)
myNewObject is now safe. Call at will.
myNewObject.method()

TODO

Unit tests, examples, and a better explanation of which methods are safe in a
running application would be nice. All three would be excellent.

Could be re-written with a context-manager style i.e.

with safe:
 foo()

Any use cases besides compacting code?

	
class kivy.interactive.InteractiveLauncher(app=None, *args, **kwargs)

	Bases: kivy.interactive.SafeMembrane

Proxy to an application instance that launches it in a thread and
then returns and acts as a proxy to the application in the thread.

	
class kivy.interactive.SafeMembrane(ob, *args, **kwargs)

	Bases: builtins.object

This help is for a proxy object. Did you want help on the proxy’s referent
instead? Try using help(<instance>._ref)

The SafeMembrane is a threadsafe proxy that also returns attributes as new
thread-safe objects
and makes thread-safe method calls, preventing thread-unsafe objects
from leaking into the user’s environment.

	
safeIn()

	Provides a thread-safe entry point for interactive launching.

	
safeOut()

	Provides a thread-safe exit point for interactive launching.

Kivy Language

The Kivy language is a language dedicated to describing user interface and
interactions. You could compare this language to Qt’s QML
(http://qt.nokia.com), but we included new concepts such as rule definitions
(which are somewhat akin to what you may know from CSS), templating and so on.

Changed in version 1.7.0: The Builder doesn’t execute canvas expressions in realtime anymore. It will
pack all the expressions that need to be executed first and execute them
after dispatching input, just before drawing the frame. If you want to
force the execution of canvas drawing, just call
Builder.sync.

An experimental profiling tool for the kv lang is also included. You can
activate it by setting the environment variable KIVY_PROFILE_LANG=1.
It will then generate an html file named builder_stats.html.

Overview

The language consists of several constructs that you can use:

	Rules
	A rule is similar to a CSS rule. A rule applies to specific widgets (or
classes thereof) in your widget tree and modifies them in a
certain way.
You can use rules to specify interactive behaviour or use them to add
graphical representations of the widgets they apply to.
You can target a specific class of widgets (similar to the CSS
concept of a class) by using the cls attribute (e.g.
cls=MyTestWidget).

	A Root Widget
	You can use the language to create your entire user interface.
A kv file must contain only one root widget at most.

	Dynamic Classes
	(introduced in version 1.7.0)
Dynamic classes let you create new widgets and rules on-the-fly,
without any Python declaration.

	Templates (deprecated)
	(introduced in version 1.0.5, deprecated from version 1.7.0)
Templates were used to populate parts of an application, such as
styling the content of a list (e.g. icon on the left, text on the
right). They are now deprecated by dynamic classes.

Syntax of a kv File

A Kivy language file must have .kv as filename extension.

The content of the file should always start with the Kivy header, where
version must be replaced with the Kivy language version you’re using.
For now, use 1.0:

#:kivy `1.0`

content here

The content can contain rule definitions, a root widget, dynamic class
definitions and templates:

Syntax of a rule definition. Note that several Rules can share the same
definition (as in CSS). Note the braces: they are part of the definition.
<Rule1,Rule2>:
 # .. definitions ..

<Rule3>:
 # .. definitions ..

Syntax for creating a root widget
RootClassName:
 # .. definitions ..

Syntax for creating a dynamic class
<NewWidget@BaseClass>:
 # .. definitions ..

Syntax for create a template
[TemplateName@BaseClass1,BaseClass2]:
 # .. definitions ..

Regardless of whether it’s a rule, root widget, dynamic class or
template you’re defining, the definition should look like this:

With the braces it's a rule. Without them, it's a root widget.
<ClassName>:
 prop1: value1
 prop2: value2

 canvas:
 CanvasInstruction1:
 canvasprop1: value1
 CanvasInstruction2:
 canvasprop2: value2

 AnotherClass:
 prop3: value1

Here prop1 and prop2 are the properties of ClassName and prop3 is the
property of AnotherClass. If the widget doesn’t have a property with
the given name, an ObjectProperty will be
automatically created and added to the widget.

AnotherClass will be created and added as a child of the ClassName
instance.

	The indentation is important and must be consistent. The spacing must be a
multiple of the number of spaces used on the first indented line. Spaces
are encouraged: mixing tabs and spaces is not recommended.

	The value of a property must be given on a single line (for now at least).

	Keep class names capitalized to avoid syntax errors.

	The canvas property is special: you can put graphics instructions in it
to create a graphical representation of the current class.

Here is a simple example of a kv file that contains a root widget:

#:kivy 1.0

Button:
 text: 'Hello world'

Changed in version 1.7.0: The indentation is not limited to 4 spaces anymore. The spacing must be a
multiple of the number of spaces used on the first indented line.

Both the load_file() and the
load_string() methods
return the root widget defined in your kv file/string. They will also add any
class and template definitions to the Factory for later
usage.

Value Expressions, on_property Expressions, ids, and Reserved Keywords

When you specify a property’s value, the value is evaluated as a Python
expression. This expression can be static or dynamic, which means that
the value can use the values of other properties using reserved keywords.

	self
	The keyword self references the “current widget instance”:

Button:
 text: 'My state is %s' % self.state

	root
	This keyword is available only in rule definitions and represents the
root widget of the rule (the first instance of the rule):

<MyWidget>:
 custom: 'Hello world'
 Button:
 text: root.custom

	app
	This keyword always refers to your app instance. It’s equivalent
to a call to kivy.app.App.get_running_app() in Python.

Label:
 text: app.name

	args
	This keyword is available in on_<action> callbacks. It refers to the
arguments passed to the callback.

TextInput:
 on_focus: self.insert_text("Focus" if args[1] else "No focus")

Changed in version 2.1.0: f-strings are now parsed in value expressions, allowing to bind to the
properties that they contain.

ids

Class definitions may contain ids which can be used as a keywords::

<MyWidget>:
 Button:
 id: btn1
 Button:
 text: 'The state of the other button is %s' % btn1.state

Please note that the id will not be available in the widget instance:
it is used exclusively for external references. id is a weakref to the
widget, and not the widget itself. The widget itself can be accessed
with <id>.__self__ (btn1.__self__ in this case).

When the kv file is processed, weakrefs to all the widgets tagged with ids are
added to the root widget’s ids dictionary. In other words, following on from
the example above, the buttons state could also be accessed as follows:

widget = MyWidget()
state = widget.ids["btn1"].state

Or, as an alternative syntax,
state = widget.ids.btn1.state

Note that the outermost widget applies the kv rules to all its inner widgets
before any other rules are applied. This means if an inner widget contains ids,
these ids may not be available during the inner widget’s __init__ function.

Valid expressions

There are two places that accept python statements in a kv file:
after a property, which assigns to the property the result of the expression
(such as the text of a button as shown above) and after a on_property, which
executes the statement when the property is updated (such as on_state).

In the former case, the
expression [http://docs.python.org/2/reference/expressions.html] can only
span a single line, cannot be extended to multiple lines using newline
escaping, and must return a value. An example of a valid expression is
text: self.state and ('up' if self.state == 'normal' else 'down').

In the latter case, multiple single line statements are valid, including
those that escape their newline, as long as they don’t add an indentation
level.

Examples of valid statements are:

on_press: if self.state == 'normal': print('normal')
on_state:
 if self.state == 'normal': print('normal')
 else: print('down')
 if self.state == 'normal': \
 print('multiline normal')
 for i in range(10): print(i)
 print([1,2,3,4,
 5,6,7])

An example of a invalid statement:

on_state:
 if self.state == 'normal':
 print('normal')

Relation Between Values and Properties

When you use the Kivy language, you might notice that we do some work
behind the scenes to automatically make things work properly. You should
know that Properties implement the
Observer Design Pattern [http://en.wikipedia.org/wiki/Observer_pattern].
That means that you can bind your own function to be
called when the value of a property changes (i.e. you passively
observe the property for potential changes).

The Kivy language detects properties in your value expression and will create
callbacks to automatically update the property via your expression when changes
occur.

Here’s a simple example that demonstrates this behaviour:

Button:
 text: str(self.state)

In this example, the parser detects that self.state is a dynamic value (a
property). The state property of the button
can change at any moment (when the user touches it).
We now want this button to display its own state as text, even as the state
changes. To do this, we use the state property of the Button and use it in the
value expression for the button’s text property, which controls what text is
displayed on the button (We also convert the state to a string representation).
Now, whenever the button state changes, the text property will be updated
automatically.

Remember: The value is a python expression! That means that you can do
something more interesting like:

Button:
 text: 'Plop world' if self.state == 'normal' else 'Release me!'

The Button text changes with the state of the button. By default, the button
text will be ‘Plop world’, but when the button is being pressed, the text will
change to ‘Release me!’.

More precisely, the kivy language parser detects all substrings of the form
X.a.b where X is self or root or app or a known id, and a and b
are properties: it then adds the appropriate dependencies to cause the
the constraint to be reevaluated whenever something changes. For example,
this works exactly as expected:

<IndexedExample>:
 beta: self.a.b[self.c.d]

However, due to limitations in the parser which hopefully may be lifted in the
future, the following doesn’t work:

<BadExample>:
 beta: self.a.b[self.c.d].e.f

indeed the .e.f part is not recognized because it doesn’t follow the expected
pattern, and so, does not result in an appropriate dependency being setup.
Instead, an intermediate property should be introduced to allow the following
constraint:

<GoodExample>:
 alpha: self.a.b[self.c.d]
 beta: self.alpha.e.f

In addition, properties in python f-strings are also not yet supported:

<FStringExample>:
 text: f"I want to use {self.a} in property"

Instead, the format() method should be used:

<FormatStringExample>:
 text: "I want to use {} in property".format(self.a)

Graphical Instructions

The graphical instructions are a special part of the Kivy language. They are
handled by the ‘canvas’ property definition:

Widget:
 canvas:
 Color:
 rgb: (1, 1, 1)
 Rectangle:
 size: self.size
 pos: self.pos

All the classes added inside the canvas property must be derived from the
Instruction class. You cannot put any Widget class
inside the canvas property (as that would not make sense because a
widget is not a graphics instruction).

If you want to do theming, you’ll have the same question as in CSS: which rules
have been executed first? In our case, the rules are executed
in processing order (i.e. top-down).

If you want to change how Buttons are rendered, you can create your own kv file
and add something like this:

<Button>:
 canvas:
 Color:
 rgb: (1, 0, 0)
 Rectangle:
 pos: self.pos
 size: self.size
 Rectangle:
 pos: self.pos
 size: self.texture_size
 texture: self.texture

This will result in buttons having a red background with the label in the
bottom left, in addition to all the preceding rules.
You can clear all the previous instructions by using the Clear command:

<Button>:
 canvas:
 Clear
 Color:
 rgb: (1, 0, 0)
 Rectangle:
 pos: self.pos
 size: self.size
 Rectangle:
 pos: self.pos
 size: self.texture_size
 texture: self.texture

Then, only your rules that follow the Clear command will be taken into
consideration.

Dynamic classes

Dynamic classes allow you to create new widgets on-the-fly, without any python
declaration in the first place. The syntax of the dynamic classes is similar to
the Rules, but you need to specify the base classes you want to
subclass.

The syntax looks like:

Simple inheritance
<NewWidget@Button>:
 # kv code here ...

Multiple inheritance
<NewWidget@ButtonBehavior+Label>:
 # kv code here ...

The @ character is used to separate your class name from the classes you want
to subclass. The Python equivalent would have been:

Simple inheritance
class NewWidget(Button):
 pass

Multiple inheritance
class NewWidget(ButtonBehavior, Label):
 pass

Any new properties, usually added in python code, should be declared
first. If the property doesn’t exist in the dynamic class, it will be
automatically created as an ObjectProperty
(pre 1.8.0) or as an appropriate typed property (from version
1.8.0).

Changed in version 1.8.0: If the property value is an expression that can be evaluated right away (no
external binding), then the value will be used as default value of the
property, and the type of the value will be used for the specialization of
the Property class. In other terms: if you declare hello: “world”, a new
StringProperty will be instantiated, with the
default value “world”. Lists, tuples, dictionaries and strings are
supported.

Let’s illustrate the usage of these dynamic classes with an
implementation of a basic Image button. We could derive our classes from
the Button and just add a property for the image filename:

<ImageButton@Button>:
 source: None

 Image:
 source: root.source
 pos: root.pos
 size: root.size

let's use the new classes in another rule:
<MainUI>:
 BoxLayout:
 ImageButton:
 source: 'hello.png'
 on_press: root.do_something()
 ImageButton:
 source: 'world.png'
 on_press: root.do_something_else()

In Python, you can create an instance of the dynamic class as follows:

from kivy.factory import Factory
button_inst = Factory.ImageButton()

Note

Using dynamic classes, a child class can be declared before its parent.
This however, leads to the unintuitive situation where the parent
properties/methods override those of the child. Be careful if you choose
to do this.

Templates

Changed in version 1.7.0: Template usage is now deprecated. Please use Dynamic classes instead.

Syntax of templates

Using a template in Kivy requires 2 things :

	a context to pass for the context (will be ctx inside template).

	a kv definition of the template.

Syntax of a template:

With only one base class
[ClassName@BaseClass]:
 # .. definitions ..

With more than one base class
[ClassName@BaseClass1,BaseClass2]:
 # .. definitions ..

For example, for a list, you’ll need to create a entry with a image on
the left, and a label on the right. You can create a template for making
that definition easier to use.
So, we’ll create a template that uses 2 entries in the context: an image
filename and a title:

[IconItem@BoxLayout]:
 Image:
 source: ctx.image
 Label:
 text: ctx.title

Then in Python, you can instantiate the template using:

from kivy.lang import Builder

create a template with hello world + an image
the context values should be passed as kwargs to the Builder.template
function
icon1 = Builder.template('IconItem', title='Hello world',
 image='myimage.png')

create a second template with other information
ctx = {'title': 'Another hello world',
 'image': 'myimage2.png'}
icon2 = Builder.template('IconItem', **ctx)
and use icon1 and icon2 as other widget.

Template example

Most of time, when you are creating a screen in the kv lang, you use a lot of
redefinitions. In our example, we’ll create a Toolbar, based on a
BoxLayout, and put in a few Image widgets that
will react to the on_touch_down event.

<MyToolbar>:
 BoxLayout:
 Image:
 source: 'data/text.png'
 size: self.texture_size
 size_hint: None, None
 on_touch_down: self.collide_point(*args[1].pos) and root.create_text()

 Image:
 source: 'data/image.png'
 size: self.texture_size
 size_hint: None, None
 on_touch_down: self.collide_point(*args[1].pos) and root.create_image()

 Image:
 source: 'data/video.png'
 size: self.texture_size
 size_hint: None, None
 on_touch_down: self.collide_point(*args[1].pos) and root.create_video()

We can see that the size and size_hint attribute are exactly the same.
More than that, the callback in on_touch_down and the image are changing.
These can be the variable part of the template that we can put into a context.
Let’s try to create a template for the Image:

[ToolbarButton@Image]:

 # This is the same as before
 size: self.texture_size
 size_hint: None, None

 # Now, we are using the ctx for the variable part of the template
 source: 'data/%s.png' % ctx.image
 on_touch_down: self.collide_point(*args[1].pos) and ctx.callback()

The template can be used directly in the MyToolbar rule:

<MyToolbar>:
 BoxLayout:
 ToolbarButton:
 image: 'text'
 callback: root.create_text
 ToolbarButton:
 image: 'image'
 callback: root.create_image
 ToolbarButton:
 image: 'video'
 callback: root.create_video

That’s all :)

Template limitations

When you are creating a context:

	you cannot use references other than “root”:

<MyRule>:
 Widget:
 id: mywidget
 value: 'bleh'
 Template:
 ctxkey: mywidget.value # << fail, this references the id
 # mywidget

	not all of the dynamic parts will be understood:

<MyRule>:
 Template:
 ctxkey: 'value 1' if root.prop1 else 'value2' # << even if
 # root.prop1 is a property, if it changes value, ctxkey
 # will not be updated

Template definitions also replace any similarly named definitions in their
entirety and thus do not support inheritance.

Redefining a widget’s style

Sometimes we would like to inherit from a widget in order to use its Python
properties without also using its .kv defined style. For example, we would
like to inherit from a Label, but we would also like to define our own
canvas instructions instead of automatically using the canvas instructions
inherited from the Label. We can achieve this by prepending a dash (-) before
the class name in the .kv style definition.

In myapp.py:

class MyWidget(Label):
 pass

and in my.kv:

<-MyWidget>:
 canvas:
 Color:
 rgb: 1, 1, 1
 Rectangle:
 size: (32, 32)

MyWidget will now have a Color and Rectangle instruction in its canvas
without any of the instructions inherited from the Label.

Redefining a widget’s property style

Similar to redefining style, sometimes we
would like to inherit from a widget, keep all its KV defined styles, except for
the style applied to a specific property. For example, we would
like to inherit from a Button, but we would also
like to set our own state_image, rather then relying on the
background_normal and background_down values. We can achieve this by
prepending a dash (-) before the state_image property name in the .kv style
definition.

In myapp.py:

class MyWidget(Button):
 new_background = StringProperty('my_background.png')

and in my.kv:

<MyWidget>:
 -state_image: self.new_background

MyWidget will now have a state_image background set only by new_background,
and not by any previous styles that may have set state_image.

Note

Although the previous rules are cleared, they are still applied during
widget construction and are only removed when the new rule with the dash
is reached. This means that initially, previous rules could be used to set
the property.

Order of kwargs and KV rule application

Properties can be initialized in KV as well as in python. For example, in KV:

<MyRule@Widget>:
 text: 'Hello'
 ramp: 45.
 order: self.x + 10

Then MyRule() would initialize all three kivy properties to
the given KV values. Separately in python, if the properties already exist as
kivy properties one can do for example MyRule(line=’Bye’, side=55).

However, what will be the final values of the properties when
MyRule(text=’Bye’, order=55) is executed? The quick rule is that python
initialization is stronger than KV initialization only for constant rules.

Specifically, the kwargs provided to the python initializer are always
applied first. So in the above example, text is set to
‘Bye’ and order is set to 55. Then, all the KV rules are applied, except
those constant rules that overwrite a python initializer provided value.

That is, the KV rules that do not creates bindings such as text: ‘Hello’
and ramp: 45., if a value for that property has been provided in python, then
that rule will not be applied.

So in the MyRule(text=’Bye’, order=55) example, text will be ‘Bye’,
ramp will be 45., and order, which creates a binding, will first be set
to 55, but then when KV rules are applied will end up being whatever
self.x + 10 is.

Changed in version 1.9.1: Before, KV rules always overwrote the python values, now, python values
are not overwritten by constant rules.

Lang Directives

You can use directives to add declarative commands, such as imports or constant
definitions, to the lang files. Directives are added as comments in the
following format:

#:<directivename> <options>

import <package>

New in version 1.0.5.

Syntax:

#:import <alias> <package>

You can import a package by writing:

#:import os os

<Rule>:
 Button:
 text: os.getcwd()

Or more complex:

#:import ut kivy.utils

<Rule>:
 canvas:
 Color:
 rgba: ut.get_random_color()

New in version 1.0.7.

You can directly import classes from a module:

#: import Animation kivy.animation.Animation
<Rule>:
 on_prop: Animation(x=.5).start(self)

set <key> <expr>

New in version 1.0.6.

Syntax:

#:set <key> <expr>

Set a key that will be available anywhere in the kv. For example:

#:set my_color (.4, .3, .4)
#:set my_color_hl (.5, .4, .5)

<Rule>:
 state: 'normal'
 canvas:
 Color:
 rgb: my_color if self.state == 'normal' else my_color_hl

include <file>

New in version 1.9.0.

Syntax:

#:include [force] <file>

Includes an external kivy file. This allows you to split complex
widgets into their own files. If the include is forced, the file
will first be unloaded and then reloaded again. For example:

Test.kv
#:include mycomponent.kv
#:include force mybutton.kv

<Rule>:
 state: 'normal'
 MyButton:
 MyComponent:

mycomponent.kv
#:include mybutton.kv

<MyComponent>:
 MyButton:

mybutton.kv

<MyButton>:
 canvas:
 Color:
 rgb: (1.0, 0.0, 0.0)
 Rectangle:
 pos: self.pos
 size: (self.size[0]/4, self.size[1]/4)

	
class kivy.lang.BuilderBase

	Bases: builtins.object

The Builder is responsible for creating a Parser for parsing a
kv file, merging the results into its internal rules, templates, etc.

By default, Builder is a global Kivy instance used in widgets
that you can use to load other kv files in addition to the default ones.

	
apply(widget, ignored_consts={}, rule_children=None, dispatch_kv_post=False)

	Search all the rules that match the widget and apply them.

	Parameters:

	
	widget: Widget
	The widget whose class rules should be applied to this widget.

	ignored_consts: set
	A set or list type whose elements are property names for which
constant KV rules (i.e. those that don’t create bindings) of
that widget will not be applied. This allows e.g. skipping
constant rules that overwrite a value initialized in python.

	rule_children: list
	If not None, it should be a list that will be populated
with all the widgets created by the kv rules being applied.

Changed in version 1.11.0.

	dispatch_kv_post: bool
	Normally the class Widget dispatches the on_kv_post event
to widgets created during kv rule application.
But if the rules are manually applied by calling apply(),
that may not happen, so if this is True, we will dispatch the
on_kv_post event where needed after applying the rules to
widget (we won’t dispatch it for widget itself).

Defaults to False.

Changed in version 1.11.0.

	
apply_rules(widget, rule_name, ignored_consts={}, rule_children=None, dispatch_kv_post=False)

	Search all the rules that match the name rule_name
and apply them to widget.

New in version 1.10.0.

	Parameters:

	
	widget: Widget
	The widget to whom the matching rules should be applied to.

	ignored_consts: set
	A set or list type whose elements are property names for which
constant KV rules (i.e. those that don’t create bindings) of
that widget will not be applied. This allows e.g. skipping
constant rules that overwrite a value initialized in python.

	rule_children: list
	If not None, it should be a list that will be populated
with all the widgets created by the kv rules being applied.

Changed in version 1.11.0.

	dispatch_kv_post: bool
	Normally the class Widget dispatches the on_kv_post event
to widgets created during kv rule application.
But if the rules are manually applied by calling apply(),
that may not happen, so if this is True, we will dispatch the
on_kv_post event where needed after applying the rules to
widget (we won’t dispatch it for widget itself).

Defaults to False.

Changed in version 1.11.0.

	
classmethod create_from(builder)

	Creates a instance of the class, and initializes to the state of
builder.

	Parameters:

	builder – The builder to initialize from.

	Returns:

	A new instance of this class.

	
load_file(filename, encoding='utf8', **kwargs)

	Insert a file into the language builder and return the root widget
(if defined) of the kv file.

	Parameters:

	
	rulesonly: bool, defaults to False
	If True, the Builder will raise an exception if you have a root
widget inside the definition.

encoding: File character encoding. Defaults to utf-8,

	
load_string(string, **kwargs)

	Insert a string into the Language Builder and return the root widget
(if defined) of the kv string.

	Parameters:

	
	rulesonly: bool, defaults to False
	If True, the Builder will raise an exception if you have a root
widget inside the definition.

	filename: str, defaults to None
	If specified, the filename used to index the kv rules.

The filename parameter can be used to unload kv strings in the same way
as you unload kv files. This can be achieved using pseudo file names
e.g.:

Build.load_string("""
 <MyRule>:
 Label:
 text="Hello"
""", filename="myrule.kv")

can be unloaded via:

Build.unload_file("myrule.kv")

	
match(widget)

	Return a list of ParserRule objects matching the widget.

	
match_rule_name(rule_name)

	Return a list of ParserRule objects matching the widget.

	
sync()

	Execute all the waiting operations, such as the execution of all the
expressions related to the canvas.

New in version 1.7.0.

	
template(*args, **ctx)

	Create a specialized template using a specific context.

New in version 1.0.5.

With templates, you can construct custom widgets from a kv lang
definition by giving them a context. Check Template usage.

	
unbind_property(widget, name)

	Unbind the handlers created by all the rules of the widget that set
the name.

This effectively clears all the rules of widget that take the form:

name: rule

For example:

>>> w = Builder.load_string('''
... Widget:
... height: self.width / 2. if self.disabled else self.width
... x: self.y + 50
... ''')
>>> w.size
[100, 100]
>>> w.pos
[50, 0]
>>> w.width = 500
>>> w.size
[500, 500]
>>> Builder.unbind_property(w, 'height')
>>> w.width = 222
>>> w.size
[222, 500]
>>> w.y = 500
>>> w.pos
[550, 500]

New in version 1.9.1.

	
unbind_widget(uid)

	Unbind all the handlers created by the KV rules of the
widget. The kivy.uix.widget.Widget.uid is passed here
instead of the widget itself, because Builder is using it in the
widget destructor.

This effectively clears all the KV rules associated with this widget.
For example:

>>> w = Builder.load_string('''
... Widget:
... height: self.width / 2. if self.disabled else self.width
... x: self.y + 50
... ''')
>>> w.size
[100, 100]
>>> w.pos
[50, 0]
>>> w.width = 500
>>> w.size
[500, 500]
>>> Builder.unbind_widget(w.uid)
>>> w.width = 222
>>> w.y = 500
>>> w.size
[222, 500]
>>> w.pos
[50, 500]

New in version 1.7.2.

	
unload_file(filename)

	Unload all rules associated with a previously imported file.

New in version 1.0.8.

Warning

This will not remove rules or templates already applied/used on
current widgets. It will only effect the next widgets creation or
template invocation.

	
exception kivy.lang.BuilderException(context, line, message, cause=None)

	Bases: ParserException

Exception raised when the Builder fails to apply a rule on a widget.

	
class kivy.lang.Observable

	Bases: kivy.event.ObjectWithUid

Observable is a stub class defining the methods required
for binding. EventDispatcher is (the) one example of a class that
implements the binding interface. See EventDispatcher for details.

New in version 1.9.0.

	
bind(**kwargs)

	

	
fbind(name, func, *largs, **kwargs)

	See EventDispatcher.fbind().

Note

To keep backward compatibility with derived classes which may have
inherited from Observable before, the
fbind() method was added. The default implementation
of fbind() is to create a partial
function that it passes to bind while saving the uid and largs/kwargs.
However, funbind() (and unbind_uid()) are fairly
inefficient since we have to first lookup this partial function
using the largs/kwargs or uid and then call unbind() on
the returned function. It is recommended to overwrite
these methods in derived classes to bind directly for
better performance.

Similarly to EventDispatcher.fbind(), this method returns
0 on failure and a positive unique uid on success. This uid can be
used with unbind_uid().

	
funbind(name, func, *largs, **kwargs)

	See fbind() and EventDispatcher.funbind().

	
unbind(**kwargs)

	

	
unbind_uid(name, uid)

	See fbind() and EventDispatcher.unbind_uid().

	
class kivy.lang.Parser(**kwargs)

	Bases: builtins.object

Create a Parser object to parse a Kivy language file or Kivy content.

	
parse(content)

	Parse the contents of a Parser file and return a list
of root objects.

	
parse_level(level, lines, spaces=0)

	Parse the current level (level * spaces) indentation.

	
strip_comments(lines)

	Remove all comments from all lines in-place.
Comments need to be on a single line and not at the end of a line.
i.e. a comment line’s first non-whitespace character must be a #.

	
exception kivy.lang.ParserException(context, line, message, cause=None)

	Bases: Exception

Exception raised when something wrong happened in a kv file.

	Builder
	Builder

	BuilderBase
	BuilderBase.apply()

	BuilderBase.apply_rules()

	BuilderBase.create_from()

	BuilderBase.load_file()

	BuilderBase.load_string()

	BuilderBase.match()

	BuilderBase.match_rule_name()

	BuilderBase.sync()

	BuilderBase.template()

	BuilderBase.unbind_property()

	BuilderBase.unbind_widget()

	BuilderBase.unload_file()

	BuilderException

	Observable
	Observable.bind()

	Observable.fbind()

	Observable.funbind()

	Observable.unbind()

	Observable.unbind_uid()

	Parser
	Parser
	Parser.parse()

	Parser.parse_level()

	Parser.strip_comments()

	ParserException

Builder

Class used for the registering and application of rules for specific widgets.

	
kivy.lang.builder.Builder: BuilderBase = <kivy.lang.builder.BuilderBase object>

	Main instance of a BuilderBase.

	
class kivy.lang.builder.BuilderBase

	Bases: builtins.object

The Builder is responsible for creating a Parser for parsing a
kv file, merging the results into its internal rules, templates, etc.

By default, Builder is a global Kivy instance used in widgets
that you can use to load other kv files in addition to the default ones.

	
apply(widget, ignored_consts={}, rule_children=None, dispatch_kv_post=False)

	Search all the rules that match the widget and apply them.

	Parameters:

	
	widget: Widget
	The widget whose class rules should be applied to this widget.

	ignored_consts: set
	A set or list type whose elements are property names for which
constant KV rules (i.e. those that don’t create bindings) of
that widget will not be applied. This allows e.g. skipping
constant rules that overwrite a value initialized in python.

	rule_children: list
	If not None, it should be a list that will be populated
with all the widgets created by the kv rules being applied.

Changed in version 1.11.0.

	dispatch_kv_post: bool
	Normally the class Widget dispatches the on_kv_post event
to widgets created during kv rule application.
But if the rules are manually applied by calling apply(),
that may not happen, so if this is True, we will dispatch the
on_kv_post event where needed after applying the rules to
widget (we won’t dispatch it for widget itself).

Defaults to False.

Changed in version 1.11.0.

	
apply_rules(widget, rule_name, ignored_consts={}, rule_children=None, dispatch_kv_post=False)

	Search all the rules that match the name rule_name
and apply them to widget.

New in version 1.10.0.

	Parameters:

	
	widget: Widget
	The widget to whom the matching rules should be applied to.

	ignored_consts: set
	A set or list type whose elements are property names for which
constant KV rules (i.e. those that don’t create bindings) of
that widget will not be applied. This allows e.g. skipping
constant rules that overwrite a value initialized in python.

	rule_children: list
	If not None, it should be a list that will be populated
with all the widgets created by the kv rules being applied.

Changed in version 1.11.0.

	dispatch_kv_post: bool
	Normally the class Widget dispatches the on_kv_post event
to widgets created during kv rule application.
But if the rules are manually applied by calling apply(),
that may not happen, so if this is True, we will dispatch the
on_kv_post event where needed after applying the rules to
widget (we won’t dispatch it for widget itself).

Defaults to False.

Changed in version 1.11.0.

	
classmethod create_from(builder)

	Creates a instance of the class, and initializes to the state of
builder.

	Parameters:

	builder – The builder to initialize from.

	Returns:

	A new instance of this class.

	
load_file(filename, encoding='utf8', **kwargs)

	Insert a file into the language builder and return the root widget
(if defined) of the kv file.

	Parameters:

	
	rulesonly: bool, defaults to False
	If True, the Builder will raise an exception if you have a root
widget inside the definition.

encoding: File character encoding. Defaults to utf-8,

	
load_string(string, **kwargs)

	Insert a string into the Language Builder and return the root widget
(if defined) of the kv string.

	Parameters:

	
	rulesonly: bool, defaults to False
	If True, the Builder will raise an exception if you have a root
widget inside the definition.

	filename: str, defaults to None
	If specified, the filename used to index the kv rules.

The filename parameter can be used to unload kv strings in the same way
as you unload kv files. This can be achieved using pseudo file names
e.g.:

Build.load_string("""
 <MyRule>:
 Label:
 text="Hello"
""", filename="myrule.kv")

can be unloaded via:

Build.unload_file("myrule.kv")

	
match(widget)

	Return a list of ParserRule objects matching the widget.

	
match_rule_name(rule_name)

	Return a list of ParserRule objects matching the widget.

	
sync()

	Execute all the waiting operations, such as the execution of all the
expressions related to the canvas.

New in version 1.7.0.

	
template(*args, **ctx)

	Create a specialized template using a specific context.

New in version 1.0.5.

With templates, you can construct custom widgets from a kv lang
definition by giving them a context. Check Template usage.

	
unbind_property(widget, name)

	Unbind the handlers created by all the rules of the widget that set
the name.

This effectively clears all the rules of widget that take the form:

name: rule

For example:

>>> w = Builder.load_string('''
... Widget:
... height: self.width / 2. if self.disabled else self.width
... x: self.y + 50
... ''')
>>> w.size
[100, 100]
>>> w.pos
[50, 0]
>>> w.width = 500
>>> w.size
[500, 500]
>>> Builder.unbind_property(w, 'height')
>>> w.width = 222
>>> w.size
[222, 500]
>>> w.y = 500
>>> w.pos
[550, 500]

New in version 1.9.1.

	
unbind_widget(uid)

	Unbind all the handlers created by the KV rules of the
widget. The kivy.uix.widget.Widget.uid is passed here
instead of the widget itself, because Builder is using it in the
widget destructor.

This effectively clears all the KV rules associated with this widget.
For example:

>>> w = Builder.load_string('''
... Widget:
... height: self.width / 2. if self.disabled else self.width
... x: self.y + 50
... ''')
>>> w.size
[100, 100]
>>> w.pos
[50, 0]
>>> w.width = 500
>>> w.size
[500, 500]
>>> Builder.unbind_widget(w.uid)
>>> w.width = 222
>>> w.y = 500
>>> w.size
[222, 500]
>>> w.pos
[50, 500]

New in version 1.7.2.

	
unload_file(filename)

	Unload all rules associated with a previously imported file.

New in version 1.0.8.

Warning

This will not remove rules or templates already applied/used on
current widgets. It will only effect the next widgets creation or
template invocation.

	
exception kivy.lang.builder.BuilderException(context, line, message, cause=None)

	Bases: ParserException

Exception raised when the Builder fails to apply a rule on a widget.

	
class kivy.lang.builder.Observable

	Bases: kivy.event.ObjectWithUid

Observable is a stub class defining the methods required
for binding. EventDispatcher is (the) one example of a class that
implements the binding interface. See EventDispatcher for details.

New in version 1.9.0.

	
bind(**kwargs)

	

	
fbind(name, func, *largs, **kwargs)

	See EventDispatcher.fbind().

Note

To keep backward compatibility with derived classes which may have
inherited from Observable before, the
fbind() method was added. The default implementation
of fbind() is to create a partial
function that it passes to bind while saving the uid and largs/kwargs.
However, funbind() (and unbind_uid()) are fairly
inefficient since we have to first lookup this partial function
using the largs/kwargs or uid and then call unbind() on
the returned function. It is recommended to overwrite
these methods in derived classes to bind directly for
better performance.

Similarly to EventDispatcher.fbind(), this method returns
0 on failure and a positive unique uid on success. This uid can be
used with unbind_uid().

	
funbind(name, func, *largs, **kwargs)

	See fbind() and EventDispatcher.funbind().

	
unbind(**kwargs)

	

	
unbind_uid(name, uid)

	See fbind() and EventDispatcher.unbind_uid().

Parser

Class used for the parsing of .kv files into rules.

	
class kivy.lang.parser.Parser(**kwargs)

	Bases: builtins.object

Create a Parser object to parse a Kivy language file or Kivy content.

	
parse(content)

	Parse the contents of a Parser file and return a list
of root objects.

	
parse_level(level, lines, spaces=0)

	Parse the current level (level * spaces) indentation.

	
strip_comments(lines)

	Remove all comments from all lines in-place.
Comments need to be on a single line and not at the end of a line.
i.e. a comment line’s first non-whitespace character must be a #.

	
exception kivy.lang.parser.ParserException(context, line, message, cause=None)

	Bases: Exception

Exception raised when something wrong happened in a kv file.

Builder

Class used for the registering and application of rules for specific widgets.

	
kivy.lang.builder.Builder: BuilderBase = <kivy.lang.builder.BuilderBase object>

	Main instance of a BuilderBase.

	
class kivy.lang.builder.BuilderBase

	Bases: builtins.object

The Builder is responsible for creating a Parser for parsing a
kv file, merging the results into its internal rules, templates, etc.

By default, Builder is a global Kivy instance used in widgets
that you can use to load other kv files in addition to the default ones.

	
apply(widget, ignored_consts={}, rule_children=None, dispatch_kv_post=False)

	Search all the rules that match the widget and apply them.

	Parameters:

	
	widget: Widget
	The widget whose class rules should be applied to this widget.

	ignored_consts: set
	A set or list type whose elements are property names for which
constant KV rules (i.e. those that don’t create bindings) of
that widget will not be applied. This allows e.g. skipping
constant rules that overwrite a value initialized in python.

	rule_children: list
	If not None, it should be a list that will be populated
with all the widgets created by the kv rules being applied.

Changed in version 1.11.0.

	dispatch_kv_post: bool
	Normally the class Widget dispatches the on_kv_post event
to widgets created during kv rule application.
But if the rules are manually applied by calling apply(),
that may not happen, so if this is True, we will dispatch the
on_kv_post event where needed after applying the rules to
widget (we won’t dispatch it for widget itself).

Defaults to False.

Changed in version 1.11.0.

	
apply_rules(widget, rule_name, ignored_consts={}, rule_children=None, dispatch_kv_post=False)

	Search all the rules that match the name rule_name
and apply them to widget.

New in version 1.10.0.

	Parameters:

	
	widget: Widget
	The widget to whom the matching rules should be applied to.

	ignored_consts: set
	A set or list type whose elements are property names for which
constant KV rules (i.e. those that don’t create bindings) of
that widget will not be applied. This allows e.g. skipping
constant rules that overwrite a value initialized in python.

	rule_children: list
	If not None, it should be a list that will be populated
with all the widgets created by the kv rules being applied.

Changed in version 1.11.0.

	dispatch_kv_post: bool
	Normally the class Widget dispatches the on_kv_post event
to widgets created during kv rule application.
But if the rules are manually applied by calling apply(),
that may not happen, so if this is True, we will dispatch the
on_kv_post event where needed after applying the rules to
widget (we won’t dispatch it for widget itself).

Defaults to False.

Changed in version 1.11.0.

	
classmethod create_from(builder)

	Creates a instance of the class, and initializes to the state of
builder.

	Parameters:

	builder – The builder to initialize from.

	Returns:

	A new instance of this class.

	
load_file(filename, encoding='utf8', **kwargs)

	Insert a file into the language builder and return the root widget
(if defined) of the kv file.

	Parameters:

	
	rulesonly: bool, defaults to False
	If True, the Builder will raise an exception if you have a root
widget inside the definition.

encoding: File character encoding. Defaults to utf-8,

	
load_string(string, **kwargs)

	Insert a string into the Language Builder and return the root widget
(if defined) of the kv string.

	Parameters:

	
	rulesonly: bool, defaults to False
	If True, the Builder will raise an exception if you have a root
widget inside the definition.

	filename: str, defaults to None
	If specified, the filename used to index the kv rules.

The filename parameter can be used to unload kv strings in the same way
as you unload kv files. This can be achieved using pseudo file names
e.g.:

Build.load_string("""
 <MyRule>:
 Label:
 text="Hello"
""", filename="myrule.kv")

can be unloaded via:

Build.unload_file("myrule.kv")

	
match(widget)

	Return a list of ParserRule objects matching the widget.

	
match_rule_name(rule_name)

	Return a list of ParserRule objects matching the widget.

	
sync()

	Execute all the waiting operations, such as the execution of all the
expressions related to the canvas.

New in version 1.7.0.

	
template(*args, **ctx)

	Create a specialized template using a specific context.

New in version 1.0.5.

With templates, you can construct custom widgets from a kv lang
definition by giving them a context. Check Template usage.

	
unbind_property(widget, name)

	Unbind the handlers created by all the rules of the widget that set
the name.

This effectively clears all the rules of widget that take the form:

name: rule

For example:

>>> w = Builder.load_string('''
... Widget:
... height: self.width / 2. if self.disabled else self.width
... x: self.y + 50
... ''')
>>> w.size
[100, 100]
>>> w.pos
[50, 0]
>>> w.width = 500
>>> w.size
[500, 500]
>>> Builder.unbind_property(w, 'height')
>>> w.width = 222
>>> w.size
[222, 500]
>>> w.y = 500
>>> w.pos
[550, 500]

New in version 1.9.1.

	
unbind_widget(uid)

	Unbind all the handlers created by the KV rules of the
widget. The kivy.uix.widget.Widget.uid is passed here
instead of the widget itself, because Builder is using it in the
widget destructor.

This effectively clears all the KV rules associated with this widget.
For example:

>>> w = Builder.load_string('''
... Widget:
... height: self.width / 2. if self.disabled else self.width
... x: self.y + 50
... ''')
>>> w.size
[100, 100]
>>> w.pos
[50, 0]
>>> w.width = 500
>>> w.size
[500, 500]
>>> Builder.unbind_widget(w.uid)
>>> w.width = 222
>>> w.y = 500
>>> w.size
[222, 500]
>>> w.pos
[50, 500]

New in version 1.7.2.

	
unload_file(filename)

	Unload all rules associated with a previously imported file.

New in version 1.0.8.

Warning

This will not remove rules or templates already applied/used on
current widgets. It will only effect the next widgets creation or
template invocation.

	
exception kivy.lang.builder.BuilderException(context, line, message, cause=None)

	Bases: ParserException

Exception raised when the Builder fails to apply a rule on a widget.

	
class kivy.lang.builder.Observable

	Bases: kivy.event.ObjectWithUid

Observable is a stub class defining the methods required
for binding. EventDispatcher is (the) one example of a class that
implements the binding interface. See EventDispatcher for details.

New in version 1.9.0.

	
bind(**kwargs)

	

	
fbind(name, func, *largs, **kwargs)

	See EventDispatcher.fbind().

Note

To keep backward compatibility with derived classes which may have
inherited from Observable before, the
fbind() method was added. The default implementation
of fbind() is to create a partial
function that it passes to bind while saving the uid and largs/kwargs.
However, funbind() (and unbind_uid()) are fairly
inefficient since we have to first lookup this partial function
using the largs/kwargs or uid and then call unbind() on
the returned function. It is recommended to overwrite
these methods in derived classes to bind directly for
better performance.

Similarly to EventDispatcher.fbind(), this method returns
0 on failure and a positive unique uid on success. This uid can be
used with unbind_uid().

	
funbind(name, func, *largs, **kwargs)

	See fbind() and EventDispatcher.funbind().

	
unbind(**kwargs)

	

	
unbind_uid(name, uid)

	See fbind() and EventDispatcher.unbind_uid().

Parser

Class used for the parsing of .kv files into rules.

	
class kivy.lang.parser.Parser(**kwargs)

	Bases: builtins.object

Create a Parser object to parse a Kivy language file or Kivy content.

	
parse(content)

	Parse the contents of a Parser file and return a list
of root objects.

	
parse_level(level, lines, spaces=0)

	Parse the current level (level * spaces) indentation.

	
strip_comments(lines)

	Remove all comments from all lines in-place.
Comments need to be on a single line and not at the end of a line.
i.e. a comment line’s first non-whitespace character must be a #.

	
exception kivy.lang.parser.ParserException(context, line, message, cause=None)

	Bases: Exception

Exception raised when something wrong happened in a kv file.

External libraries

Kivy comes with other python/C libraries:

	ddsfile - used for parsing and saving
DDS [https://en.wikipedia.org/wiki/DirectDraw_Surface] files.

	osc - a modified/optimized version of PyOSC for using
the Open Sound Control [https://en.wikipedia.org/wiki/Open_Sound_Control]
protocol.

	mtdev - provides support for the
Kernel multi-touch transformation library [https://launchpad.net/mtdev].

Warning

Even though Kivy comes with these external libraries, we do not provide any
support for them and they might change in the future.
Don’t rely on them in your code.

	GstPlayer

	DDS File library
	DDS Format

	DDSException

	QueryDict

	Python mtdev
	input_absinfo

	input_event

	mtdev

	mtdev_caps

	timeval

GstPlayer

New in version 1.8.0.

GstPlayer is a media player implemented specifically for Kivy with Gstreamer
1.0. It doesn’t use Gi at all and is focused on what we want: the ability
to read video and stream the image in a callback, or read an audio file.
Don’t use it directly but use our Core providers instead.

This player is automatically compiled if you have pkg-config –libs –cflags
gstreamer-1.0 working.

Warning

This is an external library and Kivy does not provide any support for it.
It might change in the future and we advise you don’t rely on it in your
code.

DDS File library

This library can be used to parse and save DDS
(DirectDraw Surface <https://en.wikipedia.org/wiki/DirectDraw_Surface>)
files.

The initial version was written by:

Alexey Borzenkov (snaury@gmail.com)

All the initial work credits go to him! Thank you :)

This version uses structs instead of ctypes.

DDS Format

[DDS][SurfaceDesc][Data]

[SurfaceDesc]:: (everything is uint32)
 Size
 Flags
 Height
 Width
 PitchOrLinearSize
 Depth
 MipmapCount
 Reserved1 * 11
 [PixelFormat]::
 Size
 Flags
 FourCC
 RGBBitCount
 RBitMask
 GBitMask
 BBitMask
 ABitMask
 [Caps]::
 Caps1
 Caps2
 Reserved1 * 2
 Reserverd2

Warning

This is an external library and Kivy does not provide any support for it.
It might change in the future and we advise you don’t rely on it in your
code.

	
exception kivy.lib.ddsfile.DDSException

	Bases: Exception

	
class kivy.lib.ddsfile.QueryDict

	Bases: builtins.dict

Python mtdev

The mtdev module provides Python bindings to the Kernel multi-touch
transformation library [https://launchpad.net/mtdev], also known as mtdev
(MIT license).

The mtdev library transforms all variants of kernel MT events to the
slotted type B protocol. The events put into mtdev may be from any MT
device, specifically type A without contact tracking, type A with
contact tracking, or type B with contact tracking. See the kernel
documentation for further details.

Warning

This is an external library and Kivy does not provide any support for it.
It might change in the future and we advise you don’t rely on it in your
code.

	
class kivy.lib.mtdev.input_absinfo

	Bases: _ctypes.Structure

	
class kivy.lib.mtdev.input_event

	Bases: _ctypes.Structure

	
class kivy.lib.mtdev.mtdev

	Bases: _ctypes.Structure

	
class kivy.lib.mtdev.mtdev_caps

	Bases: _ctypes.Structure

	
class kivy.lib.mtdev.timeval

	Bases: _ctypes.Structure

DDS File library

This library can be used to parse and save DDS
(DirectDraw Surface <https://en.wikipedia.org/wiki/DirectDraw_Surface>)
files.

The initial version was written by:

Alexey Borzenkov (snaury@gmail.com)

All the initial work credits go to him! Thank you :)

This version uses structs instead of ctypes.

DDS Format

[DDS][SurfaceDesc][Data]

[SurfaceDesc]:: (everything is uint32)
 Size
 Flags
 Height
 Width
 PitchOrLinearSize
 Depth
 MipmapCount
 Reserved1 * 11
 [PixelFormat]::
 Size
 Flags
 FourCC
 RGBBitCount
 RBitMask
 GBitMask
 BBitMask
 ABitMask
 [Caps]::
 Caps1
 Caps2
 Reserved1 * 2
 Reserverd2

Warning

This is an external library and Kivy does not provide any support for it.
It might change in the future and we advise you don’t rely on it in your
code.

	
exception kivy.lib.ddsfile.DDSException

	Bases: Exception

	
class kivy.lib.ddsfile.QueryDict

	Bases: builtins.dict

GstPlayer

New in version 1.8.0.

GstPlayer is a media player implemented specifically for Kivy with Gstreamer
1.0. It doesn’t use Gi at all and is focused on what we want: the ability
to read video and stream the image in a callback, or read an audio file.
Don’t use it directly but use our Core providers instead.

This player is automatically compiled if you have pkg-config –libs –cflags
gstreamer-1.0 working.

Warning

This is an external library and Kivy does not provide any support for it.
It might change in the future and we advise you don’t rely on it in your
code.

Python mtdev

The mtdev module provides Python bindings to the Kernel multi-touch
transformation library [https://launchpad.net/mtdev], also known as mtdev
(MIT license).

The mtdev library transforms all variants of kernel MT events to the
slotted type B protocol. The events put into mtdev may be from any MT
device, specifically type A without contact tracking, type A with
contact tracking, or type B with contact tracking. See the kernel
documentation for further details.

Warning

This is an external library and Kivy does not provide any support for it.
It might change in the future and we advise you don’t rely on it in your
code.

	
class kivy.lib.mtdev.input_absinfo

	Bases: _ctypes.Structure

	
class kivy.lib.mtdev.input_event

	Bases: _ctypes.Structure

	
class kivy.lib.mtdev.mtdev

	Bases: _ctypes.Structure

	
class kivy.lib.mtdev.mtdev_caps

	Bases: _ctypes.Structure

	
class kivy.lib.mtdev.timeval

	Bases: _ctypes.Structure

Asynchronous data loader

This is the Asynchronous Loader. You can use it to load an image
and use it, even if data are not yet available. You must specify a default
loading image when using the loader:

from kivy.loader import Loader
image = Loader.image('mysprite.png')

You can also load an image from a url:

image = Loader.image('http://mysite.com/test.png')

If you want to change the default loading image, you can do:

Loader.loading_image = Image('another_loading.png')

Tweaking the asynchronous loader

New in version 1.6.0.

You can tweak the loader to provide a better user experience or more
performance, depending of the images you are going to load. Take a look at the
parameters:

	Loader.num_workers - define the number of threads to start for
loading images.

	Loader.max_upload_per_frame - define the maximum image uploads in
GPU to do per frame.

	
class kivy.loader.LoaderBase

	Bases: builtins.object

Common base for the Loader and specific implementations.
By default, the Loader will be the best available loader implementation.

The _update() function is called every 1 / 25.s or each frame if we have
less than 25 FPS.

	
property error_image

	Image used for error.
You can change it by doing:

Loader.error_image = 'error.png'

Changed in version 1.6.0: Not readonly anymore.

	
image(filename, load_callback=None, post_callback=None, **kwargs)

	Load a image using the Loader. A ProxyImage is returned with a
loading image. You can use it as follows:

from kivy.app import App
from kivy.uix.image import Image
from kivy.loader import Loader

class TestApp(App):
 def _image_loaded(self, proxyImage):
 if proxyImage.image.texture:
 self.image.texture = proxyImage.image.texture

 def build(self):
 proxyImage = Loader.image("myPic.jpg")
 proxyImage.bind(on_load=self._image_loaded)
 self.image = Image()
 return self.image

TestApp().run()

In order to cancel all background loading, call Loader.stop().

	
property loading_image

	Image used for loading.
You can change it by doing:

Loader.loading_image = 'loading.png'

Changed in version 1.6.0: Not readonly anymore.

	
property max_upload_per_frame

	The number of images to upload per frame. By default, we’ll
upload only 2 images to the GPU per frame. If you are uploading many
small images, you can easily increase this parameter to 10 or more.
If you are loading multiple full HD images, the upload time may have
consequences and block the application. If you want a
smooth experience, use the default.

As a matter of fact, a Full-HD RGB image will take ~6MB in memory,
so it may take time. If you have activated mipmap=True too, then the
GPU must calculate the mipmap of these big images too, in real time.
Then it may be best to reduce the max_upload_per_frame to 1
or 2. If you want to get rid of that (or reduce it a lot), take a
look at the DDS format.

New in version 1.6.0.

	
property num_workers

	Number of workers to use while loading (used only if the loader
implementation supports it). This setting impacts the loader only on
initialization. Once the loader is started, the setting has no impact:

from kivy.loader import Loader
Loader.num_workers = 4

The default value is 2 for giving a smooth user experience. You could
increase the number of workers, then all the images will be loaded faster,
but the user will not been able to use the application while loading.
Prior to 1.6.0, the default number was 20, and loading many full-hd images
was completely blocking the application.

New in version 1.6.0.

	
pause()

	Pause the loader, can be useful during interactions.

New in version 1.6.0.

	
resume()

	Resume the loader, after a pause().

New in version 1.6.0.

	
run(*largs)

	Main loop for the loader.

	
start()

	Start the loader thread/process.

	
stop()

	Stop the loader thread/process.

	
class kivy.loader.ProxyImage(arg, **kwargs)

	Bases: kivy.core.image.Image

Image returned by the Loader.image() function.

	Properties:

	
	loaded: bool, defaults to False
	This value may be True if the image is already cached.

	Events:

	
	on_load
	Fired when the image is loaded or changed.

	on_error
	Fired when the image cannot be loaded.
error: Exception data that occurred

Kivy Logging

By default, Kivy provides a logging system based on the standard Python
logging [https://docs.python.org/3/library/logging.html] module with
several additional features designed to be more convenient. These features
include:

	simplied usage (single instance, simple configuration, works by default)

	color-coded output on supported terminals

	output to stderr by default

	message categorization via colon separation

	access to log history even if logging is disabled

	built-in handling of various cross-platform considerations

	any stray output written to sys.stderr is captured, and stored in the log
file as a warning.

These features are configurable via the Config file or environment variables -
including falling back to only using the standard Python system.

Logger object

The Kivy Logger class provides a singleton logging.logger instance.

As well as the standard logging levels (debug, info,
warning, error and critical), an additional trace level is
available.

Example Usage

Use the Logger as you would a standard Python logger.

from kivy.logger import Logger

Logger.info('title: This is a info message.')
Logger.debug('title: This is a debug message.')

try:
 raise Exception('bleh')
except Exception:
 Logger.exception('Something happened!')

The message passed to the logger is split into two parts separated by a colon
(:). The first part is used as a title and the second part is used as the
message. This way, you can “categorize” your messages easily.

Logger.info('Application: This is a test')

will appear as

[INFO] [Application] This is a test

You can change the logging level at any time using the setLevel method.

from kivy.logger import Logger, LOG_LEVELS

Logger.setLevel(LOG_LEVELS["debug"])

Changed in version 2.2.0.

Interaction with other logging

The Kivy logging system will, by default, present all log messages sent from
any logger - e.g. from third-party libraries.

Additional handlers may be added.

Warning

Handlers that output to sys.stderr may cause loops, as stderr
output is reported as a warning log message.

Logger Configuration

Kivy Log Mode

At the highest level, Kivy’s logging system is controlled by an environment
variable KIVY_LOG_MODE. It may be given any of three values:
KIVY, PYTHON, MIXED

KIVY Mode (default)

In KIVY mode, all Kivy handlers are attached to the root logger, so all log
messages in the system are output to the Kivy log files and to the console. Any
stray output to sys.stderr is logged as a warning.

If you are writing an entire Kivy app from scratch, this is the most convenient
mode.

PYTHON Mode

In PYTHON mode, no handlers are added, and sys.stderr output is not
captured. It is left to the client to add appropriate handlers. (If none are
added, the logging module will output them to stderr.)

Messages logged with Logger will be propagated to the root logger, from a
logger named kivy.

If the Kivy app is part of a much larger project which has its own logging
regimen, this is the mode that gives most control.

The kivy.logger file contains a number of logging.handler,
logging.formatter, and other helper classes to allow
users to adopt the features of Kivy logging that they like, including the
stderr redirection.

MIXED Mode

In MIXED mode, handlers are added to the Kivy’s Logger object directly,
and propagation is turned off. sys.stderr is not redirected.

Messages logged with Kivy’s Logger will appear in the Kivy log file and
output to the Console.

However, messages logged with other Python loggers will not be handled by Kivy
handlers. The client will need to add their own.

If you like the features of Kivy Logger, but are writing a Kivy app that
relies on third-party libraries that don’t use colon-separation of categorise
or depend on the display of the logger name, this mode provides a compromise.

Again, the kivy.logger file contains re-usable logging features that can be
used to get the best of both systems.

Config Files

In KIVY and MIXED modes, the logger handlers can be controlled via the
Kivy configuration file:

[kivy]
log_level = info
log_enable = 1
log_dir = logs
log_name = kivy_%y-%m-%d_%_.txt
log_maxfiles = 100

More information about the allowed values are described in the
kivy.config module.

In addition, the environment variables KIVY_NO_FILELOG and
KIVY_NO_CONSOLELOG can be used to turn off the installation of the
corresponding handlers.

Logger History

Even if the logger is not enabled, you still have access to the last 100
LogRecords:

from kivy.logger import LoggerHistory

print(LoggerHistory.history)

	
class kivy.logger.ColonSplittingLogRecord(logrecord)

	Bases: logging.LogRecord

Clones an existing logRecord, but reformats the message field
if it contains a colon.

New in version 2.2.0.

	
class kivy.logger.ColoredLogRecord(logrecord)

	Bases: logging.LogRecord

Clones an existing logRecord, but reformats the levelname to add
color, and the message to add bolding (where indicated by $BOLD
and $RESET in the message).

New in version 2.2.0.

	
class kivy.logger.ConsoleHandler(stream=None)

	Bases: logging.StreamHandler

Emits records to a stream (by default, stderr).

However, if the msg starts with “stderr:” it is not formatted, but
written straight to the stream.

New in version 2.2.0.

	
filter(record)

	Determine if a record is loggable by consulting all the filters.

The default is to allow the record to be logged; any filter can veto
this and the record is then dropped. Returns a zero value if a record
is to be dropped, else non-zero.

Changed in version 3.2: Allow filters to be just callables.

	
class kivy.logger.FileHandler(level=0)

	Bases: logging.Handler

	
emit(message)

	Do whatever it takes to actually log the specified logging record.

This version is intended to be implemented by subclasses and so
raises a NotImplementedError.

	
purge_logs()

	Purge logs which exceed the maximum amount of log files,
starting with the oldest creation timestamp (or edit-timestamp on Linux)

	
class kivy.logger.KivyFormatter(*args, use_color=True, **kwargs)

	Bases: logging.Formatter

Split out first field in message marked with a colon,
and either apply terminal color codes to the record, or strip
out color markup if colored logging is not available.

New in version 2.2.0.

	
format(record)

	Format the specified record as text.

The record’s attribute dictionary is used as the operand to a
string formatting operation which yields the returned string.
Before formatting the dictionary, a couple of preparatory steps
are carried out. The message attribute of the record is computed
using LogRecord.getMessage(). If the formatting string uses the
time (as determined by a call to usesTime(), formatTime() is
called to format the event time. If there is exception information,
it is formatted using formatException() and appended to the message.

	
class kivy.logger.LoggerHistory(level=0)

	Bases: logging.Handler

	
emit(message)

	Do whatever it takes to actually log the specified logging record.

This version is intended to be implemented by subclasses and so
raises a NotImplementedError.

	
flush()

	Ensure all logging output has been flushed.

This version does nothing and is intended to be implemented by
subclasses.

	
class kivy.logger.ProcessingStream(channel, func)

	Bases: builtins.object

Stream-like object that takes each completed line written to it,
adds a given prefix, and applies the given function to it.

New in version 2.2.0.

	
class kivy.logger.UncoloredLogRecord(logrecord)

	Bases: logging.LogRecord

Clones an existing logRecord, but reformats the message
to remove $BOLD/$RESET markup.

New in version 2.2.0.

	
kivy.logger.add_kivy_handlers(logger)

	Add Kivy-specific handlers to a logger.

New in version 2.2.0.

	
kivy.logger.is_color_terminal()

	Detect whether the environment supports color codes in output.

New in version 2.2.0.

Metrics

New in version 1.5.0.

A screen is defined by its physical size, density and resolution. These
factors are essential for creating UI’s with correct size everywhere.

In Kivy, all the graphics pipelines work with pixels. But using pixels as a
measurement unit is problematic because sizes change according to the
screen.

Dimensions

If you want to design your UI for different screen sizes, you will want better
measurement units to work with. Kivy provides some more scalable alternatives.

	Units:

	
	pt
	Points - 1/72 of an inch based on the physical size of the screen.
Prefer to use sp instead of pt.

	mm
	Millimeters - Based on the physical size of the screen.

	cm
	Centimeters - Based on the physical size of the screen.

	in
	Inches - Based on the physical size of the screen.

	dp
	Density-independent Pixels - An abstract unit that is based on the
physical density of the screen. With a density of
1, 1dp is equal to 1px. When running on a higher density screen, the
number of pixels used to draw 1dp is scaled up a factor appropriate to
the screen’s dpi, and the inverse for a lower dpi.
The ratio of dp-to-pixels will change with the screen density, but not
necessarily in direct proportion. Using the dp unit is a simple
solution to making the view dimensions in your layout resize
properly for different screen densities. In others words, it
provides consistency for the real-world size of your UI across
different devices.

	sp
	Scale-independent Pixels - This is like the dp unit, but it is also
scaled by the user’s font size preference. We recommend you use this
unit when specifying font sizes, so the font size will be adjusted to
both the screen density and the user’s preference.

Examples

Here is an example of creating a label with a sp font_size and setting the
height manually with a 10dp margin:

#:kivy 1.5.0
<MyWidget>:
 Label:
 text: 'Hello world'
 font_size: '15sp'
 size_hint_y: None
 height: self.texture_size[1] + dp(10)

Manual control of metrics

The metrics cannot be changed at runtime. Once a value has been converted to
pixels, you can’t retrieve the original value anymore. This stems from the fact
that the DPI and density of a device cannot be changed at runtime.

We provide some environment variables to control metrics:

	KIVY_METRICS_DENSITY: if set, this value will be used for
density instead of the systems one. On android,
the value varies between 0.75, 1, 1.5 and 2.

	KIVY_METRICS_FONTSCALE: if set, this value will be used for
fontscale instead of the systems one. On android, the
value varies between 0.8 and 1.2.

	KIVY_DPI: if set, this value will be used for dpi.
Please
note that setting the DPI will not impact the dp/sp notation because these
are based on the screen density.

For example, if you want to simulate a high-density screen (like the HTC One
X):

KIVY_DPI=320 KIVY_METRICS_DENSITY=2 python main.py --size 1280x720

Or a medium-density (like Motorola Droid 2):

KIVY_DPI=240 KIVY_METRICS_DENSITY=1.5 python main.py --size 854x480

You can also simulate an alternative user preference for fontscale as follows:

KIVY_METRICS_FONTSCALE=1.2 python main.py

	
kivy.metrics.Metrics: MetricsBase = <kivy.metrics.MetricsBase object>

	The metrics object storing the window scaling factors.

New in version 1.7.0.

Changed in version 2.1.0: Metrics is now a Context registered variable (like e.g.
Clock).

	
class kivy.metrics.MetricsBase(**kwargs)

	Bases: kivy.event.EventDispatcher

Class that contains the default attributes for Metrics. Don’t use this
class directly, but use the Metrics instance.

	
cm: float

	The scaling factor that converts from centimeters to pixels.

cm is a AliasProperty containing the
factor. E.g in KV: width: self.texture_size[0] + 10 * Metrics.cm will
update width when cm changes from a screen configuration change.

	
density: float

	The density of the screen.

This value is 1 by default on desktops but varies on android depending on
the screen.

density is a AliasProperty and can be
set to change the value. But, the density is reloaded and reset if
we got it from the Window and the Window density changed.

	
dp: float

	The scaling factor that converts from density-independent pixels to
pixels.

dp is a AliasProperty containing the
factor. E.g in KV: width: self.texture_size[0] + 10 * Metrics.dp will
update width when dp changes from a screen configuration change.

	
dpi: float

	The DPI of the screen.

Depending on the platform, the DPI can be taken from the Window provider
(Desktop mainly) or from a platform-specific module (like android/ios).

dpi is a AliasProperty and can be
set to change the value. But, the density is reloaded and reset if
we got it from the Window and the Window dpi changed.

	
dpi_rounded: int

	Return the dpi of the screen, rounded to the nearest of 120,
160, 240 or 320.

dpi_rounded is a AliasProperty and
updates when dpi changes.

	
fontscale: float

	The fontscale user preference.

This value is 1 by default but can vary between 0.8 and 1.2.

fontscale is a AliasProperty and can be
set to change the value.

	
inch: float

	The scaling factor that converts from inches to pixels.

inch is a AliasProperty containing the
factor. E.g in KV: width: self.texture_size[0] + 10 * Metrics.inch will
update width when inch changes from a screen configuration change.

	
mm: float

	The scaling factor that converts from millimeters to pixels.

mm is a AliasProperty containing the
factor. E.g in KV: width: self.texture_size[0] + 10 * Metrics.mm will
update width when mm changes from a screen configuration change.

	
pt: float

	The scaling factor that converts from points to pixels.

pt is a AliasProperty containing the
factor. E.g in KV: width: self.texture_size[0] + 10 * Metrics.pt will
update width when pt changes from a screen configuration change.

	
reset_dpi(*args)

	Resets the dpi (and possibly density) to the platform values,
overwriting any manually set values.

	
reset_metrics()

	Resets the dpi/density/fontscale to the platform values, overwriting
any manually set values.

	
sp: float

	The scaling factor that converts from scale-independent pixels to
pixels.

sp is a AliasProperty containing the
factor. E.g in KV: width: self.texture_size[0] + 10 * Metrics.sp will
update width when sp changes from a screen configuration change.

	
kivy.metrics.cm(value) → float

	Convert from centimeters to pixels

	
kivy.metrics.dp(value) → float

	Convert from density-independent pixels to pixels

	
kivy.metrics.dpi2px(value, unicode ext) → float

	Converts the value according to the ext.

	
kivy.metrics.inch(value) → float

	Convert from inches to pixels

	
kivy.metrics.mm(value) → float

	Convert from millimeters to pixels

	
kivy.metrics.pt(value) → float

	Convert from points to pixels

	
kivy.metrics.sp(value) → float

	Convert from scale-independent pixels to pixels

Modules

Modules are classes that can be loaded when a Kivy application is starting. The
loading of modules is managed by the config file. Currently, we include:

	touchring: Draw a circle around each touch.

	monitor: Add a red topbar that indicates the FPS
and a small graph indicating input activity.

	keybinding: Bind some keys to actions, such as a
screenshot.

	recorder: Record and playback a sequence of
events.

	screen: Emulate the characteristics (dpi/density/
resolution) of different screens.

	inspector: Examines your widget hierarchy and
widget properties.

	webdebugger: Realtime examination of your app
internals via a web browser.

	joycursor: Navigate in your app with a joystick.

	showborder: Show widget’s border.

Modules are automatically loaded from the Kivy path and User path:

	PATH_TO_KIVY/kivy/modules

	HOME/.kivy/mods

Activating a module

There are various ways in which you can activate a kivy module.

Activate a module in the config

To activate a module this way, you can edit your configuration file (in your
HOME/.kivy/config.ini):

[modules]
uncomment to activate
touchring =
monitor =
keybinding =

Only the name of the module followed by “=” is sufficient to activate the
module.

Activate a module in Python

Before starting your application, preferably at the start of your import, you
can do something like this:

import kivy
kivy.require('1.0.8')

Activate the touchring module
from kivy.config import Config
Config.set('modules', 'touchring', '')

Activate a module via the commandline

When starting your application from the commandline, you can add a
-m <modulename> to the arguments. For example:

python main.py -m webdebugger

Note

Some modules, such as the screen, may require additional parameters. They
will, however, print these parameters to the console when launched without
them.

Create your own module

Create a file in your HOME/.kivy/mods, and create 2 functions:

def start(win, ctx):
 pass

def stop(win, ctx):
 pass

Start/stop are functions that will be called for every window opened in
Kivy. When you are starting a module, you can use these to store and
manage the module state. Use the ctx variable as a dictionary. This
context is unique for each instance/start() call of the module, and will
be passed to stop() too.

	Console
	Usage

	Mouse navigation

	Keyboard navigation

	Additional information

	Addons

	Console
	Console.activated

	Console.add_panel()

	Console.add_toolbar_widget()

	Console.addons

	Console.highlight_at()

	Console.inspect_enabled

	Console.mode

	Console.on_touch_down()

	Console.on_touch_move()

	Console.on_touch_up()

	Console.pick()

	Console.remove_toolbar_widget()

	Console.set_content()

	Console.widget

	ConsoleAddon
	ConsoleAddon.activate()

	ConsoleAddon.console

	ConsoleAddon.deactivate()

	ConsoleAddon.init()

	ConsoleButton

	ConsoleLabel

	ConsoleToggleButton

	start()

	stop()

	Inspector
	Usage

	create_inspector()

	stop()

	JoyCursor
	Usage

	create_joycursor()

	stop()

	Keybinding
	Usage

	Monitor module
	Usage

	Recorder module
	Configuration

	Usage

	Screen

	Touchring
	Configuration

	Example

	Web Debugger

Console

New in version 1.9.1.

Reboot of the old inspector, designed to be modular and keep concerns
separated. It also has an addons architecture that allow you to add a button,
panel, or more in the Console itself.

Warning

This module works, but might fail in some cases. Please contribute!

Usage

For normal module usage, please see the modules documentation:

python main.py -m console

Mouse navigation

When the “Select” button is activated, you can:

	tap once on a widget to select it without leaving inspect mode

	double tap on a widget to select and leave inspect mode (then you can
manipulate the widget again)

Keyboard navigation

	“Ctrl + e”: toggle console

	“Escape”: cancel widget lookup, then hide inspector view

	“Up”: select the parent widget

	“Down”: select the first child of the currently selected widget

	“Left”: select the previous sibling

	“Right”: select the next sibling

Additional information

Some properties can be edited live. However, due to the delayed usage of
some properties, it might crash if you don’t handle the required cases.

Addons

Addons must be added to Console.addons before the first Clock tick of the
application, or before create_console is called. You currently cannot
add addons on the fly. Addons are quite cheap until the Console is activated.
Panels are even cheaper as nothing is done until the user selects them.

We provide multiple addons activated by default:

	ConsoleAddonFps: display the FPS at the top-right

	ConsoleAddonSelect: activate the selection mode

	ConsoleAddonBreadcrumb: display the hierarchy of the current widget at the
bottom

	ConsoleAddonWidgetTree: panel to display the widget tree of the application

	ConsoleAddonWidgetPanel: panel to display the properties of the selected
widget

If you need to add custom widgets in the Console, please use either
ConsoleButton, ConsoleToggleButton or ConsoleLabel.

An addon must inherit from the ConsoleAddon class.

For example, here is a simple addon for displaying the FPS at the top/right
of the Console:

from kivy.modules.console import Console, ConsoleAddon

class ConsoleAddonFps(ConsoleAddon):
 def init(self):
 self.lbl = ConsoleLabel(text="0 Fps")
 self.console.add_toolbar_widget(self.lbl, right=True)

 def activate(self):
 self.event = Clock.schedule_interval(self.update_fps, 1 / 2.)

 def deactivated(self):
 self.event.cancel()

 def update_fps(self, *args):
 fps = Clock.get_fps()
 self.lbl.text = "{} Fps".format(int(fps))

Console.register_addon(ConsoleAddonFps)

You can create addons that add panels. Panel activation/deactivation is not
tied to the addon activation/deactivation, but in some cases, you can use the
same callback for deactivating the addon and the panel. Here is a simple
“About” panel addon:

from kivy.modules.console import Console, ConsoleAddon, ConsoleLabel

class ConsoleAddonAbout(ConsoleAddon):
 def init(self):
 self.console.add_panel("About", self.panel_activate,
 self.panel_deactivate)

 def panel_activate(self):
 self.console.bind(widget=self.update_content)
 self.update_content()

 def panel_deactivate(self):
 self.console.unbind(widget=self.update_content)

 def deactivate(self):
 self.panel_deactivate()

 def update_content(self, *args):
 widget = self.console.widget
 if not widget:
 return
 text = "Selected widget is: {!r}".format(widget)
 lbl = ConsoleLabel(text=text)
 self.console.set_content(lbl)

Console.register_addon(ConsoleAddonAbout)

	
class kivy.modules.console.Console(**kwargs)

	Bases: kivy.uix.relativelayout.RelativeLayout

Console interface

This widget is created by create_console(), when the module is loaded.
During that time, you can add addons on the console to extend the
functionalities, or add your own application stats / debugging module.

	
activated

	True if the Console is activated (showed)

	
add_panel(name, cb_activate, cb_deactivate, cb_refresh=None)

	Add a new panel in the Console.

	cb_activate is a callable that will be called when the panel is
activated by the user.

	cb_deactivate is a callable that will be called when the panel is
deactivated or when the console will hide.

	cb_refresh is an optional callable that is called if the user
click again on the button for display the panel

When activated, it’s up to the panel to display a content in the
Console by using set_content().

	
add_toolbar_widget(widget, right=False)

	Add a widget in the top left toolbar of the Console.
Use right=True if you wanna add the widget at the right instead.

	
addons = [<class 'kivy.modules.console.ConsoleAddonSelect'>, <class 'kivy.modules.console.ConsoleAddonFps'>, <class 'kivy.modules.console.ConsoleAddonWidgetPanel'>, <class 'kivy.modules.console.ConsoleAddonWidgetTree'>, <class 'kivy.modules.console.ConsoleAddonBreadcrumb'>]

	Array of addons that will be created at Console creation

	
highlight_at(x, y)

	Select a widget from a x/y window coordinate.
This is mostly used internally when Select mode is activated

	
inspect_enabled

	Indicate if the inspector inspection is enabled. If yes, the next
touch down will select a the widget under the touch

	
mode

	Display mode of the Console, either docked at the bottom, or as a
floating window.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_move(touch)

	Receive a touch move event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
pick(widget, x, y)

	Pick a widget at x/y, given a root widget

	
remove_toolbar_widget(widget)

	Remove a widget from the toolbar

	
set_content(content)

	Replace the Console content with a new one.

	
widget

	Current widget being selected

	
class kivy.modules.console.ConsoleAddon(console)

	Bases: builtins.object

Base class for implementing addons

	
activate()

	Method called when the addon is activated by the console
(when the console is displayed)

	
console = None

	Console instance

	
deactivate()

	Method called when the addon is deactivated by the console
(when the console is hidden)

	
init()

	Method called when the addon is instantiated by the Console

	
class kivy.modules.console.ConsoleButton(**kwargs)

	Bases: kivy.uix.button.Button

Button specialized for the Console

	
class kivy.modules.console.ConsoleLabel(**kwargs)

	Bases: kivy.uix.label.Label

LabelButton specialized for the Console

	
class kivy.modules.console.ConsoleToggleButton(**kwargs)

	Bases: kivy.uix.togglebutton.ToggleButton

ToggleButton specialized for the Console

	
kivy.modules.console.start(win, ctx)

	Create an Console instance attached to the ctx and bound to the
Window’s on_keyboard() event for
capturing the keyboard shortcut.

	Parameters:

	
	win: A Window
	The application Window to bind to.

	ctx: A Widget or subclass
	The Widget to be inspected.

	
kivy.modules.console.stop(win, ctx)

	Stop and unload any active Inspectors for the given ctx.

Inspector

New in version 1.0.9.

Warning

This module is highly experimental, use it with care.

The Inspector is a tool for finding a widget in the widget tree by clicking or
tapping on it.
Some keyboard shortcuts are activated:

	“Ctrl + e”: activate / deactivate the inspector view

	“Escape”: cancel widget lookup first, then hide the inspector view

Available inspector interactions:

	tap once on a widget to select it without leaving inspect mode

	double tap on a widget to select and leave inspect mode (then you can
manipulate the widget again)

Some properties can be edited live. However, due to the delayed usage of
some properties, it might crash if you don’t handle all the cases.

Usage

For normal module usage, please see the modules documentation.

The Inspector, however, can also be imported and used just like a normal
python module. This has the added advantage of being able to activate and
deactivate the module programmatically:

from kivy.core.window import Window
from kivy.app import App
from kivy.uix.button import Button
from kivy.modules import inspector

class Demo(App):
 def build(self):
 button = Button(text="Test")
 inspector.create_inspector(Window, button)
 return button

Demo().run()

To remove the Inspector, you can do the following:

inspector.stop(Window, button)

	
kivy.modules.inspector.create_inspector(win, ctx, *largs)

	Create an Inspector instance attached to the ctx and bound to the
Window’s on_keyboard() event for
capturing the keyboard shortcut.

	Parameters:

	
	win: A Window
	The application Window to bind to.

	ctx: A Widget or subclass
	The Widget to be inspected.

	
kivy.modules.inspector.stop(win, ctx)

	Stop and unload any active Inspectors for the given ctx.

JoyCursor

New in version 1.10.0.

The JoyCursor is a tool for navigating with a joystick as if using a mouse
or touch. Most of the actions that are possible for a mouse user are available
in this module.

For example:

	left click

	right click

	double click (two clicks)

	moving the cursor

	holding the button (+ moving at the same time)

	selecting

	scrolling

There are some properties that can be edited live, such as intensity of the
JoyCursor movement and toggling mouse button holding.

Usage

For normal module usage, please see the modules documentation
and these bindings:

	Event

	Joystick

	cursor move

	Axis 3, Axis 4

	cursor intensity

	Button 0, Button 1

	left click

	Button 2

	right click

	Button 3

	scroll up

	Button 4

	scroll down

	Button 5

	hold button

	Button 6

	joycursor on/off

	Button 7

The JoyCursor, like Inspector, can also be imported and used as a normal
python module. This has the added advantage of being able to activate and
deactivate the module programmatically:

from kivy.lang import Builder
from kivy.base import runTouchApp
runTouchApp(Builder.load_string("""
#:import jc kivy.modules.joycursor
BoxLayout:
 Button:
 text: 'Press & activate with Ctrl+E or Button 7'
 on_release: jc.create_joycursor(root.parent, root)
 Button:
 text: 'Disable'
 on_release: jc.stop(root.parent, root)
"""))

	
kivy.modules.joycursor.create_joycursor(win, ctx, *args)

	Create a JoyCursor instance attached to the ctx and bound to the
Window’s on_keyboard() event for
capturing the keyboard shortcuts.

	Parameters:

	
	win: A Window
	The application Window to bind to.

	ctx: A Widget or subclass
	The Widget for JoyCursor to attach to.

	
kivy.modules.joycursor.stop(win, ctx)

	Stop and unload any active JoyCursors for the given ctx.

Keybinding

This module forces the mapping of some keys to functions:

	F11: Rotate the Window through 0, 90, 180 and 270 degrees

	Shift + F11: Switches between portrait and landscape on desktops

	F12: Take a screenshot

Note: this doesn’t work if the application requests the keyboard beforehand.

Usage

For normal module usage, please see the modules documentation.

The Keybinding module, however, can also be imported and used just
like a normal python module. This has the added advantage of being
able to activate and deactivate the module programmatically:

from kivy.app import App
from kivy.uix.button import Button
from kivy.modules import keybinding
from kivy.core.window import Window

class Demo(App):

 def build(self):
 button = Button(text="Hello")
 keybinding.start(Window, button)
 return button

Demo().run()

To remove the Keybinding, you can do the following:

Keybinding.stop(Window, button)

Monitor module

The Monitor module is a toolbar that shows the activity of your current
application :

	FPS

	Graph of input events

Usage

For normal module usage, please see the modules documentation.

Recorder module

New in version 1.1.0.

Create an instance of Recorder, attach to the
class, and bind some keys to record / play sequences:

	F6: play the last record in a loop

	F7: read the latest recording

	F8: record input events

Configuration

	Parameters:

	
	attrs: str, defaults to record_attrs value.
	Attributes to record from the motion event

	profile_mask: str, defaults to record_profile_mask value.
	Mask for motion event profile. Used to filter which profile will appear
in the fake motion event when replayed.

	filename: str, defaults to ‘recorder.kvi’
	Name of the file to record / play with

Usage

For normal module usage, please see the modules documentation.

Screen

This module changes some environment and configuration variables
to match the density / dpi / screensize of a specific device.

To see a list of the available screenid’s, just run:

python main.py -m screen

To simulate a medium-density screen such as the Motorola Droid 2:

python main.py -m screen:droid2

To simulate a high-density screen such as HTC One X, in portrait:

python main.py -m screen:onex,portrait

To simulate the iPad 2 screen:

python main.py -m screen:ipad

If the generated window is too large, you can specify a scale:

python main.py -m screen:note2,portrait,scale=.75

Note that to display your contents correctly on a scaled window you
must consistently use units ‘dp’ and ‘sp’ throughout your app. See
metrics for more details.

Touchring

Shows rings around every touch on the surface / screen. You can use this module
to check that you don’t have any calibration issues with touches.

Configuration

	Parameters:

	
	image: str, defaults to ‘<kivy>/data/images/ring.png’
	Filename of the image to use.

	scale: float, defaults to 1.
	Scale of the image.

	alpha: float, defaults to 1.
	Opacity of the image.

Example

In your configuration (~/.kivy/config.ini), you can add something like
this:

[modules]
touchring = image=mypointer.png,scale=.3,alpha=.7

Web Debugger

New in version 1.2.0.

Warning

This module is highly experimental, use it with care.

This module will start a webserver and run in the background. You can
see how your application evolves during runtime, examine the internal
cache etc.

Run with:

python main.py -m webdebugger

Then open your webbrowser on http://localhost:5000/

Console

New in version 1.9.1.

Reboot of the old inspector, designed to be modular and keep concerns
separated. It also has an addons architecture that allow you to add a button,
panel, or more in the Console itself.

Warning

This module works, but might fail in some cases. Please contribute!

Usage

For normal module usage, please see the modules documentation:

python main.py -m console

Mouse navigation

When the “Select” button is activated, you can:

	tap once on a widget to select it without leaving inspect mode

	double tap on a widget to select and leave inspect mode (then you can
manipulate the widget again)

Keyboard navigation

	“Ctrl + e”: toggle console

	“Escape”: cancel widget lookup, then hide inspector view

	“Up”: select the parent widget

	“Down”: select the first child of the currently selected widget

	“Left”: select the previous sibling

	“Right”: select the next sibling

Additional information

Some properties can be edited live. However, due to the delayed usage of
some properties, it might crash if you don’t handle the required cases.

Addons

Addons must be added to Console.addons before the first Clock tick of the
application, or before create_console is called. You currently cannot
add addons on the fly. Addons are quite cheap until the Console is activated.
Panels are even cheaper as nothing is done until the user selects them.

We provide multiple addons activated by default:

	ConsoleAddonFps: display the FPS at the top-right

	ConsoleAddonSelect: activate the selection mode

	ConsoleAddonBreadcrumb: display the hierarchy of the current widget at the
bottom

	ConsoleAddonWidgetTree: panel to display the widget tree of the application

	ConsoleAddonWidgetPanel: panel to display the properties of the selected
widget

If you need to add custom widgets in the Console, please use either
ConsoleButton, ConsoleToggleButton or ConsoleLabel.

An addon must inherit from the ConsoleAddon class.

For example, here is a simple addon for displaying the FPS at the top/right
of the Console:

from kivy.modules.console import Console, ConsoleAddon

class ConsoleAddonFps(ConsoleAddon):
 def init(self):
 self.lbl = ConsoleLabel(text="0 Fps")
 self.console.add_toolbar_widget(self.lbl, right=True)

 def activate(self):
 self.event = Clock.schedule_interval(self.update_fps, 1 / 2.)

 def deactivated(self):
 self.event.cancel()

 def update_fps(self, *args):
 fps = Clock.get_fps()
 self.lbl.text = "{} Fps".format(int(fps))

Console.register_addon(ConsoleAddonFps)

You can create addons that add panels. Panel activation/deactivation is not
tied to the addon activation/deactivation, but in some cases, you can use the
same callback for deactivating the addon and the panel. Here is a simple
“About” panel addon:

from kivy.modules.console import Console, ConsoleAddon, ConsoleLabel

class ConsoleAddonAbout(ConsoleAddon):
 def init(self):
 self.console.add_panel("About", self.panel_activate,
 self.panel_deactivate)

 def panel_activate(self):
 self.console.bind(widget=self.update_content)
 self.update_content()

 def panel_deactivate(self):
 self.console.unbind(widget=self.update_content)

 def deactivate(self):
 self.panel_deactivate()

 def update_content(self, *args):
 widget = self.console.widget
 if not widget:
 return
 text = "Selected widget is: {!r}".format(widget)
 lbl = ConsoleLabel(text=text)
 self.console.set_content(lbl)

Console.register_addon(ConsoleAddonAbout)

	
class kivy.modules.console.Console(**kwargs)

	Bases: kivy.uix.relativelayout.RelativeLayout

Console interface

This widget is created by create_console(), when the module is loaded.
During that time, you can add addons on the console to extend the
functionalities, or add your own application stats / debugging module.

	
activated

	True if the Console is activated (showed)

	
add_panel(name, cb_activate, cb_deactivate, cb_refresh=None)

	Add a new panel in the Console.

	cb_activate is a callable that will be called when the panel is
activated by the user.

	cb_deactivate is a callable that will be called when the panel is
deactivated or when the console will hide.

	cb_refresh is an optional callable that is called if the user
click again on the button for display the panel

When activated, it’s up to the panel to display a content in the
Console by using set_content().

	
add_toolbar_widget(widget, right=False)

	Add a widget in the top left toolbar of the Console.
Use right=True if you wanna add the widget at the right instead.

	
addons = [<class 'kivy.modules.console.ConsoleAddonSelect'>, <class 'kivy.modules.console.ConsoleAddonFps'>, <class 'kivy.modules.console.ConsoleAddonWidgetPanel'>, <class 'kivy.modules.console.ConsoleAddonWidgetTree'>, <class 'kivy.modules.console.ConsoleAddonBreadcrumb'>]

	Array of addons that will be created at Console creation

	
highlight_at(x, y)

	Select a widget from a x/y window coordinate.
This is mostly used internally when Select mode is activated

	
inspect_enabled

	Indicate if the inspector inspection is enabled. If yes, the next
touch down will select a the widget under the touch

	
mode

	Display mode of the Console, either docked at the bottom, or as a
floating window.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_move(touch)

	Receive a touch move event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
pick(widget, x, y)

	Pick a widget at x/y, given a root widget

	
remove_toolbar_widget(widget)

	Remove a widget from the toolbar

	
set_content(content)

	Replace the Console content with a new one.

	
widget

	Current widget being selected

	
class kivy.modules.console.ConsoleAddon(console)

	Bases: builtins.object

Base class for implementing addons

	
activate()

	Method called when the addon is activated by the console
(when the console is displayed)

	
console = None

	Console instance

	
deactivate()

	Method called when the addon is deactivated by the console
(when the console is hidden)

	
init()

	Method called when the addon is instantiated by the Console

	
class kivy.modules.console.ConsoleButton(**kwargs)

	Bases: kivy.uix.button.Button

Button specialized for the Console

	
class kivy.modules.console.ConsoleLabel(**kwargs)

	Bases: kivy.uix.label.Label

LabelButton specialized for the Console

	
class kivy.modules.console.ConsoleToggleButton(**kwargs)

	Bases: kivy.uix.togglebutton.ToggleButton

ToggleButton specialized for the Console

	
kivy.modules.console.start(win, ctx)

	Create an Console instance attached to the ctx and bound to the
Window’s on_keyboard() event for
capturing the keyboard shortcut.

	Parameters:

	
	win: A Window
	The application Window to bind to.

	ctx: A Widget or subclass
	The Widget to be inspected.

	
kivy.modules.console.stop(win, ctx)

	Stop and unload any active Inspectors for the given ctx.

Inspector

New in version 1.0.9.

Warning

This module is highly experimental, use it with care.

The Inspector is a tool for finding a widget in the widget tree by clicking or
tapping on it.
Some keyboard shortcuts are activated:

	“Ctrl + e”: activate / deactivate the inspector view

	“Escape”: cancel widget lookup first, then hide the inspector view

Available inspector interactions:

	tap once on a widget to select it without leaving inspect mode

	double tap on a widget to select and leave inspect mode (then you can
manipulate the widget again)

Some properties can be edited live. However, due to the delayed usage of
some properties, it might crash if you don’t handle all the cases.

Usage

For normal module usage, please see the modules documentation.

The Inspector, however, can also be imported and used just like a normal
python module. This has the added advantage of being able to activate and
deactivate the module programmatically:

from kivy.core.window import Window
from kivy.app import App
from kivy.uix.button import Button
from kivy.modules import inspector

class Demo(App):
 def build(self):
 button = Button(text="Test")
 inspector.create_inspector(Window, button)
 return button

Demo().run()

To remove the Inspector, you can do the following:

inspector.stop(Window, button)

	
kivy.modules.inspector.create_inspector(win, ctx, *largs)

	Create an Inspector instance attached to the ctx and bound to the
Window’s on_keyboard() event for
capturing the keyboard shortcut.

	Parameters:

	
	win: A Window
	The application Window to bind to.

	ctx: A Widget or subclass
	The Widget to be inspected.

	
kivy.modules.inspector.stop(win, ctx)

	Stop and unload any active Inspectors for the given ctx.

JoyCursor

New in version 1.10.0.

The JoyCursor is a tool for navigating with a joystick as if using a mouse
or touch. Most of the actions that are possible for a mouse user are available
in this module.

For example:

	left click

	right click

	double click (two clicks)

	moving the cursor

	holding the button (+ moving at the same time)

	selecting

	scrolling

There are some properties that can be edited live, such as intensity of the
JoyCursor movement and toggling mouse button holding.

Usage

For normal module usage, please see the modules documentation
and these bindings:

	Event

	Joystick

	cursor move

	Axis 3, Axis 4

	cursor intensity

	Button 0, Button 1

	left click

	Button 2

	right click

	Button 3

	scroll up

	Button 4

	scroll down

	Button 5

	hold button

	Button 6

	joycursor on/off

	Button 7

The JoyCursor, like Inspector, can also be imported and used as a normal
python module. This has the added advantage of being able to activate and
deactivate the module programmatically:

from kivy.lang import Builder
from kivy.base import runTouchApp
runTouchApp(Builder.load_string("""
#:import jc kivy.modules.joycursor
BoxLayout:
 Button:
 text: 'Press & activate with Ctrl+E or Button 7'
 on_release: jc.create_joycursor(root.parent, root)
 Button:
 text: 'Disable'
 on_release: jc.stop(root.parent, root)
"""))

	
kivy.modules.joycursor.create_joycursor(win, ctx, *args)

	Create a JoyCursor instance attached to the ctx and bound to the
Window’s on_keyboard() event for
capturing the keyboard shortcuts.

	Parameters:

	
	win: A Window
	The application Window to bind to.

	ctx: A Widget or subclass
	The Widget for JoyCursor to attach to.

	
kivy.modules.joycursor.stop(win, ctx)

	Stop and unload any active JoyCursors for the given ctx.

Keybinding

This module forces the mapping of some keys to functions:

	F11: Rotate the Window through 0, 90, 180 and 270 degrees

	Shift + F11: Switches between portrait and landscape on desktops

	F12: Take a screenshot

Note: this doesn’t work if the application requests the keyboard beforehand.

Usage

For normal module usage, please see the modules documentation.

The Keybinding module, however, can also be imported and used just
like a normal python module. This has the added advantage of being
able to activate and deactivate the module programmatically:

from kivy.app import App
from kivy.uix.button import Button
from kivy.modules import keybinding
from kivy.core.window import Window

class Demo(App):

 def build(self):
 button = Button(text="Hello")
 keybinding.start(Window, button)
 return button

Demo().run()

To remove the Keybinding, you can do the following:

Keybinding.stop(Window, button)

Monitor module

The Monitor module is a toolbar that shows the activity of your current
application :

	FPS

	Graph of input events

Usage

For normal module usage, please see the modules documentation.

Recorder module

New in version 1.1.0.

Create an instance of Recorder, attach to the
class, and bind some keys to record / play sequences:

	F6: play the last record in a loop

	F7: read the latest recording

	F8: record input events

Configuration

	Parameters:

	
	attrs: str, defaults to record_attrs value.
	Attributes to record from the motion event

	profile_mask: str, defaults to record_profile_mask value.
	Mask for motion event profile. Used to filter which profile will appear
in the fake motion event when replayed.

	filename: str, defaults to ‘recorder.kvi’
	Name of the file to record / play with

Usage

For normal module usage, please see the modules documentation.

Screen

This module changes some environment and configuration variables
to match the density / dpi / screensize of a specific device.

To see a list of the available screenid’s, just run:

python main.py -m screen

To simulate a medium-density screen such as the Motorola Droid 2:

python main.py -m screen:droid2

To simulate a high-density screen such as HTC One X, in portrait:

python main.py -m screen:onex,portrait

To simulate the iPad 2 screen:

python main.py -m screen:ipad

If the generated window is too large, you can specify a scale:

python main.py -m screen:note2,portrait,scale=.75

Note that to display your contents correctly on a scaled window you
must consistently use units ‘dp’ and ‘sp’ throughout your app. See
metrics for more details.

Touchring

Shows rings around every touch on the surface / screen. You can use this module
to check that you don’t have any calibration issues with touches.

Configuration

	Parameters:

	
	image: str, defaults to ‘<kivy>/data/images/ring.png’
	Filename of the image to use.

	scale: float, defaults to 1.
	Scale of the image.

	alpha: float, defaults to 1.
	Opacity of the image.

Example

In your configuration (~/.kivy/config.ini), you can add something like
this:

[modules]
touchring = image=mypointer.png,scale=.3,alpha=.7

Web Debugger

New in version 1.2.0.

Warning

This module is highly experimental, use it with care.

This module will start a webserver and run in the background. You can
see how your application evolves during runtime, examine the internal
cache etc.

Run with:

python main.py -m webdebugger

Then open your webbrowser on http://localhost:5000/

Multistroke gesture recognizer

New in version 1.9.0.

Warning

This is experimental and subject to change as long as this warning notice
is present.

See kivy/examples/demo/multistroke/main.py for a complete application
example.

Conceptual Overview

This module implements the Protractor gesture recognition algorithm.

Recognizer is the search/database API similar to
GestureDatabase. It maintains a list of
MultistrokeGesture objects and allows you to search for a
user-input gestures among them.

ProgressTracker tracks the progress of a Recognizer.recognize()
call. It can be used to interact with the running recognizer task, for example
forcing it to stop half-way, or analyzing results as they arrive.

MultistrokeGesture represents a gesture in the gesture database
(Recognizer.db). It is a container for UnistrokeTemplate
objects, and implements the heap permute algorithm to automatically generate
all possible stroke orders (if desired).

UnistrokeTemplate represents a single stroke path. It’s typically
instantiated automatically by MultistrokeGesture, but sometimes you
may need to create them manually.

Candidate represents a user-input gesture that is used to search
the gesture database for matches. It is normally instantiated automatically
by calling Recognizer.recognize().

Usage examples

See kivy/examples/demo/multistroke/main.py for a complete application
example.

You can bind to events on Recognizer to track the state of all
calls to Recognizer.recognize(). The callback function will receive an
instance of ProgressTracker that can be used to analyze and control
various aspects of the recognition process

from kivy.vector import Vector
from kivy.multistroke import Recognizer

gdb = Recognizer()

def search_start(gdb, pt):
 print("A search is starting with %d tasks" % (pt.tasks))

def search_stop(gdb, pt):
 # This will call max() on the result dictionary, so it's best to store
 # it instead of calling it 3 times consecutively
 best = pt.best
 print("Search ended (%s). Best is %s (score %f, distance %f)" % (
 pt.status, best['name'], best['score'], best['dist']))

Bind your callbacks to track all matching operations
gdb.bind(on_search_start=search_start)
gdb.bind(on_search_complete=search_stop)

The format below is referred to as `strokes`, a list of stroke paths.
Note that each path shown here consists of two points, ie a straight
line; if you plot them it looks like a T, hence the name.
gdb.add_gesture('T', [
 [Vector(30, 7), Vector(103, 7)],
 [Vector(66, 7), Vector(66, 87)]])

Now you can search for the 'T' gesture using similar data (user input).
This will trigger both of the callbacks bound above.
gdb.recognize([
 [Vector(45, 8), Vector(110, 12)],
 [Vector(88, 9), Vector(85, 95)]])

On the next Clock tick, the matching process starts
(and, in this case, completes).

To track individual calls to Recognizer.recognize(), use the return
value (also a ProgressTracker instance)

Same as above, but keep track of progress using returned value
progress = gdb.recognize([
 [Vector(45, 8), Vector(110, 12)],
 [Vector(88, 9), Vector(85, 95)]])

progress.bind(on_progress=my_other_callback)
print(progress.progress) # = 0

[assuming a kivy.clock.Clock.tick() here]

print(result.progress) # = 1

Algorithm details

For more information about the matching algorithm, see:

	“Protractor: A fast and accurate gesture recognizer” by Yang Li
	http://yangl.org/pdf/protractor-chi2010.pdf

	“$N-Protractor” by Lisa Anthony and Jacob O. Wobbrock
	http://depts.washington.edu/aimgroup/proj/dollar/ndollar-protractor.pdf

	Some of the code is derived from the JavaScript implementation here:
	http://depts.washington.edu/aimgroup/proj/dollar/ndollar.html

	
class kivy.multistroke.Candidate(strokes=None, numpoints=16, **kwargs)

	Bases: builtins.object

Represents a set of unistroke paths of user input, ie data to be matched
against a UnistrokeTemplate object using the Protractor algorithm.
By default, data is precomputed to match both rotation bounded and fully
invariant UnistrokeTemplate objects.

	Arguments:

	
	strokes
	See MultistrokeGesture.strokes for format example. The
Candidate strokes are simply combined to a unistroke in the order
given. The idea is that this will match one of the unistroke
permutations in MultistrokeGesture.templates.

	numpoints
	The Candidate’s default N; this is only for a fallback, it is not
normally used since n is driven by the UnistrokeTemplate we are
being compared to.

	skip_bounded
	If True, do not generate/store rotation bounded vectors

	skip_invariant
	If True, do not generate/store rotation invariant vectors

Note that you WILL get errors if you set a skip-flag and then attempt to
retrieve the data.

	
add_stroke(stroke)

	Add a stroke to the candidate; this will invalidate all
previously computed vectors

	
get_angle_similarity(tpl, **kwargs)

	(Internal use only) Compute the angle similarity between this
Candidate and a UnistrokeTemplate object. Returns a number that
represents the angle similarity (lower is more similar).

	
get_protractor_vector(numpoints, orientation_sens)

	(Internal use only) Return vector for comparing to a
UnistrokeTemplate with Protractor

	
get_start_unit_vector(numpoints, orientation_sens)

	(Internal use only) Get the start vector for this Candidate,
with the path resampled to numpoints points. This is the first
step in the matching process. It is compared to a
UnistrokeTemplate object’s start vector to determine angle
similarity.

	
prepare(numpoints=None)

	Prepare the Candidate vectors. self.strokes is combined to a single
unistroke (connected end-to-end), resampled to numpoints
points, and then the vectors are calculated and stored in self.db (for
use by get_distance and get_angle_similarity)

	
class kivy.multistroke.MultistrokeGesture(name, strokes=None, **kwargs)

	Bases: builtins.object

MultistrokeGesture represents a gesture. It maintains a set of
strokes and generates unistroke (ie UnistrokeTemplate)
permutations that are used for evaluating candidates against this gesture
later.

	Arguments:

	
	name
	Identifies the name of the gesture - it is returned to you in the
results of a Recognizer.recognize() search. You can have any
number of MultistrokeGesture objects with the same name; many
definitions of one gesture. The same name is given to all the
generated unistroke permutations. Required, no default.

	strokes
	A list of paths that represents the gesture. A path is a list of
Vector objects:

gesture = MultistrokeGesture('my_gesture', strokes=[
 [Vector(x1, y1), Vector(x2, y2),], # stroke 1
 [Vector(), Vector(), Vector(), Vector()] # stroke 2
 #, [stroke 3], [stroke 4], ...
])

For template matching purposes, all the strokes are combined to a
single list (unistroke). You should still specify the strokes
individually, and set stroke_sensitive True (whenever possible).

Once you do this, unistroke permutations are immediately generated
and stored in self.templates for later, unless you set the
permute flag to False.

	priority
	Determines when Recognizer.recognize() will attempt to match
this template, lower priorities are evaluated first (only if
a priority filter is used). You should use lower priority on
gestures that are more likely to match. For example, set user
templates at lower number than generic templates. Default is 100.

	numpoints
	Determines the number of points this gesture should be resampled to
(for matching purposes). The default is 16.

	stroke_sensitive
	Determines if the number of strokes (paths) in this gesture is
required to be the same in the candidate (user input) gesture
during matching. If this is False, candidates will always be
evaluated, disregarding the number of strokes. Default is True.

	orientation_sensitive
	Determines if this gesture is orientation sensitive. If True,
aligns the indicative orientation with the one of eight base
orientations that requires least rotation. Default is True.

	angle_similarity
	This is used by the Recognizer.recognize() function when a
candidate is evaluated against this gesture. If the angles between
them are too far off, the template is considered a non-match.
Default is 30.0 (degrees)

	permute
	If False, do not use Heap Permute algorithm to generate different
stroke orders when instantiated. If you set this to False, a
single UnistrokeTemplate built from strokes is used.

	
add_stroke(stroke, permute=False)

	Add a stroke to the self.strokes list. If permute is True, the
permute() method is called to generate new unistroke templates

	
get_distance(cand, tpl, numpoints=None)

	Compute the distance from this Candidate to a UnistrokeTemplate.
Returns the Cosine distance between the stroke paths.

numpoints will prepare both the UnistrokeTemplate and Candidate path
to n points (when necessary), you probably don’t want to do this.

	
match_candidate(cand, **kwargs)

	Match a given candidate against this MultistrokeGesture object. Will
test against all templates and report results as a list of four
items:

	index 0
	Best matching template’s index (in self.templates)

	index 1
	Computed distance from the template to the candidate path

	index 2
	List of distances for all templates. The list index
corresponds to a UnistrokeTemplate index in
self.templates.

	index 3
	Counter for the number of performed matching operations, ie
templates matched against the candidate

	
permute()

	Generate all possible unistroke permutations from self.strokes and
save the resulting list of UnistrokeTemplate objects in self.templates.

Quote from http://faculty.washington.edu/wobbrock/pubs/gi-10.2.pdf

We use Heap Permute [16] (p. 179) to generate all stroke orders
in a multistroke gesture. Then, to generate stroke directions for
each order, we treat each component stroke as a dichotomous
[0,1] variable. There are 2^N combinations for N strokes, so we
convert the decimal values 0 to 2^N-1, inclusive, to binary
representations and regard each bit as indicating forward (0) or
reverse (1). This algorithm is often used to generate truth tables
in propositional logic.

See section 4.1: “$N Algorithm” of the linked paper for details.

Warning

Using heap permute for gestures with more than 3 strokes
can result in very large number of templates (a 9-stroke
gesture = 38 million templates). If you are dealing with
these types of gestures, you should manually compose
all the desired stroke orders.

	
class kivy.multistroke.ProgressTracker(candidate, tasks, **kwargs)

	Bases: kivy.event.EventDispatcher

Represents an ongoing (or completed) search operation. Instantiated and
returned by the Recognizer.recognize() method when it is called. The
results attribute is a dictionary that is updated as the recognition
operation progresses.

Note

You do not need to instantiate this class.

	Arguments:

	
	candidate
	Candidate object to be evaluated

	tasks
	Total number of gestures in tasklist (to test against)

	Events:

	
	on_progress
	Fired for every gesture that is processed

	on_result
	Fired when a new result is added, and it is the first match
for the name so far, or a consecutive match with better score.

	on_complete
	Fired when the search is completed, for whatever reason.
(use ProgressTracker.status to find out)

	Attributes:

	
	results
	A dictionary of all results (so far). The key is the name of the
gesture (ie UnistrokeTemplate.name usually inherited from
MultistrokeGesture). Each item in the dictionary is a
dict with the following entries:

	name
	Name of the matched template (redundant)

	score
	Computed score from 1.0 (perfect match) to 0.0

	dist
	Cosine distance from candidate to template (low=closer)

	gesture
	The MultistrokeGesture object that was matched

	best_template
	Index of the best matching template (in
MultistrokeGesture.templates)

	template_results
	List of distances for all templates. The list index
corresponds to a UnistrokeTemplate index in
gesture.templates.

	status
	
	search
	Currently working

	stop
	Was stopped by the user (stop() called)

	timeout
	A timeout occurred (specified as timeout= to recognize())

	goodscore
	The search was stopped early because a gesture with a high
enough score was found (specified as goodscore= to
recognize())

	complete
	The search is complete (all gestures matching filters were
tested)

	
property best

	Return the best match found by recognize() so far. It returns a
dictionary with three keys, ‘name’, ‘dist’ and ‘score’ representing
the template’s name, distance (from candidate path) and the
computed score value. This is a Python property.

	
property progress

	Returns the progress as a float, 0 is 0% done, 1 is 100%. This
is a Python property.

	
stop()

	Raises a stop flag that is checked by the search process. It will
be stopped on the next clock tick (if it is still running).

	
class kivy.multistroke.Recognizer(**kwargs)

	Bases: kivy.event.EventDispatcher

Recognizer provides a gesture database with matching
facilities.

	Events:

	
	on_search_start
	Fired when a new search is started using this Recognizer.

	on_search_complete
	Fired when a running search ends, for whatever reason.
(use ProgressTracker.status to find out)

	Properties:

	
	db
	A ListProperty that contains the available
MultistrokeGesture objects.

db is a
ListProperty and defaults to []

	
add_gesture(name, strokes, **kwargs)

	Add a new gesture to the database. This will instantiate a new
MultistrokeGesture with strokes and append it to self.db.

Note

If you already have instantiated a MultistrokeGesture
object and wish to add it, append it to Recognizer.db
manually.

	
export_gesture(filename=None, **kwargs)

	Export a list of MultistrokeGesture objects. Outputs a
base64-encoded string that can be decoded to a Python list with
the parse_gesture() function or imported directly to
self.db using Recognizer.import_gesture(). If
filename is specified, the output is written to disk, otherwise
returned.

This method accepts optional Recognizer.filter() arguments.

	
filter(**kwargs)

	filter() returns a subset of objects in self.db,
according to given criteria. This is used by many other methods of
the Recognizer; the arguments below can for example be
used when calling Recognizer.recognize() or
Recognizer.export_gesture(). You normally don’t need to call
this directly.

	Arguments:

	
	name
	Limits the returned list to gestures where
MultistrokeGesture.name matches given regular
expression(s). If re.match(name, MultistrokeGesture.name)
tests true, the gesture is included in the returned list.
Can be a string or an array of strings

gdb = Recognizer()

Will match all names that start with a capital N
(ie Next, New, N, Nebraska etc, but not "n" or "next")
gdb.filter(name='N')

exactly 'N'
gdb.filter(name='N$')

Nebraska, teletubbies, France, fraggle, N, n, etc
gdb.filter(name=['[Nn]', '(?i)T', '(?i)F'])

	priority
	Limits the returned list to gestures with certain
MultistrokeGesture.priority values. If specified as an
integer, only gestures with a lower priority are returned. If
specified as a list (min/max)

Max priority 50
gdb.filter(priority=50)

Max priority 50 (same result as above)
gdb.filter(priority=[0, 50])

Min priority 50, max 100
gdb.filter(priority=[50, 100])

When this option is used, Recognizer.db is
automatically sorted according to priority, incurring extra
cost. You can use force_priority_sort to override this
behavior if your gestures are already sorted according to
priority.

	orientation_sensitive
	Limits the returned list to gestures that are
orientation sensitive (True), gestures that are not orientation
sensitive (False) or None (ignore template sensitivity, this is
the default).

	numstrokes
	Limits the returned list to gestures that have the specified
number of strokes (in MultistrokeGesture.strokes).
Can be a single integer or a list of integers.

	numpoints
	Limits the returned list to gestures that have specific
MultistrokeGesture.numpoints values. This is provided
for flexibility, do not use it unless you understand what it
does. Can be a single integer or a list of integers.

	force_priority_sort
	Can be used to override the default sort behavior. Normally
MultistrokeGesture objects are returned in priority
order if the priority option is used. Setting this to True
will return gestures sorted in priority order, False will
return in the order gestures were added. None means decide
automatically (the default).

Note

For improved performance, you can load your gesture
database in priority order and set this to False when
calling Recognizer.recognize()

	db
	Can be set if you want to filter a different list of objects
than Recognizer.db. You probably don’t want to do this;
it is used internally by import_gesture().

	
import_gesture(data=None, filename=None, **kwargs)

	Import a list of gestures as formatted by export_gesture().
One of data or filename must be specified.

This method accepts optional Recognizer.filter() arguments,
if none are specified then all gestures in specified data are
imported.

	
parse_gesture(data)

	Parse data formatted by export_gesture(). Returns a list of
MultistrokeGesture objects. This is used internally by
import_gesture(), you normally don’t need to call this
directly.

	
prepare_templates(**kwargs)

	This method is used to prepare UnistrokeTemplate objects
within the gestures in self.db. This is useful if you want to minimize
punishment of lazy resampling by preparing all vectors in advance. If
you do this before a call to Recognizer.export_gesture(), you
will have the vectors computed when you load the data later.

This method accepts optional Recognizer.filter() arguments.

force_numpoints, if specified, will prepare all templates to the
given number of points (instead of each template’s preferred n; ie
UnistrokeTemplate.numpoints). You normally don’t want to
do this.

	
recognize(strokes, goodscore=None, timeout=0, delay=0, **kwargs)

	Search for gestures matching strokes. Returns a
ProgressTracker instance.

This method accepts optional Recognizer.filter() arguments.

	Arguments:

	
	strokes
	A list of stroke paths (list of lists of
Vector objects) that will be matched
against gestures in the database. Can also be a
Candidate instance.

Warning

If you manually supply a Candidate that has a
skip-flag, make sure that the correct filter arguments
are set. Otherwise the system will attempt to load vectors
that have not been computed. For example, if you set
skip_bounded and do not set orientation_sensitive to
False, it will raise an exception if an
orientation_sensitive UnistrokeTemplate
is encountered.

	goodscore
	If this is set (between 0.0 - 1.0) and a gesture score is
equal to or higher than the specified value, the search is
immediately halted and the on_search_complete event is
fired (+ the on_complete event of the associated
ProgressTracker instance). Default is None (disabled).

	timeout
	Specifies a timeout (in seconds) for when the search is
aborted and the results returned. This option applies only
when max_gpf is not 0. Default value is 0, meaning all
gestures in the database will be tested, no matter how long
it takes.

	max_gpf
	Specifies the maximum number of MultistrokeGesture
objects that can be processed per frame. When exceeded, will
cause the search to halt and resume work in the next frame.
Setting to 0 will complete the search immediately (and block
the UI).

Warning

This does not limit the number of
UnistrokeTemplate objects matched! If a single
gesture has a million templates, they will all be
processed in a single frame with max_gpf=1!

	delay
	Sets an optional delay between each run of the recognizer
loop. Normally, a run is scheduled for the next frame until
the tasklist is exhausted. If you set this, there will be an
additional delay between each run (specified in seconds).
Default is 0, resume in the next frame.

	force_numpoints
	forces all templates (and candidate) to be prepared to a
certain number of points. This can be useful for example if
you are evaluating templates for optimal n (do not use this
unless you understand what it does).

	
transfer_gesture(tgt, **kwargs)

	Transfers MultistrokeGesture objects from
Recognizer.db to another Recognizer instance tgt.

This method accepts optional Recognizer.filter() arguments.

	
class kivy.multistroke.UnistrokeTemplate(name, points=None, **kwargs)

	Bases: builtins.object

Represents a (uni)stroke path as a list of Vectors. Normally, this class
is instantiated by MultistrokeGesture and not by the programmer directly.
However, it is possible to manually compose UnistrokeTemplate objects.

	Arguments:

	
	name
	Identifies the name of the gesture. This is normally inherited from
the parent MultistrokeGesture object when a template is generated.

	points
	A list of points that represents a unistroke path. This is normally
one of the possible stroke order permutations from a
MultistrokeGesture.

	numpoints
	The number of points this template should (ideally) be resampled to
before the matching process. The default is 16, but you can use a
template-specific settings if that improves results.

	orientation_sensitive
	Determines if this template is orientation sensitive (True) or
fully rotation invariant (False). The default is True.

Note

You will get an exception if you set a skip-flag and then attempt to
retrieve those vectors.

	
add_point(p)

	Add a point to the unistroke/path. This invalidates all previously
computed vectors.

	
prepare(numpoints=None)

	This function prepares the UnistrokeTemplate for matching given a
target number of points (for resample). 16 is optimal.

Network support

Kivy currently supports basic, asynchronous network requests.
Please refer to kivy.network.urlrequest.UrlRequest.

	UrlRequest
	UrlRequest

	UrlRequestBase
	UrlRequestBase.cancel()

	UrlRequestBase.chunk_size

	UrlRequestBase.decode_result()

	UrlRequestBase.error

	UrlRequestBase.is_finished

	UrlRequestBase.req_body

	UrlRequestBase.req_headers

	UrlRequestBase.resp_headers

	UrlRequestBase.resp_status

	UrlRequestBase.result

	UrlRequestBase.run()

	UrlRequestBase.url

	UrlRequestBase.wait()

	UrlRequestRequests

	UrlRequestUrllib

UrlRequest

New in version 1.0.8.

You can use the UrlRequest to make asynchronous requests on the
web and get the result when the request is completed. The spirit is the
same as the XHR object in Javascript.

The content is also decoded if the Content-Type is
application/json and the result automatically passed through json.loads.

The syntax to create a request:

from kivy.network.urlrequest import UrlRequest
req = UrlRequest(url, on_success, on_redirect, on_failure, on_error,
 on_progress, req_body, req_headers, chunk_size,
 timeout, method, decode, debug, file_path, ca_file,
 verify)

Only the first argument is mandatory: the rest are optional.
By default, a “GET” request will be sent. If the UrlRequest.req_body is
not None, a “POST” request will be sent. It’s up to you to adjust
UrlRequest.req_headers to suit your requirements and the response
to the request will be accessible as the parameter called “result” on
the callback function of the on_success event.

Example of fetching JSON:

def got_json(req, result):
 for key, value in req.resp_headers.items():
 print('{}: {}'.format(key, value))

req = UrlRequest('https://httpbin.org/headers', got_json)

Example of Posting data (adapted from httplib example):

import urllib

def bug_posted(req, result):
 print('Our bug is posted!')
 print(result)

params = urllib.urlencode({'@number': 12524, '@type': 'issue',
 '@action': 'show'})
headers = {'Content-type': 'application/x-www-form-urlencoded',
 'Accept': 'text/plain'}
req = UrlRequest('bugs.python.org', on_success=bug_posted, req_body=params,
 req_headers=headers)

If you want a synchronous request, you can call the wait() method.

	
kivy.network.urlrequest.UrlRequest

	alias of UrlRequestUrllib

	
class kivy.network.urlrequest.UrlRequestBase(url, on_success=None, on_redirect=None, on_failure=None, on_error=None, on_progress=None, req_body=None, req_headers=None, chunk_size=8192, timeout=None, method=None, decode=True, debug=False, file_path=None, ca_file=None, verify=True, proxy_host=None, proxy_port=None, proxy_headers=None, user_agent=None, on_cancel=None, on_finish=None, cookies=None, auth=None)

	Bases: threading.Thread

A UrlRequest. See module documentation for usage.

Changed in version 1.5.1: Add debug parameter

Changed in version 1.0.10: Add method parameter

Changed in version 1.8.0: Parameter decode added.
Parameter file_path added.
Parameter on_redirect added.
Parameter on_failure added.

Changed in version 1.9.1: Parameter ca_file added.
Parameter verify added.

Changed in version 1.10.0: Parameters proxy_host, proxy_port and proxy_headers added.

Changed in version 1.11.0: Parameters on_cancel added.

Changed in version 2.2.0: Parameters on_finish added.
Parameters auth added.

	Parameters:

	
	url: str
	Complete url string to call.

	on_success: callback(request, result)
	Callback function to call when the result has been fetched.

	on_redirect: callback(request, result)
	Callback function to call if the server returns a Redirect.

	on_failure: callback(request, result)
	Callback function to call if the server returns a Client or
Server Error.

	on_error: callback(request, error)
	Callback function to call if an error occurs.

	on_progress: callback(request, current_size, total_size)
	Callback function that will be called to report progression of the
download. total_size might be -1 if no Content-Length has been
reported in the http response.
This callback will be called after each chunk_size is read.

	on_cancel: callback(request)
	Callback function to call if user requested to cancel the download
operation via the .cancel() method.

	on_finish: callback(request)
	Additional callback function to call if request is done.

	req_body: str, defaults to None
	Data to sent in the request. If it’s not None, a POST will be done
instead of a GET.

	req_headers: dict, defaults to None
	Custom headers to add to the request.

	chunk_size: int, defaults to 8192
	Size of each chunk to read, used only when on_progress callback
has been set. If you decrease it too much, a lot of on_progress
callbacks will be fired and will slow down your download. If you
want to have the maximum download speed, increase the chunk_size
or don’t use on_progress.

	timeout: int, defaults to None
	If set, blocking operations will timeout after this many seconds.

	method: str, defaults to ‘GET’ (or ‘POST’ if body is specified)
	The HTTP method to use.

	decode: bool, defaults to True
	If False, skip decoding of the response.

	debug: bool, defaults to False
	If True, it will use the Logger.debug to print information
about url access/progression/errors.

	file_path: str, defaults to None
	If set, the result of the UrlRequest will be written to this path
instead of in memory.

	ca_file: str, defaults to None
	Indicates a SSL CA certificate file path to validate HTTPS
certificates against

	verify: bool, defaults to True
	If False, disables SSL CA certificate verification

	proxy_host: str, defaults to None
	If set, the proxy host to use for this connection.

	proxy_port: int, defaults to None
	If set, and proxy_host is also set, the port to use for
connecting to the proxy server.

	proxy_headers: dict, defaults to None
	If set, and proxy_host is also set, the headers to send to the
proxy server in the CONNECT request.

	auth: HTTPBasicAuth, defaults to None
	If set, request will use basicauth to authenticate.
Only used in “Requests” implementation

	
cancel()

	Cancel the current request. It will be aborted, and the result
will not be dispatched. Once cancelled, the callback on_cancel will
be called.

New in version 1.11.0.

	
property chunk_size

	Return the size of a chunk, used only in “progress” mode (when
on_progress callback is set.)

	
decode_result(result, resp)

	Decode the result fetched from url according to his Content-Type.
Currently supports only application/json.

	
property error

	Return the error of the request.
This value is not determined until the request is completed.

	
property is_finished

	Return True if the request has finished, whether it’s a
success or a failure.

	
req_body

	Request body passed in __init__

	
req_headers

	Request headers passed in __init__

	
property resp_headers

	If the request has been completed, return a dictionary containing
the headers of the response. Otherwise, it will return None.

	
property resp_status

	Return the status code of the response if the request is complete,
otherwise return None.

	
property result

	Return the result of the request.
This value is not determined until the request is finished.

	
run()

	Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method
invokes the callable object passed to the object’s constructor as the
target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

	
url

	Url of the request

	
wait(delay=0.5)

	Wait for the request to finish (until resp_status is not
None)

Note

This method is intended to be used in the main thread, and the
callback will be dispatched from the same thread
from which you’re calling.

New in version 1.1.0.

	
class kivy.network.urlrequest.UrlRequestRequests(url, on_success=None, on_redirect=None, on_failure=None, on_error=None, on_progress=None, req_body=None, req_headers=None, chunk_size=8192, timeout=None, method=None, decode=True, debug=False, file_path=None, ca_file=None, verify=True, proxy_host=None, proxy_port=None, proxy_headers=None, user_agent=None, on_cancel=None, on_finish=None, cookies=None, auth=None)

	Bases: kivy.network.urlrequest.UrlRequestBase

	
class kivy.network.urlrequest.UrlRequestUrllib(url, on_success=None, on_redirect=None, on_failure=None, on_error=None, on_progress=None, req_body=None, req_headers=None, chunk_size=8192, timeout=None, method=None, decode=True, debug=False, file_path=None, ca_file=None, verify=True, proxy_host=None, proxy_port=None, proxy_headers=None, user_agent=None, on_cancel=None, on_finish=None, cookies=None, auth=None)

	Bases: kivy.network.urlrequest.UrlRequestBase

UrlRequest

New in version 1.0.8.

You can use the UrlRequest to make asynchronous requests on the
web and get the result when the request is completed. The spirit is the
same as the XHR object in Javascript.

The content is also decoded if the Content-Type is
application/json and the result automatically passed through json.loads.

The syntax to create a request:

from kivy.network.urlrequest import UrlRequest
req = UrlRequest(url, on_success, on_redirect, on_failure, on_error,
 on_progress, req_body, req_headers, chunk_size,
 timeout, method, decode, debug, file_path, ca_file,
 verify)

Only the first argument is mandatory: the rest are optional.
By default, a “GET” request will be sent. If the UrlRequest.req_body is
not None, a “POST” request will be sent. It’s up to you to adjust
UrlRequest.req_headers to suit your requirements and the response
to the request will be accessible as the parameter called “result” on
the callback function of the on_success event.

Example of fetching JSON:

def got_json(req, result):
 for key, value in req.resp_headers.items():
 print('{}: {}'.format(key, value))

req = UrlRequest('https://httpbin.org/headers', got_json)

Example of Posting data (adapted from httplib example):

import urllib

def bug_posted(req, result):
 print('Our bug is posted!')
 print(result)

params = urllib.urlencode({'@number': 12524, '@type': 'issue',
 '@action': 'show'})
headers = {'Content-type': 'application/x-www-form-urlencoded',
 'Accept': 'text/plain'}
req = UrlRequest('bugs.python.org', on_success=bug_posted, req_body=params,
 req_headers=headers)

If you want a synchronous request, you can call the wait() method.

	
kivy.network.urlrequest.UrlRequest

	alias of UrlRequestUrllib

	
class kivy.network.urlrequest.UrlRequestBase(url, on_success=None, on_redirect=None, on_failure=None, on_error=None, on_progress=None, req_body=None, req_headers=None, chunk_size=8192, timeout=None, method=None, decode=True, debug=False, file_path=None, ca_file=None, verify=True, proxy_host=None, proxy_port=None, proxy_headers=None, user_agent=None, on_cancel=None, on_finish=None, cookies=None, auth=None)

	Bases: threading.Thread

A UrlRequest. See module documentation for usage.

Changed in version 1.5.1: Add debug parameter

Changed in version 1.0.10: Add method parameter

Changed in version 1.8.0: Parameter decode added.
Parameter file_path added.
Parameter on_redirect added.
Parameter on_failure added.

Changed in version 1.9.1: Parameter ca_file added.
Parameter verify added.

Changed in version 1.10.0: Parameters proxy_host, proxy_port and proxy_headers added.

Changed in version 1.11.0: Parameters on_cancel added.

Changed in version 2.2.0: Parameters on_finish added.
Parameters auth added.

	Parameters:

	
	url: str
	Complete url string to call.

	on_success: callback(request, result)
	Callback function to call when the result has been fetched.

	on_redirect: callback(request, result)
	Callback function to call if the server returns a Redirect.

	on_failure: callback(request, result)
	Callback function to call if the server returns a Client or
Server Error.

	on_error: callback(request, error)
	Callback function to call if an error occurs.

	on_progress: callback(request, current_size, total_size)
	Callback function that will be called to report progression of the
download. total_size might be -1 if no Content-Length has been
reported in the http response.
This callback will be called after each chunk_size is read.

	on_cancel: callback(request)
	Callback function to call if user requested to cancel the download
operation via the .cancel() method.

	on_finish: callback(request)
	Additional callback function to call if request is done.

	req_body: str, defaults to None
	Data to sent in the request. If it’s not None, a POST will be done
instead of a GET.

	req_headers: dict, defaults to None
	Custom headers to add to the request.

	chunk_size: int, defaults to 8192
	Size of each chunk to read, used only when on_progress callback
has been set. If you decrease it too much, a lot of on_progress
callbacks will be fired and will slow down your download. If you
want to have the maximum download speed, increase the chunk_size
or don’t use on_progress.

	timeout: int, defaults to None
	If set, blocking operations will timeout after this many seconds.

	method: str, defaults to ‘GET’ (or ‘POST’ if body is specified)
	The HTTP method to use.

	decode: bool, defaults to True
	If False, skip decoding of the response.

	debug: bool, defaults to False
	If True, it will use the Logger.debug to print information
about url access/progression/errors.

	file_path: str, defaults to None
	If set, the result of the UrlRequest will be written to this path
instead of in memory.

	ca_file: str, defaults to None
	Indicates a SSL CA certificate file path to validate HTTPS
certificates against

	verify: bool, defaults to True
	If False, disables SSL CA certificate verification

	proxy_host: str, defaults to None
	If set, the proxy host to use for this connection.

	proxy_port: int, defaults to None
	If set, and proxy_host is also set, the port to use for
connecting to the proxy server.

	proxy_headers: dict, defaults to None
	If set, and proxy_host is also set, the headers to send to the
proxy server in the CONNECT request.

	auth: HTTPBasicAuth, defaults to None
	If set, request will use basicauth to authenticate.
Only used in “Requests” implementation

	
cancel()

	Cancel the current request. It will be aborted, and the result
will not be dispatched. Once cancelled, the callback on_cancel will
be called.

New in version 1.11.0.

	
property chunk_size

	Return the size of a chunk, used only in “progress” mode (when
on_progress callback is set.)

	
decode_result(result, resp)

	Decode the result fetched from url according to his Content-Type.
Currently supports only application/json.

	
property error

	Return the error of the request.
This value is not determined until the request is completed.

	
property is_finished

	Return True if the request has finished, whether it’s a
success or a failure.

	
req_body

	Request body passed in __init__

	
req_headers

	Request headers passed in __init__

	
property resp_headers

	If the request has been completed, return a dictionary containing
the headers of the response. Otherwise, it will return None.

	
property resp_status

	Return the status code of the response if the request is complete,
otherwise return None.

	
property result

	Return the result of the request.
This value is not determined until the request is finished.

	
run()

	Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method
invokes the callable object passed to the object’s constructor as the
target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

	
url

	Url of the request

	
wait(delay=0.5)

	Wait for the request to finish (until resp_status is not
None)

Note

This method is intended to be used in the main thread, and the
callback will be dispatched from the same thread
from which you’re calling.

New in version 1.1.0.

	
class kivy.network.urlrequest.UrlRequestRequests(url, on_success=None, on_redirect=None, on_failure=None, on_error=None, on_progress=None, req_body=None, req_headers=None, chunk_size=8192, timeout=None, method=None, decode=True, debug=False, file_path=None, ca_file=None, verify=True, proxy_host=None, proxy_port=None, proxy_headers=None, user_agent=None, on_cancel=None, on_finish=None, cookies=None, auth=None)

	Bases: kivy.network.urlrequest.UrlRequestBase

	
class kivy.network.urlrequest.UrlRequestUrllib(url, on_success=None, on_redirect=None, on_failure=None, on_error=None, on_progress=None, req_body=None, req_headers=None, chunk_size=8192, timeout=None, method=None, decode=True, debug=False, file_path=None, ca_file=None, verify=True, proxy_host=None, proxy_port=None, proxy_headers=None, user_agent=None, on_cancel=None, on_finish=None, cookies=None, auth=None)

	Bases: kivy.network.urlrequest.UrlRequestBase

Parser utilities

Helper functions used for CSS parsing.

	
kivy.parser.parse_bool(text)

	Parse a string to a boolean, ignoring case. “true”/”1” is True,
“false”/”0” is False. Anything else throws an exception.

	
kivy.parser.parse_color(text)

	Parse a string to a kivy color. Supported formats:

	rgb(r, g, b)

	rgba(r, g, b, a)

	rgb

	rgba

	rrggbb

	rrggbbaa

For hexadecimal values, you case also use:

	#rgb

	#rgba

	#rrggbb

	#rrggbbaa

	
kivy.parser.parse_filename(filename)

	Parse a filename and search for it using resource_find().
If found, the resource path is returned, otherwise return the unmodified
filename (as specified by the caller).

	
kivy.parser.parse_float

	alias of float

	
kivy.parser.parse_float4(text)

	Parse a string to a list of exactly 4 floats.

>>> parse_float4('54 87. 35 0')
54, 87., 35, 0

	
kivy.parser.parse_int

	alias of int

	
kivy.parser.parse_int2(text)

	Parse a string to a list of exactly 2 integers.

>>> print(parse_int2("12 54"))
12, 54

	
kivy.parser.parse_string(text)

	Parse a string to a string (removing single and double quotes).

Properties

The Properties classes are used when you create an
EventDispatcher.

Warning

Kivy’s Properties are not to be confused with Python’s
properties (i.e. the @property decorator and the <property> type).

Kivy’s property classes support:

	Value Checking / Validation
	When you assign a new value to a property, the value is checked against
validation constraints. For
example, validation for an OptionProperty will make sure that
the value is in a predefined list of possibilities. Validation for a
NumericProperty will check that your value is a numeric type.
This prevents many errors early on.

	Observer Pattern
	You can specify what should happen when a property’s value changes.
You can bind your own function as a callback to changes of a
Property. If, for example, you want a piece of code to be
called when a widget’s pos property
changes, you can bind a function
to it.

	Better Memory Management
	The same instance of a property is shared across multiple widget
instances.

Comparison Python vs. Kivy

Basic example

Let’s compare Python and Kivy properties by creating a Python class with ‘a’
as a float property:

class MyClass(object):
 def __init__(self, a=1.0):
 super(MyClass, self).__init__()
 self.a = a

With Kivy, you can do:

class MyClass(EventDispatcher):
 a = NumericProperty(1.0)

Depth being tracked

Only the “top level” of a nested object is being tracked. For example:

my_list_prop = ListProperty([1, {'hi': 0}])
Changing a top level element will trigger all `on_my_list_prop` callbacks
my_list_prop[0] = 4
Changing a deeper element will be ignored by all `on_my_list_prop` callbacks
my_list_prop[1]['hi'] = 4

The same holds true for all container-type kivy properties.

Value checking

If you wanted to add a check for a minimum / maximum value allowed for a
property, here is a possible implementation in Python:

class MyClass(object):
 def __init__(self, a=1):
 super(MyClass, self).__init__()
 self.a_min = 0
 self.a_max = 100
 self.a = a

 def _get_a(self):
 return self._a
 def _set_a(self, value):
 if value < self.a_min or value > self.a_max:
 raise ValueError('a out of bounds')
 self._a = value
 a = property(_get_a, _set_a)

The disadvantage is you have to do that work yourself. And it becomes
laborious and complex if you have many properties.
With Kivy, you can simplify the process:

class MyClass(EventDispatcher):
 a = BoundedNumericProperty(1, min=0, max=100)

That’s all!

Error Handling

If setting a value would otherwise raise a ValueError, you have two options to
handle the error gracefully within the property. The first option is to use an
errorvalue parameter. An errorvalue is a substitute for the invalid value:

simply returns 0 if the value exceeds the bounds
bnp = BoundedNumericProperty(0, min=-500, max=500, errorvalue=0)

The second option in to use an errorhandler parameter. An errorhandler is a
callable (single argument function or lambda) which can return a valid
substitute:

returns the boundary value when exceeded
bnp = BoundedNumericProperty(0, min=-500, max=500,
 errorhandler=lambda x: 500 if x > 500 else -500)

Keyword arguments and __init__()

When working with inheritance, namely with the __init__() of an object that
inherits from EventDispatcher e.g. a
Widget, the properties protect
you from a Python 3 object error. This error occurs when passing kwargs to the
object instance through a super() call:

class MyClass(EventDispatcher):
 def __init__(self, **kwargs):
 super(MyClass, self).__init__(**kwargs)
 self.my_string = kwargs.get('my_string')

print(MyClass(my_string='value').my_string)

While this error is silenced in Python 2, it will stop the application
in Python 3 with:

TypeError: object.__init__() takes no parameters

Logically, to fix that you’d either put my_string directly in the
__init__() definition as a required argument or as an optional keyword
argument with a default value i.e.:

class MyClass(EventDispatcher):
 def __init__(self, my_string, **kwargs):
 super(MyClass, self).__init__(**kwargs)
 self.my_string = my_string

or:

class MyClass(EventDispatcher):
 def __init__(self, my_string='default', **kwargs):
 super(MyClass, self).__init__(**kwargs)
 self.my_string = my_string

Alternatively, you could pop the key-value pair from the kwargs dictionary
before calling super():

class MyClass(EventDispatcher):
 def __init__(self, **kwargs):
 self.my_string = kwargs.pop('my_string')
 super(MyClass, self).__init__(**kwargs)

Kivy properties are more flexible and do the required kwargs.pop()
in the background automatically (within the super() call
to EventDispatcher) to prevent this distraction:

class MyClass(EventDispatcher):
 my_string = StringProperty('default')
 def __init__(self, **kwargs):
 super(MyClass, self).__init__(**kwargs)

print(MyClass(my_string='value').my_string)

Conclusion

Kivy properties are easier to use than the standard ones. See the next chapter
for examples of how to use them :)

Observe Property changes

As we said in the beginning, Kivy’s Properties implement the Observer pattern [http://en.wikipedia.org/wiki/Observer_pattern]. That means you can
bind() to a property and have your own
function called when the value changes.

There are multiple ways to observe the changes.

Observe using bind()

You can observe a property change by using the bind() method outside of the
class:

class MyClass(EventDispatcher):
 a = NumericProperty(1)

def callback(instance, value):
 print('My callback is call from', instance)
 print('and the a value changed to', value)

ins = MyClass()
ins.bind(a=callback)

At this point, any change to the a property will call your callback.
ins.a = 5 # callback called
ins.a = 5 # callback not called, because the value did not change
ins.a = -1 # callback called

Note

Property objects live at the class level and manage the values attached
to instances. Re-assigning at class level will remove the Property. For
example, continuing with the code above, MyClass.a = 5 replaces
the property object with a simple int.

Observe using ‘on_<propname>’

If you defined the class yourself, you can use the ‘on_<propname>’ callback:

class MyClass(EventDispatcher):
 a = NumericProperty(1)

 def on_a(self, instance, value):
 print('My property a changed to', value)

Warning

Be careful with ‘on_<propname>’. If you are creating such a callback on a
property you are inheriting, you must not forget to call the superclass
function too.

Binding to properties of properties.

When binding to a property of a property, for example binding to a numeric
property of an object saved in a object property, updating the object property
to point to a new object will not re-bind the numeric property to the
new object. For example:

<MyWidget>:
 Label:
 id: first
 text: 'First label'
 Label:
 id: second
 text: 'Second label'
 Button:
 label: first
 text: self.label.text
 on_press: self.label = second

When clicking on the button, although the label object property has changed
to the second widget, the button text will not change because it is bound to
the text property of the first label directly.

In 1.9.0, the rebind option has been introduced that will allow the
automatic updating of the text when label is changed, provided it
was enabled. See ObjectProperty.

	
class kivy.properties.AliasProperty(getter, setter=None, rebind=False, watch_before_use=True, **kwargs)

	Bases: kivy.properties.Property

If you don’t find a Property class that fits to your needs, you can make
your own by creating custom Python getter and setter methods.

Example from kivy/uix/widget.py where x and width are instances of
NumericProperty:

def get_right(self):
 return self.x + self.width
def set_right(self, value):
 self.x = value - self.width
right = AliasProperty(get_right, set_right, bind=['x', 'width'])

If x were a non Kivy property then you have to return True from setter
to dispatch new value of right:

def set_right(self, value):
 self.x = value - self.width
 return True

Usually bind list should contain all Kivy properties used in getter
method. If you return True it will cause a dispatch which one should do
when the property value has changed, but keep in mind that the property
could already have dispatched the changed value if a kivy property the
alias property is bound was set in the setter, causing a second dispatch
if the setter returns True.

If you want to cache the value returned by getter then pass cache=True.
This way getter will only be called if new value is set or one of the
binded properties changes. In both cases new value of alias property will
be cached again.

To make property readonly pass None as setter. This way AttributeError
will be raised on every set attempt:

right = AliasProperty(get_right, None, bind=['x', 'width'], cache=True)

	Parameters:

	
	getter: function
	Function to use as a property getter.

	setter: function
	Function to use as a property setter. Callbacks bound to the
alias property won’t be called when the property is set (e.g.
right = 10), unless the setter returns True.

	bind: list/tuple
	Properties to observe for changes as property name strings.
Changing values of this properties will dispatch value of the
alias property.

	cache: boolean
	If True, the value will be cached until one of the binded
elements changes or if setter returns True.

	rebind: bool, defaults to False
	See ObjectProperty for details.

	watch_before_use: bool, defaults to True
	Whether the bind properties are tracked (bound) before this
property is used in any way.

By default, the getter is called if the bind properties update
or if the property value (unless cached) is read. As an
optimization to speed up widget creation, when watch_before_use
is False, we only track the bound properties once this property is
used in any way (i.e. it is bound, it was set/read, etc).

The property value read/set/bound will be correct as expected in
both cases. The difference is only that when False, any side
effects from the getter would not occur until this property is
interacted with in any way because the getter won’t be called
early.

Changed in version 1.9.0: rebind has been introduced.

Changed in version 1.4.0: Parameter cache added.

	
get(EventDispatcher obj)

	

	
link_deps(EventDispatcher obj, unicode name)

	

	
link_eagerly(EventDispatcher obj) → PropertyStorage

	

	
rebind

	rebind: ‘int’

	
set(EventDispatcher obj, value)

	

	
trigger_change(EventDispatcher obj, value)

	

	
class kivy.properties.BooleanProperty(defaultvalue=True, **kw)

	Bases: kivy.properties.Property

	Parameters:

	
	defaultvalue: boolean
	Specifies the default value of the property.

	
class kivy.properties.BoundedNumericProperty(*largs, **kw)

	Bases: kivy.properties.Property

maximum bound – within a numeric range.

	Parameters:

	
	default: numeric
	Specifies the default value of the property.

	**kwargs: a list of keyword arguments
	If a min parameter is included, this specifies the minimum
numeric value that will be accepted.
If a max parameter is included, this specifies the maximum
numeric value that will be accepted.

	
bounds

	Return min/max of the value.

New in version 1.0.9.

	
get_max(EventDispatcher obj)

	Return the maximum value acceptable for the BoundedNumericProperty
in obj. Return None if no maximum value is set. Check
get_min for a usage example.

New in version 1.1.0.

	
get_min(EventDispatcher obj)

	Return the minimum value acceptable for the BoundedNumericProperty
in obj. Return None if no minimum value is set:

class MyWidget(Widget):
 number = BoundedNumericProperty(0, min=-5, max=5)

widget = MyWidget()
print(widget.property('number').get_min(widget))
will output -5

New in version 1.1.0.

	
set_max(EventDispatcher obj, value)

	Change the maximum value acceptable for the BoundedNumericProperty,
only for the obj instance. Set to None if you want to disable it.
Check set_min for a usage example.

Warning

Changing the bounds doesn’t revalidate the current value.

New in version 1.1.0.

	
set_min(EventDispatcher obj, value)

	Change the minimum value acceptable for the BoundedNumericProperty,
only for the obj instance. Set to None if you want to disable it:

class MyWidget(Widget):
 number = BoundedNumericProperty(0, min=-5, max=5)

widget = MyWidget()
change the minimum to -10
widget.property('number').set_min(widget, -10)
or disable the minimum check
widget.property('number').set_min(widget, None)

Warning

Changing the bounds doesn’t revalidate the current value.

New in version 1.1.0.

	
class kivy.properties.ColorProperty(defaultvalue=0, **kw)

	Bases: kivy.properties.Property

	a collection of 3 or 4 float values between 0-1 (kivy default)

	a string in the format #rrggbb or #rrggbbaa

	a string representing color name (eg. ‘red’, ‘yellow’, ‘green’)

Object colormap is used to retrieve color from color
name and names definitions can be found at this
link [https://www.w3.org/TR/SVG11/types.html#ColorKeywords]. Color can
be assigned in different formats, but it will be returned as
ObservableList of 4 float elements with values
between 0-1.

	Parameters:

	
	defaultvalue: list or string, defaults to [1.0, 1.0, 1.0, 1.0]
	Specifies the default value of the property.

New in version 1.10.0.

Changed in version 2.0.0: Color value will be dispatched when set through indexing or slicing,
but when setting with slice you must ensure that slice has 4 components
with float values between 0-1.
Assingning color name as value is now supported.
Value None is allowed as default value for property.

	
class kivy.properties.ConfigParserProperty(defaultvalue, section, key, config, **kw)

	Bases: kivy.properties.Property

of a ConfigParser as well as to bind the ConfigParser
values to other properties.

A ConfigParser is composed of sections, where each section has a number of
keys and values associated with these keys. ConfigParserProperty lets
you automatically listen to and change the values of specified keys based
on other kivy properties.

For example, say we want to have a TextInput automatically write
its value, represented as an int, in the info section of a ConfigParser.
Also, the textinputs should update its values from the ConfigParser’s
fields. Finally, their values should be displayed in a label. In py:

class Info(Label):

 number = ConfigParserProperty(0, 'info', 'number', 'example',
 val_type=int, errorvalue=41)

 def __init__(self, **kw):
 super(Info, self).__init__(**kw)
 config = ConfigParser(name='example')

The above code creates a property that is connected to the number key in
the info section of the ConfigParser named example. Initially, this
ConfigParser doesn’t exist. Then, in __init__, a ConfigParser is created
with name example, which is then automatically linked with this property.
then in kv:

BoxLayout:
 TextInput:
 id: number
 text: str(info.number)
 Info:
 id: info
 number: number.text
 text: 'Number: {}'.format(self.number)

You’ll notice that we have to do text: str(info.number), this is because
the value of this property is always an int, because we specified int as
the val_type. However, we can assign anything to the property, e.g.
number: number.text which assigns a string, because it is instantly
converted with the val_type callback.

Note

If a file has been opened for this ConfigParser using
read(), then
write() will be called every property
change, keeping the file updated.

Warning

It is recommend that the config parser object be assigned to the
property after the kv tree has been constructed (e.g. schedule on next
frame from init). This is because the kv tree and its properties, when
constructed, are evaluated on its own order, therefore, any initial
values in the parser might be overwritten by objects it’s bound to.
So in the example above, the TextInput might be initially empty,
and if number: number.text is evaluated before
text: str(info.number), the config value will be overwritten with the
(empty) text value.

	Parameters:

	
	default: object type
	Specifies the default value for the key. If the parser associated
with this property doesn’t have this section or key, it’ll be
created with the current value, which is the default value
initially.

	section: string type
	The section in the ConfigParser where the key / value will be
written. Must be provided. If the section doesn’t exist, it’ll be
created.

	key: string type
	The key in section section where the value will be written to.
Must be provided. If the key doesn’t exist, it’ll be created and
the current value written to it, otherwise its value will be used.

	config: string or ConfigParser instance.
	The ConfigParser instance to associate with this property if
not None. If it’s a string, the ConfigParser instance whose
name is the value of config
will be used. If no such parser exists yet, whenever a ConfigParser
with this name is created, it will automatically be linked to this
property.

Whenever a ConfigParser becomes linked with a property, if the
section or key doesn’t exist, the current property value will be
used to create that key, otherwise, the existing key value will be
used for the property value; overwriting its current value. You can
change the ConfigParser associated with this property if a string
was used here, by changing the
name of an existing or new
ConfigParser instance. Or through set_config().

	**kwargs: a list of keyword arguments
	
	val_type: a callable object
	The key values are saved in the ConfigParser as strings. When
the ConfigParser value is read internally and assigned to the
property or when the user changes the property value directly,
if val_type is not None, it will be called with the new value
as input and it should return the value converted to the proper
type accepted ny this property. For example, if the property
represent ints, val_type can simply be int.

If the val_type callback raises a ValueError, errorvalue
or errorhandler will be used if provided. Tip: the
getboolean function of the ConfigParser might also be useful
here to convert to a boolean type.

	verify: a callable object
	Can be used to restrict the allowable values of the property.
For every value assigned to the property, if this is specified,
verify is called with the new value, and if it returns True
the value is accepted, otherwise, errorvalue or
errorhandler will be used if provided or a ValueError is
raised.

New in version 1.9.0.

	
link_deps(EventDispatcher obj, unicode name)

	

	
set(EventDispatcher obj, value)

	

	
set_config(config)

	Sets the ConfigParser object to be used by this property. Normally,
the ConfigParser is set when initializing the Property using the
config parameter.

	Parameters:

	
	config: A ConfigParser instance.
	The instance to use for listening to and saving property value
changes. If None, it disconnects the currently used
ConfigParser.

class MyWidget(Widget):
 username = ConfigParserProperty('', 'info', 'name', None)

widget = MyWidget()
widget.property('username').set_config(ConfigParser())

	
class kivy.properties.DictProperty(defaultvalue=0, rebind=False, **kw)

	Bases: kivy.properties.Property

	Parameters:

	
	defaultvalue: dict, defaults to {}
	Specifies the default value of the property.

	rebind: bool, defaults to False
	See ObjectProperty for details.

Changed in version 1.9.0: rebind has been introduced.

Warning

Similar to ListProperty, when assigning a dict to a
DictProperty, the dict stored in the property is a shallow copy of the
dict and not the original dict. See ListProperty for details.

	
link(EventDispatcher obj, unicode name) → PropertyStorage

	

	
rebind

	rebind: ‘int’

	
set(EventDispatcher obj, value)

	

	
class kivy.properties.ListProperty(defaultvalue=0, **kw)

	Bases: kivy.properties.Property

	Parameters:

	
	defaultvalue: list, defaults to []
	Specifies the default value of the property.

Warning

When assigning a list to a ListProperty, the list stored in
the property is a shallow copy of the list and not the original list. This can
be demonstrated with the following example:

>>> class MyWidget(Widget):
>>> my_list = ListProperty([])

>>> widget = MyWidget()
>>> my_list = [1, 5, {'hi': 'hello'}]
>>> widget.my_list = my_list
>>> print(my_list is widget.my_list)
False
>>> my_list.append(10)
>>> print(my_list, widget.my_list)
[1, 5, {'hi': 'hello'}, 10] [1, 5, {'hi': 'hello'}]

However, changes to nested levels will affect the property as well,
since the property uses a shallow copy of my_list.

>>> my_list[2]['hi'] = 'bye'
>>> print(my_list, widget.my_list)
[1, 5, {'hi': 'bye'}, 10] [1, 5, {'hi': 'bye'}]

	
link(EventDispatcher obj, unicode name) → PropertyStorage

	

	
set(EventDispatcher obj, value)

	

	
class kivy.properties.NumericProperty(defaultvalue=0, **kw)

	Bases: kivy.properties.Property

It only accepts the int or float numeric data type or a string that can be
converted to a number as shown below. For other numeric types use ObjectProperty
or use errorhandler to convert it to an int/float.

It does not support numpy numbers so they must be manually converted to int/float.
E.g. widget.num = np.arange(4)[0] will raise an exception. Numpy arrays are not
supported at all, even by ObjectProperty because their comparison does not return
a bool. But if you must use a Kivy property, use a ObjectProperty with comparator
set to np.array_equal. E.g.:

>>> class A(EventDispatcher):
... data = ObjectProperty(comparator=np.array_equal)
>>> a = A()
>>> a.bind(data=print)
>>> a.data = np.arange(2)
<__main__.A object at 0x000001C839B50208> [0 1]
>>> a.data = np.arange(3)
<__main__.A object at 0x000001C839B50208> [0 1 2]

	Parameters:

	
	defaultvalue: int or float, defaults to 0
	Specifies the default value of the property.

>>> wid = Widget()
>>> wid.x = 42
>>> print(wid.x)
42
>>> wid.x = "plop"
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "properties.pyx", line 93, in kivy.properties.Property.__set__
 File "properties.pyx", line 111, in kivy.properties.Property.set
 File "properties.pyx", line 159, in kivy.properties.NumericProperty.check
 ValueError: NumericProperty accept only int/float

Changed in version 1.4.1: NumericProperty can now accept custom text and tuple value to indicate a
type, like “in”, “pt”, “px”, “cm”, “mm”, in the format: ‘10pt’ or (10,
‘pt’).

	
get_format(EventDispatcher obj)

	Return the format used for Numeric calculation. Default is px (mean
the value have not been changed at all). Otherwise, it can be one of
‘in’, ‘pt’, ‘cm’, ‘mm’.

	
class kivy.properties.ObjectProperty(defaultvalue=None, rebind=False, **kw)

	Bases: kivy.properties.Property

	Parameters:

	
	defaultvalue: object type
	Specifies the default value of the property.

	rebind: bool, defaults to False
	Whether kv rules using this object as an intermediate attribute
in a kv rule, will update the bound property when this object
changes.

That is the standard behavior is that if there’s a kv rule
text: self.a.b.c.d, where a, b, and c are
properties with rebind False and d is a
StringProperty. Then when the rule is applied, text
becomes bound only to d. If a, b, or c change,
text still remains bound to d. Furthermore, if any of them
were None when the rule was initially evaluated, e.g. b was
None; then text is bound to b and will not become bound
to d even when b is changed to not be None.

By setting rebind to True, however, the rule will be
re-evaluated and all the properties rebound when that intermediate
property changes. E.g. in the example above, whenever b changes
or becomes not None if it was None before, text is
evaluated again and becomes rebound to d. The overall result is
that text is now bound to all the properties among a,
b, or c that have rebind set to True.

	**kwargs: a list of keyword arguments
	
	baseclass
	If kwargs includes a baseclass argument, this value will be
used for validation: isinstance(value, kwargs[‘baseclass’]).

Warning

To mark the property as changed, you must reassign a new python object.

Changed in version 1.9.0: rebind has been introduced.

Changed in version 1.7.0: baseclass parameter added.

	
rebind

	rebind: ‘int’

	
class kivy.properties.OptionProperty(*largs, **kw)

	Bases: kivy.properties.Property

options.

If the string set in the property is not in the list of valid options
(passed at property creation time), a ValueError exception will be raised.

	Parameters:

	
	default: any valid type in the list of options
	Specifies the default value of the property.

	**kwargs: a list of keyword arguments
	Should include an options parameter specifying a list (not tuple)
of valid options.

For example:

class MyWidget(Widget):
 state = OptionProperty("None", options=["On", "Off", "None"])

	
options

	Return the options available.

New in version 1.0.9.

	
class kivy.properties.Property(defaultvalue, **kw)

	Bases: builtins.object

This class handles all the basic setters and getters, None type handling,
the observer list and storage initialisation. This class should not be
directly instantiated.

By default, a Property always takes a default value:

class MyObject(Widget):

 hello = Property('Hello world')

The default value must be a value that agrees with the Property type. For
example, you can’t set a list to a StringProperty because the
StringProperty will check the default value.

None is a special case: you can set the default value of a Property to
None, but you can’t set None to a property afterward. If you really want
to do that, you must declare the Property with allownone=True:

class MyObject(Widget):

 hello = ObjectProperty(None, allownone=True)

then later
a = MyObject()
a.hello = 'bleh' # working
a.hello = None # working too, because allownone is True.

	Parameters:

	
	default:
	Specifies the default value for the property.

	**kwargs:
	If the parameters include errorhandler, this should be a callable
which must take a single argument and return a valid substitute
value.

If the parameters include errorvalue, this should be an object.
If set, it will replace an invalid property value (overrides
errorhandler).

If the parameters include force_dispatch, it should be a boolean.
If True, no value comparison will be done, so the property event
will be dispatched even if the new value matches the old value (by
default identical values are not dispatched to avoid infinite
recursion in two-way binds). Be careful, this is for advanced use only.

	comparator: callable or None
	When not None, it’s called with two values to be compared.
The function returns whether they are considered the same.

	deprecated: bool
	When True, a warning will be logged if the property is accessed
or set. Defaults to False.

Changed in version 1.4.2: Parameters errorhandler and errorvalue added

Changed in version 1.9.0: Parameter force_dispatch added

Changed in version 1.11.0: Parameter deprecated added

	
bind(EventDispatcher obj, observer)

	Add a new observer to be called only when the value is changed.

	
defaultvalue

	defaultvalue: object

	
dispatch(EventDispatcher obj)

	Dispatch the value change to all observers.

Changed in version 1.1.0: The method is now accessible from Python.

This can be used to force the dispatch of the property, even if the
value didn’t change:

button = Button()
get the Property class instance
prop = button.property('text')
dispatch this property on the button instance
prop.dispatch(button)

	
Property.fbind(EventDispatcher obj, observer, int ref, tuple largs=

	Similar to bind, except it doesn’t check if the observer already
exists. It also expands and forwards largs and kwargs to the callback.
funbind or unbind_uid should be called when unbinding.
It returns a unique positive uid to be used with unbind_uid.

	
Property.funbind(EventDispatcher obj, observer, tuple largs=

	Remove the observer from our widget observer list bound with
fbind. It removes the first match it finds, as opposed to unbind
which searches for all matches.

	
get(EventDispatcher obj)

	Return the value of the property.

	
link(EventDispatcher obj, unicode name) → PropertyStorage

	Link the instance with its real name.

Warning

Internal usage only.

When a widget is defined and uses a Property class, the
creation of the property object happens, but the instance doesn’t know
anything about its name in the widget class:

class MyWidget(Widget):
 uid = NumericProperty(0)

In this example, the uid will be a NumericProperty() instance, but the
property instance doesn’t know its name. That’s why link() is
used in Widget.__new__. The link function is also used to create the
storage space of the property for this specific widget instance.

	
link_deps(EventDispatcher obj, unicode name)

	

	
link_eagerly(EventDispatcher obj) → PropertyStorage

	

	
set(EventDispatcher obj, value)

	Set a new value for the property.

	
set_name(EventDispatcher obj, unicode name)

	

	
unbind(EventDispatcher obj, observer, int stop_on_first=0)

	Remove the observer from our widget observer list.

	
unbind_uid(EventDispatcher obj, uid)

	Remove the observer from our widget observer list bound with
fbind using the uid.

	
class kivy.properties.ReferenceListProperty(*largs, **kw)

	Bases: kivy.properties.Property

For example, if x and y are NumericPropertys, we can create a
ReferenceListProperty for the pos. If you change the value of
pos, it will automatically change the values of x and y accordingly.
If you read the value of pos, it will return a tuple with the values of
x and y.

For example:

class MyWidget(EventDispatcher):
 x = NumericProperty(0)
 y = NumericProperty(0)
 pos = ReferenceListProperty(x, y)

	
get(EventDispatcher obj)

	

	
link(EventDispatcher obj, unicode name) → PropertyStorage

	

	
link_deps(EventDispatcher obj, unicode name)

	

	
set(EventDispatcher obj, _value)

	

	
setitem(EventDispatcher obj, key, value)

	

	
trigger_change(EventDispatcher obj, value)

	

	
class kivy.properties.StringProperty(defaultvalue='', **kw)

	Bases: kivy.properties.Property

	Parameters:

	
	defaultvalue: string, defaults to ‘’
	Specifies the default value of the property.

	
class kivy.properties.VariableListProperty(defaultvalue=None, length=4, **kw)

	Bases: kivy.properties.Property

list items and to expand them to the desired list size.

For example, GridLayout’s padding used to just accept one numeric value
which was applied equally to the left, top, right and bottom of the
GridLayout. Now padding can be given one, two or four values, which are
expanded into a length four list [left, top, right, bottom] and stored
in the property.

	Parameters:

	
	default: a default list of values
	Specifies the default values for the list.

	length: int, one of 2 or 4.
	Specifies the length of the final list. The default list will
be expanded to match a list of this length.

	**kwargs: a list of keyword arguments
	Not currently used.

Keeping in mind that the default list is expanded to a list of length 4,
here are some examples of how VariableListProperty is handled.

	VariableListProperty([1]) represents [1, 1, 1, 1].

	VariableListProperty([1, 2]) represents [1, 2, 1, 2].

	VariableListProperty([‘1px’, (2, ‘px’), 3, 4.0]) represents [1, 2, 3, 4.0].

	VariableListProperty(5) represents [5, 5, 5, 5].

	VariableListProperty(3, length=2) represents [3, 3].

New in version 1.7.0.

	
length

	length: ‘int’

	
link(EventDispatcher obj, unicode name) → PropertyStorage

	

Resources management

Resource management can be a pain if you have multiple paths and projects.
Kivy offers 2 functions for searching for specific resources across a list
of paths.

Resource lookup

When Kivy looks for a resource e.g. an image or a kv file, it searches through
a predetermined set of folders. You can modify this folder list using the
resource_add_path() and resource_remove_path() functions.

Customizing Kivy

These functions can also be helpful if you want to replace standard Kivy
resources with your own. For example, if you wish to customize or re-style
Kivy, you can force your style.kv or data/defaulttheme-0.png files to be
used in preference to the defaults simply by adding the path to your preferred
alternatives via the resource_add_path() method.

As almost all Kivy resources are looked up using the resource_find(), so
you can use this approach to add fonts and keyboard layouts and to replace
images and icons.

	
kivy.resources.resource_add_path(path)

	Add a custom path to search in.

	
kivy.resources.resource_find(filename, use_cache=False)

	Search for a resource in the list of paths.
Use resource_add_path to add a custom path to the search.
By default, results are cached for 60 seconds.
This can be disabled using use_cache=False.

Changed in version 2.1.0: use_cache parameter added and made True by default.

	
kivy.resources.resource_remove_path(path)

	Remove a search path.

New in version 1.0.8.

Storage

New in version 1.7.0.

Warning

This module is still experimental, and the API is subject to change in a
future version.

Usage

The idea behind the Storage module is to be able to load/store any number of
key-value pairs via an indexed key. The default model is abstract so you
cannot use it directly. We provide some implementations such as:

	kivy.storage.dictstore.DictStore: use a python dict as a store

	kivy.storage.jsonstore.JsonStore: use a
JSON [https://en.wikipedia.org/wiki/JSON] file as a store

	kivy.storage.redisstore.RedisStore: use a Redis [http://redis.io]
database with redis-py [https://github.com/andymccurdy/redis-py]

Examples

For example, let’s use a JsonStore:

from kivy.storage.jsonstore import JsonStore

store = JsonStore('hello.json')

put some values
store.put('tito', name='Mathieu', org='kivy')
store.put('tshirtman', name='Gabriel', age=27)

using the same index key erases all previously added key-value pairs
store.put('tito', name='Mathieu', age=30)

get a value using a index key and key
print('tito is', store.get('tito')['age'])

or guess the key/entry for a part of the key
for item in store.find(name='Gabriel'):
 print('tshirtmans index key is', item[0])
 print('his key value pairs are', str(item[1]))

Because the data is persistent, you can check later to see if the key exists:

from kivy.storage.jsonstore import JsonStore

store = JsonStore('hello.json')
if store.exists('tito'):
 print('tite exists:', store.get('tito'))
 store.delete('tito')

Synchronous / Asynchronous API

All the standard methods (get(),
put() , exists(),
delete(), find()) have an
asynchronous version.

For example, the get method has a callback parameter. If set, the
callback will be used to return the result to the user when available:
the request will be asynchronous. If the callback is None, then the
request will be synchronous and the result will be returned directly.

Without callback (Synchronous API):

entry = mystore.get('tito')
print('tito =', entry)

With callback (Asynchronous API):

def my_callback(store, key, result):
 print('the key', key, 'has a value of', result)
mystore.get('plop', callback=my_callback)

The callback signature (for almost all methods) is:

def callback(store, key, result):
 """
 store: the `Store` instance currently used.
 key: the key sought for.
 result: the result of the lookup for the key.
 """

Synchronous container type

The storage API emulates the container type for the synchronous API:

store = JsonStore('hello.json')

original: store.get('tito')
store['tito']

original: store.put('tito', name='Mathieu')
store['tito'] = {'name': 'Mathieu'}

original: store.delete('tito')
del store['tito']

original: store.count()
len(store)

original: store.exists('tito')
'tito' in store

original: for key in store.keys()
for key in store:
 pass

	
class kivy.storage.AbstractStore(**kwargs)

	Bases: kivy.event.EventDispatcher

Abstract class used to implement a Store

	
async_clear(callback)

	Asynchronous version of clear().

	
async_count(callback)

	Asynchronously return the number of entries in the storage.

	
async_delete(callback, key)

	Asynchronous version of delete().

	Callback arguments:

	
	store: AbstractStore instance
	Store instance

	key: string
	Name of the key to search for

	result: bool
	Indicate True if the storage has been updated, or False if
nothing has been done (no changes). None if any error.

	
async_exists(callback, key)

	Asynchronous version of exists().

	Callback arguments:

	
	store: AbstractStore instance
	Store instance

	key: string
	Name of the key to search for

	result: boo
	Result of the query, None if any error

	
async_find(callback, **filters)

	Asynchronous version of find().

The callback will be called for each entry in the result.

	Callback arguments:

	
	store: AbstractStore instance
	Store instance

	key: string
	Name of the key to search for, or None if we reach the end of
the results

	result: bool
	Indicate True if the storage has been updated, or False if
nothing has been done (no changes). None if any error.

	
async_get(callback, key)

	Asynchronous version of get().

	Callback arguments:

	
	store: AbstractStore instance
	Store instance

	key: string
	Name of the key to search for

	result: dict
	Result of the query, None if any error

	
async_keys(callback)

	Asynchronously return all the keys in the storage.

	
async_put(callback, key, **values)

	Asynchronous version of put().

	Callback arguments:

	
	store: AbstractStore instance
	Store instance

	key: string
	Name of the key to search for

	result: bool
	Indicate True if the storage has been updated, or False if
nothing has been done (no changes). None if any error.

	
clear()

	Wipe the whole storage.

	
count()

	Return the number of entries in the storage.

	
delete(key)

	Delete a key from the storage. If the key is not found, a KeyError
exception will be thrown.

	
exists(key)

	Check if a key exists in the store.

	
find(**filters)

	Return all the entries matching the filters. The entries are
returned through a generator as a list of (key, entry) pairs
where entry is a dict of key-value pairs

for key, entry in store.find(name='Mathieu'):
 print('key:', key, ', entry:', entry)

Because it’s a generator, you cannot directly use it as a list. You can
do:

get all the (key, entry) availables
entries = list(store.find(name='Mathieu'))
get only the entry from (key, entry)
entries = list((x[1] for x in store.find(name='Mathieu')))

	
get(key)

	Get the key-value pairs stored at key. If the key is not found, a
KeyError exception will be thrown.

	
keys()

	Return a list of all the keys in the storage.

	
put(key, **values)

	Put new key-value pairs (given in values) into the storage. Any
existing key-value pairs will be removed.

	Dictionary store
	DictStore

	JSON store
	JsonStore

	Redis Store
	RedisStore

Dictionary store

Use a Python dictionary as a store.

	
class kivy.storage.dictstore.DictStore(filename, data=None, **kwargs)

	Bases: kivy.storage.AbstractStore

Store implementation using a pickled dict.
See the kivy.storage module documentation for more information.

JSON store

A Storage module used to save/load key-value pairs from
a json file.

	
class kivy.storage.jsonstore.JsonStore(filename, indent=None, sort_keys=False, **kwargs)

	Bases: kivy.storage.AbstractStore

Store implementation using a json file for storing the key-value pairs.
See the kivy.storage module documentation for more information.

Redis Store

Store implementation using Redis. You must have redis-py installed.

Usage example:

from kivy.storage.redisstore import RedisStore

params = dict(host='localhost', port=6379, db=14)
store = RedisStore(params)

All the key-value pairs will be stored with a prefix ‘store’ by default.
You can instantiate the storage with another prefix like this:

from kivy.storage.redisstore import RedisStore

params = dict(host='localhost', port=6379, db=14)
store = RedisStore(params, prefix='mystore2')

The params dictionary will be passed to the redis.StrictRedis class.

See redis-py [https://github.com/andymccurdy/redis-py].

	
class kivy.storage.redisstore.RedisStore(redis_params, **kwargs)

	Bases: kivy.storage.AbstractStore

Store implementation using a Redis database.
See the kivy.storage module documentation for more information.

Dictionary store

Use a Python dictionary as a store.

	
class kivy.storage.dictstore.DictStore(filename, data=None, **kwargs)

	Bases: kivy.storage.AbstractStore

Store implementation using a pickled dict.
See the kivy.storage module documentation for more information.

JSON store

A Storage module used to save/load key-value pairs from
a json file.

	
class kivy.storage.jsonstore.JsonStore(filename, indent=None, sort_keys=False, **kwargs)

	Bases: kivy.storage.AbstractStore

Store implementation using a json file for storing the key-value pairs.
See the kivy.storage module documentation for more information.

Redis Store

Store implementation using Redis. You must have redis-py installed.

Usage example:

from kivy.storage.redisstore import RedisStore

params = dict(host='localhost', port=6379, db=14)
store = RedisStore(params)

All the key-value pairs will be stored with a prefix ‘store’ by default.
You can instantiate the storage with another prefix like this:

from kivy.storage.redisstore import RedisStore

params = dict(host='localhost', port=6379, db=14)
store = RedisStore(params, prefix='mystore2')

The params dictionary will be passed to the redis.StrictRedis class.

See redis-py [https://github.com/andymccurdy/redis-py].

	
class kivy.storage.redisstore.RedisStore(redis_params, **kwargs)

	Bases: kivy.storage.AbstractStore

Store implementation using a Redis database.
See the kivy.storage module documentation for more information.

Support

Activate other frameworks/toolkits inside the kivy event loop.

	
kivy.support.install_android()

	Install hooks for the android platform.

	Automatically sleep when the device is paused.

	Automatically kill the application when the return key is pressed.

	
kivy.support.install_gobject_iteration()

	Import and install gobject context iteration inside our event loop.
This is used as soon as gobject is used (like gstreamer).

	
kivy.support.install_twisted_reactor(**kwargs)

	Installs a threaded twisted reactor, which will schedule one
reactor iteration before the next frame only when twisted needs
to do some work.

Any arguments or keyword arguments passed to this function will be
passed on the the threadedselect reactors interleave function. These
are the arguments one would usually pass to twisted’s reactor.startRunning.

Unlike the default twisted reactor, the installed reactor will not handle
any signals unless you set the ‘installSignalHandlers’ keyword argument
to 1 explicitly. This is done to allow kivy to handle the signals as
usual unless you specifically want the twisted reactor to handle the
signals (e.g. SIGINT).

Note

Twisted is not included in iOS build by default. To use it on iOS,
put the twisted distribution (and zope.interface dependency) in your
application directory.

	
kivy.support.uninstall_twisted_reactor()

	Uninstalls the Kivy’s threaded Twisted Reactor. No more Twisted
tasks will run after this got called. Use this to clean the
twisted.internet.reactor .

New in version 1.9.0.

Tools

The tools module provides various utility scripts, modules and examples.

Scripts

Some useful scripts include:

	kviewer.py: for viewing kv files with automatic updating

	benchmark.py: provides detailed OpenGL hardware information as well
as some benchmarks measuring kivy specific performance

	reports.py: provides a comprehensive report covering your systems
providers, libraries, configuration, environment, input devices and options

	texturecompress.py: a command line utility for compressing images
into PVRTC or ETC1 formats

	generate-icons.py: generates set of icons suitable for the various
store and package formats

	gles_compat/subset_gles.py: examines compatibility between GLEXT and
GLES2 headers for finding compatible subsets

Modules

Tool modules provide various resources for:

	packaging

	text editor highlighting

Other

Other miscellaneous resources include

	pep8checker: pep8 checking scripts and git hook

	theming: demonstrates an alternative theme for kivy

	travis: travis continuous integration

This help document is a work-in-progress and currently under construction.

	Packaging

Packaging

This module contains PyInstaller [http://www.pyinstaller.org/] hooks in
order to assist in the process of building binary packages. PyInstaller allows
you to produce stand-alone, self-contained executables of your Kivy app for
Windows, Linux and Mac.

For more information, please see the PyInstaller website [http://www.pyinstaller.org/]

Packaging

This module contains PyInstaller [http://www.pyinstaller.org/] hooks in
order to assist in the process of building binary packages. PyInstaller allows
you to produce stand-alone, self-contained executables of your Kivy app for
Windows, Linux and Mac.

For more information, please see the PyInstaller website [http://www.pyinstaller.org/]

Widgets

Widgets are elements of a graphical user interface that form part of the
User Experience [http://en.wikipedia.org/wiki/User_experience].
The kivy.uix module contains classes for creating and managing Widgets.
Please refer to the Widget class documentation for further
information.

Kivy widgets can be categorized as follows:

	UX widgets: Classical user interface widgets, ready to be assembled to
create more complex widgets.

Label, Button,
CheckBox,
Image, Slider,
Progress Bar, Text Input,
Toggle button, Switch,
Video

	Layouts: A layout widget does no rendering but just acts as a trigger
that arranges its children in a specific way. Read more on
Layouts here.

Anchor Layout, Box Layout,
Float Layout,
Grid Layout, PageLayout,
Relative Layout, Scatter Layout,
Stack Layout

	Complex UX widgets: Non-atomic widgets that are the result of
combining multiple classic widgets.
We call them complex because their assembly and usage are not as
generic as the classical widgets.

Bubble, Drop-Down List,
FileChooser, Popup,
Spinner,
RecycleView,
TabbedPanel, Video player,
VKeyboard,

	Behaviors widgets: These widgets do no rendering but act on the
graphics instructions or interaction (touch) behavior of their children.

Scatter, Stencil View

	Screen manager: Manages screens and transitions when switching
from one to another.

Screen Manager

	Behaviors
	Behavior mixin classes

	Adding behaviors

	ButtonBehavior
	ButtonBehavior.always_release

	ButtonBehavior.last_touch

	ButtonBehavior.min_state_time

	ButtonBehavior.state

	ButtonBehavior.trigger_action()

	CodeNavigationBehavior

	CompoundSelectionBehavior
	CompoundSelectionBehavior.clear_selection()

	CompoundSelectionBehavior.deselect_node()

	CompoundSelectionBehavior.get_index_of_node()

	CompoundSelectionBehavior.get_selectable_nodes()

	CompoundSelectionBehavior.goto_node()

	CompoundSelectionBehavior.keyboard_select

	CompoundSelectionBehavior.multiselect

	CompoundSelectionBehavior.nodes_order_reversed

	CompoundSelectionBehavior.page_count

	CompoundSelectionBehavior.right_count

	CompoundSelectionBehavior.scroll_count

	CompoundSelectionBehavior.select_node()

	CompoundSelectionBehavior.select_with_key_down()

	CompoundSelectionBehavior.select_with_key_up()

	CompoundSelectionBehavior.select_with_touch()

	CompoundSelectionBehavior.selected_nodes

	CompoundSelectionBehavior.text_entry_timeout

	CompoundSelectionBehavior.touch_deselect_last

	CompoundSelectionBehavior.touch_multiselect

	CompoundSelectionBehavior.up_count

	CoverBehavior
	CoverBehavior.cover_pos

	CoverBehavior.cover_size

	CoverBehavior.reference_size

	DragBehavior
	DragBehavior.drag_distance

	DragBehavior.drag_rect_height

	DragBehavior.drag_rect_width

	DragBehavior.drag_rect_x

	DragBehavior.drag_rect_y

	DragBehavior.drag_rectangle

	DragBehavior.drag_timeout

	EmacsBehavior
	EmacsBehavior.delete_word_left()

	EmacsBehavior.delete_word_right()

	EmacsBehavior.key_bindings

	FocusBehavior
	FocusBehavior.focus

	FocusBehavior.focus_next

	FocusBehavior.focus_previous

	FocusBehavior.focused

	FocusBehavior.get_focus_next()

	FocusBehavior.get_focus_previous()

	FocusBehavior.hide_keyboard()

	FocusBehavior.ignored_touch

	FocusBehavior.input_type

	FocusBehavior.is_focusable

	FocusBehavior.keyboard

	FocusBehavior.keyboard_mode

	FocusBehavior.keyboard_on_key_down()

	FocusBehavior.keyboard_on_key_up()

	FocusBehavior.keyboard_suggestions

	FocusBehavior.show_keyboard()

	FocusBehavior.unfocus_on_touch

	ToggleButtonBehavior
	ToggleButtonBehavior.allow_no_selection

	ToggleButtonBehavior.get_widgets()

	ToggleButtonBehavior.group

	TouchRippleBehavior
	TouchRippleBehavior.ripple_duration_in

	TouchRippleBehavior.ripple_duration_out

	TouchRippleBehavior.ripple_fade()

	TouchRippleBehavior.ripple_fade_from_alpha

	TouchRippleBehavior.ripple_fade_to_alpha

	TouchRippleBehavior.ripple_func_in

	TouchRippleBehavior.ripple_func_out

	TouchRippleBehavior.ripple_rad_default

	TouchRippleBehavior.ripple_scale

	TouchRippleBehavior.ripple_show()

	TouchRippleButtonBehavior
	TouchRippleButtonBehavior.always_release

	TouchRippleButtonBehavior.last_touch

	Button Behavior
	Example

	ButtonBehavior
	ButtonBehavior.always_release

	ButtonBehavior.last_touch

	ButtonBehavior.min_state_time

	ButtonBehavior.state

	ButtonBehavior.trigger_action()

	Code Navigation Behavior
	CodeNavigationBehavior

	Compound Selection Behavior
	Compound selection concepts

	Selection mechanics

	Example

	CompoundSelectionBehavior
	CompoundSelectionBehavior.clear_selection()

	CompoundSelectionBehavior.deselect_node()

	CompoundSelectionBehavior.get_index_of_node()

	CompoundSelectionBehavior.get_selectable_nodes()

	CompoundSelectionBehavior.goto_node()

	CompoundSelectionBehavior.keyboard_select

	CompoundSelectionBehavior.multiselect

	CompoundSelectionBehavior.nodes_order_reversed

	CompoundSelectionBehavior.page_count

	CompoundSelectionBehavior.right_count

	CompoundSelectionBehavior.scroll_count

	CompoundSelectionBehavior.select_node()

	CompoundSelectionBehavior.select_with_key_down()

	CompoundSelectionBehavior.select_with_key_up()

	CompoundSelectionBehavior.select_with_touch()

	CompoundSelectionBehavior.selected_nodes

	CompoundSelectionBehavior.text_entry_timeout

	CompoundSelectionBehavior.touch_deselect_last

	CompoundSelectionBehavior.touch_multiselect

	CompoundSelectionBehavior.up_count

	Cover Behavior
	Example

	CoverBehavior
	CoverBehavior.cover_pos

	CoverBehavior.cover_size

	CoverBehavior.reference_size

	Drag Behavior
	Example

	DragBehavior
	DragBehavior.drag_distance

	DragBehavior.drag_rect_height

	DragBehavior.drag_rect_width

	DragBehavior.drag_rect_x

	DragBehavior.drag_rect_y

	DragBehavior.drag_rectangle

	DragBehavior.drag_timeout

	Emacs Behavior
	Emacs shortcuts

	EmacsBehavior
	EmacsBehavior.delete_word_left()

	EmacsBehavior.delete_word_right()

	EmacsBehavior.key_bindings

	Focus Behavior
	Managing focus

	Initializing focus

	FocusBehavior
	FocusBehavior.focus

	FocusBehavior.focus_next

	FocusBehavior.focus_previous

	FocusBehavior.focused

	FocusBehavior.get_focus_next()

	FocusBehavior.get_focus_previous()

	FocusBehavior.hide_keyboard()

	FocusBehavior.ignored_touch

	FocusBehavior.input_type

	FocusBehavior.is_focusable

	FocusBehavior.keyboard

	FocusBehavior.keyboard_mode

	FocusBehavior.keyboard_on_key_down()

	FocusBehavior.keyboard_on_key_up()

	FocusBehavior.keyboard_suggestions

	FocusBehavior.show_keyboard()

	FocusBehavior.unfocus_on_touch

	Kivy Namespaces
	Basic examples

	Setting the namespace

	Inheriting the namespace

	Accessing the namespace

	Forking a namespace

	KNSpace
	KNSpace.fork()

	KNSpace.keep_ref

	KNSpace.parent

	KNSpace.property()

	KNSpaceBehavior
	KNSpaceBehavior.knsname

	KNSpaceBehavior.knspace

	KNSpaceBehavior.knspace_key

	knspace

	ToggleButton Behavior
	Example

	ToggleButtonBehavior
	ToggleButtonBehavior.allow_no_selection

	ToggleButtonBehavior.get_widgets()

	ToggleButtonBehavior.group

	Touch Ripple
	TouchRippleBehavior
	TouchRippleBehavior.ripple_duration_in

	TouchRippleBehavior.ripple_duration_out

	TouchRippleBehavior.ripple_fade()

	TouchRippleBehavior.ripple_fade_from_alpha

	TouchRippleBehavior.ripple_fade_to_alpha

	TouchRippleBehavior.ripple_func_in

	TouchRippleBehavior.ripple_func_out

	TouchRippleBehavior.ripple_rad_default

	TouchRippleBehavior.ripple_scale

	TouchRippleBehavior.ripple_show()

	TouchRippleButtonBehavior
	TouchRippleButtonBehavior.always_release

	TouchRippleButtonBehavior.last_touch

	RecycleView
	Viewclass State

	RecycleView
	RecycleView.add_widget()

	RecycleView.data

	RecycleView.key_viewclass

	RecycleView.remove_widget()

	RecycleView.viewclass

	RecycleViewBehavior
	RecycleViewBehavior.data_model

	RecycleViewBehavior.layout_manager

	RecycleViewBehavior.refresh_from_data()

	RecycleViewBehavior.refresh_from_layout()

	RecycleViewBehavior.refresh_from_viewport()

	RecycleViewBehavior.view_adapter

	RecycleView Data Model
	RecycleDataModel
	RecycleDataModel.attach_recycleview()

	RecycleDataModel.data

	RecycleDataModel.detach_recycleview()

	RecycleDataModel.observable_dict

	RecycleDataModelBehavior
	RecycleDataModelBehavior.attach_recycleview()

	RecycleDataModelBehavior.detach_recycleview()

	RecycleDataModelBehavior.recycleview

	RecycleView Layouts
	LayoutChangeException

	LayoutSelectionBehavior
	LayoutSelectionBehavior.apply_selection()

	LayoutSelectionBehavior.deselect_node()

	LayoutSelectionBehavior.get_index_of_node()

	LayoutSelectionBehavior.get_selectable_nodes()

	LayoutSelectionBehavior.goto_node()

	LayoutSelectionBehavior.key_selection

	LayoutSelectionBehavior.select_node()

	RecycleLayoutManagerBehavior
	RecycleLayoutManagerBehavior.compute_visible_views()

	RecycleLayoutManagerBehavior.get_view_index_at()

	RecycleLayoutManagerBehavior.goto_view()

	RecycleLayoutManagerBehavior.key_viewclass

	RecycleLayoutManagerBehavior.refresh_view_layout()

	RecycleLayoutManagerBehavior.set_visible_views()

	RecycleLayoutManagerBehavior.viewclass

	RecycleView Views
	RecycleDataAdapter
	RecycleDataAdapter.attach_recycleview()

	RecycleDataAdapter.create_view()

	RecycleDataAdapter.detach_recycleview()

	RecycleDataAdapter.get_view()

	RecycleDataAdapter.get_visible_view()

	RecycleDataAdapter.invalidate()

	RecycleDataAdapter.make_view_dirty()

	RecycleDataAdapter.make_views_dirty()

	RecycleDataAdapter.recycleview

	RecycleDataAdapter.refresh_view_attrs()

	RecycleDataAdapter.refresh_view_layout()

	RecycleDataAdapter.set_visible_views()

	RecycleDataViewBehavior
	RecycleDataViewBehavior.refresh_view_attrs()

	RecycleDataViewBehavior.refresh_view_layout()

	RecycleKVIDsDataViewBehavior
	RecycleKVIDsDataViewBehavior.refresh_view_attrs()

	Accordion
	Simple example

	Customize the accordion

	Accordion
	Accordion.add_widget()

	Accordion.anim_duration

	Accordion.anim_func

	Accordion.min_space

	Accordion.orientation

	AccordionException

	AccordionItem
	AccordionItem.accordion

	AccordionItem.add_widget()

	AccordionItem.background_disabled_normal

	AccordionItem.background_disabled_selected

	AccordionItem.background_normal

	AccordionItem.background_selected

	AccordionItem.collapse

	AccordionItem.collapse_alpha

	AccordionItem.container

	AccordionItem.container_title

	AccordionItem.content_size

	AccordionItem.min_space

	AccordionItem.on_touch_down()

	AccordionItem.orientation

	AccordionItem.remove_widget()

	AccordionItem.title

	AccordionItem.title_args

	AccordionItem.title_template

	Action Bar
	ActionBar
	ActionBar.action_view

	ActionBar.add_widget()

	ActionBar.background_color

	ActionBar.background_image

	ActionBar.border

	ActionBarException

	ActionButton
	ActionButton.icon

	ActionCheck

	ActionDropDown

	ActionGroup
	ActionGroup.add_widget()

	ActionGroup.clear_widgets()

	ActionGroup.dropdown_width

	ActionGroup.is_open

	ActionGroup.mode

	ActionGroup.separator_image

	ActionGroup.separator_width

	ActionGroup.use_separator

	ActionItem
	ActionItem.background_down

	ActionItem.background_normal

	ActionItem.important

	ActionItem.inside_group

	ActionItem.minimum_width

	ActionItem.mipmap

	ActionItem.pack_width

	ActionOverflow
	ActionOverflow.add_widget()

	ActionOverflow.overflow_image

	ActionPrevious
	ActionPrevious.app_icon

	ActionPrevious.app_icon_height

	ActionPrevious.app_icon_width

	ActionPrevious.color

	ActionPrevious.markup

	ActionPrevious.previous_image

	ActionPrevious.previous_image_height

	ActionPrevious.previous_image_width

	ActionPrevious.title

	ActionPrevious.with_previous

	ActionSeparator
	ActionSeparator.background_image

	ActionToggleButton
	ActionToggleButton.icon

	ActionView
	ActionView.action_previous

	ActionView.add_widget()

	ActionView.background_color

	ActionView.background_image

	ActionView.overflow_group

	ActionView.remove_widget()

	ActionView.use_separator

	ContextualActionView

	Anchor Layout
	AnchorLayout
	AnchorLayout.anchor_x

	AnchorLayout.anchor_y

	AnchorLayout.do_layout()

	AnchorLayout.padding

	Box Layout
	BoxLayout
	BoxLayout.add_widget()

	BoxLayout.do_layout()

	BoxLayout.minimum_height

	BoxLayout.minimum_size

	BoxLayout.minimum_width

	BoxLayout.orientation

	BoxLayout.padding

	BoxLayout.remove_widget()

	BoxLayout.spacing

	Bubble
	BubbleContent

	BubbleButton
	Simple example

	Customize the Bubble

	Bubble
	Bubble.add_widget()

	Bubble.arrow_color

	Bubble.arrow_image

	Bubble.arrow_margin

	Bubble.arrow_margin_x

	Bubble.arrow_margin_y

	Bubble.arrow_pos

	Bubble.content

	Bubble.content_height

	Bubble.content_size

	Bubble.content_width

	Bubble.flex_arrow_pos

	Bubble.limit_to

	Bubble.remove_widget()

	Bubble.show_arrow

	BubbleButton

	BubbleContent
	BubbleContent.background_color

	BubbleContent.background_image

	BubbleContent.border

	BubbleContent.border_auto_scale

	Button
	Button
	Button.background_color

	Button.background_disabled_down

	Button.background_disabled_normal

	Button.background_down

	Button.background_normal

	Button.border

	Camera
	Camera
	Camera.index

	Camera.play

	Camera.resolution

	Carousel
	Carousel
	Carousel.add_widget()

	Carousel.anim_cancel_duration

	Carousel.anim_move_duration

	Carousel.anim_type

	Carousel.clear_widgets()

	Carousel.current_slide

	Carousel.direction

	Carousel.ignore_perpendicular_swipes

	Carousel.index

	Carousel.load_next()

	Carousel.load_previous()

	Carousel.load_slide()

	Carousel.loop

	Carousel.min_move

	Carousel.next_slide

	Carousel.on_touch_down()

	Carousel.on_touch_move()

	Carousel.on_touch_up()

	Carousel.previous_slide

	Carousel.remove_widget()

	Carousel.scroll_distance

	Carousel.scroll_timeout

	Carousel.slides

	CheckBox
	CheckBox
	CheckBox.active

	CheckBox.background_checkbox_disabled_down

	CheckBox.background_checkbox_disabled_normal

	CheckBox.background_checkbox_down

	CheckBox.background_checkbox_normal

	CheckBox.background_radio_disabled_down

	CheckBox.background_radio_disabled_normal

	CheckBox.background_radio_down

	CheckBox.background_radio_normal

	CheckBox.color

	Code Input
	Usage example

	CodeInput
	CodeInput.lexer

	CodeInput.style

	CodeInput.style_name

	Color Picker
	ColorPicker
	ColorPicker.color

	ColorPicker.font_name

	ColorPicker.hex_color

	ColorPicker.hsv

	ColorPicker.wheel

	ColorWheel
	ColorWheel.a

	ColorWheel.b

	ColorWheel.color

	ColorWheel.g

	ColorWheel.on_touch_down()

	ColorWheel.on_touch_move()

	ColorWheel.on_touch_up()

	ColorWheel.r

	Drop-Down List
	Basic example

	Extending dropdown in Kv

	DropDown
	DropDown.add_widget()

	DropDown.attach_to

	DropDown.auto_dismiss

	DropDown.auto_width

	DropDown.clear_widgets()

	DropDown.container

	DropDown.dismiss()

	DropDown.dismiss_on_select

	DropDown.max_height

	DropDown.min_state_time

	DropDown.on_motion()

	DropDown.on_touch_down()

	DropDown.on_touch_move()

	DropDown.on_touch_up()

	DropDown.open()

	DropDown.remove_widget()

	DropDown.select()

	EffectWidget
	Usage Guidelines

	Provided Effects

	Creating Effects

	AdvancedEffectBase
	AdvancedEffectBase.set_fbo_shader()

	AdvancedEffectBase.uniforms

	ChannelMixEffect
	ChannelMixEffect.order

	EffectBase
	EffectBase.fbo

	EffectBase.glsl

	EffectBase.set_fbo_shader()

	EffectBase.source

	EffectWidget
	EffectWidget.add_widget()

	EffectWidget.background_color

	EffectWidget.clear_widgets()

	EffectWidget.effects

	EffectWidget.fbo_list

	EffectWidget.refresh_fbo_setup()

	EffectWidget.remove_widget()

	EffectWidget.texture

	FXAAEffect

	HorizontalBlurEffect
	HorizontalBlurEffect.size

	InvertEffect

	MonochromeEffect

	PixelateEffect
	PixelateEffect.pixel_size

	ScanlinesEffect

	VerticalBlurEffect
	VerticalBlurEffect.size

	FileChooser
	Simple widgets

	Widget composition

	Usage example

	FileChooser
	FileChooser.add_widget()

	FileChooser.manager

	FileChooser.view_list

	FileChooser.view_mode

	FileChooserController
	FileChooserController.cancel()

	FileChooserController.dirselect

	FileChooserController.entry_released()

	FileChooserController.entry_touched()

	FileChooserController.file_encodings

	FileChooserController.file_system

	FileChooserController.files

	FileChooserController.filter_dirs

	FileChooserController.filters

	FileChooserController.font_name

	FileChooserController.get_nice_size()

	FileChooserController.layout

	FileChooserController.multiselect

	FileChooserController.on_touch_down()

	FileChooserController.on_touch_up()

	FileChooserController.path

	FileChooserController.progress_cls

	FileChooserController.rootpath

	FileChooserController.selection

	FileChooserController.show_hidden

	FileChooserController.sort_func

	FileChooserIconLayout

	FileChooserIconView

	FileChooserListLayout

	FileChooserListView

	FileChooserProgressBase
	FileChooserProgressBase.cancel()

	FileChooserProgressBase.index

	FileChooserProgressBase.on_touch_down()

	FileChooserProgressBase.on_touch_move()

	FileChooserProgressBase.on_touch_up()

	FileChooserProgressBase.path

	FileChooserProgressBase.total

	FileSystemAbstract
	FileSystemAbstract.getsize()

	FileSystemAbstract.is_dir()

	FileSystemAbstract.is_hidden()

	FileSystemAbstract.listdir()

	FileSystemLocal
	FileSystemLocal.getsize()

	FileSystemLocal.is_dir()

	FileSystemLocal.is_hidden()

	FileSystemLocal.listdir()

	Float Layout
	FloatLayout
	FloatLayout.add_widget()

	FloatLayout.do_layout()

	FloatLayout.remove_widget()

	Gesture Surface
	GestureContainer
	GestureContainer.accept_stroke()

	GestureContainer.add_stroke()

	GestureContainer.complete_stroke()

	GestureContainer.get_vectors()

	GestureContainer.handles()

	GestureContainer.single_points_test()

	GestureContainer.update_bbox()

	GestureSurface
	GestureSurface.find_colliding_gesture()

	GestureSurface.get_gesture()

	GestureSurface.init_gesture()

	GestureSurface.merge_gestures()

	GestureSurface.on_touch_down()

	GestureSurface.on_touch_move()

	GestureSurface.on_touch_up()

	Grid Layout
	Background

	Column Width and Row Height

	Using a GridLayout

	GridLayout
	GridLayout.col_default_width

	GridLayout.col_force_default

	GridLayout.cols

	GridLayout.cols_minimum

	GridLayout.do_layout()

	GridLayout.minimum_height

	GridLayout.minimum_size

	GridLayout.minimum_width

	GridLayout.orientation

	GridLayout.padding

	GridLayout.row_default_height

	GridLayout.row_force_default

	GridLayout.rows

	GridLayout.rows_minimum

	GridLayout.spacing

	GridLayoutException

	Image
	Asynchronous Loading

	Alignment

	Adjustment

	AsyncImage
	AsyncImage.remove_from_cache()

	Image
	Image.allow_stretch

	Image.anim_delay

	Image.anim_loop

	Image.color

	Image.fit_mode

	Image.image_ratio

	Image.keep_data

	Image.keep_ratio

	Image.mipmap

	Image.nocache

	Image.norm_image_size

	Image.reload()

	Image.remove_from_cache()

	Image.source

	Image.texture

	Image.texture_size

	Label
	Sizing and text content

	Text alignment and wrapping

	Markup text

	Interactive zone in text

	Catering for Unicode languages

	Usage example

	Label
	Label.anchors

	Label.base_direction

	Label.bold

	Label.color

	Label.disabled_color

	Label.disabled_outline_color

	Label.ellipsis_options

	Label.font_blended

	Label.font_context

	Label.font_direction

	Label.font_family

	Label.font_features

	Label.font_hinting

	Label.font_kerning

	Label.font_name

	Label.font_script_name

	Label.font_size

	Label.halign

	Label.is_shortened

	Label.italic

	Label.line_height

	Label.markup

	Label.max_lines

	Label.mipmap

	Label.on_touch_down()

	Label.outline_color

	Label.outline_width

	Label.padding

	Label.padding_x

	Label.padding_y

	Label.refs

	Label.shorten

	Label.shorten_from

	Label.split_str

	Label.strikethrough

	Label.strip

	Label.text

	Label.text_language

	Label.text_size

	Label.texture

	Label.texture_size

	Label.texture_update()

	Label.underline

	Label.unicode_errors

	Label.valign

	Layout
	Understanding the size_hint Property in Widget

	Layout
	Layout.add_widget()

	Layout.do_layout()

	Layout.layout_hint_with_bounds()

	Layout.remove_widget()

	ModalView
	Examples

	ModalView Events

	ModalView
	ModalView.attach_to

	ModalView.auto_dismiss

	ModalView.background

	ModalView.background_color

	ModalView.border

	ModalView.dismiss()

	ModalView.on__anim_alpha()

	ModalView.on_dismiss()

	ModalView.on_motion()

	ModalView.on_open()

	ModalView.on_pre_dismiss()

	ModalView.on_pre_open()

	ModalView.on_touch_down()

	ModalView.on_touch_move()

	ModalView.on_touch_up()

	ModalView.open()

	ModalView.overlay_color

	PageLayout
	PageLayout
	PageLayout.anim_kwargs

	PageLayout.border

	PageLayout.do_layout()

	PageLayout.on_touch_down()

	PageLayout.on_touch_move()

	PageLayout.on_touch_up()

	PageLayout.page

	PageLayout.swipe_threshold

	Popup
	Examples

	Popup Events

	Popup
	Popup.add_widget()

	Popup.content

	Popup.on_touch_down()

	Popup.separator_color

	Popup.separator_height

	Popup.title

	Popup.title_align

	Popup.title_color

	Popup.title_font

	Popup.title_size

	PopupException

	Progress Bar
	ProgressBar
	ProgressBar.max

	ProgressBar.value

	ProgressBar.value_normalized

	RecycleBoxLayout
	RecycleBoxLayout
	RecycleBoxLayout.compute_visible_views()

	RecycleBoxLayout.get_view_index_at()

	RecycleGridLayout
	RecycleGridLayout
	RecycleGridLayout.compute_visible_views()

	RecycleGridLayout.get_view_index_at()

	RecycleLayout
	RecycleLayout
	RecycleLayout.default_height

	RecycleLayout.default_pos_hint

	RecycleLayout.default_size

	RecycleLayout.default_size_hint

	RecycleLayout.default_size_hint_max

	RecycleLayout.default_size_hint_min

	RecycleLayout.default_size_hint_x

	RecycleLayout.default_size_hint_x_max

	RecycleLayout.default_size_hint_x_min

	RecycleLayout.default_size_hint_y

	RecycleLayout.default_size_hint_y_max

	RecycleLayout.default_size_hint_y_min

	RecycleLayout.default_width

	RecycleLayout.do_layout()

	RecycleLayout.initial_height

	RecycleLayout.initial_size

	RecycleLayout.initial_width

	RecycleLayout.key_pos_hint

	RecycleLayout.key_size

	RecycleLayout.key_size_hint

	RecycleLayout.key_size_hint_max

	RecycleLayout.key_size_hint_min

	RecycleLayout.refresh_view_layout()

	RecycleLayout.set_visible_views()

	Relative Layout
	Coordinate Systems
	Window coordinates

	Parent coordinates

	Local and Widget coordinates

	Coordinate transformations

	Common Pitfalls

	RelativeLayout
	RelativeLayout.do_layout()

	RelativeLayout.on_motion()

	RelativeLayout.on_touch_down()

	RelativeLayout.on_touch_move()

	RelativeLayout.on_touch_up()

	RelativeLayout.to_local()

	RelativeLayout.to_parent()

	reStructuredText renderer
	Usage with Text

	Usage with Source

	RstDocument
	RstDocument.background_color

	RstDocument.base_font_size

	RstDocument.colors

	RstDocument.document_root

	RstDocument.goto()

	RstDocument.preload()

	RstDocument.render()

	RstDocument.resolve_path()

	RstDocument.show_errors

	RstDocument.source

	RstDocument.source_encoding

	RstDocument.source_error

	RstDocument.text

	RstDocument.title

	RstDocument.toctrees

	RstDocument.underline_color

	Sandbox
	Sandbox
	Sandbox.add_widget()

	Sandbox.clear_widgets()

	Sandbox.on_context_created()

	Sandbox.on_exception()

	Sandbox.on_motion()

	Sandbox.on_touch_down()

	Sandbox.on_touch_move()

	Sandbox.on_touch_up()

	Sandbox.remove_widget()

	Scatter
	Usage

	Control Interactions

	Automatic Bring to Front

	Scale Limitation

	Behavior

	Scatter
	Scatter.apply_transform()

	Scatter.auto_bring_to_front

	Scatter.bbox

	Scatter.center

	Scatter.center_x

	Scatter.center_y

	Scatter.collide_point()

	Scatter.do_collide_after_children

	Scatter.do_rotation

	Scatter.do_scale

	Scatter.do_translation

	Scatter.do_translation_x

	Scatter.do_translation_y

	Scatter.on_bring_to_front()

	Scatter.on_motion()

	Scatter.on_touch_down()

	Scatter.on_touch_move()

	Scatter.on_touch_up()

	Scatter.on_transform_with_touch()

	Scatter.pos

	Scatter.right

	Scatter.rotation

	Scatter.scale

	Scatter.scale_max

	Scatter.scale_min

	Scatter.to_local()

	Scatter.to_parent()

	Scatter.top

	Scatter.transform

	Scatter.transform_inv

	Scatter.translation_touches

	Scatter.x

	Scatter.y

	ScatterPlane
	ScatterPlane.collide_point()

	Scatter Layout
	ScatterLayout
	ScatterLayout.add_widget()

	ScatterLayout.clear_widgets()

	ScatterLayout.remove_widget()

	ScatterPlaneLayout
	ScatterPlaneLayout.collide_point()

	Screen Manager
	Basic Usage

	Changing Direction

	Advanced Usage

	Changing transitions

	CardTransition
	CardTransition.mode

	CardTransition.start()

	FadeTransition
	FadeTransition.fs

	FallOutTransition
	FallOutTransition.duration

	FallOutTransition.fs

	NoTransition
	NoTransition.duration

	RiseInTransition
	RiseInTransition.duration

	RiseInTransition.fs

	Screen
	Screen.manager

	Screen.name

	Screen.transition_progress

	Screen.transition_state

	ScreenManager
	ScreenManager.add_widget()

	ScreenManager.clear_widgets()

	ScreenManager.current

	ScreenManager.current_screen

	ScreenManager.get_screen()

	ScreenManager.has_screen()

	ScreenManager.next()

	ScreenManager.on_motion()

	ScreenManager.on_touch_down()

	ScreenManager.on_touch_move()

	ScreenManager.on_touch_up()

	ScreenManager.previous()

	ScreenManager.remove_widget()

	ScreenManager.screen_names

	ScreenManager.screens

	ScreenManager.switch_to()

	ScreenManager.transition

	ScreenManagerException

	ShaderTransition
	ShaderTransition.add_screen()

	ShaderTransition.clearcolor

	ShaderTransition.fs

	ShaderTransition.remove_screen()

	ShaderTransition.stop()

	ShaderTransition.vs

	SlideTransition
	SlideTransition.direction

	SwapTransition
	SwapTransition.add_screen()

	SwapTransition.start()

	TransitionBase
	TransitionBase.add_screen()

	TransitionBase.duration

	TransitionBase.is_active

	TransitionBase.manager

	TransitionBase.remove_screen()

	TransitionBase.screen_in

	TransitionBase.screen_out

	TransitionBase.start()

	TransitionBase.stop()

	WipeTransition
	WipeTransition.fs

	ScrollView
	Scrolling Behavior

	Limiting to the X or Y Axis

	Managing the Content Size and Position

	Overscroll Effects

	ScrollView
	ScrollView.add_widget()

	ScrollView.always_overscroll

	ScrollView.bar_color

	ScrollView.bar_inactive_color

	ScrollView.bar_margin

	ScrollView.bar_pos

	ScrollView.bar_pos_x

	ScrollView.bar_pos_y

	ScrollView.bar_width

	ScrollView.convert_distance_to_scroll()

	ScrollView.do_scroll

	ScrollView.do_scroll_x

	ScrollView.do_scroll_y

	ScrollView.effect_cls

	ScrollView.effect_x

	ScrollView.effect_y

	ScrollView.hbar

	ScrollView.on_motion()

	ScrollView.on_touch_down()

	ScrollView.on_touch_move()

	ScrollView.on_touch_up()

	ScrollView.remove_widget()

	ScrollView.scroll_distance

	ScrollView.scroll_timeout

	ScrollView.scroll_to()

	ScrollView.scroll_type

	ScrollView.scroll_wheel_distance

	ScrollView.scroll_x

	ScrollView.scroll_y

	ScrollView.smooth_scroll_end

	ScrollView.to_local()

	ScrollView.to_parent()

	ScrollView.update_from_scroll()

	ScrollView.vbar

	ScrollView.viewport_size

	Settings
	Create a panel from JSON

	Different panel layouts

	ContentPanel
	ContentPanel.add_panel()

	ContentPanel.add_widget()

	ContentPanel.container

	ContentPanel.current_panel

	ContentPanel.current_uid

	ContentPanel.on_current_uid()

	ContentPanel.panels

	ContentPanel.remove_widget()

	InterfaceWithSidebar
	InterfaceWithSidebar.add_panel()

	InterfaceWithSidebar.content

	InterfaceWithSidebar.menu

	MenuSidebar
	MenuSidebar.add_item()

	MenuSidebar.buttons_layout

	MenuSidebar.close_button

	MenuSidebar.on_selected_uid()

	MenuSidebar.selected_uid

	SettingBoolean
	SettingBoolean.values

	SettingItem
	SettingItem.add_widget()

	SettingItem.content

	SettingItem.desc

	SettingItem.disabled

	SettingItem.key

	SettingItem.on_touch_down()

	SettingItem.on_touch_up()

	SettingItem.panel

	SettingItem.section

	SettingItem.selected_alpha

	SettingItem.title

	SettingItem.value

	SettingNumeric

	SettingOptions
	SettingOptions.options

	SettingOptions.popup

	SettingPath
	SettingPath.dirselect

	SettingPath.popup

	SettingPath.show_hidden

	SettingPath.textinput

	SettingString
	SettingString.popup

	SettingString.textinput

	SettingTitle

	Settings
	Settings.add_interface()

	Settings.add_json_panel()

	Settings.add_kivy_panel()

	Settings.create_json_panel()

	Settings.interface

	Settings.interface_cls

	Settings.on_touch_down()

	Settings.register_type()

	SettingsPanel
	SettingsPanel.config

	SettingsPanel.get_value()

	SettingsPanel.settings

	SettingsPanel.title

	SettingsWithNoMenu

	SettingsWithSidebar

	SettingsWithSpinner

	SettingsWithTabbedPanel

	Slider
	Slider
	Slider.background_disabled_horizontal

	Slider.background_disabled_vertical

	Slider.background_horizontal

	Slider.background_vertical

	Slider.background_width

	Slider.border_horizontal

	Slider.border_vertical

	Slider.cursor_disabled_image

	Slider.cursor_height

	Slider.cursor_image

	Slider.cursor_size

	Slider.cursor_width

	Slider.max

	Slider.min

	Slider.on_touch_down()

	Slider.on_touch_move()

	Slider.on_touch_up()

	Slider.orientation

	Slider.padding

	Slider.range

	Slider.sensitivity

	Slider.step

	Slider.value

	Slider.value_normalized

	Slider.value_pos

	Slider.value_track

	Slider.value_track_color

	Slider.value_track_width

	Spinner
	Spinner
	Spinner.dropdown_cls

	Spinner.is_open

	Spinner.option_cls

	Spinner.sync_height

	Spinner.text_autoupdate

	Spinner.values

	SpinnerOption

	Splitter
	Splitter
	Splitter.add_widget()

	Splitter.border

	Splitter.clear_widgets()

	Splitter.keep_within_parent

	Splitter.max_size

	Splitter.min_size

	Splitter.remove_widget()

	Splitter.rescale_with_parent

	Splitter.sizable_from

	Splitter.strip_cls

	Splitter.strip_size

	Stack Layout
	StackLayout
	StackLayout.do_layout()

	StackLayout.minimum_height

	StackLayout.minimum_size

	StackLayout.minimum_width

	StackLayout.orientation

	StackLayout.padding

	StackLayout.spacing

	Stencil View
	StencilView

	Switch
	Switch
	Switch.active

	Switch.active_norm_pos

	Switch.on_touch_down()

	Switch.on_touch_move()

	Switch.on_touch_up()

	Switch.touch_control

	Switch.touch_distance

	TabbedPanel
	Simple example

	Customize the Tabbed Panel

	StripLayout
	StripLayout.background_image

	StripLayout.border

	TabbedPanel
	TabbedPanel.add_widget()

	TabbedPanel.background_color

	TabbedPanel.background_disabled_image

	TabbedPanel.background_image

	TabbedPanel.bar_width

	TabbedPanel.border

	TabbedPanel.clear_widgets()

	TabbedPanel.content

	TabbedPanel.current_tab

	TabbedPanel.default_tab

	TabbedPanel.default_tab_cls

	TabbedPanel.default_tab_content

	TabbedPanel.default_tab_text

	TabbedPanel.do_default_tab

	TabbedPanel.remove_widget()

	TabbedPanel.scroll_type

	TabbedPanel.strip_border

	TabbedPanel.strip_image

	TabbedPanel.switch_to()

	TabbedPanel.tab_height

	TabbedPanel.tab_list

	TabbedPanel.tab_pos

	TabbedPanel.tab_width

	TabbedPanelContent

	TabbedPanelException

	TabbedPanelHeader
	TabbedPanelHeader.content

	TabbedPanelHeader.on_touch_down()

	TabbedPanelItem
	TabbedPanelItem.add_widget()

	TabbedPanelItem.remove_widget()

	TabbedPanelStrip
	TabbedPanelStrip.tabbed_panel

	Text Input
	Usage example

	Selection

	Filtering

	Default shortcuts

	TextInput
	TextInput.allow_copy

	TextInput.auto_indent

	TextInput.background_active

	TextInput.background_color

	TextInput.background_disabled_normal

	TextInput.background_normal

	TextInput.base_direction

	TextInput.border

	TextInput.cancel_selection()

	TextInput.copy()

	TextInput.cursor

	TextInput.cursor_blink

	TextInput.cursor_col

	TextInput.cursor_color

	TextInput.cursor_index()

	TextInput.cursor_offset()

	TextInput.cursor_pos

	TextInput.cursor_row

	TextInput.cursor_width

	TextInput.cut()

	TextInput.delete_selection()

	TextInput.disabled_foreground_color

	TextInput.do_backspace()

	TextInput.do_cursor_movement()

	TextInput.do_redo()

	TextInput.do_undo()

	TextInput.do_wrap

	TextInput.font_context

	TextInput.font_family

	TextInput.font_name

	TextInput.font_size

	TextInput.foreground_color

	TextInput.get_cursor_from_index()

	TextInput.get_cursor_from_xy()

	TextInput.halign

	TextInput.handle_image_left

	TextInput.handle_image_middle

	TextInput.handle_image_right

	TextInput.hint_text

	TextInput.hint_text_color

	TextInput.input_filter

	TextInput.insert_text()

	TextInput.keyboard_on_key_down()

	TextInput.keyboard_on_key_up()

	TextInput.line_height

	TextInput.line_spacing

	TextInput.lines_to_scroll

	TextInput.minimum_height

	TextInput.multiline

	TextInput.on_cursor()

	TextInput.on_cursor_blink()

	TextInput.on_double_tap()

	TextInput.on_quad_touch()

	TextInput.on_touch_down()

	TextInput.on_touch_move()

	TextInput.on_touch_up()

	TextInput.on_triple_tap()

	TextInput.padding

	TextInput.padding_x

	TextInput.padding_y

	TextInput.password

	TextInput.password_mask

	TextInput.paste()

	TextInput.pgmove_speed

	TextInput.readonly

	TextInput.replace_crlf

	TextInput.reset_undo()

	TextInput.scroll_distance

	TextInput.scroll_from_swipe

	TextInput.scroll_timeout

	TextInput.scroll_x

	TextInput.scroll_y

	TextInput.select_all()

	TextInput.select_text()

	TextInput.selection_color

	TextInput.selection_from

	TextInput.selection_text

	TextInput.selection_to

	TextInput.tab_width

	TextInput.text

	TextInput.text_language

	TextInput.text_validate_unfocus

	TextInput.use_bubble

	TextInput.use_handles

	TextInput.write_tab

	Toggle button
	ToggleButton

	Tree View
	Introduction

	Creating Your Own Node Widget

	TreeView
	TreeView.add_node()

	TreeView.deselect_node()

	TreeView.get_node_at_pos()

	TreeView.hide_root

	TreeView.indent_level

	TreeView.indent_start

	TreeView.iterate_all_nodes()

	TreeView.iterate_open_nodes()

	TreeView.load_func

	TreeView.minimum_height

	TreeView.minimum_size

	TreeView.minimum_width

	TreeView.on_touch_down()

	TreeView.remove_node()

	TreeView.root

	TreeView.root_options

	TreeView.select_node()

	TreeView.selected_node

	TreeView.toggle_node()

	TreeViewException

	TreeViewLabel

	TreeViewNode
	TreeViewNode.color_selected

	TreeViewNode.even_color

	TreeViewNode.is_leaf

	TreeViewNode.is_loaded

	TreeViewNode.is_open

	TreeViewNode.is_selected

	TreeViewNode.level

	TreeViewNode.no_selection

	TreeViewNode.nodes

	TreeViewNode.odd

	TreeViewNode.odd_color

	TreeViewNode.parent_node

	Video
	Video
	Video.duration

	Video.eos

	Video.loaded

	Video.options

	Video.play

	Video.position

	Video.preview

	Video.seek()

	Video.state

	Video.unload()

	Video.volume

	Video player
	Annotations

	Fullscreen

	End-of-stream behavior

	VideoPlayer
	VideoPlayer.allow_fullscreen

	VideoPlayer.annotations

	VideoPlayer.duration

	VideoPlayer.fullscreen

	VideoPlayer.image_loading

	VideoPlayer.image_overlay_play

	VideoPlayer.image_pause

	VideoPlayer.image_play

	VideoPlayer.image_stop

	VideoPlayer.image_volumehigh

	VideoPlayer.image_volumelow

	VideoPlayer.image_volumemedium

	VideoPlayer.image_volumemuted

	VideoPlayer.on_touch_down()

	VideoPlayer.options

	VideoPlayer.play

	VideoPlayer.position

	VideoPlayer.seek()

	VideoPlayer.source

	VideoPlayer.state

	VideoPlayer.thumbnail

	VideoPlayer.volume

	VideoPlayerAnnotation
	VideoPlayerAnnotation.duration

	VideoPlayerAnnotation.start

	VKeyboard
	Modes

	Layouts

	Request Keyboard

	VKeyboard
	VKeyboard.available_layouts

	VKeyboard.background

	VKeyboard.background_border

	VKeyboard.background_color

	VKeyboard.background_disabled

	VKeyboard.callback

	VKeyboard.collide_margin()

	VKeyboard.docked

	VKeyboard.font_size

	VKeyboard.key_background_color

	VKeyboard.key_background_down

	VKeyboard.key_background_normal

	VKeyboard.key_border

	VKeyboard.key_disabled_background_normal

	VKeyboard.key_margin

	VKeyboard.layout

	VKeyboard.layout_path

	VKeyboard.margin_hint

	VKeyboard.on_touch_down()

	VKeyboard.on_touch_up()

	VKeyboard.refresh()

	VKeyboard.setup_mode()

	VKeyboard.setup_mode_dock()

	VKeyboard.setup_mode_free()

	VKeyboard.target

	Widget class
	Using Properties

	Basic drawing

	Widget touch event bubbling

	Usage of Widget.center, Widget.right, and Widget.top

	Widget
	Widget.add_widget()

	Widget.apply_class_lang_rules()

	Widget.canvas

	Widget.center

	Widget.center_x

	Widget.center_y

	Widget.children

	Widget.clear_widgets()

	Widget.cls

	Widget.collide_point()

	Widget.collide_widget()

	Widget.disabled

	Widget.export_as_image()

	Widget.export_to_png()

	Widget.get_parent_window()

	Widget.get_root_window()

	Widget.get_window_matrix()

	Widget.height

	Widget.ids

	Widget.motion_filter

	Widget.on_motion()

	Widget.on_touch_down()

	Widget.on_touch_move()

	Widget.on_touch_up()

	Widget.opacity

	Widget.parent

	Widget.pos

	Widget.pos_hint

	Widget.proxy_ref

	Widget.register_for_motion_event()

	Widget.remove_widget()

	Widget.right

	Widget.size

	Widget.size_hint

	Widget.size_hint_max

	Widget.size_hint_max_x

	Widget.size_hint_max_y

	Widget.size_hint_min

	Widget.size_hint_min_x

	Widget.size_hint_min_y

	Widget.size_hint_x

	Widget.size_hint_y

	Widget.to_local()

	Widget.to_parent()

	Widget.to_widget()

	Widget.to_window()

	Widget.top

	Widget.unregister_for_motion_event()

	Widget.walk()

	Widget.walk_reverse()

	Widget.width

	Widget.x

	Widget.y

	WidgetException

Behaviors

New in version 1.8.0.

Behavior mixin classes

This module implements behaviors that can be
mixed in [https://en.wikipedia.org/wiki/Mixin]
with existing base widgets. The idea behind these classes is to encapsulate
properties and events associated with certain types of widgets.

Isolating these properties and events in a mixin class allows you to define
your own implementation for standard kivy widgets that can act as drop-in
replacements. This means you can re-style and re-define widgets as desired
without breaking compatibility: as long as they implement the behaviors
correctly, they can simply replace the standard widgets.

Adding behaviors

Say you want to add Button capabilities to an
Image, you could do:

class IconButton(ButtonBehavior, Image):
 pass

This would give you an Image with the events and
properties inherited from ButtonBehavior. For example, the on_press
and on_release events would be fired when appropriate:

class IconButton(ButtonBehavior, Image):
 def on_press(self):
 print("on_press")

Or in kv:

IconButton:
 on_press: print('on_press')

Naturally, you could also bind to any property changes the behavior class
offers:

def state_changed(*args):
 print('state changed')

button = IconButton()
button.bind(state=state_changed)

Note

The behavior class must always be _before_ the widget class. If you don’t
specify the inheritance in this order, the behavior will not work because
the behavior methods are overwritten by the class method listed first.

Similarly, if you combine a behavior class with a class which
requires the use of the methods also defined by the behavior class, the
resulting class may not function properly. For example, when combining the
ButtonBehavior with a Slider, both of
which use the on_touch_up() method,
the resulting class may not work properly.

Changed in version 1.9.1: The individual behavior classes, previously in one big behaviors.py
file, has been split into a single file for each class under the
behaviors module. All the behaviors are still imported
in the behaviors module so they are accessible as before
(e.g. both from kivy.uix.behaviors import ButtonBehavior and
from kivy.uix.behaviors.button import ButtonBehavior work).

	
class kivy.uix.behaviors.ButtonBehavior(**kwargs)

	Bases: builtins.object

This mixin [https://en.wikipedia.org/wiki/Mixin] class provides
Button behavior. Please see the
button behaviors module documentation
for more information.

	Events:

	
	on_press
	Fired when the button is pressed.

	on_release
	Fired when the button is released (i.e. the touch/click that
pressed the button goes away).

	
always_release

	This determines whether or not the widget fires an on_release event if
the touch_up is outside the widget.

New in version 1.9.0.

Changed in version 1.10.0: The default value is now False.

always_release is a BooleanProperty and
defaults to False.

	
last_touch

	Contains the last relevant touch received by the Button. This can
be used in on_press or on_release in order to know which touch
dispatched the event.

New in version 1.8.0.

last_touch is a ObjectProperty and
defaults to None.

	
min_state_time

	The minimum period of time which the widget must remain in the
‘down’ state.

New in version 1.9.1.

min_state_time is a float and defaults to 0.035. This value is
taken from Config.

	
state

	The state of the button, must be one of ‘normal’ or ‘down’.
The state is ‘down’ only when the button is currently touched/clicked,
otherwise its ‘normal’.

state is an OptionProperty and defaults
to ‘normal’.

	
trigger_action(duration=0.1)

	Trigger whatever action(s) have been bound to the button by calling
both the on_press and on_release callbacks.

This is similar to a quick button press without using any touch events,
but note that like most kivy code, this is not guaranteed to be safe to
call from external threads. If needed use
Clock to safely schedule this function and
the resulting callbacks to be called from the main thread.

Duration is the length of the press in seconds. Pass 0 if you want
the action to happen instantly.

New in version 1.8.0.

	
class kivy.uix.behaviors.CodeNavigationBehavior

	Bases: kivy.event.EventDispatcher

Code navigation behavior. Modifies the navigation behavior in TextInput
to work like an IDE instead of a word processor. Please see the
code navigation behaviors module
documentation for more information.

New in version 1.9.1.

	
class kivy.uix.behaviors.CompoundSelectionBehavior(**kwargs)

	Bases: builtins.object

The Selection behavior mixin [https://en.wikipedia.org/wiki/Mixin]
implements the logic behind keyboard and touch
selection of selectable widgets managed by the derived widget. Please see
the compound selection behaviors module documentation
for more information.

New in version 1.9.0.

	
clear_selection()

	Deselects all the currently selected nodes.

	
deselect_node(node)

	Deselects a possibly selected node.

It is called by the controller when it deselects a node and can also
be called from the outside to deselect a node directly. The derived
widget should overwrite this method and change the node to its
unselected state when this is called

	Parameters:

	
	node
	The node to be deselected.

Warning

This method must be called by the derived widget using super if it
is overwritten.

	
get_index_of_node(node, selectable_nodes)

	(internal) Returns the index of the node within the
selectable_nodes returned by get_selectable_nodes().

	
get_selectable_nodes()

	(internal) Returns a list of the nodes that can be selected. It can
be overwritten by the derived widget to return the correct list.

This list is used to determine which nodes to select with group
selection. E.g. the last element in the list will be selected when
home is pressed, pagedown will move (or add to, if shift is held) the
selection from the current position by negative page_count
nodes starting from the position of the currently selected node in
this list and so on. Still, nodes can be selected even if they are not
in this list.

Note

It is safe to dynamically change this list including removing,
adding, or re-arranging its elements. Nodes can be selected even
if they are not on this list. And selected nodes removed from the
list will remain selected until deselect_node() is called.

Warning

Layouts display their children in the reverse order. That is, the
contents of children is displayed
form right to left, bottom to top. Therefore, internally, the
indices of the elements returned by this function are reversed to
make it work by default for most layouts so that the final result
is consistent e.g. home, although it will select the last element
in this list visually, will select the first element when
counting from top to bottom and left to right. If this behavior is
not desired, a reversed list should be returned instead.

Defaults to returning children.

	
goto_node(key, last_node, last_node_idx)

	(internal) Used by the controller to get the node at the position
indicated by key. The key can be keyboard inputs, e.g. pageup,
or scroll inputs from the mouse scroll wheel, e.g. scrollup.
‘last_node’ is the last node selected and is used to find the resulting
node. For example, if the key is up, the returned node is one node
up from the last node.

It can be overwritten by the derived widget.

	Parameters:

	
	key
	str, the string used to find the desired node. It can be any
of the keyboard keys, as well as the mouse scrollup,
scrolldown, scrollright, and scrollleft strings. If letters
are typed in quick succession, the letters will be combined
before it’s passed in as key and can be used to find nodes that
have an associated string that starts with those letters.

	last_node
	The last node that was selected.

	last_node_idx
	The cached index of the last node selected in the
get_selectable_nodes() list. If the list hasn’t changed
it saves having to look up the index of last_node in that
list.

	Returns:

	tuple, the node targeted by key and its index in the
get_selectable_nodes() list. Returning
(last_node, last_node_idx) indicates a node wasn’t found.

	
keyboard_select

	Determines whether the keyboard can be used for selection. If False,
keyboard inputs will be ignored.

keyboard_select is a BooleanProperty
and defaults to True.

	
multiselect

	Determines whether multiple nodes can be selected. If enabled, keyboard
shift and ctrl selection, optionally combined with touch, for example, will
be able to select multiple widgets in the normally expected manner.
This dominates touch_multiselect when False.

multiselect is a BooleanProperty and
defaults to False.

	
nodes_order_reversed

	(Internal) Indicates whether the order of the nodes as displayed top-
down is reversed compared to their order in get_selectable_nodes()
(e.g. how the children property is reversed compared to how
it’s displayed).

	
page_count

	Determines by how much the selected node is moved up or down, relative
to the position of the last selected node, when pageup (or pagedown) is
pressed.

page_count is a NumericProperty and
defaults to 10.

	
right_count

	Determines by how much the selected node is moved up or down, relative
to the position of the last selected node, when the right (or left) arrow
on the keyboard is pressed.

right_count is a NumericProperty and
defaults to 1.

	
scroll_count

	Determines by how much the selected node is moved up or down, relative
to the position of the last selected node, when the mouse scroll wheel is
scrolled.

right_count is a NumericProperty and
defaults to 0.

	
select_node(node)

	Selects a node.

It is called by the controller when it selects a node and can be
called from the outside to select a node directly. The derived widget
should overwrite this method and change the node state to selected
when called.

	Parameters:

	
	node
	The node to be selected.

	Returns:

	bool, True if the node was selected, False otherwise.

Warning

This method must be called by the derived widget using super if it
is overwritten.

	
select_with_key_down(keyboard, scancode, codepoint, modifiers, **kwargs)

	Processes a key press. This is called when a key press is to be used
for selection. Depending on the keyboard keys pressed and the
configuration, it could select or deselect nodes or node ranges
from the selectable nodes list, get_selectable_nodes().

The parameters are such that it could be bound directly to the
on_key_down event of a keyboard. Therefore, it is safe to be called
repeatedly when the key is held down as is done by the keyboard.

	Returns:

	bool, True if the keypress was used, False otherwise.

	
select_with_key_up(keyboard, scancode, **kwargs)

	(internal) Processes a key release. This must be called by the
derived widget when a key that select_with_key_down() returned
True is released.

The parameters are such that it could be bound directly to the
on_key_up event of a keyboard.

	Returns:

	bool, True if the key release was used, False otherwise.

	
select_with_touch(node, touch=None)

	(internal) Processes a touch on the node. This should be called by
the derived widget when a node is touched and is to be used for
selection. Depending on the keyboard keys pressed and the
configuration, it could select or deslect this and other nodes in the
selectable nodes list, get_selectable_nodes().

	Parameters:

	
	node
	The node that received the touch. Can be None for a scroll
type touch.

	touch
	Optionally, the touch. Defaults to None.

	Returns:

	bool, True if the touch was used, False otherwise.

	
selected_nodes

	The list of selected nodes.

Note

Multiple nodes can be selected right after one another e.g. using the
keyboard. When listening to selected_nodes, one should be
aware of this.

selected_nodes is a ListProperty and
defaults to the empty list, []. It is read-only and should not be modified.

	
text_entry_timeout

	When typing characters in rapid succession (i.e. the time difference
since the last character is less than text_entry_timeout), the
keys get concatenated and the combined text is passed as the key argument
of goto_node().

New in version 1.10.0.

	
touch_deselect_last

	Determines whether the last selected node can be deselected when
multiselect or touch_multiselect is False.

New in version 1.10.0.

touch_deselect_last is a BooleanProperty
and defaults to True on mobile, False on desktop platforms.

	
touch_multiselect

	A special touch mode which determines whether touch events, as
processed by select_with_touch(), will add the currently touched
node to the selection, or if it will clear the selection before adding the
node. This allows the selection of multiple nodes by simply touching them.

This is different from multiselect because when it is True,
simply touching an unselected node will select it, even if ctrl is not
pressed. If it is False, however, ctrl must be pressed in order to
add to the selection when multiselect is True.

Note

multiselect, when False, will disable
touch_multiselect.

touch_multiselect is a BooleanProperty
and defaults to False.

	
up_count

	Determines by how much the selected node is moved up or down, relative
to the position of the last selected node, when the up (or down) arrow on
the keyboard is pressed.

up_count is a NumericProperty and
defaults to 1.

	
class kivy.uix.behaviors.CoverBehavior(**kwargs)

	Bases: builtins.object

The CoverBehavior mixin [https://en.wikipedia.org/wiki/Mixin]
provides rendering a texture covering full widget size keeping aspect ratio
of the original texture.

New in version 1.10.0.

	
cover_pos

	Position of the aspect ratio aware texture. Gets calculated in
CoverBehavior.calculate_cover.

cover_pos is a ListProperty and
defaults to [0, 0].

	
cover_size

	Size of the aspect ratio aware texture. Gets calculated in
CoverBehavior.calculate_cover.

cover_size is a ListProperty and
defaults to [0, 0].

	
reference_size

	Reference size used for aspect ratio approximation calculation.

reference_size is a ListProperty and
defaults to [].

	
class kivy.uix.behaviors.DragBehavior(**kwargs)

	Bases: builtins.object

The DragBehavior mixin [https://en.wikipedia.org/wiki/Mixin] provides
Drag behavior. When combined with a widget, dragging in the rectangle
defined by drag_rectangle will drag the widget. Please see
the drag behaviors module documentation
for more information.

New in version 1.8.0.

	
drag_distance

	Distance to move before dragging the DragBehavior, in pixels.
As soon as the distance has been traveled, the DragBehavior will
start to drag, and no touch event will be dispatched to the children.
It is advisable that you base this value on the dpi of your target device’s
screen.

drag_distance is a NumericProperty and
defaults to the scroll_distance as defined in the user
Config (20 pixels by default).

	
drag_rect_height

	Height of the axis aligned bounding rectangle where dragging is allowed.

drag_rect_height is a NumericProperty and
defaults to 100.

	
drag_rect_width

	Width of the axis aligned bounding rectangle where dragging is allowed.

drag_rect_width is a NumericProperty and
defaults to 100.

	
drag_rect_x

	X position of the axis aligned bounding rectangle where dragging
is allowed (in window coordinates).

drag_rect_x is a NumericProperty and
defaults to 0.

	
drag_rect_y

	Y position of the axis aligned bounding rectangle where dragging
is allowed (in window coordinates).

drag_rect_Y is a NumericProperty and
defaults to 0.

	
drag_rectangle

	Position and size of the axis aligned bounding rectangle where dragging
is allowed.

drag_rectangle is a ReferenceListProperty
of (drag_rect_x, drag_rect_y, drag_rect_width,
drag_rect_height) properties.

	
drag_timeout

	Timeout allowed to trigger the drag_distance, in milliseconds.
If the user has not moved drag_distance within the timeout,
dragging will be disabled, and the touch event will be dispatched to the
children.

drag_timeout is a NumericProperty and
defaults to the scroll_timeout as defined in the user
Config (55 milliseconds by default).

	
class kivy.uix.behaviors.EmacsBehavior(**kwargs)

	Bases: builtins.object

A mixin [https://en.wikipedia.org/wiki/Mixin] that enables Emacs-style
keyboard shortcuts for the TextInput widget.
Please see the Emacs behaviors module
documentation for more information.

New in version 1.9.1.

	
delete_word_left()

	Delete text left of the cursor to the beginning of word

	
delete_word_right()

	Delete text right of the cursor to the end of the word

	
key_bindings

	String name which determines the type of key bindings to use with the
TextInput. This allows Emacs key bindings to
be enabled/disabled programmatically for widgets that inherit from
EmacsBehavior. If the value is not 'emacs', Emacs bindings
will be disabled. Use 'default' for switching to the default key
bindings of TextInput.

key_bindings is a StringProperty
and defaults to 'emacs'.

New in version 1.10.0.

	
class kivy.uix.behaviors.FocusBehavior(**kwargs)

	Bases: builtins.object

Provides keyboard focus behavior. When combined with other
FocusBehavior widgets it allows one to cycle focus among them by pressing
tab. Please see the
focus behavior module documentation
for more information.

New in version 1.9.0.

	
focus

	Whether the instance currently has focus.

Setting it to True will bind to and/or request the keyboard, and input
will be forwarded to the instance. Setting it to False will unbind
and/or release the keyboard. For a given keyboard, only one widget can
have its focus, so focusing one will automatically unfocus the other
instance holding its focus.

When using a software keyboard, please refer to the
softinput_mode property to determine
how the keyboard display is handled.

focus is a BooleanProperty and defaults
to False.

	
focus_next

	The FocusBehavior instance to acquire focus when
tab is pressed and this instance has focus, if not None or
StopIteration.

When tab is pressed, focus cycles through all the FocusBehavior
widgets that are linked through focus_next and are focusable. If
focus_next is None, it instead walks the children lists to find
the next focusable widget. Finally, if focus_next is
the StopIteration class, focus won’t move forward, but end here.

focus_next is an ObjectProperty and
defaults to None.

	
focus_previous

	The FocusBehavior instance to acquire focus when
shift+tab is pressed on this instance, if not None or StopIteration.

When shift+tab is pressed, focus cycles through all the
FocusBehavior widgets that are linked through
focus_previous and are focusable. If focus_previous is
None, it instead walks the children tree to find the
previous focusable widget. Finally, if focus_previous is the
StopIteration class, focus won’t move backward, but end here.

focus_previous is an ObjectProperty and
defaults to None.

	
focused

	An alias of focus.

focused is a BooleanProperty and defaults
to False.

Warning

focused is an alias of focus and will be removed in
2.0.0.

	
get_focus_next()

	Returns the next focusable widget using either focus_next
or the children similar to the order when tabbing forwards
with the tab key.

	
get_focus_previous()

	Returns the previous focusable widget using either
focus_previous or the children similar to the
order when the tab + shift keys are triggered together.

	
hide_keyboard()

	Convenience function to hide the keyboard in managed mode.

	
ignored_touch = []

	A list of touches that should not be used to defocus. After on_touch_up,
every touch that is not in ignored_touch will defocus all the
focused widgets if the config keyboard mode is not multi. Touches on
focusable widgets that were used to focus are automatically added here.

Example usage:

class Unfocusable(Widget):

 def on_touch_down(self, touch):
 if self.collide_point(*touch.pos):
 FocusBehavior.ignored_touch.append(touch)

Notice that you need to access this as a class, not an instance variable.

	
input_type

	The kind of input keyboard to request.

New in version 1.8.0.

Changed in version 2.1.0: Changed default value from text to null. Added null to options.

Warning

As the default value has been changed, you may need to adjust
input_type in your code.

input_type is an OptionsProperty and
defaults to ‘null’. Can be one of ‘null’, ‘text’, ‘number’, ‘url’, ‘mail’,
‘datetime’, ‘tel’ or ‘address’.

	
is_focusable

	Whether the instance can become focused. If focused, it’ll lose focus
when set to False.

is_focusable is a BooleanProperty and
defaults to True on a desktop (i.e. desktop is True in
config), False otherwise.

	
keyboard

	The keyboard to bind to (or bound to the widget) when focused.

When None, a keyboard is requested and released whenever the widget comes
into and out of focus. If not None, it must be a keyboard, which gets
bound and unbound from the widget whenever it’s in or out of focus. It is
useful only when more than one keyboard is available, so it is recommended
to be set to None when only one keyboard is available.

If more than one keyboard is available, whenever an instance gets focused
a new keyboard will be requested if None. Unless the other instances lose
focus (e.g. if tab was used), a new keyboard will appear. When this is
undesired, the keyboard property can be used. For example, if there are
two users with two keyboards, then each keyboard can be assigned to
different groups of instances of FocusBehavior, ensuring that within
each group, only one FocusBehavior will have focus, and will receive input
from the correct keyboard. See keyboard_mode in config for
more information on the keyboard modes.

Keyboard and focus behavior

When using the keyboard, there are some important default behaviors you
should keep in mind.

	When Config’s keyboard_mode is multi, each new touch is considered
a touch by a different user and will set the focus (if clicked on a
focusable) with a new keyboard. Already focused elements will not lose
their focus (even if an unfocusable widget is touched).

	If the keyboard property is set, that keyboard will be used when the
instance gets focused. If widgets with different keyboards are linked
through focus_next and focus_previous, then as they are
tabbed through, different keyboards will become active. Therefore,
typically it’s undesirable to link instances which are assigned
different keyboards.

	When a widget has focus, setting its keyboard to None will remove its
keyboard, but the widget will then immediately try to get
another keyboard. In order to remove its keyboard, rather set its
focus to False.

	When using a software keyboard, typical on mobile and touch devices, the
keyboard display behavior is determined by the
softinput_mode property. You can use
this property to ensure the focused widget is not covered or obscured.

keyboard is an AliasProperty and defaults
to None.

	
keyboard_mode

	Determines how the keyboard visibility should be managed. ‘auto’ will
result in the standard behaviour of showing/hiding on focus. ‘managed’
requires setting the keyboard visibility manually, or calling the helper
functions show_keyboard() and hide_keyboard().

keyboard_mode is an OptionsProperty and
defaults to ‘auto’. Can be one of ‘auto’ or ‘managed’.

	
keyboard_on_key_down(window, keycode, text, modifiers)

	The method bound to the keyboard when the instance has focus.

When the instance becomes focused, this method is bound to the
keyboard and will be called for every input press. The parameters are
the same as kivy.core.window.WindowBase.on_key_down().

When overwriting the method in the derived widget, super should be
called to enable tab cycling. If the derived widget wishes to use tab
for its own purposes, it can call super after it has processed the
character (if it does not wish to consume the tab).

Similar to other keyboard functions, it should return True if the
key was consumed.

	
keyboard_on_key_up(window, keycode)

	The method bound to the keyboard when the instance has focus.

When the instance becomes focused, this method is bound to the
keyboard and will be called for every input release. The parameters are
the same as kivy.core.window.WindowBase.on_key_up().

When overwriting the method in the derived widget, super should be
called to enable de-focusing on escape. If the derived widget wishes
to use escape for its own purposes, it can call super after it has
processed the character (if it does not wish to consume the escape).

See keyboard_on_key_down()

	
keyboard_suggestions

	If True provides auto suggestions on top of keyboard.
This will only work if input_type is set to text, url, mail or
address.

Warning

On Android, keyboard_suggestions relies on
InputType.TYPE_TEXT_FLAG_NO_SUGGESTIONS to work, but some keyboards
just ignore this flag. If you want to disable suggestions at all on
Android, you can set input_type to null, which will request the
input method to run in a limited “generate key events” mode.

New in version 2.1.0.

keyboard_suggestions is a BooleanProperty
and defaults to True

	
show_keyboard()

	Convenience function to show the keyboard in managed mode.

	
unfocus_on_touch

	Whether a instance should lose focus when clicked outside the instance.

When a user clicks on a widget that is focus aware and shares the same
keyboard as this widget (which in the case with only one keyboard),
then as the other widgets gain focus, this widget loses focus. In addition
to that, if this property is True, clicking on any widget other than this
widget, will remove focus from this widget.

unfocus_on_touch is a BooleanProperty and
defaults to False if the keyboard_mode in Config
is ‘multi’ or ‘systemandmulti’, otherwise it defaults to True.

	
class kivy.uix.behaviors.ToggleButtonBehavior(**kwargs)

	Bases: kivy.uix.behaviors.button.ButtonBehavior

This mixin [https://en.wikipedia.org/wiki/Mixin] class provides
togglebutton behavior. Please see the
togglebutton behaviors module
documentation for more information.

New in version 1.8.0.

	
allow_no_selection

	This specifies whether the widgets in a group allow no selection i.e.
everything to be deselected.

New in version 1.9.0.

allow_no_selection is a BooleanProperty and defaults to
True

	
static get_widgets(groupname)

	Return a list of the widgets contained in a specific group. If the
group doesn’t exist, an empty list will be returned.

Note

Always release the result of this method! Holding a reference to
any of these widgets can prevent them from being garbage collected.
If in doubt, do:

l = ToggleButtonBehavior.get_widgets('mygroup')
do your job
del l

Warning

It’s possible that some widgets that you have previously
deleted are still in the list. The garbage collector might need
to release other objects before flushing them.

	
group

	Group of the button. If None, no group will be used (the button will be
independent). If specified, group must be a hashable object, like
a string. Only one button in a group can be in a ‘down’ state.

group is a ObjectProperty and defaults to
None.

	
class kivy.uix.behaviors.TouchRippleBehavior(**kwargs)

	Bases: builtins.object

Touch ripple behavior.

Supposed to be used as mixin on widget classes.

Ripple behavior does not trigger automatically, concrete implementation
needs to call ripple_show() respective ripple_fade() manually.

Example

Here we create a Label which renders the touch ripple animation on
interaction:

class RippleLabel(TouchRippleBehavior, Label):

 def __init__(self, **kwargs):
 super(RippleLabel, self).__init__(**kwargs)

 def on_touch_down(self, touch):
 collide_point = self.collide_point(touch.x, touch.y)
 if collide_point:
 touch.grab(self)
 self.ripple_show(touch)
 return True
 return False

 def on_touch_up(self, touch):
 if touch.grab_current is self:
 touch.ungrab(self)
 self.ripple_fade()
 return True
 return False

	
ripple_duration_in

	Animation duration taken to show the overlay.

ripple_duration_in is a NumericProperty
and defaults to 0.5.

	
ripple_duration_out

	Animation duration taken to fade the overlay.

ripple_duration_out is a NumericProperty
and defaults to 0.2.

	
ripple_fade()

	Finish ripple animation on current widget.

	
ripple_fade_from_alpha

	Alpha channel for ripple color the animation starts with.

ripple_fade_from_alpha is a
NumericProperty and defaults to 0.5.

	
ripple_fade_to_alpha

	Alpha channel for ripple color the animation targets to.

ripple_fade_to_alpha is a NumericProperty
and defaults to 0.8.

	
ripple_func_in

	Animation callback for showing the overlay.

ripple_func_in is a StringProperty
and defaults to in_cubic.

	
ripple_func_out

	Animation callback for hiding the overlay.

ripple_func_out is a StringProperty
and defaults to out_quad.

	
ripple_rad_default

	Default radius the animation starts from.

ripple_rad_default is a NumericProperty
and defaults to 10.

	
ripple_scale

	Max scale of the animation overlay calculated from max(width/height) of
the decorated widget.

ripple_scale is a NumericProperty
and defaults to 2.0.

	
ripple_show(touch)

	Begin ripple animation on current widget.

Expects touch event as argument.

	
class kivy.uix.behaviors.TouchRippleButtonBehavior(**kwargs)

	Bases: kivy.uix.behaviors.touchripple.TouchRippleBehavior

This mixin [https://en.wikipedia.org/wiki/Mixin] class provides
a similar behavior to ButtonBehavior
but provides touch ripple animation instead of button pressed/released as
visual effect.

	Events:

	
	on_press
	Fired when the button is pressed.

	on_release
	Fired when the button is released (i.e. the touch/click that
pressed the button goes away).

	
always_release

	This determines whether or not the widget fires an on_release event if
the touch_up is outside the widget.

always_release is a BooleanProperty and
defaults to False.

	
last_touch

	Contains the last relevant touch received by the Button. This can
be used in on_press or on_release in order to know which touch
dispatched the event.

last_touch is a ObjectProperty and
defaults to None.

	Button Behavior
	Example

	ButtonBehavior
	ButtonBehavior.always_release

	ButtonBehavior.last_touch

	ButtonBehavior.min_state_time

	ButtonBehavior.state

	ButtonBehavior.trigger_action()

	Code Navigation Behavior
	CodeNavigationBehavior

	Compound Selection Behavior
	Compound selection concepts

	Selection mechanics

	Example

	CompoundSelectionBehavior
	CompoundSelectionBehavior.clear_selection()

	CompoundSelectionBehavior.deselect_node()

	CompoundSelectionBehavior.get_index_of_node()

	CompoundSelectionBehavior.get_selectable_nodes()

	CompoundSelectionBehavior.goto_node()

	CompoundSelectionBehavior.keyboard_select

	CompoundSelectionBehavior.multiselect

	CompoundSelectionBehavior.nodes_order_reversed

	CompoundSelectionBehavior.page_count

	CompoundSelectionBehavior.right_count

	CompoundSelectionBehavior.scroll_count

	CompoundSelectionBehavior.select_node()

	CompoundSelectionBehavior.select_with_key_down()

	CompoundSelectionBehavior.select_with_key_up()

	CompoundSelectionBehavior.select_with_touch()

	CompoundSelectionBehavior.selected_nodes

	CompoundSelectionBehavior.text_entry_timeout

	CompoundSelectionBehavior.touch_deselect_last

	CompoundSelectionBehavior.touch_multiselect

	CompoundSelectionBehavior.up_count

	Cover Behavior
	Example

	CoverBehavior
	CoverBehavior.cover_pos

	CoverBehavior.cover_size

	CoverBehavior.reference_size

	Drag Behavior
	Example

	DragBehavior
	DragBehavior.drag_distance

	DragBehavior.drag_rect_height

	DragBehavior.drag_rect_width

	DragBehavior.drag_rect_x

	DragBehavior.drag_rect_y

	DragBehavior.drag_rectangle

	DragBehavior.drag_timeout

	Emacs Behavior
	Emacs shortcuts

	EmacsBehavior
	EmacsBehavior.delete_word_left()

	EmacsBehavior.delete_word_right()

	EmacsBehavior.key_bindings

	Focus Behavior
	Managing focus

	Initializing focus

	FocusBehavior
	FocusBehavior.focus

	FocusBehavior.focus_next

	FocusBehavior.focus_previous

	FocusBehavior.focused

	FocusBehavior.get_focus_next()

	FocusBehavior.get_focus_previous()

	FocusBehavior.hide_keyboard()

	FocusBehavior.ignored_touch

	FocusBehavior.input_type

	FocusBehavior.is_focusable

	FocusBehavior.keyboard

	FocusBehavior.keyboard_mode

	FocusBehavior.keyboard_on_key_down()

	FocusBehavior.keyboard_on_key_up()

	FocusBehavior.keyboard_suggestions

	FocusBehavior.show_keyboard()

	FocusBehavior.unfocus_on_touch

	Kivy Namespaces
	Basic examples

	Setting the namespace

	Inheriting the namespace

	Accessing the namespace

	Forking a namespace

	KNSpace
	KNSpace.fork()

	KNSpace.keep_ref

	KNSpace.parent

	KNSpace.property()

	KNSpaceBehavior
	KNSpaceBehavior.knsname

	KNSpaceBehavior.knspace

	KNSpaceBehavior.knspace_key

	knspace

	ToggleButton Behavior
	Example

	ToggleButtonBehavior
	ToggleButtonBehavior.allow_no_selection

	ToggleButtonBehavior.get_widgets()

	ToggleButtonBehavior.group

	Touch Ripple
	TouchRippleBehavior
	TouchRippleBehavior.ripple_duration_in

	TouchRippleBehavior.ripple_duration_out

	TouchRippleBehavior.ripple_fade()

	TouchRippleBehavior.ripple_fade_from_alpha

	TouchRippleBehavior.ripple_fade_to_alpha

	TouchRippleBehavior.ripple_func_in

	TouchRippleBehavior.ripple_func_out

	TouchRippleBehavior.ripple_rad_default

	TouchRippleBehavior.ripple_scale

	TouchRippleBehavior.ripple_show()

	TouchRippleButtonBehavior
	TouchRippleButtonBehavior.always_release

	TouchRippleButtonBehavior.last_touch

Button Behavior

The ButtonBehavior
mixin [https://en.wikipedia.org/wiki/Mixin] class provides
Button behavior. You can combine this class with
other widgets, such as an Image, to provide
alternative buttons that preserve Kivy button behavior.

For an overview of behaviors, please refer to the behaviors
documentation.

Example

The following example adds button behavior to an image to make a checkbox that
behaves like a button:

from kivy.app import App
from kivy.uix.image import Image
from kivy.uix.behaviors import ButtonBehavior

class MyButton(ButtonBehavior, Image):
 def __init__(self, **kwargs):
 super(MyButton, self).__init__(**kwargs)
 self.source = 'atlas://data/images/defaulttheme/checkbox_off'

 def on_press(self):
 self.source = 'atlas://data/images/defaulttheme/checkbox_on'

 def on_release(self):
 self.source = 'atlas://data/images/defaulttheme/checkbox_off'

class SampleApp(App):
 def build(self):
 return MyButton()

SampleApp().run()

See ButtonBehavior for details.

	
class kivy.uix.behaviors.button.ButtonBehavior(**kwargs)

	Bases: builtins.object

This mixin [https://en.wikipedia.org/wiki/Mixin] class provides
Button behavior. Please see the
button behaviors module documentation
for more information.

	Events:

	
	on_press
	Fired when the button is pressed.

	on_release
	Fired when the button is released (i.e. the touch/click that
pressed the button goes away).

	
always_release

	This determines whether or not the widget fires an on_release event if
the touch_up is outside the widget.

New in version 1.9.0.

Changed in version 1.10.0: The default value is now False.

always_release is a BooleanProperty and
defaults to False.

	
last_touch

	Contains the last relevant touch received by the Button. This can
be used in on_press or on_release in order to know which touch
dispatched the event.

New in version 1.8.0.

last_touch is a ObjectProperty and
defaults to None.

	
min_state_time

	The minimum period of time which the widget must remain in the
‘down’ state.

New in version 1.9.1.

min_state_time is a float and defaults to 0.035. This value is
taken from Config.

	
state

	The state of the button, must be one of ‘normal’ or ‘down’.
The state is ‘down’ only when the button is currently touched/clicked,
otherwise its ‘normal’.

state is an OptionProperty and defaults
to ‘normal’.

	
trigger_action(duration=0.1)

	Trigger whatever action(s) have been bound to the button by calling
both the on_press and on_release callbacks.

This is similar to a quick button press without using any touch events,
but note that like most kivy code, this is not guaranteed to be safe to
call from external threads. If needed use
Clock to safely schedule this function and
the resulting callbacks to be called from the main thread.

Duration is the length of the press in seconds. Pass 0 if you want
the action to happen instantly.

New in version 1.8.0.

Code Navigation Behavior

The CodeNavigationBehavior modifies navigation
behavior in the TextInput, making it work like an
IDE instead of a word processor.

Using this mixin gives the TextInput the ability to recognize whitespace,
punctuation and case variations (e.g. CamelCase) when moving over text. It
is currently used by the CodeInput widget.

	
class kivy.uix.behaviors.codenavigation.CodeNavigationBehavior

	Bases: kivy.event.EventDispatcher

Code navigation behavior. Modifies the navigation behavior in TextInput
to work like an IDE instead of a word processor. Please see the
code navigation behaviors module
documentation for more information.

New in version 1.9.1.

Compound Selection Behavior

The CompoundSelectionBehavior
mixin [https://en.wikipedia.org/wiki/Mixin] class implements the logic
behind keyboard and touch selection of selectable widgets managed by the
derived widget. For example, it can be combined with a
GridLayout to add selection to the layout.

Compound selection concepts

At its core, it keeps a dynamic list of widgets that can be selected.
Then, as the touches and keyboard input are passed in, it selects one or
more of the widgets based on these inputs. For example, it uses the mouse
scroll and keyboard up/down buttons to scroll through the list of widgets.
Multiselection can also be achieved using the keyboard shift and ctrl keys.

Finally, in addition to the up/down type keyboard inputs, compound selection
can also accept letters from the keyboard to be used to select nodes with
associated strings that start with those letters, similar to how files
are selected by a file browser.

Selection mechanics

When the controller needs to select a node, it calls select_node() and
deselect_node(). Therefore, they must be overwritten in order alter
node selection. By default, the class doesn’t listen for keyboard or
touch events, so the derived widget must call
select_with_touch(), select_with_key_down(), and
select_with_key_up() on events that it wants to pass on for selection
purposes.

Example

To add selection to a grid layout which will contain
Button widgets. For each button added to the layout, you
need to bind the on_touch_down of the button
to select_with_touch() to pass on the touch events:

from kivy.uix.behaviors.compoundselection import CompoundSelectionBehavior
from kivy.uix.button import Button
from kivy.uix.gridlayout import GridLayout
from kivy.uix.behaviors import FocusBehavior
from kivy.core.window import Window
from kivy.app import App

class SelectableGrid(FocusBehavior, CompoundSelectionBehavior, GridLayout):

 def keyboard_on_key_down(self, window, keycode, text, modifiers):
 """Based on FocusBehavior that provides automatic keyboard
 access, key presses will be used to select children.
 """
 if super(SelectableGrid, self).keyboard_on_key_down(
 window, keycode, text, modifiers):
 return True
 if self.select_with_key_down(window, keycode, text, modifiers):
 return True
 return False

 def keyboard_on_key_up(self, window, keycode):
 """Based on FocusBehavior that provides automatic keyboard
 access, key release will be used to select children.
 """
 if super(SelectableGrid, self).keyboard_on_key_up(window, keycode):
 return True
 if self.select_with_key_up(window, keycode):
 return True
 return False

 def add_widget(self, widget, *args, **kwargs):
 """ Override the adding of widgets so we can bind and catch their
 on_touch_down events. """
 widget.bind(on_touch_down=self.button_touch_down,
 on_touch_up=self.button_touch_up)
 return super(SelectableGrid, self) .add_widget(widget, *args, **kwargs)

 def button_touch_down(self, button, touch):
 """ Use collision detection to select buttons when the touch occurs
 within their area. """
 if button.collide_point(*touch.pos):
 self.select_with_touch(button, touch)

 def button_touch_up(self, button, touch):
 """ Use collision detection to de-select buttons when the touch
 occurs outside their area and *touch_multiselect* is not True. """
 if not (button.collide_point(*touch.pos) or
 self.touch_multiselect):
 self.deselect_node(button)

 def select_node(self, node):
 node.background_color = (1, 0, 0, 1)
 return super(SelectableGrid, self).select_node(node)

 def deselect_node(self, node):
 node.background_color = (1, 1, 1, 1)
 super(SelectableGrid, self).deselect_node(node)

 def on_selected_nodes(self, grid, nodes):
 print("Selected nodes = {0}".format(nodes))

class TestApp(App):
 def build(self):
 grid = SelectableGrid(cols=3, rows=2, touch_multiselect=True,
 multiselect=True)
 for i in range(0, 6):
 grid.add_widget(Button(text="Button {0}".format(i)))
 return grid

TestApp().run()

Warning

This code is still experimental, and its API is subject to change in a
future version.

	
class kivy.uix.behaviors.compoundselection.CompoundSelectionBehavior(**kwargs)

	Bases: builtins.object

The Selection behavior mixin [https://en.wikipedia.org/wiki/Mixin]
implements the logic behind keyboard and touch
selection of selectable widgets managed by the derived widget. Please see
the compound selection behaviors module documentation
for more information.

New in version 1.9.0.

	
clear_selection()

	Deselects all the currently selected nodes.

	
deselect_node(node)

	Deselects a possibly selected node.

It is called by the controller when it deselects a node and can also
be called from the outside to deselect a node directly. The derived
widget should overwrite this method and change the node to its
unselected state when this is called

	Parameters:

	
	node
	The node to be deselected.

Warning

This method must be called by the derived widget using super if it
is overwritten.

	
get_index_of_node(node, selectable_nodes)

	(internal) Returns the index of the node within the
selectable_nodes returned by get_selectable_nodes().

	
get_selectable_nodes()

	(internal) Returns a list of the nodes that can be selected. It can
be overwritten by the derived widget to return the correct list.

This list is used to determine which nodes to select with group
selection. E.g. the last element in the list will be selected when
home is pressed, pagedown will move (or add to, if shift is held) the
selection from the current position by negative page_count
nodes starting from the position of the currently selected node in
this list and so on. Still, nodes can be selected even if they are not
in this list.

Note

It is safe to dynamically change this list including removing,
adding, or re-arranging its elements. Nodes can be selected even
if they are not on this list. And selected nodes removed from the
list will remain selected until deselect_node() is called.

Warning

Layouts display their children in the reverse order. That is, the
contents of children is displayed
form right to left, bottom to top. Therefore, internally, the
indices of the elements returned by this function are reversed to
make it work by default for most layouts so that the final result
is consistent e.g. home, although it will select the last element
in this list visually, will select the first element when
counting from top to bottom and left to right. If this behavior is
not desired, a reversed list should be returned instead.

Defaults to returning children.

	
goto_node(key, last_node, last_node_idx)

	(internal) Used by the controller to get the node at the position
indicated by key. The key can be keyboard inputs, e.g. pageup,
or scroll inputs from the mouse scroll wheel, e.g. scrollup.
‘last_node’ is the last node selected and is used to find the resulting
node. For example, if the key is up, the returned node is one node
up from the last node.

It can be overwritten by the derived widget.

	Parameters:

	
	key
	str, the string used to find the desired node. It can be any
of the keyboard keys, as well as the mouse scrollup,
scrolldown, scrollright, and scrollleft strings. If letters
are typed in quick succession, the letters will be combined
before it’s passed in as key and can be used to find nodes that
have an associated string that starts with those letters.

	last_node
	The last node that was selected.

	last_node_idx
	The cached index of the last node selected in the
get_selectable_nodes() list. If the list hasn’t changed
it saves having to look up the index of last_node in that
list.

	Returns:

	tuple, the node targeted by key and its index in the
get_selectable_nodes() list. Returning
(last_node, last_node_idx) indicates a node wasn’t found.

	
keyboard_select

	Determines whether the keyboard can be used for selection. If False,
keyboard inputs will be ignored.

keyboard_select is a BooleanProperty
and defaults to True.

	
multiselect

	Determines whether multiple nodes can be selected. If enabled, keyboard
shift and ctrl selection, optionally combined with touch, for example, will
be able to select multiple widgets in the normally expected manner.
This dominates touch_multiselect when False.

multiselect is a BooleanProperty and
defaults to False.

	
nodes_order_reversed

	(Internal) Indicates whether the order of the nodes as displayed top-
down is reversed compared to their order in get_selectable_nodes()
(e.g. how the children property is reversed compared to how
it’s displayed).

	
page_count

	Determines by how much the selected node is moved up or down, relative
to the position of the last selected node, when pageup (or pagedown) is
pressed.

page_count is a NumericProperty and
defaults to 10.

	
right_count

	Determines by how much the selected node is moved up or down, relative
to the position of the last selected node, when the right (or left) arrow
on the keyboard is pressed.

right_count is a NumericProperty and
defaults to 1.

	
scroll_count

	Determines by how much the selected node is moved up or down, relative
to the position of the last selected node, when the mouse scroll wheel is
scrolled.

right_count is a NumericProperty and
defaults to 0.

	
select_node(node)

	Selects a node.

It is called by the controller when it selects a node and can be
called from the outside to select a node directly. The derived widget
should overwrite this method and change the node state to selected
when called.

	Parameters:

	
	node
	The node to be selected.

	Returns:

	bool, True if the node was selected, False otherwise.

Warning

This method must be called by the derived widget using super if it
is overwritten.

	
select_with_key_down(keyboard, scancode, codepoint, modifiers, **kwargs)

	Processes a key press. This is called when a key press is to be used
for selection. Depending on the keyboard keys pressed and the
configuration, it could select or deselect nodes or node ranges
from the selectable nodes list, get_selectable_nodes().

The parameters are such that it could be bound directly to the
on_key_down event of a keyboard. Therefore, it is safe to be called
repeatedly when the key is held down as is done by the keyboard.

	Returns:

	bool, True if the keypress was used, False otherwise.

	
select_with_key_up(keyboard, scancode, **kwargs)

	(internal) Processes a key release. This must be called by the
derived widget when a key that select_with_key_down() returned
True is released.

The parameters are such that it could be bound directly to the
on_key_up event of a keyboard.

	Returns:

	bool, True if the key release was used, False otherwise.

	
select_with_touch(node, touch=None)

	(internal) Processes a touch on the node. This should be called by
the derived widget when a node is touched and is to be used for
selection. Depending on the keyboard keys pressed and the
configuration, it could select or deslect this and other nodes in the
selectable nodes list, get_selectable_nodes().

	Parameters:

	
	node
	The node that received the touch. Can be None for a scroll
type touch.

	touch
	Optionally, the touch. Defaults to None.

	Returns:

	bool, True if the touch was used, False otherwise.

	
selected_nodes

	The list of selected nodes.

Note

Multiple nodes can be selected right after one another e.g. using the
keyboard. When listening to selected_nodes, one should be
aware of this.

selected_nodes is a ListProperty and
defaults to the empty list, []. It is read-only and should not be modified.

	
text_entry_timeout

	When typing characters in rapid succession (i.e. the time difference
since the last character is less than text_entry_timeout), the
keys get concatenated and the combined text is passed as the key argument
of goto_node().

New in version 1.10.0.

	
touch_deselect_last

	Determines whether the last selected node can be deselected when
multiselect or touch_multiselect is False.

New in version 1.10.0.

touch_deselect_last is a BooleanProperty
and defaults to True on mobile, False on desktop platforms.

	
touch_multiselect

	A special touch mode which determines whether touch events, as
processed by select_with_touch(), will add the currently touched
node to the selection, or if it will clear the selection before adding the
node. This allows the selection of multiple nodes by simply touching them.

This is different from multiselect because when it is True,
simply touching an unselected node will select it, even if ctrl is not
pressed. If it is False, however, ctrl must be pressed in order to
add to the selection when multiselect is True.

Note

multiselect, when False, will disable
touch_multiselect.

touch_multiselect is a BooleanProperty
and defaults to False.

	
up_count

	Determines by how much the selected node is moved up or down, relative
to the position of the last selected node, when the up (or down) arrow on
the keyboard is pressed.

up_count is a NumericProperty and
defaults to 1.

Cover Behavior

The CoverBehavior
mixin [https://en.wikipedia.org/wiki/Mixin] is intended for rendering
textures to full widget size keeping the aspect ratio of the original texture.

Use cases are i.e. rendering full size background images or video content in
a dynamic layout.

For an overview of behaviors, please refer to the behaviors
documentation.

Example

The following examples add cover behavior to an image:

In python:

from kivy.app import App
from kivy.uix.behaviors import CoverBehavior
from kivy.uix.image import Image

class CoverImage(CoverBehavior, Image):

 def __init__(self, **kwargs):
 super(CoverImage, self).__init__(**kwargs)
 texture = self._coreimage.texture
 self.reference_size = texture.size
 self.texture = texture

class MainApp(App):

 def build(self):
 return CoverImage(source='image.jpg')

MainApp().run()

In Kivy Language:

CoverImage:
 source: 'image.png'

<CoverImage@CoverBehavior+Image>:
 reference_size: self.texture_size

See CoverBehavior for details.

	
class kivy.uix.behaviors.cover.CoverBehavior(**kwargs)

	Bases: builtins.object

The CoverBehavior mixin [https://en.wikipedia.org/wiki/Mixin]
provides rendering a texture covering full widget size keeping aspect ratio
of the original texture.

New in version 1.10.0.

	
cover_pos

	Position of the aspect ratio aware texture. Gets calculated in
CoverBehavior.calculate_cover.

cover_pos is a ListProperty and
defaults to [0, 0].

	
cover_size

	Size of the aspect ratio aware texture. Gets calculated in
CoverBehavior.calculate_cover.

cover_size is a ListProperty and
defaults to [0, 0].

	
reference_size

	Reference size used for aspect ratio approximation calculation.

reference_size is a ListProperty and
defaults to [].

Drag Behavior

The DragBehavior
mixin [https://en.wikipedia.org/wiki/Mixin] class provides Drag behavior.
When combined with a widget, dragging in the rectangle defined by the
drag_rectangle will drag the
widget.

Example

The following example creates a draggable label:

from kivy.uix.label import Label
from kivy.app import App
from kivy.uix.behaviors import DragBehavior
from kivy.lang import Builder

You could also put the following in your kv file...
kv = '''
<DragLabel>:
 # Define the properties for the DragLabel
 drag_rectangle: self.x, self.y, self.width, self.height
 drag_timeout: 10000000
 drag_distance: 0

FloatLayout:
 # Define the root widget
 DragLabel:
 size_hint: 0.25, 0.2
 text: 'Drag me'
'''

class DragLabel(DragBehavior, Label):
 pass

class TestApp(App):
 def build(self):
 return Builder.load_string(kv)

TestApp().run()

	
class kivy.uix.behaviors.drag.DragBehavior(**kwargs)

	Bases: builtins.object

The DragBehavior mixin [https://en.wikipedia.org/wiki/Mixin] provides
Drag behavior. When combined with a widget, dragging in the rectangle
defined by drag_rectangle will drag the widget. Please see
the drag behaviors module documentation
for more information.

New in version 1.8.0.

	
drag_distance

	Distance to move before dragging the DragBehavior, in pixels.
As soon as the distance has been traveled, the DragBehavior will
start to drag, and no touch event will be dispatched to the children.
It is advisable that you base this value on the dpi of your target device’s
screen.

drag_distance is a NumericProperty and
defaults to the scroll_distance as defined in the user
Config (20 pixels by default).

	
drag_rect_height

	Height of the axis aligned bounding rectangle where dragging is allowed.

drag_rect_height is a NumericProperty and
defaults to 100.

	
drag_rect_width

	Width of the axis aligned bounding rectangle where dragging is allowed.

drag_rect_width is a NumericProperty and
defaults to 100.

	
drag_rect_x

	X position of the axis aligned bounding rectangle where dragging
is allowed (in window coordinates).

drag_rect_x is a NumericProperty and
defaults to 0.

	
drag_rect_y

	Y position of the axis aligned bounding rectangle where dragging
is allowed (in window coordinates).

drag_rect_Y is a NumericProperty and
defaults to 0.

	
drag_rectangle

	Position and size of the axis aligned bounding rectangle where dragging
is allowed.

drag_rectangle is a ReferenceListProperty
of (drag_rect_x, drag_rect_y, drag_rect_width,
drag_rect_height) properties.

	
drag_timeout

	Timeout allowed to trigger the drag_distance, in milliseconds.
If the user has not moved drag_distance within the timeout,
dragging will be disabled, and the touch event will be dispatched to the
children.

drag_timeout is a NumericProperty and
defaults to the scroll_timeout as defined in the user
Config (55 milliseconds by default).

Emacs Behavior

The EmacsBehavior
mixin [https://en.wikipedia.org/wiki/Mixin] allows you to add
Emacs [https://www.gnu.org/software/emacs/] keyboard shortcuts for basic
movement and editing to the TextInput widget.
The shortcuts currently available are listed below:

Emacs shortcuts

	Shortcut

	Description

	Control + a

	Move cursor to the beginning of the line

	Control + e

	Move cursor to the end of the line

	Control + f

	Move cursor one character to the right

	Control + b

	Move cursor one character to the left

	Alt + f

	Move cursor to the end of the word to the right

	Alt + b

	Move cursor to the start of the word to the left

	Alt + Backspace

	Delete text left of the cursor to the beginning of word

	Alt + d

	Delete text right of the cursor to the end of the word

	Alt + w

	Copy selection

	Control + w

	Cut selection

	Control + y

	Paste selection

Warning

If you have the inspector module enabled, the
shortcut for opening the inspector (Control + e) conflicts with the
Emacs shortcut to move to the end of the line (it will still move the
cursor to the end of the line, but the inspector will open as well).

	
class kivy.uix.behaviors.emacs.EmacsBehavior(**kwargs)

	Bases: builtins.object

A mixin [https://en.wikipedia.org/wiki/Mixin] that enables Emacs-style
keyboard shortcuts for the TextInput widget.
Please see the Emacs behaviors module
documentation for more information.

New in version 1.9.1.

	
delete_word_left()

	Delete text left of the cursor to the beginning of word

	
delete_word_right()

	Delete text right of the cursor to the end of the word

	
key_bindings

	String name which determines the type of key bindings to use with the
TextInput. This allows Emacs key bindings to
be enabled/disabled programmatically for widgets that inherit from
EmacsBehavior. If the value is not 'emacs', Emacs bindings
will be disabled. Use 'default' for switching to the default key
bindings of TextInput.

key_bindings is a StringProperty
and defaults to 'emacs'.

New in version 1.10.0.

Focus Behavior

The FocusBehavior
mixin [https://en.wikipedia.org/wiki/Mixin] class provides
keyboard focus behavior. When combined with other
FocusBehavior widgets it allows one to cycle focus among them by pressing
tab. In addition, upon gaining focus, the instance will automatically
receive keyboard input.

Focus, very different from selection, is intimately tied with the keyboard;
each keyboard can focus on zero or one widgets, and each widget can only
have the focus of one keyboard. However, multiple keyboards can focus
simultaneously on different widgets. When escape is hit, the widget having
the focus of that keyboard will de-focus.

Managing focus

In essence, focus is implemented as a doubly linked list, where each
node holds a (weak) reference to the instance before it and after it,
as visualized when cycling through the nodes using tab (forward) or
shift+tab (backward). If a previous or next widget is not specified,
focus_next and focus_previous defaults to None. This
means that the children list and
parents are
walked to find the next focusable widget, unless focus_next or
focus_previous is set to the StopIteration class, in which case
focus stops there.

For example, to cycle focus between Button
elements of a GridLayout:

class FocusButton(FocusBehavior, Button):
 pass

grid = GridLayout(cols=4)
for i in range(40):
 grid.add_widget(FocusButton(text=str(i)))
clicking on a widget will activate focus, and tab can now be used
to cycle through

When using a software keyboard, typical on mobile and touch devices, the
keyboard display behavior is determined by the
softinput_mode property. You can use
this property to ensure the focused widget is not covered or obscured by the
keyboard.

Initializing focus

Widgets needs to be visible before they can receive the focus. This means that
setting their focus property to True before they are visible will have no
effect. To initialize focus, you can use the ‘on_parent’ event:

from kivy.app import App
from kivy.uix.textinput import TextInput

class MyTextInput(TextInput):
 def on_parent(self, widget, parent):
 self.focus = True

class SampleApp(App):
 def build(self):
 return MyTextInput()

SampleApp().run()

If you are using a popup, you can use the ‘on_open’ event.

For an overview of behaviors, please refer to the behaviors
documentation.

Warning

This code is still experimental, and its API is subject to change in a
future version.

	
class kivy.uix.behaviors.focus.FocusBehavior(**kwargs)

	Bases: builtins.object

Provides keyboard focus behavior. When combined with other
FocusBehavior widgets it allows one to cycle focus among them by pressing
tab. Please see the
focus behavior module documentation
for more information.

New in version 1.9.0.

	
focus

	Whether the instance currently has focus.

Setting it to True will bind to and/or request the keyboard, and input
will be forwarded to the instance. Setting it to False will unbind
and/or release the keyboard. For a given keyboard, only one widget can
have its focus, so focusing one will automatically unfocus the other
instance holding its focus.

When using a software keyboard, please refer to the
softinput_mode property to determine
how the keyboard display is handled.

focus is a BooleanProperty and defaults
to False.

	
focus_next

	The FocusBehavior instance to acquire focus when
tab is pressed and this instance has focus, if not None or
StopIteration.

When tab is pressed, focus cycles through all the FocusBehavior
widgets that are linked through focus_next and are focusable. If
focus_next is None, it instead walks the children lists to find
the next focusable widget. Finally, if focus_next is
the StopIteration class, focus won’t move forward, but end here.

focus_next is an ObjectProperty and
defaults to None.

	
focus_previous

	The FocusBehavior instance to acquire focus when
shift+tab is pressed on this instance, if not None or StopIteration.

When shift+tab is pressed, focus cycles through all the
FocusBehavior widgets that are linked through
focus_previous and are focusable. If focus_previous is
None, it instead walks the children tree to find the
previous focusable widget. Finally, if focus_previous is the
StopIteration class, focus won’t move backward, but end here.

focus_previous is an ObjectProperty and
defaults to None.

	
focused

	An alias of focus.

focused is a BooleanProperty and defaults
to False.

Warning

focused is an alias of focus and will be removed in
2.0.0.

	
get_focus_next()

	Returns the next focusable widget using either focus_next
or the children similar to the order when tabbing forwards
with the tab key.

	
get_focus_previous()

	Returns the previous focusable widget using either
focus_previous or the children similar to the
order when the tab + shift keys are triggered together.

	
hide_keyboard()

	Convenience function to hide the keyboard in managed mode.

	
ignored_touch = []

	A list of touches that should not be used to defocus. After on_touch_up,
every touch that is not in ignored_touch will defocus all the
focused widgets if the config keyboard mode is not multi. Touches on
focusable widgets that were used to focus are automatically added here.

Example usage:

class Unfocusable(Widget):

 def on_touch_down(self, touch):
 if self.collide_point(*touch.pos):
 FocusBehavior.ignored_touch.append(touch)

Notice that you need to access this as a class, not an instance variable.

	
input_type

	The kind of input keyboard to request.

New in version 1.8.0.

Changed in version 2.1.0: Changed default value from text to null. Added null to options.

Warning

As the default value has been changed, you may need to adjust
input_type in your code.

input_type is an OptionsProperty and
defaults to ‘null’. Can be one of ‘null’, ‘text’, ‘number’, ‘url’, ‘mail’,
‘datetime’, ‘tel’ or ‘address’.

	
is_focusable

	Whether the instance can become focused. If focused, it’ll lose focus
when set to False.

is_focusable is a BooleanProperty and
defaults to True on a desktop (i.e. desktop is True in
config), False otherwise.

	
keyboard

	The keyboard to bind to (or bound to the widget) when focused.

When None, a keyboard is requested and released whenever the widget comes
into and out of focus. If not None, it must be a keyboard, which gets
bound and unbound from the widget whenever it’s in or out of focus. It is
useful only when more than one keyboard is available, so it is recommended
to be set to None when only one keyboard is available.

If more than one keyboard is available, whenever an instance gets focused
a new keyboard will be requested if None. Unless the other instances lose
focus (e.g. if tab was used), a new keyboard will appear. When this is
undesired, the keyboard property can be used. For example, if there are
two users with two keyboards, then each keyboard can be assigned to
different groups of instances of FocusBehavior, ensuring that within
each group, only one FocusBehavior will have focus, and will receive input
from the correct keyboard. See keyboard_mode in config for
more information on the keyboard modes.

Keyboard and focus behavior

When using the keyboard, there are some important default behaviors you
should keep in mind.

	When Config’s keyboard_mode is multi, each new touch is considered
a touch by a different user and will set the focus (if clicked on a
focusable) with a new keyboard. Already focused elements will not lose
their focus (even if an unfocusable widget is touched).

	If the keyboard property is set, that keyboard will be used when the
instance gets focused. If widgets with different keyboards are linked
through focus_next and focus_previous, then as they are
tabbed through, different keyboards will become active. Therefore,
typically it’s undesirable to link instances which are assigned
different keyboards.

	When a widget has focus, setting its keyboard to None will remove its
keyboard, but the widget will then immediately try to get
another keyboard. In order to remove its keyboard, rather set its
focus to False.

	When using a software keyboard, typical on mobile and touch devices, the
keyboard display behavior is determined by the
softinput_mode property. You can use
this property to ensure the focused widget is not covered or obscured.

keyboard is an AliasProperty and defaults
to None.

	
keyboard_mode

	Determines how the keyboard visibility should be managed. ‘auto’ will
result in the standard behaviour of showing/hiding on focus. ‘managed’
requires setting the keyboard visibility manually, or calling the helper
functions show_keyboard() and hide_keyboard().

keyboard_mode is an OptionsProperty and
defaults to ‘auto’. Can be one of ‘auto’ or ‘managed’.

	
keyboard_on_key_down(window, keycode, text, modifiers)

	The method bound to the keyboard when the instance has focus.

When the instance becomes focused, this method is bound to the
keyboard and will be called for every input press. The parameters are
the same as kivy.core.window.WindowBase.on_key_down().

When overwriting the method in the derived widget, super should be
called to enable tab cycling. If the derived widget wishes to use tab
for its own purposes, it can call super after it has processed the
character (if it does not wish to consume the tab).

Similar to other keyboard functions, it should return True if the
key was consumed.

	
keyboard_on_key_up(window, keycode)

	The method bound to the keyboard when the instance has focus.

When the instance becomes focused, this method is bound to the
keyboard and will be called for every input release. The parameters are
the same as kivy.core.window.WindowBase.on_key_up().

When overwriting the method in the derived widget, super should be
called to enable de-focusing on escape. If the derived widget wishes
to use escape for its own purposes, it can call super after it has
processed the character (if it does not wish to consume the escape).

See keyboard_on_key_down()

	
keyboard_suggestions

	If True provides auto suggestions on top of keyboard.
This will only work if input_type is set to text, url, mail or
address.

Warning

On Android, keyboard_suggestions relies on
InputType.TYPE_TEXT_FLAG_NO_SUGGESTIONS to work, but some keyboards
just ignore this flag. If you want to disable suggestions at all on
Android, you can set input_type to null, which will request the
input method to run in a limited “generate key events” mode.

New in version 2.1.0.

keyboard_suggestions is a BooleanProperty
and defaults to True

	
show_keyboard()

	Convenience function to show the keyboard in managed mode.

	
unfocus_on_touch

	Whether a instance should lose focus when clicked outside the instance.

When a user clicks on a widget that is focus aware and shares the same
keyboard as this widget (which in the case with only one keyboard),
then as the other widgets gain focus, this widget loses focus. In addition
to that, if this property is True, clicking on any widget other than this
widget, will remove focus from this widget.

unfocus_on_touch is a BooleanProperty and
defaults to False if the keyboard_mode in Config
is ‘multi’ or ‘systemandmulti’, otherwise it defaults to True.

Kivy Namespaces

New in version 1.9.1.

Warning

This code is still experimental, and its API is subject to change in a
future version.

The KNSpaceBehavior mixin [https://en.wikipedia.org/wiki/Mixin]
class provides namespace functionality for Kivy objects. It allows kivy objects
to be named and then accessed using namespaces.

KNSpace instances are the namespaces that store the named objects
in Kivy ObjectProperty instances.
In addition, when inheriting from KNSpaceBehavior, if the derived
object is named, the name will automatically be added to the associated
namespace and will point to a proxy_ref of the
derived object.

Basic examples

By default, there’s only a single namespace: the knspace namespace. The
simplest example is adding a widget to the namespace:

from kivy.uix.behaviors.knspace import knspace
widget = Widget()
knspace.my_widget = widget

This adds a kivy ObjectProperty with rebind=True
and allownone=True to the knspace namespace with a property name
my_widget. And the property now also points to this widget.

This can be done automatically with:

class MyWidget(KNSpaceBehavior, Widget):
 pass

widget = MyWidget(knsname='my_widget')

Or in kv:

<MyWidget@KNSpaceBehavior+Widget>

MyWidget:
 knsname: 'my_widget'

Now, knspace.my_widget will point to that widget.

When one creates a second widget with the same name, the namespace will
also change to point to the new widget. E.g.:

widget = MyWidget(knsname='my_widget')
knspace.my_widget now points to widget
widget2 = MyWidget(knsname='my_widget')
knspace.my_widget now points to widget2

Setting the namespace

One can also create ones own namespace rather than using the default
knspace by directly setting KNSpaceBehavior.knspace:

class MyWidget(KNSpaceBehavior, Widget):
 pass

widget = MyWidget(knsname='my_widget')
my_new_namespace = KNSpace()
widget.knspace = my_new_namespace

Initially, my_widget is added to the default namespace, but when the widget’s
namespace is changed to my_new_namespace, the reference to my_widget is
moved to that namespace. We could have also of course first set the namespace
to my_new_namespace and then have named the widget my_widget, thereby
avoiding the initial assignment to the default namespace.

Similarly, in kv:

<MyWidget@KNSpaceBehavior+Widget>

MyWidget:
 knspace: KNSpace()
 knsname: 'my_widget'

Inheriting the namespace

In the previous example, we directly set the namespace we wished to use.
In the following example, we inherit it from the parent, so we only have to set
it once:

<MyWidget@KNSpaceBehavior+Widget>
<MyLabel@KNSpaceBehavior+Label>

<MyComplexWidget@MyWidget>:
 knsname: 'my_complex'
 MyLabel:
 knsname: 'label1'
 MyLabel:
 knsname: 'label2'

Then, we do:

widget = MyComplexWidget()
new_knspace = KNSpace()
widget.knspace = new_knspace

The rule is that if no knspace has been assigned to a widget, it looks for a
namespace in its parent and parent’s parent and so on until it find one to
use. If none are found, it uses the default knspace.

When MyComplexWidget is created, it still used the default namespace.
However, when we assigned the root widget its new namespace, all its
children switched to using that new namespace as well. So new_knspace now
contains label1 and label2 as well as my_complex.

If we had first done:

widget = MyComplexWidget()
new_knspace = KNSpace()
knspace.label1.knspace = knspace
widget.knspace = new_knspace

Then label1 would remain stored in the default knspace since it was
directly set, but label2 and my_complex would still be added to the new
namespace.

One can customize the attribute used to search the parent tree by changing
KNSpaceBehavior.knspace_key. If the desired knspace is not reachable
through a widgets parent tree, e.g. in a popup that is not a widget’s child,
KNSpaceBehavior.knspace_key can be used to establish a different
search order.

Accessing the namespace

As seen in the previous example, if not directly assigned, the namespace is
found by searching the parent tree. Consequently, if a namespace was assigned
further up the parent tree, all its children and below could access that
namespace through their KNSpaceBehavior.knspace property.

This allows the creation of multiple widgets with identically given names
if each root widget instance is assigned a new namespace. For example:

<MyComplexWidget@KNSpaceBehavior+Widget>:
 Label:
 text: root.knspace.pretty.text if root.knspace.pretty else ''

<MyPrettyWidget@KNSpaceBehavior+TextInput>:
 knsname: 'pretty'
 text: 'Hello'

<MyCompositeWidget@KNSpaceBehavior+BoxLayout>:
 MyComplexWidget
 MyPrettyWidget

Now, when we do:

knspace1, knspace2 = KNSpace(), KNSpace()
composite1 = MyCompositeWidget()
composite1.knspace = knspace1

composite2 = MyCompositeWidget()
composite2.knspace = knspace2

knspace1.pretty = "Here's the ladder, now fix the roof!"
knspace2.pretty = "Get that raccoon off me!"

Because each of the MyCompositeWidget instances have a different namespace
their children also use different namespaces. Consequently, the
pretty and complex widgets of each instance will have different text.

Further, because both the namespace ObjectProperty
references, and KNSpaceBehavior.knspace have rebind=True, the
text of the MyComplexWidget label is rebound to match the text of
MyPrettyWidget when either the root’s namespace changes or when the
root.knspace.pretty property changes, as expected.

Forking a namespace

Forking a namespace provides the opportunity to create a new namespace
from a parent namespace so that the forked namespace will contain everything
in the origin namespace, but the origin namespace will not have access to
anything added to the forked namespace.

For example:

child = knspace.fork()
grandchild = child.fork()

child.label = Label()
grandchild.button = Button()

Now label is accessible by both child and grandchild, but not by knspace. And
button is only accessible by the grandchild but not by the child or by knspace.
Finally, doing grandchild.label = Label() will leave grandchild.label
and child.label pointing to different labels.

A motivating example is the example from above:

<MyComplexWidget@KNSpaceBehavior+Widget>:
 Label:
 text: root.knspace.pretty.text if root.knspace.pretty else ''

<MyPrettyWidget@KNSpaceBehavior+TextInput>:
 knsname: 'pretty'
 text: 'Hello'

<MyCompositeWidget@KNSpaceBehavior+BoxLayout>:
 knspace: 'fork'
 MyComplexWidget
 MyPrettyWidget

Notice the addition of knspace: ‘fork’. This is identical to doing
knspace: self.knspace.fork(). However, doing that would lead to infinite
recursion as that kv rule would be executed recursively because self.knspace
will keep on changing. However, allowing knspace: ‘fork’ cirumvents that.
See KNSpaceBehavior.knspace.

Now, having forked, we just need to do:

composite1 = MyCompositeWidget()
composite2 = MyCompositeWidget()

composite1.knspace.pretty = "Here's the ladder, now fix the roof!"
composite2.knspace.pretty = "Get that raccoon off me!"

Since by forking we automatically created a unique namespace for each
MyCompositeWidget instance.

	
class kivy.uix.behaviors.knspace.KNSpace(parent=None, keep_ref=False, **kwargs)

	Bases: kivy.event.EventDispatcher

Each KNSpace instance is a namespace that stores the named Kivy
objects associated with this namespace. Each named object is
stored as the value of a Kivy ObjectProperty of
this instance whose property name is the object’s given name. Both rebind
and allownone are set to True for the property.

See KNSpaceBehavior.knspace for details on how a namespace is
associated with a named object.

When storing an object in the namespace, the object’s proxy_ref is
stored if the object has such an attribute.

	Parameters:

	
	parent: (internal) A KNSpace instance or None.
	If specified, it’s a parent namespace, in which case, the current
namespace will have in its namespace all its named objects
as well as the named objects of its parent and parent’s parent
etc. See fork() for more details.

	
fork()

	Returns a new KNSpace instance which will have access to
all the named objects in the current namespace but will also have a
namespace of its own that is unique to it.

For example:

forked_knspace1 = knspace.fork()
forked_knspace2 = knspace.fork()

Now, any names added to knspace will be accessible by the
forked_knspace1 and forked_knspace2 namespaces by the normal means.
However, any names added to forked_knspace1 will not be accessible
from knspace or forked_knspace2. Similar for forked_knspace2.

	
keep_ref = False

	Whether a direct reference should be kept to the stored objects.
If True, we use the direct object, otherwise we use
proxy_ref when present.

Defaults to False.

	
parent = None

	(internal) The parent namespace instance, KNSpace, or None. See
fork().

	
property(self, name, quiet=False)

	Get a property instance from the property name. If quiet is True,
None is returned instead of raising an exception when name is not a
property. Defaults to False.

New in version 1.0.9.

	Returns:

	A Property derived instance
corresponding to the name.

Changed in version 1.9.0: quiet was added.

	
class kivy.uix.behaviors.knspace.KNSpaceBehavior(knspace=None, **kwargs)

	Bases: builtins.object

Inheriting from this class allows naming of the inherited objects, which
are then added to the associated namespace knspace and accessible
through it.

Please see the knspace behaviors module
documentation for more information.

	
knsname

	The name given to this instance. If named, the name will be added to the
associated knspace namespace, which will then point to the
proxy_ref of this instance.

When named, one can access this object by e.g. self.knspace.name, where
name is the given name of this instance. See knspace and the
module description for more details.

	
knspace

	The namespace instance, KNSpace, associated with this widget.
The knspace namespace stores this widget when naming this widget
with knsname.

If the namespace has been set with a KNSpace instance, e.g. with
self.knspace = KNSpace(), then that instance is returned (setting with
None doesn’t count). Otherwise, if knspace_key is not None, we
look for a namespace to use in the object that is stored in the property
named knspace_key, of this instance. I.e.
object = getattr(self, self.knspace_key).

If that object has a knspace property, then we return its value. Otherwise,
we go further up, e.g. with getattr(object, self.knspace_key) and look
for its knspace property.

Finally, if we reach a value of None, or knspace_key was None,
the default knspace namespace is
returned.

If knspace is set to the string ‘fork’, the current namespace
in knspace will be forked with KNSpace.fork() and the
resulting namespace will be assigned to this instance’s knspace.
See the module examples for a motivating example.

Both rebind and allownone are True.

	
knspace_key

	The name of the property of this instance, to use to search upwards for
a namespace to use by this instance. Defaults to ‘parent’ so that we’ll
search the parent tree. See knspace.

When None, we won’t search the parent tree for the namespace.
allownone is True.

	
kivy.uix.behaviors.knspace.knspace = <kivy.uix.behaviors.knspace.KNSpace object>

	The default KNSpace namespace. See KNSpaceBehavior.knspace
for more details.

ToggleButton Behavior

The ToggleButtonBehavior
mixin [https://en.wikipedia.org/wiki/Mixin] class provides
ToggleButton behavior. You can combine this
class with other widgets, such as an Image, to provide
alternative togglebuttons that preserve Kivy togglebutton behavior.

For an overview of behaviors, please refer to the behaviors
documentation.

Example

The following example adds togglebutton behavior to an image to make a checkbox
that behaves like a togglebutton:

from kivy.app import App
from kivy.uix.image import Image
from kivy.uix.behaviors import ToggleButtonBehavior

class MyButton(ToggleButtonBehavior, Image):
 def __init__(self, **kwargs):
 super(MyButton, self).__init__(**kwargs)
 self.source = 'atlas://data/images/defaulttheme/checkbox_off'

 def on_state(self, widget, value):
 if value == 'down':
 self.source = 'atlas://data/images/defaulttheme/checkbox_on'
 else:
 self.source = 'atlas://data/images/defaulttheme/checkbox_off'

class SampleApp(App):
 def build(self):
 return MyButton()

SampleApp().run()

	
class kivy.uix.behaviors.togglebutton.ToggleButtonBehavior(**kwargs)

	Bases: kivy.uix.behaviors.button.ButtonBehavior

This mixin [https://en.wikipedia.org/wiki/Mixin] class provides
togglebutton behavior. Please see the
togglebutton behaviors module
documentation for more information.

New in version 1.8.0.

	
allow_no_selection

	This specifies whether the widgets in a group allow no selection i.e.
everything to be deselected.

New in version 1.9.0.

allow_no_selection is a BooleanProperty and defaults to
True

	
static get_widgets(groupname)

	Return a list of the widgets contained in a specific group. If the
group doesn’t exist, an empty list will be returned.

Note

Always release the result of this method! Holding a reference to
any of these widgets can prevent them from being garbage collected.
If in doubt, do:

l = ToggleButtonBehavior.get_widgets('mygroup')
do your job
del l

Warning

It’s possible that some widgets that you have previously
deleted are still in the list. The garbage collector might need
to release other objects before flushing them.

	
group

	Group of the button. If None, no group will be used (the button will be
independent). If specified, group must be a hashable object, like
a string. Only one button in a group can be in a ‘down’ state.

group is a ObjectProperty and defaults to
None.

Touch Ripple

New in version 1.10.1.

Warning

This code is still experimental, and its API is subject to change in a
future version.

This module contains mixin [https://en.wikipedia.org/wiki/Mixin] classes
to add a touch ripple visual effect known from Google Material Design
<https://en.wikipedia.org/wiki/Material_Design>_ to widgets.

For an overview of behaviors, please refer to the behaviors
documentation.

The class TouchRippleBehavior provides
rendering the ripple animation.

The class TouchRippleButtonBehavior
basically provides the same functionality as
ButtonBehavior but rendering the ripple
animation instead of default press/release visualization.

	
class kivy.uix.behaviors.touchripple.TouchRippleBehavior(**kwargs)

	Bases: builtins.object

Touch ripple behavior.

Supposed to be used as mixin on widget classes.

Ripple behavior does not trigger automatically, concrete implementation
needs to call ripple_show() respective ripple_fade() manually.

Example

Here we create a Label which renders the touch ripple animation on
interaction:

class RippleLabel(TouchRippleBehavior, Label):

 def __init__(self, **kwargs):
 super(RippleLabel, self).__init__(**kwargs)

 def on_touch_down(self, touch):
 collide_point = self.collide_point(touch.x, touch.y)
 if collide_point:
 touch.grab(self)
 self.ripple_show(touch)
 return True
 return False

 def on_touch_up(self, touch):
 if touch.grab_current is self:
 touch.ungrab(self)
 self.ripple_fade()
 return True
 return False

	
ripple_duration_in

	Animation duration taken to show the overlay.

ripple_duration_in is a NumericProperty
and defaults to 0.5.

	
ripple_duration_out

	Animation duration taken to fade the overlay.

ripple_duration_out is a NumericProperty
and defaults to 0.2.

	
ripple_fade()

	Finish ripple animation on current widget.

	
ripple_fade_from_alpha

	Alpha channel for ripple color the animation starts with.

ripple_fade_from_alpha is a
NumericProperty and defaults to 0.5.

	
ripple_fade_to_alpha

	Alpha channel for ripple color the animation targets to.

ripple_fade_to_alpha is a NumericProperty
and defaults to 0.8.

	
ripple_func_in

	Animation callback for showing the overlay.

ripple_func_in is a StringProperty
and defaults to in_cubic.

	
ripple_func_out

	Animation callback for hiding the overlay.

ripple_func_out is a StringProperty
and defaults to out_quad.

	
ripple_rad_default

	Default radius the animation starts from.

ripple_rad_default is a NumericProperty
and defaults to 10.

	
ripple_scale

	Max scale of the animation overlay calculated from max(width/height) of
the decorated widget.

ripple_scale is a NumericProperty
and defaults to 2.0.

	
ripple_show(touch)

	Begin ripple animation on current widget.

Expects touch event as argument.

	
class kivy.uix.behaviors.touchripple.TouchRippleButtonBehavior(**kwargs)

	Bases: kivy.uix.behaviors.touchripple.TouchRippleBehavior

This mixin [https://en.wikipedia.org/wiki/Mixin] class provides
a similar behavior to ButtonBehavior
but provides touch ripple animation instead of button pressed/released as
visual effect.

	Events:

	
	on_press
	Fired when the button is pressed.

	on_release
	Fired when the button is released (i.e. the touch/click that
pressed the button goes away).

	
always_release

	This determines whether or not the widget fires an on_release event if
the touch_up is outside the widget.

always_release is a BooleanProperty and
defaults to False.

	
last_touch

	Contains the last relevant touch received by the Button. This can
be used in on_press or on_release in order to know which touch
dispatched the event.

last_touch is a ObjectProperty and
defaults to None.

RecycleView

New in version 1.10.0.

The RecycleView provides a flexible model for viewing selected sections of
large data sets. It aims to prevent the performance degradation that can occur
when generating large numbers of widgets in order to display many data items.

Warning

Because RecycleView reuses widgets, any state change to a single
widget will stay with that widget as it’s reused, even if the
data assigned to it by the RecycleView
changes. Unless the complete state is tracked in data
(see below).

The view is generatad by processing the data, essentially
a list of dicts, and uses these dicts to generate instances of the
viewclass as required. Its design is based on the
MVC (Model-view-controller [https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller])
pattern.

	Model: The model is formed by data you pass in via a
list of dicts.

	View: The View is split across layout and views and implemented using
adapters.

	Controller: The controller determines the logical interaction and is
implemented by RecycleViewBehavior.

These are abstract classes and cannot be used directly. The default concrete
implementations are the
RecycleDataModel for the model, the
RecycleLayout for the view, and the
RecycleView for the controller.

When a RecycleView is instantiated, it automatically creates the views and data
classes. However, one must manually create the layout classes and add them to
the RecycleView.

A layout manager is automatically created as a
layout_manager when added as the child of the
RecycleView. Similarly when removed. A requirement is that the layout manager
must be contained as a child somewhere within the RecycleView’s widget tree so
the view port can be found.

A minimal example might look something like this:

from kivy.app import App
from kivy.lang import Builder
from kivy.uix.recycleview import RecycleView

Builder.load_string('''
<RV>:
 viewclass: 'Label'
 RecycleBoxLayout:
 default_size: None, dp(56)
 default_size_hint: 1, None
 size_hint_y: None
 height: self.minimum_height
 orientation: 'vertical'
''')

class RV(RecycleView):
 def __init__(self, **kwargs):
 super(RV, self).__init__(**kwargs)
 self.data = [{'text': str(x)} for x in range(100)]

class TestApp(App):
 def build(self):
 return RV()

if __name__ == '__main__':
 TestApp().run()

In order to support selection in the view, you can add the required behaviours
as follows:

from kivy.app import App
from kivy.lang import Builder
from kivy.uix.recycleview import RecycleView
from kivy.uix.recycleview.views import RecycleDataViewBehavior
from kivy.uix.label import Label
from kivy.properties import BooleanProperty
from kivy.uix.recycleboxlayout import RecycleBoxLayout
from kivy.uix.behaviors import FocusBehavior
from kivy.uix.recycleview.layout import LayoutSelectionBehavior

Builder.load_string('''
<SelectableLabel>:
 # Draw a background to indicate selection
 canvas.before:
 Color:
 rgba: (.0, 0.9, .1, .3) if self.selected else (0, 0, 0, 1)
 Rectangle:
 pos: self.pos
 size: self.size
<RV>:
 viewclass: 'SelectableLabel'
 SelectableRecycleBoxLayout:
 default_size: None, dp(56)
 default_size_hint: 1, None
 size_hint_y: None
 height: self.minimum_height
 orientation: 'vertical'
 multiselect: True
 touch_multiselect: True
''')

class SelectableRecycleBoxLayout(FocusBehavior, LayoutSelectionBehavior,
 RecycleBoxLayout):
 ''' Adds selection and focus behaviour to the view. '''

class SelectableLabel(RecycleDataViewBehavior, Label):
 ''' Add selection support to the Label '''
 index = None
 selected = BooleanProperty(False)
 selectable = BooleanProperty(True)

 def refresh_view_attrs(self, rv, index, data):
 ''' Catch and handle the view changes '''
 self.index = index
 return super(SelectableLabel, self).refresh_view_attrs(
 rv, index, data)

 def on_touch_down(self, touch):
 ''' Add selection on touch down '''
 if super(SelectableLabel, self).on_touch_down(touch):
 return True
 if self.collide_point(*touch.pos) and self.selectable:
 return self.parent.select_with_touch(self.index, touch)

 def apply_selection(self, rv, index, is_selected):
 ''' Respond to the selection of items in the view. '''
 self.selected = is_selected
 if is_selected:
 print("selection changed to {0}".format(rv.data[index]))
 else:
 print("selection removed for {0}".format(rv.data[index]))

class RV(RecycleView):
 def __init__(self, **kwargs):
 super(RV, self).__init__(**kwargs)
 self.data = [{'text': str(x)} for x in range(100)]

class TestApp(App):
 def build(self):
 return RV()

if __name__ == '__main__':
 TestApp().run()

Please see the examples/widgets/recycleview/basic_data.py file for a more
complete example.

Viewclass State

Because the viewclass widgets are reused or instantiated as needed by the
RecycleView, the order and content of the widgets are mutable. So any
state change to a single widget will stay with that widget, even when the data
assigned to it from the data dict changes, unless
data tracks those changes or they are manually refreshed
when re-used.

There are two methods for managing state changes in viewclass widgets:

	Store state in the RecycleView.data Model

	Generate state changes on-the-fly by catching data
updates and manually refreshing.

An example:

from kivy.app import App
from kivy.lang import Builder
from kivy.uix.boxlayout import BoxLayout
from kivy.uix.recycleview import RecycleView
from kivy.uix.recycleview.views import RecycleDataViewBehavior
from kivy.properties import BooleanProperty, StringProperty

Builder.load_string('''
<StatefulLabel>:
 active: stored_state.active
 CheckBox:
 id: stored_state
 active: root.active
 on_release: root.store_checkbox_state()
 Label:
 text: root.text
 Label:
 id: generate_state
 text: root.generated_state_text

<RV>:
 viewclass: 'StatefulLabel'
 RecycleBoxLayout:
 size_hint_y: None
 height: self.minimum_height
 orientation: 'vertical'
''')

class StatefulLabel(RecycleDataViewBehavior, BoxLayout):
 text = StringProperty()
 generated_state_text = StringProperty()
 active = BooleanProperty()
 index = 0

 '''
 To change a viewclass' state as the data assigned to it changes,
 overload the refresh_view_attrs function (inherited from
 RecycleDataViewBehavior)
 '''
 def refresh_view_attrs(self, rv, index, data):
 self.index = index
 if data['text'] == '0':
 self.generated_state_text = "is zero"
 elif int(data['text']) % 2 == 1:
 self.generated_state_text = "is odd"
 else:
 self.generated_state_text = "is even"
 super(StatefulLabel, self).refresh_view_attrs(rv, index, data)

 '''
 To keep state changes in the viewclass with associated data,
 they can be explicitly stored in the RecycleView's data object
 '''
 def store_checkbox_state(self):
 rv = App.get_running_app().rv
 rv.data[self.index]['active'] = self.active

class RV(RecycleView, App):
 def __init__(self, **kwargs):
 super(RV, self).__init__(**kwargs)
 self.data = [{'text': str(x), 'active': False} for x in range(10)]
 App.get_running_app().rv = self

 def build(self):
 return self

if __name__ == '__main__':
 RV().run()

	TODO:
	
	Method to clear cached class instances.

	Test when views cannot be found (e.g. viewclass is None).

	Fix selection goto.

Warning

When views are re-used they may not trigger if the data remains the same.

	
class kivy.uix.recycleview.RecycleView(**kwargs)

	Bases: kivy.uix.recycleview.RecycleViewBehavior, kivy.uix.scrollview.ScrollView

RecycleView is a flexible view for providing a limited window
into a large data set.

See the module documentation for more information.

	
add_widget(widget, *args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
data

	The data used by the current view adapter. This is a list of dicts whose
keys map to the corresponding property names of the
viewclass.

data is an AliasProperty that gets and sets the
data used to generate the views.

	
key_viewclass

	key_viewclass is an AliasProperty that gets and
sets the key viewclass for the current
layout_manager.

	
remove_widget(widget, *args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
viewclass

	The viewclass used by the current layout_manager.

viewclass is an AliasProperty that gets and sets
the class used to generate the individual items presented in the view.

	
class kivy.uix.recycleview.RecycleViewBehavior(**kwargs)

	Bases: builtins.object

RecycleViewBehavior provides a behavioral model upon which the
RecycleView is built. Together, they offer an extensible and
flexible way to produce views with limited windows over large data sets.

See the module documentation for more information.

	
data_model

	The Data model responsible for maintaining the data set.

data_model is an AliasProperty that gets and sets
the current data model.

	
layout_manager

	The Layout manager responsible for positioning views within the
RecycleView.

layout_manager is an AliasProperty that gets
and sets the layout_manger.

	
refresh_from_data(*largs, **kwargs)

	This should be called when data changes. Data changes typically
indicate that everything should be recomputed since the source data
changed.

This method is automatically bound to the
on_data_changed method of the
RecycleDataModelBehavior class and
therefore responds to and accepts the keyword arguments of that event.

It can be called manually to trigger an update.

	
refresh_from_layout(*largs, **kwargs)

	This should be called when the layout changes or needs to change. It is
typically called when a layout parameter has changed and therefore the
layout needs to be recomputed.

	
refresh_from_viewport(*largs)

	This should be called when the viewport changes and the displayed data
must be updated. Neither the data nor the layout will be recomputed.

	
view_adapter

	The adapter responsible for providing views that represent items in a data
set.

view_adapter is an AliasProperty that gets and
sets the current view adapter.

	RecycleView Data Model
	RecycleDataModel
	RecycleDataModel.attach_recycleview()

	RecycleDataModel.data

	RecycleDataModel.detach_recycleview()

	RecycleDataModel.observable_dict

	RecycleDataModelBehavior
	RecycleDataModelBehavior.attach_recycleview()

	RecycleDataModelBehavior.detach_recycleview()

	RecycleDataModelBehavior.recycleview

	RecycleView Layouts
	LayoutChangeException

	LayoutSelectionBehavior
	LayoutSelectionBehavior.apply_selection()

	LayoutSelectionBehavior.deselect_node()

	LayoutSelectionBehavior.get_index_of_node()

	LayoutSelectionBehavior.get_selectable_nodes()

	LayoutSelectionBehavior.goto_node()

	LayoutSelectionBehavior.key_selection

	LayoutSelectionBehavior.select_node()

	RecycleLayoutManagerBehavior
	RecycleLayoutManagerBehavior.compute_visible_views()

	RecycleLayoutManagerBehavior.get_view_index_at()

	RecycleLayoutManagerBehavior.goto_view()

	RecycleLayoutManagerBehavior.key_viewclass

	RecycleLayoutManagerBehavior.refresh_view_layout()

	RecycleLayoutManagerBehavior.set_visible_views()

	RecycleLayoutManagerBehavior.viewclass

	RecycleView Views
	RecycleDataAdapter
	RecycleDataAdapter.attach_recycleview()

	RecycleDataAdapter.create_view()

	RecycleDataAdapter.detach_recycleview()

	RecycleDataAdapter.get_view()

	RecycleDataAdapter.get_visible_view()

	RecycleDataAdapter.invalidate()

	RecycleDataAdapter.make_view_dirty()

	RecycleDataAdapter.make_views_dirty()

	RecycleDataAdapter.recycleview

	RecycleDataAdapter.refresh_view_attrs()

	RecycleDataAdapter.refresh_view_layout()

	RecycleDataAdapter.set_visible_views()

	RecycleDataViewBehavior
	RecycleDataViewBehavior.refresh_view_attrs()

	RecycleDataViewBehavior.refresh_view_layout()

	RecycleKVIDsDataViewBehavior
	RecycleKVIDsDataViewBehavior.refresh_view_attrs()

RecycleView Data Model

New in version 1.10.0.

The data model part of the RecycleView model-view-controller pattern.

It defines the models (classes) that store the data associated with a
RecycleViewBehavior. Each model (class)
determines how the data is stored and emits requests to the controller
(RecycleViewBehavior) when the data is
modified.

	
class kivy.uix.recycleview.datamodel.RecycleDataModel(**kwargs)

	Bases: kivy.uix.recycleview.datamodel.RecycleDataModelBehavior, kivy.event.EventDispatcher

An implementation of RecycleDataModelBehavior that keeps the
data in a indexable list. See data.

When data changes this class currently dispatches on_data_changed with
one of the following additional keyword arguments.

	none: no keyword argument
	With no additional argument it means a generic data change.

	removed: a slice or integer
	The value is a slice or integer indicating the indices removed.

	appended: a slice
	The slice in data indicating the first and last new items
(i.e. the slice pointing to the new items added at the end).

	inserted: a integer
	The index in data where a new data item was inserted.

	modified: a slice
	The slice with the indices where the data has been modified.
This currently does not allow changing of size etc.

	
attach_recycleview(rv)

	Associates a
RecycleViewBehavior with
this data model.

	
data

	Stores the model’s data using a list.

The data for a item at index i can also be accessed with
RecycleDataModel [i].

	
detach_recycleview()

	Removes the
RecycleViewBehavior
associated with this data model.

	
property observable_dict

	A dictionary instance, which when modified will trigger a data and
consequently an on_data_changed dispatch.

	
class kivy.uix.recycleview.datamodel.RecycleDataModelBehavior

	Bases: builtins.object

RecycleDataModelBehavior is the base class for the models
that describes and provides the data for the
RecycleViewBehavior.

	Events:

	
	on_data_changed:
	Fired when the data changes. The event may dispatch
keyword arguments specific to each implementation of the data
model.
When dispatched, the event and keyword arguments are forwarded to
refresh_from_data().

	
attach_recycleview(rv)

	Associates a
RecycleViewBehavior with
this data model.

	
detach_recycleview()

	Removes the
RecycleViewBehavior
associated with this data model.

	
recycleview

	The
RecycleViewBehavior instance
associated with this data model.

RecycleView Layouts

New in version 1.10.0.

The Layouts handle the presentation of views for the
RecycleView.

Warning

This module is highly experimental, its API may change in the future and
the documentation is not complete at this time.

	
exception kivy.uix.recycleview.layout.LayoutChangeException

	Bases: Exception

	
class kivy.uix.recycleview.layout.LayoutSelectionBehavior(**kwargs)

	Bases: kivy.uix.behaviors.compoundselection.CompoundSelectionBehavior

The LayoutSelectionBehavior can be combined with
RecycleLayoutManagerBehavior to allow its derived classes
selection behaviors similarly to how
CompoundSelectionBehavior
can be used to add selection behaviors to normal layout.

RecycleLayoutManagerBehavior manages its children
differently than normal layouts or widgets so this class adapts
CompoundSelectionBehavior
based selection to work with RecycleLayoutManagerBehavior as well.

Similarly to
CompoundSelectionBehavior,
one can select using the keyboard or touch, which calls select_node()
or deselect_node(), or one can call these methods directly. When a
item is selected or deselected apply_selection() is called. See
apply_selection().

	
apply_selection(index, view, is_selected)

	Applies the selection to the view. This is called internally when
a view is displayed and it needs to be shown as selected or as not
selected.

It is called when select_node() or deselect_node() is
called or when a view needs to be refreshed. Its function is purely to
update the view to reflect the selection state. So the function may be
called multiple times even if the selection state may not have changed.

If the view is a instance of
RecycleDataViewBehavior, its
apply_selection() method will be called every time the view needs to refresh
the selection state. Otherwise, the this method is responsible
for applying the selection.

	Parameters:

	
	index: int
	The index of the data item that is associated with the view.

	view: widget
	The widget that is the view of this data item.

	is_selected: bool
	Whether the item is selected.

	
deselect_node(node)

	Deselects a possibly selected node.

It is called by the controller when it deselects a node and can also
be called from the outside to deselect a node directly. The derived
widget should overwrite this method and change the node to its
unselected state when this is called

	Parameters:

	
	node
	The node to be deselected.

Warning

This method must be called by the derived widget using super if it
is overwritten.

	
get_index_of_node(node, selectable_nodes)

	(internal) Returns the index of the node within the
selectable_nodes returned by get_selectable_nodes().

	
get_selectable_nodes()

	(internal) Returns a list of the nodes that can be selected. It can
be overwritten by the derived widget to return the correct list.

This list is used to determine which nodes to select with group
selection. E.g. the last element in the list will be selected when
home is pressed, pagedown will move (or add to, if shift is held) the
selection from the current position by negative page_count
nodes starting from the position of the currently selected node in
this list and so on. Still, nodes can be selected even if they are not
in this list.

Note

It is safe to dynamically change this list including removing,
adding, or re-arranging its elements. Nodes can be selected even
if they are not on this list. And selected nodes removed from the
list will remain selected until deselect_node() is called.

Warning

Layouts display their children in the reverse order. That is, the
contents of children is displayed
form right to left, bottom to top. Therefore, internally, the
indices of the elements returned by this function are reversed to
make it work by default for most layouts so that the final result
is consistent e.g. home, although it will select the last element
in this list visually, will select the first element when
counting from top to bottom and left to right. If this behavior is
not desired, a reversed list should be returned instead.

Defaults to returning children.

	
goto_node(key, last_node, last_node_idx)

	(internal) Used by the controller to get the node at the position
indicated by key. The key can be keyboard inputs, e.g. pageup,
or scroll inputs from the mouse scroll wheel, e.g. scrollup.
‘last_node’ is the last node selected and is used to find the resulting
node. For example, if the key is up, the returned node is one node
up from the last node.

It can be overwritten by the derived widget.

	Parameters:

	
	key
	str, the string used to find the desired node. It can be any
of the keyboard keys, as well as the mouse scrollup,
scrolldown, scrollright, and scrollleft strings. If letters
are typed in quick succession, the letters will be combined
before it’s passed in as key and can be used to find nodes that
have an associated string that starts with those letters.

	last_node
	The last node that was selected.

	last_node_idx
	The cached index of the last node selected in the
get_selectable_nodes() list. If the list hasn’t changed
it saves having to look up the index of last_node in that
list.

	Returns:

	tuple, the node targeted by key and its index in the
get_selectable_nodes() list. Returning
(last_node, last_node_idx) indicates a node wasn’t found.

	
key_selection

	The key used to check whether a view of a data item can be selected
with touch or the keyboard.

key_selection is the key in data, which if present and True
will enable selection for this item from the keyboard or with a touch.
When None, the default, not item will be selectable.

key_selection is a StringProperty and defaults to None.

Note

All data items can be selected directly using select_node() or
deselect_node(), even if key_selection is False.

	
select_node(node)

	Selects a node.

It is called by the controller when it selects a node and can be
called from the outside to select a node directly. The derived widget
should overwrite this method and change the node state to selected
when called.

	Parameters:

	
	node
	The node to be selected.

	Returns:

	bool, True if the node was selected, False otherwise.

Warning

This method must be called by the derived widget using super if it
is overwritten.

	
class kivy.uix.recycleview.layout.RecycleLayoutManagerBehavior

	Bases: builtins.object

A RecycleLayoutManagerBehavior is responsible for positioning views into
the RecycleView.data within a RecycleView. It adds new
views into the data when it becomes visible to the user, and removes them
when they leave the visible area.

	
compute_visible_views(data, viewport)

	viewport is in coordinates of the layout manager.

	
get_view_index_at(pos)

	Return the view index on which position, pos, falls.

pos is in coordinates of the layout manager.

	
goto_view(index)

	Moves the views so that the view corresponding to index is
visible.

	
key_viewclass

	See RecyclerView.key_viewclass.

	
refresh_view_layout(index, layout, view, viewport)

	See :meth:`~kivy.uix.recycleview.views.RecycleDataAdapter.refresh_view_layout.

	
set_visible_views(indices, data, viewport)

	viewport is in coordinates of the layout manager.

	
viewclass

	See RecyclerView.viewclass.

RecycleView Views

New in version 1.10.0.

The adapter part of the RecycleView which together with the layout is the
view part of the model-view-controller pattern.

The view module handles converting the data to a view using the adapter class
which is then displayed by the layout. A view can be any Widget based class.
However, inheriting from RecycleDataViewBehavior adds methods for converting
the data to a view.

	TODO:
	
	Make view caches specific to each view class type.

	
class kivy.uix.recycleview.views.RecycleDataAdapter(**kwargs)

	Bases: kivy.event.EventDispatcher

The class that converts data to a view.

— Internal details —
A view can have 3 states.

	It can be completely in sync with the data, which
occurs when the view is displayed. These are stored in views.

	It can be dirty, which occurs when the view is in sync with the data,
except for the size/pos parameters which is controlled by the layout.
This occurs when the view is not currently displayed but the data has
not changed. These views are stored in dirty_views.

	Finally the view can be dead which occurs when the data changes and
the view was not updated or when a view is just created. Such views
are typically added to the internal cache.

Typically what happens is that the layout manager lays out the data
and then asks for views, using set_visible_views,() for some specific
data items that it displays.

These views are gotten from the current views, dirty or global cache. Then
depending on the view state refresh_view_attrs() is called to bring
the view up to date with the data (except for sizing parameters). Finally,
the layout manager gets these views, updates their size and displays them.

	
attach_recycleview(rv)

	Associates a RecycleViewBehavior
with this instance. It is stored in recycleview.

	
create_view(index, data_item, viewclass)

	(internal) Creates and initializes the view for the data at index.

The returned view is synced with the data, except for the pos/size
information.

	
detach_recycleview()

	Removes the RecycleViewBehavior
associated with this instance and clears recycleview.

	
get_view(index, data_item, viewclass)

	(internal) Returns a view instance for the data at index

It looks through the various caches and finally creates a view if it
doesn’t exist. The returned view is synced with the data, except for
the pos/size information.

If found in the cache it’s removed from the source
before returning. It doesn’t check the current views.

	
get_visible_view(index)

	Returns the currently visible view associated with index.

If no view is currently displayed for index it returns None.

	
invalidate()

	Moves all the current views into the global cache.

As opposed to making a view dirty where the view is in sync with the
data except for sizing information, this will completely disconnect the
view from the data, as it is assumed the data has gone out of sync with
the view.

This is typically called when the data changes.

	
make_view_dirty(view, index)

	(internal) Used to flag this view as dirty, ready to be used for
others. See make_views_dirty().

	
make_views_dirty()

	Makes all the current views dirty.

Dirty views are still in sync with the corresponding data. However, the
size information may go out of sync. Therefore a dirty view can be
reused by the same index by just updating the sizing information.

Once the underlying data of this index changes, the view should be
removed from the dirty views and moved to the global cache with
invalidate().

This is typically called when the layout manager needs to re-layout all
the data.

	
recycleview

	The RecycleViewBehavior associated
with this instance.

	
refresh_view_attrs(index, data_item, view)

	(internal) Syncs the view and brings it up to date with the data.

This method calls RecycleDataViewBehavior.refresh_view_attrs()
if the view inherits from RecycleDataViewBehavior. See that
method for more details.

Note

Any sizing and position info is skipped when syncing with the data.

	
refresh_view_layout(index, layout, view, viewport)

	Updates the sizing information of the view.

viewport is in coordinates of the layout manager.

This method calls RecycleDataViewBehavior.refresh_view_attrs()
if the view inherits from RecycleDataViewBehavior. See that
method for more details.

Note

Any sizing and position info is skipped when syncing with the data.

	
set_visible_views(indices, data, viewclasses)

	Gets a 3-tuple of the new, remaining, and old views for the current
viewport.

The new views are synced to the data except for the size/pos
properties.
The old views need to be removed from the layout, and the new views
added.

The new views are not necessarily new, but are all the currently
visible views.

	
class kivy.uix.recycleview.views.RecycleDataViewBehavior

	Bases: builtins.object

A optional base class for data views (RecycleView.viewclass).
If a view inherits from this class, the class’s functions will be called
when the view needs to be updated due to a data change or layout update.

	
refresh_view_attrs(rv, index, data)

	Called by the RecycleAdapter when the view is initially
populated with the values from the data dictionary for this item.

Any pos or size info should be removed because they are set
subsequently with refresh_view_layout.

	Parameters:

	
	rv: RecycleView instance
	The RecycleView that caused the update.

	data: dict
	The data dict used to populate this view.

	
refresh_view_layout(rv, index, layout, viewport)

	Called when the view’s size is updated by the layout manager,
RecycleLayoutManagerBehavior.

	Parameters:

	
	rv: RecycleView instance
	The RecycleView that caused the update.

	viewport: 4-tuple
	The coordinates of the bottom left and width height in layout
manager coordinates. This may be larger than this view item.

	Raises:

	LayoutChangeException: If the sizing or data changed during a
call to this method, raising a LayoutChangeException exception
will force a refresh. Useful when data changed and we don’t want
to layout further since it’ll be overwritten again soon.

	
class kivy.uix.recycleview.views.RecycleKVIDsDataViewBehavior

	Bases: kivy.uix.recycleview.views.RecycleDataViewBehavior

Similar to RecycleDataViewBehavior, except that the data keys
can signify properties of an object named with an id in the root KV rule.

E.g. given a KV rule:

<MyRule@RecycleKVIDsDataViewBehavior+BoxLayout>:
 Label:
 id: name
 Label:
 id: value

Then setting the data list with
rv.data = [{'name.text': 'Kivy user', 'value.text': '12'}] would
automatically set the corresponding labels.

So, if the key doesn’t have a period, the named property of the root widget
will be set to the corresponding value. If there is a period, the named
property of the widget with the id listed before the period will be set to
the corresponding value.

New in version 2.0.0.

	
refresh_view_attrs(rv, index, data)

	Called by the RecycleAdapter when the view is initially
populated with the values from the data dictionary for this item.

Any pos or size info should be removed because they are set
subsequently with refresh_view_layout.

	Parameters:

	
	rv: RecycleView instance
	The RecycleView that caused the update.

	data: dict
	The data dict used to populate this view.

Accordion

New in version 1.0.8.

[image: _images/accordion.jpg]
The Accordion widget is a form of menu where the options are stacked either
vertically or horizontally and the item in focus (when touched) opens up to
display its content.

The Accordion should contain one or many AccordionItem
instances, each of which should contain one root content widget. You’ll end up
with a Tree something like this:

	Accordion

	AccordionItem

	YourContent

	AccordionItem

	BoxLayout

	Another user content 1

	Another user content 2

	AccordionItem

	Another user content

The current implementation divides the AccordionItem into two parts:

	One container for the title bar

	One container for the content

The title bar is made from a Kv template. We’ll see how to create a new
template to customize the design of the title bar.

Warning

If you see message like:

[WARNING] [Accordion] not have enough space for displaying all children
[WARNING] [Accordion] need 440px, got 100px
[WARNING] [Accordion] layout aborted.

That means you have too many children and there is no more space to
display the content. This is “normal” and nothing will be done. Try to
increase the space for the accordion or reduce the number of children. You
can also reduce the Accordion.min_space.

Simple example

from kivy.uix.accordion import Accordion, AccordionItem
from kivy.uix.label import Label
from kivy.app import App

class AccordionApp(App):
 def build(self):
 root = Accordion()
 for x in range(5):
 item = AccordionItem(title='Title %d' % x)
 item.add_widget(Label(text='Very big content\n' * 10))
 root.add_widget(item)
 return root

if __name__ == '__main__':
 AccordionApp().run()

Customize the accordion

You can increase the default size of the title bar:

root = Accordion(min_space=60)

Or change the orientation to vertical:

root = Accordion(orientation='vertical')

The AccordionItem is more configurable and you can set your own title
background when the item is collapsed or opened:

item = AccordionItem(background_normal='image_when_collapsed.png',
 background_selected='image_when_selected.png')

	
class kivy.uix.accordion.Accordion(**kwargs)

	Bases: kivy.uix.widget.Widget

Accordion class. See module documentation for more information.

	
add_widget(widget, *args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
anim_duration

	Duration of the animation in seconds when a new accordion item is
selected.

anim_duration is a NumericProperty and
defaults to .25 (250ms).

	
anim_func

	Easing function to use for the animation. Check
kivy.animation.AnimationTransition for more information about
available animation functions.

anim_func is an ObjectProperty and
defaults to ‘out_expo’. You can set a string or a function to use as an
easing function.

	
min_space

	Minimum space to use for the title of each item. This value is
automatically set for each child every time the layout event occurs.

min_space is a NumericProperty and
defaults to 44 (px).

	
orientation

	Orientation of the layout.

orientation is an OptionProperty
and defaults to ‘horizontal’. Can take a value of ‘vertical’ or
‘horizontal’.

	
exception kivy.uix.accordion.AccordionException

	Bases: Exception

AccordionException class.

	
class kivy.uix.accordion.AccordionItem(**kwargs)

	Bases: kivy.uix.floatlayout.FloatLayout

AccordionItem class that must be used in conjunction with the
Accordion class. See the module documentation for more
information.

	
accordion

	Instance of the Accordion that the item belongs to.

accordion is an ObjectProperty and
defaults to None.

	
add_widget(*args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
background_disabled_normal

	Background image of the accordion item used for the default graphical
representation when the item is collapsed and disabled.

New in version 1.8.0.

background__disabled_normal is a
StringProperty and defaults to
‘atlas://data/images/defaulttheme/button_disabled’.

	
background_disabled_selected

	Background image of the accordion item used for the default graphical
representation when the item is selected (not collapsed) and disabled.

New in version 1.8.0.

background_disabled_selected is a
StringProperty and defaults to
‘atlas://data/images/defaulttheme/button_disabled_pressed’.

	
background_normal

	Background image of the accordion item used for the default graphical
representation when the item is collapsed.

background_normal is a StringProperty and
defaults to ‘atlas://data/images/defaulttheme/button’.

	
background_selected

	Background image of the accordion item used for the default graphical
representation when the item is selected (not collapsed).

background_normal is a StringProperty and
defaults to ‘atlas://data/images/defaulttheme/button_pressed’.

	
collapse

	Boolean to indicate if the current item is collapsed or not.

collapse is a BooleanProperty and
defaults to True.

	
collapse_alpha

	Value between 0 and 1 to indicate how much the item is collapsed (1) or
whether it is selected (0). It’s mostly used for animation.

collapse_alpha is a NumericProperty and
defaults to 1.

	
container

	(internal) Property that will be set to the container of children inside
the AccordionItem representation.

	
container_title

	(internal) Property that will be set to the container of title inside
the AccordionItem representation.

	
content_size

	(internal) Set by the Accordion to the size allocated for the
content.

	
min_space

	Link to the Accordion.min_space property.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
orientation

	Link to the Accordion.orientation property.

	
remove_widget(*args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
title

	Title string of the item. The title might be used in conjunction with the
AccordionItemTitle template. If you are using a custom template, you can
use that property as a text entry, or not. By default, it’s used for the
title text. See title_template and the example below.

title is a StringProperty and defaults
to ‘’.

	
title_args

	Default arguments that will be passed to the
kivy.lang.Builder.template() method.

title_args is a DictProperty and defaults
to {}.

	
title_template

	Template to use for creating the title part of the accordion item. The
default template is a simple Label, not customizable (except the text) that
supports vertical and horizontal orientation and different backgrounds for
collapse and selected mode.

It’s better to create and use your own template if the default template
does not suffice.

title is a StringProperty and defaults to
‘AccordionItemTitle’. The current default template lives in the
kivy/data/style.kv file.

Here is the code if you want to build your own template:

[AccordionItemTitle@Label]:
 text: ctx.title
 canvas.before:
 Color:
 rgb: 1, 1, 1
 BorderImage:
 source:
 ctx.item.background_normal if ctx.item.collapse else ctx.item.background_selected
 pos: self.pos
 size: self.size
 PushMatrix
 Translate:
 xy: self.center_x, self.center_y
 Rotate:
 angle: 90 if ctx.item.orientation == 'horizontal' else 0
 axis: 0, 0, 1
 Translate:
 xy: -self.center_x, -self.center_y
 canvas.after:
 PopMatrix

Action Bar

New in version 1.8.0.

[image: _images/actionbar.png]
The ActionBar widget is like Android’s ActionBar [http://developer.android.com/guide/topics/ui/actionbar.html], where items
are stacked horizontally. When the area becomes to small, widgets are moved
into the ActionOverflow area.

An ActionBar contains an ActionView with various
ContextualActionViews.
An ActionView will contain an ActionPrevious having title,
app_icon and previous_icon properties. An ActionView will contain
subclasses of ActionItems. Some predefined ones include
an ActionButton, an ActionToggleButton, an
ActionCheck, an ActionSeparator and an ActionGroup.

An ActionGroup is used to display ActionItems
in a group. An ActionView will always display an ActionGroup
after other ActionItems. An ActionView contains
an ActionOverflow, but this is only made visible when required i.e.
the available area is too small to fit all the widgets. A
ContextualActionView is a subclass of an:class:ActionView.

Changed in version 1.10.1: ActionGroup core rewritten from Spinner to pure
DropDown

	
class kivy.uix.actionbar.ActionBar(**kwargs)

	Bases: kivy.uix.boxlayout.BoxLayout

ActionBar class, which acts as the main container for an
ActionView instance. The ActionBar determines the overall
styling aspects of the bar. ActionItems are not added to
this class directly, but to the contained ActionView instance.

	Events:

	
	on_previous
	Fired when action_previous of action_view is pressed.

Please see the module documentation for more information.

	
action_view

	action_view of the ActionBar.

action_view is an ObjectProperty and
defaults to None or the last ActionView instance added to the ActionBar.

	
add_widget(widget, *args, **kwargs)

	
Changed in version 2.1.0: Renamed argument view to widget.

	
background_color

	Background color, in the format (r, g, b, a).

background_color is a ColorProperty and
defaults to [1, 1, 1, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
background_image

	Background image of the ActionBars default graphical representation.

background_image is a StringProperty
and defaults to ‘atlas://data/images/defaulttheme/action_bar’.

	
border

	The border to be applied to the background_image.

border is a ListProperty and defaults to
[2, 2, 2, 2]

	
exception kivy.uix.actionbar.ActionBarException

	Bases: Exception

ActionBarException class

	
class kivy.uix.actionbar.ActionButton(**kwargs)

	Bases: kivy.uix.button.Button, kivy.uix.actionbar.ActionItem

ActionButton class, see module documentation for more information.

The text color, width and size_hint_x are set manually via the Kv language
file. It covers a lot of cases: with/without an icon, with/without a group
and takes care of the padding between elements.

You don’t have much control over these properties, so if you want to
customize its appearance, we suggest you create you own button
representation. You can do this by creating a class that subclasses an
existing widget and an ActionItem:

class MyOwnActionButton(Button, ActionItem):
 pass

You can then create your own style using the Kv language.

	
icon

	Source image to use when the Button is part of the ActionBar. If the
Button is in a group, the text will be preferred.

icon is a StringProperty and defaults
to None.

	
class kivy.uix.actionbar.ActionCheck(**kwargs)

	Bases: kivy.uix.actionbar.ActionItem, kivy.uix.checkbox.CheckBox

ActionCheck class, see module documentation for more information.

	
class kivy.uix.actionbar.ActionDropDown(**kwargs)

	Bases: kivy.uix.dropdown.DropDown

ActionDropDown class, see module documentation for more information.

	
class kivy.uix.actionbar.ActionGroup(**kwargs)

	Bases: kivy.uix.actionbar.ActionItem, kivy.uix.button.Button

ActionGroup class, see module documentation for more information.

	
add_widget(widget, *args, **kwargs)

	
Changed in version 2.1.0: Renamed argument item to widget.

	
clear_widgets(*args, **kwargs)

	Remove all (or the specified) children of this widget.
If the ‘children’ argument is specified, it should be a list (or
filtered list) of children of the current widget.

Changed in version 1.8.0: The children argument can be used to specify the children you
want to remove.

Changed in version 2.1.0: Specifying an empty children list leaves the widgets unchanged.
Previously it was treated like None and all children were
removed.

	
dropdown_width

	If non zero, provides the width for the associated DropDown. This is
useful when some items in the ActionGroup’s DropDown are wider than usual
and you don’t want to make the ActionGroup widget itself wider.

dropdown_width is a NumericProperty
and defaults to 0.

New in version 1.10.0.

	
is_open

	By default, the DropDown is not open. Set to True to open it.

is_open is a BooleanProperty and
defaults to False.

	
mode

	Sets the current mode of an ActionGroup. If mode is ‘normal’, the
ActionGroups children will be displayed normally if there is enough
space, otherwise they will be displayed in a spinner. If mode is
‘spinner’, then the children will always be displayed in a spinner.

mode is an OptionProperty and defaults
to ‘normal’.

	
separator_image

	Background Image for an ActionSeparator in an ActionView.

separator_image is a StringProperty
and defaults to ‘atlas://data/images/defaulttheme/separator’.

	
separator_width

	Width of the ActionSeparator in an ActionView.

separator_width is a NumericProperty
and defaults to 0.

	
use_separator

	Specifies whether to use a separator after/before this group or not.

use_separator is a BooleanProperty and
defaults to False.

	
class kivy.uix.actionbar.ActionItem

	Bases: builtins.object

ActionItem class, an abstract class for all ActionBar widgets. To create a
custom widget for an ActionBar, inherit from this class. See module
documentation for more information.

	
background_down

	Background image of the ActionItem used for the default graphical
representation when an ActionItem is pressed.

background_down is a StringProperty
and defaults to ‘atlas://data/images/defaulttheme/action_item_down’.

	
background_normal

	Background image of the ActionItem used for the default graphical
representation when the ActionItem is not pressed.

background_normal is a StringProperty
and defaults to ‘atlas://data/images/defaulttheme/action_item’.

	
important

	Determines if an ActionItem is important or not. If an item is important
and space is limited, this item will be displayed in preference to others.

important is a BooleanProperty and
defaults to False.

	
inside_group

	(internal) Determines if an ActionItem is displayed inside an
ActionGroup or not.

inside_group is a BooleanProperty and
defaults to False.

	
minimum_width

	Minimum Width required by an ActionItem.

minimum_width is a NumericProperty and
defaults to ’90sp’.

	
mipmap

	Defines whether the image/icon dispayed on top of the button uses a
mipmap or not.

mipmap is a BooleanProperty and
defaults to True.

	
pack_width

	(read-only) The actual width to use when packing the items. Equal to the
greater of minimum_width and width.

pack_width is an AliasProperty.

	
class kivy.uix.actionbar.ActionOverflow(**kwargs)

	Bases: kivy.uix.actionbar.ActionGroup

ActionOverflow class, see module documentation for more information.

	
add_widget(widget, index=0, *args, **kwargs)

	
Changed in version 2.1.0: Renamed argument action_item to widget.

	
overflow_image

	Image to be used as an Overflow Image.

overflow_image is a StringProperty
and defaults to ‘atlas://data/images/defaulttheme/overflow’.

	
class kivy.uix.actionbar.ActionPrevious(**kwargs)

	Bases: kivy.uix.boxlayout.BoxLayout, kivy.uix.actionbar.ActionItem

ActionPrevious class, see module documentation for more information.

	
app_icon

	Application icon for the ActionView.

app_icon is a StringProperty
and defaults to the window icon if set, otherwise
‘data/logo/kivy-icon-32.png’.

	
app_icon_height

	Height of app_icon image.

app_icon_height is a NumericProperty
and defaults to 0.

	
app_icon_width

	Width of app_icon image.

app_icon_width is a NumericProperty and
defaults to 0.

	
color

	Text color, in the format (r, g, b, a)

color is a ColorProperty and defaults
to [1, 1, 1, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
markup

	If True, the text will be rendered using the
MarkupLabel: you can change the style of
the text using tags. Check the Text Markup
documentation for more information.

markup is a BooleanProperty and
defaults to False.

	
previous_image

	Image for the ‘previous’ ActionButtons default graphical representation.

previous_image is a StringProperty and
defaults to ‘atlas://data/images/defaulttheme/previous_normal’.

	
previous_image_height

	Height of previous_image image.

app_icon_width is a NumericProperty and
defaults to 0.

	
previous_image_width

	Width of previous_image image.

width is a NumericProperty and
defaults to 0.

	
title

	Title for ActionView.

title is a StringProperty and
defaults to ‘’.

	
with_previous

	Specifies whether the previous_icon will be shown or not. Note that it is
up to the user to implement the desired behavior using the on_press or
similar events.

with_previous is a BooleanProperty and
defaults to True.

	
class kivy.uix.actionbar.ActionSeparator(**kwargs)

	Bases: kivy.uix.actionbar.ActionItem, kivy.uix.widget.Widget

ActionSeparator class, see module documentation for more information.

	
background_image

	Background image for the separators default graphical representation.

background_image is a StringProperty
and defaults to ‘atlas://data/images/defaulttheme/separator’.

	
class kivy.uix.actionbar.ActionToggleButton(**kwargs)

	Bases: kivy.uix.actionbar.ActionItem, kivy.uix.togglebutton.ToggleButton

ActionToggleButton class, see module documentation for more information.

	
icon

	Source image to use when the Button is part of the ActionBar. If the
Button is in a group, the text will be preferred.

	
class kivy.uix.actionbar.ActionView(**kwargs)

	Bases: kivy.uix.boxlayout.BoxLayout

ActionView class, see module documentation for more information.

	
action_previous

	Previous button for an ActionView.

action_previous is an ObjectProperty
and defaults to None.

	
add_widget(widget, index=0, *args, **kwargs)

	
Changed in version 2.1.0: Renamed argument action_item to widget.

	
background_color

	Background color in the format (r, g, b, a).

background_color is a ColorProperty and
defaults to [1, 1, 1, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
background_image

	Background image of an ActionViews default graphical representation.

background_image is a StringProperty
and defaults to ‘atlas://data/images/defaulttheme/action_view’.

	
overflow_group

	Widget to be used for the overflow.

overflow_group is an ObjectProperty and
defaults to an instance of ActionOverflow.

	
remove_widget(widget, *args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
use_separator

	Specify whether to use a separator before every ActionGroup or not.

use_separator is a BooleanProperty and
defaults to False.

	
class kivy.uix.actionbar.ContextualActionView(**kwargs)

	Bases: kivy.uix.actionbar.ActionView

ContextualActionView class, see the module documentation for more
information.

Anchor Layout

[image: _images/anchorlayout.gif]
The AnchorLayout aligns its children to a border (top, bottom,
left, right) or center.

To draw a button in the lower-right corner:

layout = AnchorLayout(
 anchor_x='right', anchor_y='bottom')
btn = Button(text='Hello World')
layout.add_widget(btn)

	
class kivy.uix.anchorlayout.AnchorLayout(**kwargs)

	Bases: kivy.uix.layout.Layout

Anchor layout class. See the module documentation for more information.

	
anchor_x

	Horizontal anchor.

anchor_x is an OptionProperty and
defaults to ‘center’. It accepts values of ‘left’, ‘center’ or
‘right’.

	
anchor_y

	Vertical anchor.

anchor_y is an OptionProperty and
defaults to ‘center’. It accepts values of ‘top’, ‘center’ or
‘bottom’.

	
do_layout(*largs)

	This function is called when a layout is called by a trigger.
If you are writing a new Layout subclass, don’t call this function
directly but use _trigger_layout() instead.

The function is by default called before the next frame, therefore
the layout isn’t updated immediately. Anything depending on the
positions of e.g. children should be scheduled for the next frame.

New in version 1.0.8.

	
padding

	Padding between the widget box and its children, in pixels:
[padding_left, padding_top, padding_right, padding_bottom].

padding also accepts a two argument form [padding_horizontal,
padding_vertical] and a one argument form [padding].

padding is a VariableListProperty and
defaults to [0, 0, 0, 0].

Box Layout

[image: _images/boxlayout.gif]
BoxLayout arranges children in a vertical or horizontal box.

To position widgets above/below each other, use a vertical BoxLayout:

layout = BoxLayout(orientation='vertical')
btn1 = Button(text='Hello')
btn2 = Button(text='World')
layout.add_widget(btn1)
layout.add_widget(btn2)

To position widgets next to each other, use a horizontal BoxLayout. In this
example, we use 10 pixel spacing between children; the first button covers
70% of the horizontal space, the second covers 30%:

layout = BoxLayout(spacing=10)
btn1 = Button(text='Hello', size_hint=(.7, 1))
btn2 = Button(text='World', size_hint=(.3, 1))
layout.add_widget(btn1)
layout.add_widget(btn2)

Position hints are partially working, depending on the orientation:

	If the orientation is vertical: x, right and center_x will be used.

	If the orientation is horizontal: y, top and center_y will be used.

Kv Example:

BoxLayout:
 orientation: 'vertical'
 Label:
 text: 'this on top'
 Label:
 text: 'this right aligned'
 size_hint_x: None
 size: self.texture_size
 pos_hint: {'right': 1}
 Label:
 text: 'this on bottom'

You can check the examples/widgets/boxlayout_poshint.py for a live example.

Note

The size_hint uses the available space after subtracting all the
fixed-size widgets. For example, if you have a layout that is 800px
wide, and add three buttons like this:

btn1 = Button(text='Hello', size=(200, 100), size_hint=(None, None))
btn2 = Button(text='Kivy', size_hint=(.5, 1))
btn3 = Button(text='World', size_hint=(.5, 1))

The first button will be 200px wide as specified, the second and third
will be 300px each, e.g. (800-200) * 0.5

Changed in version 1.4.1: Added support for pos_hint.

	
class kivy.uix.boxlayout.BoxLayout(**kwargs)

	Bases: kivy.uix.layout.Layout

Box layout class. See module documentation for more information.

	
add_widget(widget, *args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
do_layout(*largs)

	This function is called when a layout is called by a trigger.
If you are writing a new Layout subclass, don’t call this function
directly but use _trigger_layout() instead.

The function is by default called before the next frame, therefore
the layout isn’t updated immediately. Anything depending on the
positions of e.g. children should be scheduled for the next frame.

New in version 1.0.8.

	
minimum_height

	Automatically computed minimum height needed to contain all children.

New in version 1.10.0.

minimum_height is a NumericProperty and
defaults to 0. It is read only.

	
minimum_size

	Automatically computed minimum size needed to contain all children.

New in version 1.10.0.

minimum_size is a
ReferenceListProperty of
(minimum_width, minimum_height) properties. It is read
only.

	
minimum_width

	Automatically computed minimum width needed to contain all children.

New in version 1.10.0.

minimum_width is a NumericProperty and
defaults to 0. It is read only.

	
orientation

	Orientation of the layout.

orientation is an OptionProperty and
defaults to ‘horizontal’. Can be ‘vertical’ or ‘horizontal’.

	
padding

	Padding between layout box and children: [padding_left, padding_top,
padding_right, padding_bottom].

padding also accepts a two argument form [padding_horizontal,
padding_vertical] and a one argument form [padding].

Changed in version 1.7.0: Replaced NumericProperty with VariableListProperty.

padding is a VariableListProperty and
defaults to [0, 0, 0, 0].

	
remove_widget(widget, *args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
spacing

	Spacing between children, in pixels.

spacing is a NumericProperty and defaults
to 0.

Bubble

New in version 1.1.0.

[image: _images/bubble.jpg]
The Bubble widget is a form of menu or a small popup with an arrow
arranged on one side of it’s content.

The Bubble contains an arrow attached to the content
(e.g., BubbleContent) pointing in the direction you choose. It can
be placed either at a predefined location or flexibly by specifying a relative
position on the border of the widget.

The BubbleContent is a styled BoxLayout and is thought to be added to
the Bubble as a child widget. The Bubble will then arrange
an arrow around the content as desired. Instead of the class:BubbleContent,
you can theoretically use any other Widget as well as long as it
supports the ‘bind’ and ‘unbind’ function of the EventDispatcher and
is compatible with Kivy to be placed inside a BoxLayout.

The BubbleButton`is a styled Button. It suits to the style of
:class:`Bubble and BubbleContent. Feel free to place other Widgets
inside the ‘content’ of the Bubble.

Changed in version 2.2.0.

The properties background_image, background_color,
border and border_auto_scale were removed from Bubble.
These properties had only been used by the content widget that now uses it’s
own properties instead. The color of the arrow is now changed with
arrow_color instead of background_color.
These changes makes the Bubble transparent to use with other layouts
as content without any side-effects due to property inheritance.

The property flex_arrow_pos has been added to allow further
customization of the arrow positioning.

The properties arrow_margin, arrow_margin_x,
arrow_margin_y, content_size, content_width and
content_height have been added to ease proper sizing of a
Bubble e.g., based on it’s content size.

BubbleContent

The BubbleContent is a styled BoxLayout that can be used to
add e.g., BubbleButtons as menu items.

Changed in version 2.2.0.

The properties background_image, background_color,
border and border_auto_scale were added to the
BubbleContent. The BubbleContent does no longer rely on these
properties being present in the parent class.

BubbleButton

The BubbleButton is a styled Button that can be used to be
added to the BubbleContent.

Simple example

'''
Bubble
======

Test of the widget Bubble.
'''

from kivy.app import App
from kivy.uix.floatlayout import FloatLayout
from kivy.uix.button import Button
from kivy.lang import Builder
from kivy.uix.bubble import Bubble

Builder.load_string('''
<cut_copy_paste>
 size_hint: (None, None)
 size: (160, 120)
 pos_hint: {'center_x': .5, 'y': .6}
 BubbleContent:
 BubbleButton:
 text: 'Cut'
 size_hint_y: 1
 BubbleButton:
 text: 'Copy'
 size_hint_y: 1
 BubbleButton:
 text: 'Paste'
 size_hint_y: 1
''')

class cut_copy_paste(Bubble):
 pass

class BubbleShowcase(FloatLayout):

 def __init__(self, **kwargs):
 super(BubbleShowcase, self).__init__(**kwargs)
 self.but_bubble = Button(text='Press to show bubble')
 self.but_bubble.bind(on_release=self.show_bubble)
 self.add_widget(self.but_bubble)

 def show_bubble(self, *l):
 if not hasattr(self, 'bubb'):
 self.bubb = bubb = cut_copy_paste()
 self.add_widget(bubb)
 else:
 values = ('left_top', 'left_mid', 'left_bottom', 'top_left',
 'top_mid', 'top_right', 'right_top', 'right_mid',
 'right_bottom', 'bottom_left', 'bottom_mid', 'bottom_right')
 index = values.index(self.bubb.arrow_pos)
 self.bubb.arrow_pos = values[(index + 1) % len(values)]

class TestBubbleApp(App):

 def build(self):
 return BubbleShowcase()

if __name__ == '__main__':
 TestBubbleApp().run()

Customize the Bubble

You can choose the direction in which the arrow points:

Bubble(arrow_pos='top_mid')
or
Bubble(size=(200, 40), flex_arrow_pos=(175, 40))

Similarly, the corresponding properties in the '.kv' language can be used
as well.

You can change the appearance of the bubble:

Bubble(
 arrow_image='/path/to/arrow/image',
 arrow_color=(1, 0, 0, .5)),
)
BubbleContent(
 background_image='/path/to/background/image',
 background_color=(1, 0, 0, .5), # 50% translucent red
 border=(0,0,0,0),
)

Similarly, the corresponding properties in the '.kv' language can be used
as well.

	
class kivy.uix.bubble.Bubble(**kwargs)

	Bases: kivy.uix.boxlayout.BoxLayout

Bubble class. See module documentation for more information.

	
add_widget(widget, *args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
arrow_color

	Arrow color, in the format (r, g, b, a). To use it you have to set
arrow_image first.

New in version 2.2.0.

arrow_color is a ColorProperty and
defaults to [1, 1, 1, 1].

	
arrow_image

	Image of the arrow pointing to the bubble.

arrow_image is a StringProperty and
defaults to ‘atlas://data/images/defaulttheme/bubble_arrow’.

	
arrow_margin

	Automatically computed margin that the arrow widget occupies in
x and y direction in pixel.

Check the description of arrow_margin_x and arrow_margin_y.

New in version 2.2.0.

arrow_margin is a ReferenceListProperty
of (arrow_margin_x, arrow_margin_y) properties.
It is read only.

	
arrow_margin_x

	Automatically computed margin in x direction that the arrow widget
occupies in pixel.

In combination with the content_width, this property can be used
to determine the correct width of the Bubble to exactly enclose the
arrow + content by adding content_width and arrow_margin_x

New in version 2.2.0.

arrow_margin_x is a NumericProperty and
represents the added margin in x direction due to the arrow widget.
It defaults to 0 and is read only.

	
arrow_margin_y

	Automatically computed margin in y direction that the arrow widget
occupies in pixel.

In combination with the content_height, this property can be used
to determine the correct height of the Bubble to exactly enclose the
arrow + content by adding content_height and arrow_margin_y

New in version 2.2.0.

arrow_margin_y is a NumericProperty and
represents the added margin in y direction due to the arrow widget.
It defaults to 0 and is read only.

	
arrow_pos

	Specifies the position of the arrow as predefined relative position to
the bubble.
Can be one of: left_top, left_mid, left_bottom top_left, top_mid, top_right
right_top, right_mid, right_bottom bottom_left, bottom_mid, bottom_right.

arrow_pos is a OptionProperty and
defaults to ‘bottom_mid’.

	
content

	This is the object where the main content of the bubble is held.

The content of the Bubble set by ‘add_widget’ and removed with
‘remove_widget’ similarly to the ActionView which is placed into
a class:ActionBar

content is a ObjectProperty and defaults
to None.

	
content_height

	The height of the content Widget.

New in version 2.2.0.

content_height is a NumericProperty and
is the same as self.content.height if content is not None, else it defaults
to 0. It is read only.

	
content_size

	The size of the content Widget.

New in version 2.2.0.

content_size is a ReferenceListProperty
of (content_width, content_height) properties.
It is read only.

	
content_width

	The width of the content Widget.

New in version 2.2.0.

content_width is a NumericProperty and
is the same as self.content.width if content is not None, else it defaults
to 0. It is read only.

	
flex_arrow_pos

	Specifies the position of the arrow as flex coordinate around the
border of the Bubble Widget.
If this property is set to a proper position (relative pixel coordinates
within the Bubble widget, it overwrites the setting
arrow_pos.

New in version 2.2.0.

flex_arrow_pos is a ListProperty and
defaults to None.

	
limit_to

	Specifies the widget to which the bubbles position is restricted.

New in version 1.6.0.

limit_to is a ObjectProperty and defaults
to ‘None’.

	
remove_widget(widget, *args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
show_arrow

	Indicates whether to show arrow.

New in version 1.8.0.

show_arrow is a BooleanProperty and
defaults to True.

	
class kivy.uix.bubble.BubbleButton(**kwargs)

	Bases: kivy.uix.button.Button

A button intended for use in a BubbleContent widget.
You can use a “normal” button class, but it will not look good unless the
background is changed.

Rather use this BubbleButton widget that is already defined and provides a
suitable background for you.

	
class kivy.uix.bubble.BubbleContent(**kwargs)

	Bases: kivy.uix.boxlayout.BoxLayout

A styled BoxLayout that can be used as the content widget of a Bubble.

Changed in version 2.2.0.

The graphical appearance of BubbleContent is now based on it’s
own properties background_image, background_color,
border and border_auto_scale. The parent widget properties
are no longer considered. This makes the BubbleContent a standalone themed
BoxLayout.

	
background_color

	Background color, in the format (r, g, b, a). To use it you have to set
background_image first.

New in version 2.2.0.

background_color is a ColorProperty and
defaults to [1, 1, 1, 1].

	
background_image

	Background image of the bubble.

New in version 2.2.0.

background_image is a StringProperty and
defaults to ‘atlas://data/images/defaulttheme/bubble’.

	
border

	Border used for BorderImage
graphics instruction. Used with the background_image.
It should be used when using custom backgrounds.

It must be a list of 4 values: (bottom, right, top, left). Read the
BorderImage instructions for more information about how to use it.

New in version 2.2.0.

border is a ListProperty and defaults to
(16, 16, 16, 16)

	
border_auto_scale

	Specifies the kivy.graphics.BorderImage.auto_scale
value on the background BorderImage.

New in version 2.2.0.

border_auto_scale is a
OptionProperty and defaults to
‘both_lower’.

Button

[image: _images/button.jpg]
The Button is a Label with associated actions
that are triggered when the button is pressed (or released after a
click/touch). To configure the button, the same properties (padding,
font_size, etc) and
sizing system
are used as for the Label class:

button = Button(text='Hello world', font_size=14)

To attach a callback when the button is pressed (clicked/touched), use
bind:

def callback(instance):
 print('The button <%s> is being pressed' % instance.text)

btn1 = Button(text='Hello world 1')
btn1.bind(on_press=callback)
btn2 = Button(text='Hello world 2')
btn2.bind(on_press=callback)

If you want to be notified every time the button state changes, you can bind
to the Button.state property:

def callback(instance, value):
 print('My button <%s> state is <%s>' % (instance, value))
btn1 = Button(text='Hello world 1')
btn1.bind(state=callback)

Kv Example:

Button:
 text: 'press me'
 on_press: print("ouch! More gently please")
 on_release: print("ahhh")
 on_state:
 print("my current state is {}".format(self.state))

	
class kivy.uix.button.Button(**kwargs)

	Bases: kivy.uix.behaviors.button.ButtonBehavior, kivy.uix.label.Label

Button class, see module documentation for more information.

Changed in version 1.8.0: The behavior / logic of the button has been moved to
ButtonBehaviors.

	
background_color

	Background color, in the format (r, g, b, a).

This acts as a multiplier to the texture colour. The default
texture is grey, so just setting the background color will give
a darker result. To set a plain color, set the
background_normal to ''.

New in version 1.0.8.

The background_color is a
ColorProperty and defaults to [1, 1, 1, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
background_disabled_down

	Background image of the button used for the default graphical
representation when the button is disabled and pressed.

New in version 1.8.0.

background_disabled_down is a
StringProperty and defaults to
‘atlas://data/images/defaulttheme/button_disabled_pressed’.

	
background_disabled_normal

	Background image of the button used for the default graphical
representation when the button is disabled and not pressed.

New in version 1.8.0.

background_disabled_normal is a
StringProperty and defaults to
‘atlas://data/images/defaulttheme/button_disabled’.

	
background_down

	Background image of the button used for the default graphical
representation when the button is pressed.

New in version 1.0.4.

background_down is a StringProperty and
defaults to ‘atlas://data/images/defaulttheme/button_pressed’.

	
background_normal

	Background image of the button used for the default graphical
representation when the button is not pressed.

New in version 1.0.4.

background_normal is a StringProperty
and defaults to ‘atlas://data/images/defaulttheme/button’.

	
border

	Border used for BorderImage
graphics instruction. Used with background_normal and
background_down. Can be used for custom backgrounds.

It must be a list of four values: (bottom, right, top, left). Read the
BorderImage instruction for more information about how to use it.

border is a ListProperty and defaults to
(16, 16, 16, 16)

Camera

The Camera widget is used to capture and display video from a camera.
Once the widget is created, the texture inside the widget will be automatically
updated. Our CameraBase implementation is used under
the hood:

cam = Camera()

By default, the first camera found on your system is used. To use a different
camera, set the index property:

cam = Camera(index=1)

You can also select the camera resolution:

cam = Camera(resolution=(320, 240))

Warning

The camera texture is not updated as soon as you have created the object.
The camera initialization is asynchronous, so there may be a delay before
the requested texture is created.

	
class kivy.uix.camera.Camera(**kwargs)

	Bases: kivy.uix.image.Image

Camera class. See module documentation for more information.

	
index

	Index of the used camera, starting from 0.

index is a NumericProperty and defaults
to -1 to allow auto selection.

	
play

	Boolean indicating whether the camera is playing or not.
You can start/stop the camera by setting this property:

start the camera playing at creation
cam = Camera(play=True)

create the camera, and start later (default)
cam = Camera(play=False)
and later
cam.play = True

play is a BooleanProperty and defaults to
False.

	
resolution

	Preferred resolution to use when invoking the camera. If you are using
[-1, -1], the resolution will be the default one:

create a camera object with the best image available
cam = Camera()

create a camera object with an image of 320x240 if possible
cam = Camera(resolution=(320, 240))

Warning

Depending on the implementation, the camera may not respect this
property.

resolution is a ListProperty and defaults
to [-1, -1].

Carousel

[image: _images/carousel.gif]

New in version 1.4.0.

The Carousel widget provides the classic mobile-friendly carousel view
where you can swipe between slides.
You can add any content to the carousel and have it move horizontally or
vertically. The carousel can display pages in a sequence or a loop.

Example:

from kivy.app import App
from kivy.uix.carousel import Carousel
from kivy.uix.image import AsyncImage

class CarouselApp(App):
 def build(self):
 carousel = Carousel(direction='right')
 for i in range(10):
 src = "http://placehold.it/480x270.png&text=slide-%d&.png" % i
 image = AsyncImage(source=src, fit_mode="contain")
 carousel.add_widget(image)
 return carousel

CarouselApp().run()

Kv Example:

Carousel:
 direction: 'right'
 AsyncImage:
 source: 'http://placehold.it/480x270.png&text=slide-1.png'
 AsyncImage:
 source: 'http://placehold.it/480x270.png&text=slide-2.png'
 AsyncImage:
 source: 'http://placehold.it/480x270.png&text=slide-3.png'
 AsyncImage:
 source: 'http://placehold.it/480x270.png&text=slide-4.png'

Changed in version 1.5.0: The carousel now supports active children, like the
ScrollView. It will detect a swipe gesture
according to the Carousel.scroll_timeout and
Carousel.scroll_distance properties.

In addition, the slide container is no longer exposed by the API.
The impacted properties are
Carousel.slides, Carousel.current_slide,
Carousel.previous_slide and Carousel.next_slide.

	
class kivy.uix.carousel.Carousel(**kwargs)

	Bases: kivy.uix.stencilview.StencilView

Carousel class. See module documentation for more information.

	
add_widget(widget, index=0, *args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
anim_cancel_duration

	Defines the duration of the animation when a swipe movement is not
accepted. This is generally when the user does not make a large enough
swipe. See min_move.

anim_cancel_duration is a NumericProperty
and defaults to 0.3.

	
anim_move_duration

	Defines the duration of the Carousel animation between pages.

anim_move_duration is a NumericProperty
and defaults to 0.5.

	
anim_type

	Type of animation to use while animating to the next/previous slide.
This should be the name of an
AnimationTransition function.

anim_type is a StringProperty and
defaults to ‘out_quad’.

New in version 1.8.0.

	
clear_widgets(children=None, *args, **kwargs)

	Remove all (or the specified) children of this widget.
If the ‘children’ argument is specified, it should be a list (or
filtered list) of children of the current widget.

Changed in version 1.8.0: The children argument can be used to specify the children you
want to remove.

Changed in version 2.1.0: Specifying an empty children list leaves the widgets unchanged.
Previously it was treated like None and all children were
removed.

	
current_slide

	The currently shown slide.

current_slide is an AliasProperty.

Changed in version 1.5.0: The property no longer exposes the slides container. It returns
the widget you have added.

	
direction

	Specifies the direction in which the slides are ordered. This
corresponds to the direction from which the user swipes to go from one
slide to the next. It
can be right, left, top, or bottom. For example, with
the default value of right, the second slide is to the right
of the first and the user would swipe from the right towards the
left to get to the second slide.

direction is an OptionProperty and
defaults to ‘right’.

	
ignore_perpendicular_swipes

	Ignore swipes on axis perpendicular to direction.

ignore_perpendicular_swipes is a
BooleanProperty and defaults to False.

New in version 1.10.0.

	
index

	Get/Set the current slide based on the index.

index is an AliasProperty and defaults
to 0 (the first item).

	
load_next(mode='next')

	Animate to the next slide.

New in version 1.7.0.

	
load_previous()

	Animate to the previous slide.

New in version 1.7.0.

	
load_slide(slide)

	Animate to the slide that is passed as the argument.

Changed in version 1.8.0.

	
loop

	Allow the Carousel to loop infinitely. If True, when the user tries to
swipe beyond last page, it will return to the first. If False, it will
remain on the last page.

loop is a BooleanProperty and
defaults to False.

	
min_move

	Defines the minimum distance to be covered before the touch is
considered a swipe gesture and the Carousel content changed.
This is a expressed as a fraction of the Carousel’s width.
If the movement doesn’t reach this minimum value, the movement is
cancelled and the content is restored to its original position.

min_move is a NumericProperty and
defaults to 0.2.

	
next_slide

	The next slide in the Carousel. It is None if the current slide is
the last slide in the Carousel. This ordering reflects the order in which
the slides are added: their presentation varies according to the
direction property.

next_slide is an AliasProperty.

Changed in version 1.5.0: The property no longer exposes the slides container.
It returns the widget you have added.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_move(touch)

	Receive a touch move event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
previous_slide

	The previous slide in the Carousel. It is None if the current slide is
the first slide in the Carousel. This ordering reflects the order in which
the slides are added: their presentation varies according to the
direction property.

previous_slide is an AliasProperty.

Changed in version 1.5.0: This property no longer exposes the slides container. It returns
the widget you have added.

	
remove_widget(widget, *args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
scroll_distance

	Distance to move before scrolling the Carousel in pixels. As
soon as the distance has been traveled, the Carousel will start
to scroll, and no touch event will go to children.
It is advisable that you base this value on the dpi of your target device’s
screen.

scroll_distance is a NumericProperty and
defaults to 20dp.

New in version 1.5.0.

	
scroll_timeout

	Timeout allowed to trigger the scroll_distance, in milliseconds.
If the user has not moved scroll_distance within the timeout,
no scrolling will occur and the touch event will go to the children.

scroll_timeout is a NumericProperty and
defaults to 200 (milliseconds)

New in version 1.5.0.

	
slides

	List of slides inside the Carousel. The slides are the
widgets added to the Carousel using the add_widget method.

slides is a ListProperty and is
read-only.

CheckBox

New in version 1.4.0.

[image: _images/checkbox.png]
CheckBox is a specific two-state button that can be either checked or
unchecked. If the CheckBox is in a Group, it becomes a Radio button.
As with the ToggleButton, only one Radio button
at a time can be selected when the CheckBox.group is set.

An example usage:

from kivy.uix.checkbox import CheckBox

...

def on_checkbox_active(checkbox, value):
 if value:
 print('The checkbox', checkbox, 'is active')
 else:
 print('The checkbox', checkbox, 'is inactive')

checkbox = CheckBox()
checkbox.bind(active=on_checkbox_active)

	
class kivy.uix.checkbox.CheckBox(**kwargs)

	Bases: kivy.uix.behaviors.togglebutton.ToggleButtonBehavior, kivy.uix.widget.Widget

CheckBox class, see module documentation for more information.

	
active

	Indicates if the switch is active or inactive.

active is a boolean and reflects and sets whether the underlying
state is ‘down’ (True) or ‘normal’ (False).
It is a AliasProperty, which accepts boolean
values and defaults to False.

Changed in version 1.11.0: It changed from a BooleanProperty to a AliasProperty.

	
background_checkbox_disabled_down

	Background image of the checkbox used for the default graphical
representation when the checkbox is disabled and active.

New in version 1.9.0.

background_checkbox_disabled_down is a
StringProperty and defaults to
‘atlas://data/images/defaulttheme/checkbox_disabled_on’.

	
background_checkbox_disabled_normal

	Background image of the checkbox used for the default graphical
representation when the checkbox is disabled and not active.

New in version 1.9.0.

background_checkbox_disabled_normal is a
StringProperty and defaults to
‘atlas://data/images/defaulttheme/checkbox_disabled_off’.

	
background_checkbox_down

	Background image of the checkbox used for the default graphical
representation when the checkbox is active.

New in version 1.9.0.

background_checkbox_down is a
StringProperty and defaults to
‘atlas://data/images/defaulttheme/checkbox_on’.

	
background_checkbox_normal

	Background image of the checkbox used for the default graphical
representation when the checkbox is not active.

New in version 1.9.0.

background_checkbox_normal is a
StringProperty and defaults to
‘atlas://data/images/defaulttheme/checkbox_off’.

	
background_radio_disabled_down

	Background image of the radio button used for the default graphical
representation when the radio button is disabled and active.

New in version 1.9.0.

background_radio_disabled_down is a
StringProperty and defaults to
‘atlas://data/images/defaulttheme/checkbox_radio_disabled_on’.

	
background_radio_disabled_normal

	Background image of the radio button used for the default graphical
representation when the radio button is disabled and not active.

New in version 1.9.0.

background_radio_disabled_normal is a
StringProperty and defaults to
‘atlas://data/images/defaulttheme/checkbox_radio_disabled_off’.

	
background_radio_down

	Background image of the radio button used for the default graphical
representation when the radio button is active.

New in version 1.9.0.

background_radio_down is a
StringProperty and defaults to
‘atlas://data/images/defaulttheme/checkbox_radio_on’.

	
background_radio_normal

	Background image of the radio button used for the default graphical
representation when the radio button is not active.

New in version 1.9.0.

background_radio_normal is a
StringProperty and defaults to
‘atlas://data/images/defaulttheme/checkbox_radio_off’.

	
color

	Color is used for tinting the default graphical representation
of checkbox and radio button (images).

Color is in the format (r, g, b, a).

New in version 1.10.0.

color is a
ColorProperty and defaults to
‘[1, 1, 1, 1]’.

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

Code Input

New in version 1.5.0.

[image: _images/codeinput.jpg]

Note

This widget requires pygments package to run. Install it with pip.

The CodeInput provides a box of editable highlighted text like the one
shown in the image.

It supports all the features provided by the textinput as
well as code highlighting for languages supported by pygments [http://pygments.org/docs/lexers/] along with KivyLexer for
kivy.lang highlighting.

Usage example

To create a CodeInput with highlighting for KV language:

from kivy.uix.codeinput import CodeInput
from kivy.extras.highlight import KivyLexer
codeinput = CodeInput(lexer=KivyLexer())

To create a CodeInput with highlighting for Cython:

from kivy.uix.codeinput import CodeInput
from pygments.lexers import CythonLexer
codeinput = CodeInput(lexer=CythonLexer())

	
class kivy.uix.codeinput.CodeInput(**kwargs)

	Bases: kivy.uix.behaviors.codenavigation.CodeNavigationBehavior, kivy.uix.textinput.TextInput

CodeInput class, used for displaying highlighted code.

	
lexer

	This holds the selected Lexer used by pygments to highlight the code.

lexer is an ObjectProperty and
defaults to PythonLexer.

	
style

	The pygments style object to use for formatting.

When style_name is set, this will be changed to the
corresponding style object.

style is a ObjectProperty and
defaults to None

	
style_name

	Name of the pygments style to use for formatting.

style_name is an OptionProperty
and defaults to 'default'.

Color Picker

New in version 1.7.0.

Warning

This widget is experimental. Its use and API can change at any time until
this warning is removed.

[image: _images/colorpicker.png]
The ColorPicker widget allows a user to select a color from a chromatic
wheel where pinch and zoom can be used to change the wheel’s saturation.
Sliders and TextInputs are also provided for entering the RGBA/HSV/HEX values
directly.

Usage:

clr_picker = ColorPicker()
parent.add_widget(clr_picker)

To monitor changes, we can bind to color property changes
def on_color(instance, value):
 print("RGBA = ", str(value)) # or instance.color
 print("HSV = ", str(instance.hsv))
 print("HEX = ", str(instance.hex_color))

clr_picker.bind(color=on_color)

	
class kivy.uix.colorpicker.ColorPicker(**kwargs)

	Bases: kivy.uix.relativelayout.RelativeLayout

See module documentation.

	
color

	The color holds the color currently selected in rgba format.

color is a ListProperty and defaults to
(1, 1, 1, 1).

	
font_name

	Specifies the font used on the ColorPicker.

font_name is a StringProperty and
defaults to ‘data/fonts/RobotoMono-Regular.ttf’.

	
hex_color

	The hex_color holds the currently selected color in hex.

hex_color is an AliasProperty and
defaults to #ffffffff.

	
hsv

	The hsv holds the color currently selected in hsv format.

hsv is a ListProperty and defaults to
(1, 1, 1).

	
wheel

	The wheel holds the color wheel.

wheel is an ObjectProperty and
defaults to None.

	
class kivy.uix.colorpicker.ColorWheel(**kwargs)

	Bases: kivy.uix.widget.Widget

Chromatic wheel for the ColorPicker.

Changed in version 1.7.1: font_size, font_name and foreground_color have been removed. The
sizing is now the same as others widget, based on ‘sp’. Orientation is
also automatically determined according to the width/height ratio.

	
a

	The Alpha value of the color currently selected.

a is a BoundedNumericProperty and
can be a value from 0 to 1.

	
b

	The Blue value of the color currently selected.

b is a BoundedNumericProperty and
can be a value from 0 to 1.

	
color

	The holds the color currently selected.

color is a ReferenceListProperty and
contains a list of r, g, b, a values.

	
g

	The Green value of the color currently selected.

g is a BoundedNumericProperty
and can be a value from 0 to 1.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_move(touch)

	Receive a touch move event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
r

	The Red value of the color currently selected.

r is a BoundedNumericProperty and
can be a value from 0 to 1. It defaults to 0.

Drop-Down List

[image: _images/dropdown.gif]

New in version 1.4.0.

A versatile drop-down list that can be used with custom widgets. It allows you
to display a list of widgets under a displayed widget. Unlike other toolkits,
the list of widgets can contain any type of widget: simple buttons,
images etc.

The positioning of the drop-down list is fully automatic: we will always try to
place the dropdown list in a way that the user can select an item in the list.

Basic example

A button with a dropdown list of 10 possible values. All the buttons within the
dropdown list will trigger the dropdown DropDown.select() method. After
being called, the main button text will display the selection of the
dropdown.

from kivy.uix.dropdown import DropDown
from kivy.uix.button import Button
from kivy.base import runTouchApp

create a dropdown with 10 buttons
dropdown = DropDown()
for index in range(10):
 # When adding widgets, we need to specify the height manually
 # (disabling the size_hint_y) so the dropdown can calculate
 # the area it needs.

 btn = Button(text='Value %d' % index, size_hint_y=None, height=44)

 # for each button, attach a callback that will call the select() method
 # on the dropdown. We'll pass the text of the button as the data of the
 # selection.
 btn.bind(on_release=lambda btn: dropdown.select(btn.text))

 # then add the button inside the dropdown
 dropdown.add_widget(btn)

create a big main button
mainbutton = Button(text='Hello', size_hint=(None, None))

show the dropdown menu when the main button is released
note: all the bind() calls pass the instance of the caller (here, the
mainbutton instance) as the first argument of the callback (here,
dropdown.open.).
mainbutton.bind(on_release=dropdown.open)

one last thing, listen for the selection in the dropdown list and
assign the data to the button text.
dropdown.bind(on_select=lambda instance, x: setattr(mainbutton, 'text', x))

runTouchApp(mainbutton)

Extending dropdown in Kv

You could create a dropdown directly from your kv:

#:kivy 1.4.0
<CustomDropDown>:
 Button:
 text: 'My first Item'
 size_hint_y: None
 height: 44
 on_release: root.select('item1')
 Label:
 text: 'Unselectable item'
 size_hint_y: None
 height: 44
 Button:
 text: 'My second Item'
 size_hint_y: None
 height: 44
 on_release: root.select('item2')

And then, create the associated python class and use it:

class CustomDropDown(DropDown):
 pass

dropdown = CustomDropDown()
mainbutton = Button(text='Hello', size_hint=(None, None))
mainbutton.bind(on_release=dropdown.open)
dropdown.bind(on_select=lambda instance, x: setattr(mainbutton, 'text', x))

	
class kivy.uix.dropdown.DropDown(**kwargs)

	Bases: kivy.uix.scrollview.ScrollView

DropDown class. See module documentation for more information.

	Events:

	
	on_select: data
	Fired when a selection is done. The data of the selection is passed
in as the first argument and is what you pass in the select()
method as the first argument.

	on_dismiss:
	
New in version 1.8.0.

Fired when the DropDown is dismissed, either on selection or on
touching outside the widget.

	
add_widget(*args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
attach_to

	(internal) Property that will be set to the widget to which the
drop down list is attached.

The open() method will automatically set this property whilst
dismiss() will set it back to None.

	
auto_dismiss

	By default, the dropdown will be automatically dismissed when a
touch happens outside of it, this option allows to disable this
feature

auto_dismiss is a BooleanProperty
and defaults to True.

New in version 1.8.0.

	
auto_width

	By default, the width of the dropdown will be the same as the width of
the attached widget. Set to False if you want to provide your own width.

auto_width is a BooleanProperty
and defaults to True.

	
clear_widgets(*args, **kwargs)

	Remove all (or the specified) children of this widget.
If the ‘children’ argument is specified, it should be a list (or
filtered list) of children of the current widget.

Changed in version 1.8.0: The children argument can be used to specify the children you
want to remove.

Changed in version 2.1.0: Specifying an empty children list leaves the widgets unchanged.
Previously it was treated like None and all children were
removed.

	
container

	(internal) Property that will be set to the container of the dropdown
list. It is a GridLayout by default.

	
dismiss(*largs)

	Remove the dropdown widget from the window and detach it from
the attached widget.

	
dismiss_on_select

	By default, the dropdown will be automatically dismissed when a
selection has been done. Set to False to prevent the dismiss.

dismiss_on_select is a BooleanProperty
and defaults to True.

	
max_height

	Indicate the maximum height that the dropdown can take. If None, it will
take the maximum height available until the top or bottom of the screen
is reached.

max_height is a NumericProperty and
defaults to None.

	
min_state_time

	Minimum time before the DropDown is dismissed.
This is used to allow for the widget inside the dropdown to display
a down state or for the DropDown itself to
display a animation for closing.

min_state_time is a NumericProperty
and defaults to the Config value min_state_time.

New in version 1.10.0.

	
on_motion(etype, me)

	Called when a motion event is received.

	Parameters:

	
	etype: str
	Event type, one of “begin”, “update” or “end”

	me: MotionEvent
	Received motion event

	Returns:

	bool
True to stop event dispatching

New in version 2.1.0.

Warning

This is an experimental method and it remains so while this warning
is present.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_move(touch)

	Receive a touch move event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
open(widget)

	Open the dropdown list and attach it to a specific widget.
Depending on the position of the widget within the window and
the height of the dropdown, the dropdown might be above or below
that widget.

	
remove_widget(*args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
select(data)

	Call this method to trigger the on_select event with the data
selection. The data can be anything you want.

EffectWidget

New in version 1.9.0.

The EffectWidget is able to apply a variety of fancy
graphical effects to
its children. It works by rendering to a series of
Fbo instances with custom opengl fragment shaders.
As such, effects can freely do almost anything, from inverting the
colors of the widget, to anti-aliasing, to emulating the appearance of a
crt monitor!

Warning

This code is still experimental, and its API is subject to change in a
future version.

The basic usage is as follows:

w = EffectWidget()
w.add_widget(Button(text='Hello!')
w.effects = [InvertEffect(), HorizontalBlurEffect(size=2.0)]

The equivalent in kv would be:

#: import ew kivy.uix.effectwidget
EffectWidget:
 effects: ew.InvertEffect(), ew.HorizontalBlurEffect(size=2.0)
 Button:
 text: 'Hello!'

The effects can be a list of effects of any length, and they will be
applied sequentially.

The module comes with a range of prebuilt effects, but the interface
is designed to make it easy to create your own. Instead of writing a
full glsl shader, you provide a single function that takes
some inputs based on the screen (current pixel color, current widget
texture etc.). See the sections below for more information.

Usage Guidelines

It is not efficient to resize an EffectWidget, as
the Fbo is recreated on each resize event.
If you need to resize frequently, consider doing things a different
way.

Although some effects have adjustable parameters, it is
not efficient to animate these, as the entire
shader is reconstructed every time. You should use glsl
uniform variables instead. The AdvancedEffectBase
may make this easier.

Note

The EffectWidget cannot draw outside its own
widget area (pos -> pos + size). Any child widgets
overlapping the boundary will be cut off at this point.

Provided Effects

The module comes with several pre-written effects. Some have
adjustable properties (e.g. blur radius). Please see the individual
effect documentation for more details.

	MonochromeEffect - makes the widget grayscale.

	InvertEffect - inverts the widget colors.

	ChannelMixEffect - swaps color channels.

	ScanlinesEffect - displays flickering scanlines.

	PixelateEffect - pixelates the image.

	HorizontalBlurEffect - Gaussuan blurs horizontally.

	VerticalBlurEffect - Gaussuan blurs vertically.

	FXAAEffect - applies a very basic anti-aliasing.

Creating Effects

Effects are designed to make it easy to create and use your own
transformations. You do this by creating and using an instance of
EffectBase with your own custom EffectBase.glsl
property.

The glsl property is a string representing part of a glsl fragment
shader. You can include as many functions as you like (the string
is simply spliced into the whole shader), but it
must implement a function effect as below:

vec4 effect(vec4 color, sampler2D texture, vec2 tex_coords, vec2 coords)
{
 // ... your code here
 return something; // must be a vec4 representing the new color
}

The full shader will calculate the normal pixel color at each point,
then call your effect function to transform it. The
parameters are:

	color: The normal color of the current pixel (i.e. texture
sampled at tex_coords).

	texture: The texture containing the widget’s normal background.

	tex_coords: The normal texture_coords used to access texture.

	coords: The pixel indices of the current pixel.

The shader code also has access to two useful uniform variables,
time containing the time (in seconds) since the program start,
and resolution containing the shape (x pixels, y pixels) of
the widget.

For instance, the following simple string (taken from the InvertEffect)
would invert the input color but set alpha to 1.0:

vec4 effect(vec4 color, sampler2D texture, vec2 tex_coords, vec2 coords)
{
 return vec4(1.0 - color.xyz, 1.0);
}

You can also set the glsl by automatically loading the string from a
file, simply set the EffectBase.source property of an effect.

	
class kivy.uix.effectwidget.AdvancedEffectBase(*args, **kwargs)

	Bases: kivy.uix.effectwidget.EffectBase

An EffectBase with additional behavior to easily
set and update uniform variables in your shader.

This class is provided for convenience when implementing your own
effects: it is not used by any of those provided with Kivy.

In addition to your base glsl string that must be provided as
normal, the AdvancedEffectBase has an extra property
uniforms, a dictionary of name-value pairs. Whenever
a value is changed, the new value for the uniform variable is
uploaded to the shader.

You must still manually declare your uniform variables at the top
of your glsl string.

	
set_fbo_shader(*args)

	Sets the Fbo’s shader by splicing
the glsl string into a full fragment shader.

The full shader is made up of shader_header +
shader_uniforms + self.glsl + shader_footer_effect.

	
uniforms

	A dictionary of uniform variable names and their values. These
are automatically uploaded to the fbo shader if appropriate.

uniforms is a DictProperty and
defaults to {}.

	
class kivy.uix.effectwidget.ChannelMixEffect(*args, **kwargs)

	Bases: kivy.uix.effectwidget.EffectBase

Mixes the color channels of the input according to the order
property. Channels may be arbitrarily rearranged or repeated.

	
order

	The new sorted order of the rgb channels.

order is a ListProperty and defaults to
[1, 2, 0], corresponding to (g, b, r).

	
class kivy.uix.effectwidget.EffectBase(*args, **kwargs)

	Bases: kivy.event.EventDispatcher

The base class for GLSL effects. It simply returns its input.

See the module documentation for more details.

	
fbo

	The fbo currently using this effect. The EffectBase
automatically handles this.

fbo is an ObjectProperty and
defaults to None.

	
glsl

	The glsl string defining your effect function. See the
module documentation for more details.

glsl is a StringProperty and
defaults to
a trivial effect that returns its input.

	
set_fbo_shader(*args)

	Sets the Fbo’s shader by splicing
the glsl string into a full fragment shader.

The full shader is made up of shader_header +
shader_uniforms + self.glsl + shader_footer_effect.

	
source

	The (optional) filename from which to load the glsl
string.

source is a StringProperty and
defaults to ‘’.

	
class kivy.uix.effectwidget.EffectWidget(**kwargs)

	Bases: kivy.uix.relativelayout.RelativeLayout

Widget with the ability to apply a series of graphical effects to
its children. See the module documentation for more information on
setting effects and creating your own.

	
add_widget(*args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
background_color

	This defines the background color to be used for the fbo in the
EffectWidget.

background_color is a ListProperty defaults to
(0, 0, 0, 0)

	
clear_widgets(*args, **kwargs)

	Remove all (or the specified) children of this widget.
If the ‘children’ argument is specified, it should be a list (or
filtered list) of children of the current widget.

Changed in version 1.8.0: The children argument can be used to specify the children you
want to remove.

Changed in version 2.1.0: Specifying an empty children list leaves the widgets unchanged.
Previously it was treated like None and all children were
removed.

	
effects

	List of all the effects to be applied. These should all be
instances or subclasses of EffectBase.

effects is a ListProperty and defaults to [].

	
fbo_list

	(internal) List of all the fbos that are being used to apply
the effects.

fbo_list is a ListProperty and defaults to [].

	
refresh_fbo_setup(*args)

	(internal) Creates and assigns one Fbo
per effect, and makes sure all sizes etc. are correct and
consistent.

	
remove_widget(*args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
texture

	The output texture of the final Fbo after
all effects have been applied.

texture is an ObjectProperty and defaults
to None.

	
class kivy.uix.effectwidget.FXAAEffect(*args, **kwargs)

	Bases: kivy.uix.effectwidget.EffectBase

Applies very simple anti-aliasing via fxaa.

	
class kivy.uix.effectwidget.HorizontalBlurEffect(*args, **kwargs)

	Bases: kivy.uix.effectwidget.EffectBase

Blurs the input horizontally, with the width given by
size.

	
size

	The blur width in pixels.

size is a NumericProperty and defaults to
4.0.

	
class kivy.uix.effectwidget.InvertEffect(*args, **kwargs)

	Bases: kivy.uix.effectwidget.EffectBase

Inverts the colors in the input.

	
class kivy.uix.effectwidget.MonochromeEffect(*args, **kwargs)

	Bases: kivy.uix.effectwidget.EffectBase

Returns its input colors in monochrome.

	
class kivy.uix.effectwidget.PixelateEffect(*args, **kwargs)

	Bases: kivy.uix.effectwidget.EffectBase

Pixelates the input according to its
pixel_size

	
pixel_size

	Sets the size of a new ‘pixel’ in the effect, in terms of number of
‘real’ pixels.

pixel_size is a NumericProperty and
defaults to 10.

	
class kivy.uix.effectwidget.ScanlinesEffect(*args, **kwargs)

	Bases: kivy.uix.effectwidget.EffectBase

Adds scanlines to the input.

	
class kivy.uix.effectwidget.VerticalBlurEffect(*args, **kwargs)

	Bases: kivy.uix.effectwidget.EffectBase

Blurs the input vertically, with the width given by
size.

	
size

	The blur width in pixels.

size is a NumericProperty and defaults to
4.0.

FileChooser

The FileChooser module provides various classes for describing, displaying and
browsing file systems.

Simple widgets

There are two ready-to-use widgets that provide views of the file system. Each
of these present the files and folders in a different style.

The FileChooserListView displays file entries as text items in a
vertical list, where folders can be collapsed and expanded.

[image: _images/filechooser_list.png]
The FileChooserIconView presents icons and text from left to right,
wrapping them as required.

[image: _images/filechooser_icon.png]
They both provide for scrolling, selection and basic user interaction.
Please refer to the FileChooserController for details on supported
events and properties.

Widget composition

FileChooser classes adopt a
MVC [https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller]
design. They are exposed so that you to extend and customize your file chooser
according to your needs.

The FileChooser classes can be categorized as follows:

	Models are represented by concrete implementations of the
FileSystemAbstract class, such as the FileSystemLocal.

	Views are represented by the FileChooserListLayout and
FileChooserIconLayout classes. These are used by the
FileChooserListView and FileChooserIconView widgets
respectively.

	Controllers are represented by concrete implementations of the
FileChooserController, namely the FileChooser,
FileChooserIconView and FileChooserListView classes.

This means you can define your own views or provide FileSystemAbstract
implementations for alternative file systems for use with these widgets.
The FileChooser can be used as a controller for handling multiple,
synchronized views of the same path. By combining these elements, you can add
your own views and file systems and have them easily interact with the existing
components.

Usage example

main.py

from kivy.app import App
from kivy.uix.floatlayout import FloatLayout
from kivy.factory import Factory
from kivy.properties import ObjectProperty
from kivy.uix.popup import Popup

import os

class LoadDialog(FloatLayout):
 load = ObjectProperty(None)
 cancel = ObjectProperty(None)

class SaveDialog(FloatLayout):
 save = ObjectProperty(None)
 text_input = ObjectProperty(None)
 cancel = ObjectProperty(None)

class Root(FloatLayout):
 loadfile = ObjectProperty(None)
 savefile = ObjectProperty(None)
 text_input = ObjectProperty(None)

 def dismiss_popup(self):
 self._popup.dismiss()

 def show_load(self):
 content = LoadDialog(load=self.load, cancel=self.dismiss_popup)
 self._popup = Popup(title="Load file", content=content,
 size_hint=(0.9, 0.9))
 self._popup.open()

 def show_save(self):
 content = SaveDialog(save=self.save, cancel=self.dismiss_popup)
 self._popup = Popup(title="Save file", content=content,
 size_hint=(0.9, 0.9))
 self._popup.open()

 def load(self, path, filename):
 with open(os.path.join(path, filename[0])) as stream:
 self.text_input.text = stream.read()

 self.dismiss_popup()

 def save(self, path, filename):
 with open(os.path.join(path, filename), 'w') as stream:
 stream.write(self.text_input.text)

 self.dismiss_popup()

class Editor(App):
 pass

Factory.register('Root', cls=Root)
Factory.register('LoadDialog', cls=LoadDialog)
Factory.register('SaveDialog', cls=SaveDialog)

if __name__ == '__main__':
 Editor().run()

editor.kv

#:kivy 1.1.0

Root:
 text_input: text_input

 BoxLayout:
 orientation: 'vertical'
 BoxLayout:
 size_hint_y: None
 height: 30
 Button:
 text: 'Load'
 on_release: root.show_load()
 Button:
 text: 'Save'
 on_release: root.show_save()

 BoxLayout:
 TextInput:
 id: text_input
 text: ''

 RstDocument:
 text: text_input.text
 show_errors: True

<LoadDialog>:
 BoxLayout:
 size: root.size
 pos: root.pos
 orientation: "vertical"
 FileChooserListView:
 id: filechooser

 BoxLayout:
 size_hint_y: None
 height: 30
 Button:
 text: "Cancel"
 on_release: root.cancel()

 Button:
 text: "Load"
 on_release: root.load(filechooser.path, filechooser.selection)

<SaveDialog>:
 text_input: text_input
 BoxLayout:
 size: root.size
 pos: root.pos
 orientation: "vertical"
 FileChooserListView:
 id: filechooser
 on_selection: text_input.text = self.selection and self.selection[0] or ''

 TextInput:
 id: text_input
 size_hint_y: None
 height: 30
 multiline: False

 BoxLayout:
 size_hint_y: None
 height: 30
 Button:
 text: "Cancel"
 on_release: root.cancel()

 Button:
 text: "Save"
 on_release: root.save(filechooser.path, text_input.text)

New in version 1.0.5.

Changed in version 1.2.0: In the chooser template, the controller is no longer a direct reference
but a weak-reference. If you are upgrading, you should change the notation
root.controller.xxx to root.controller().xxx.

	
class kivy.uix.filechooser.FileChooser(**kwargs)

	Bases: kivy.uix.filechooser.FileChooserController

Implementation of a FileChooserController which supports
switching between multiple, synced layout views.

The FileChooser can be used as follows:

BoxLayout:
 orientation: 'vertical'

 BoxLayout:
 size_hint_y: None
 height: sp(52)

 Button:
 text: 'Icon View'
 on_press: fc.view_mode = 'icon'
 Button:
 text: 'List View'
 on_press: fc.view_mode = 'list'

 FileChooser:
 id: fc
 FileChooserIconLayout
 FileChooserListLayout

New in version 1.9.0.

	
add_widget(widget, *args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
manager

	Reference to the ScreenManager instance.

manager is an ObjectProperty.

	
view_list

	List of views added to this FileChooser.

view_list is an AliasProperty of type
list.

	
view_mode

	Current layout view mode.

view_mode is an AliasProperty of type
str.

	
class kivy.uix.filechooser.FileChooserController(**kwargs)

	Bases: kivy.uix.relativelayout.RelativeLayout

Base for implementing a FileChooser. Don’t use this class directly, but
prefer using an implementation such as the FileChooser,
FileChooserListView or FileChooserIconView.

	Events:

	
	on_entry_added: entry, parent
	Fired when a root-level entry is added to the file list. If you
return True from this event, the entry is not added to FileChooser.

	on_entries_cleared
	Fired when the the entries list is cleared, usually when the
root is refreshed.

	on_subentry_to_entry: entry, parent
	Fired when a sub-entry is added to an existing entry or
when entries are removed from an entry e.g. when
a node is closed.

	on_submit: selection, touch
	Fired when a file has been selected with a double-tap.

	
cancel(*largs)

	Cancel any background action started by filechooser, such as loading
a new directory.

New in version 1.2.0.

	
dirselect

	Determines whether directories are valid selections or not.

dirselect is a BooleanProperty and defaults to
False.

New in version 1.1.0.

	
entry_released(entry, touch)

	(internal) This method must be called by the template when an entry
is touched by the user.

New in version 1.1.0.

	
entry_touched(entry, touch)

	(internal) This method must be called by the template when an entry
is touched by the user.

	
file_encodings

	Possible encodings for decoding a filename to unicode. In the case that
the user has a non-ascii filename, undecodable without knowing its
initial encoding, we have no other choice than to guess it.

Please note that if you encounter an issue because of a missing encoding
here, we’ll be glad to add it to this list.

file_encodings is a ListProperty and defaults to
[‘utf-8’, ‘latin1’, ‘cp1252’].

New in version 1.3.0.

Deprecated since version 1.8.0: This property is no longer used as the filechooser no longer decodes
the file names.

	
file_system

	The file system object used to access the file system. This should be a
subclass of FileSystemAbstract.

file_system is an ObjectProperty and defaults to
FileSystemLocal()

New in version 1.8.0.

	
files

	The list of files in the directory specified by path after applying the
filters.

files is a read-only ListProperty.

	
filter_dirs

	Indicates whether filters should also apply to directories.
filter_dirs is a BooleanProperty and defaults to
False.

	
filters

	filters specifies the filters to be applied to the files in the directory.
filters is a ListProperty and defaults to [].
This is equivalent to ‘*’ i.e. nothing is filtered.

The filters are not reset when the path changes. You need to do that
yourself if desired.

There are two kinds of filters: patterns and callbacks.

	Patterns

e.g. [’*.png’].
You can use the following patterns:

	Pattern

	Meaning

	*

	matches everything

	?

	matches any single character

	[seq]

	matches any character in seq

	[!seq]

	matches any character not in seq

	Callbacks

You can specify a function that will be called for each file. The
callback will be passed the folder and file name as the first
and second parameters respectively. It should return True to
indicate a match and False otherwise.

Changed in version 1.4.0: Added the option to specify the filter as a callback.

	
font_name

	Filename of the font to use in UI components. The path can be
absolute or relative. Relative paths are resolved by the
resource_find() function.

font_name is a StringProperty and
defaults to ‘Roboto’. This value is taken
from Config.

	
get_nice_size(fn)

	Pass the filepath. Returns the size in the best human readable
format or ‘’ if it is a directory (Don’t recursively calculate size).

	
layout

	Reference to the layout widget instance.

layout is an ObjectProperty.

New in version 1.9.0.

	
multiselect

	Determines whether the user is able to select multiple files or not.

multiselect is a BooleanProperty and defaults to
False.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
path

	path is a StringProperty and defaults to the
current working directory as a unicode string. It specifies the path on the
filesystem that this controller should refer to.

Warning

If a unicode path is specified, all the files returned will be in
unicode, allowing the display of unicode files and paths. If a bytes
path is specified, only files and paths with ascii names will be
displayed properly: non-ascii filenames will be displayed and listed
with questions marks (?) instead of their unicode characters.

	
progress_cls

	Class to use for displaying a progress indicator for filechooser
loading.

progress_cls is an ObjectProperty and defaults to
FileChooserProgress.

New in version 1.2.0.

Changed in version 1.8.0: If set to a string, the Factory will be used to
resolve the class name.

	
rootpath

	Root path to use instead of the system root path. If set, it will not show
a “..” directory to go up to the root path. For example, if you set
rootpath to /users/foo, the user will be unable to go to /users or to any
other directory not starting with /users/foo.

rootpath is a StringProperty and defaults
to None.

New in version 1.2.0.

Note

Similarly to path, whether rootpath is specified as
bytes or a unicode string determines the type of the filenames and
paths read.

	
selection

	Contains the list of files that are currently selected.

selection is a read-only ListProperty and
defaults to [].

	
show_hidden

	Determines whether hidden files and folders should be shown.

show_hidden is a BooleanProperty and defaults to
False.

	
sort_func

	Provides a function to be called with a list of filenames as the first
argument and the filesystem implementation as the second argument. It
returns a list of filenames sorted for display in the view.

sort_func is an ObjectProperty and defaults to a
function returning alphanumerically named folders first.

Changed in version 1.8.0: The signature needs now 2 arguments: first the list of files,
second the filesystem class to use.

	
class kivy.uix.filechooser.FileChooserIconLayout(**kwargs)

	Bases: kivy.uix.filechooser.FileChooserLayout

File chooser layout using an icon view.

New in version 1.9.0.

	
class kivy.uix.filechooser.FileChooserIconView(**kwargs)

	Bases: kivy.uix.filechooser.FileChooserController

Implementation of a FileChooserController using an icon view.

New in version 1.9.0.

	
class kivy.uix.filechooser.FileChooserListLayout(**kwargs)

	Bases: kivy.uix.filechooser.FileChooserLayout

File chooser layout using a list view.

New in version 1.9.0.

	
class kivy.uix.filechooser.FileChooserListView(**kwargs)

	Bases: kivy.uix.filechooser.FileChooserController

Implementation of a FileChooserController using a list view.

New in version 1.9.0.

	
class kivy.uix.filechooser.FileChooserProgressBase(**kwargs)

	Bases: kivy.uix.floatlayout.FloatLayout

Base for implementing a progress view. This view is used when too many
entries need to be created and are delayed over multiple frames.

New in version 1.2.0.

	
cancel(*largs)

	Cancel any action from the FileChooserController.

	
index

	Current index of total entries to be loaded.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_move(touch)

	Receive a touch move event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
path

	Current path of the FileChooser, read-only.

	
total

	Total number of entries to load.

	
class kivy.uix.filechooser.FileSystemAbstract

	Bases: builtins.object

Class for implementing a File System view that can be used with the
FileChooser.

New in version 1.8.0.

	
getsize(fn)

	Return the size in bytes of a file

	
is_dir(fn)

	Return True if the argument passed to this method is a directory

	
is_hidden(fn)

	Return True if the file is hidden

	
listdir(fn)

	Return the list of files in the directory fn

	
class kivy.uix.filechooser.FileSystemLocal

	Bases: kivy.uix.filechooser.FileSystemAbstract

Implementation of FileSystemAbstract for local files.

New in version 1.8.0.

	
getsize(fn)

	Return the size in bytes of a file

	
is_dir(fn)

	Return True if the argument passed to this method is a directory

	
is_hidden(fn)

	Return True if the file is hidden

	
listdir(fn)

	Return the list of files in the directory fn

Float Layout

FloatLayout honors the pos_hint
and the size_hint properties of its children.

[image: _images/floatlayout.gif]
For example, a FloatLayout with a size of (300, 300) is created:

layout = FloatLayout(size=(300, 300))

By default, all widgets have their size_hint=(1, 1), so this button will adopt
the same size as the layout:

button = Button(text='Hello world')
layout.add_widget(button)

To create a button 50% of the width and 25% of the height of the layout and
positioned at (20, 20), you can do:

button = Button(
 text='Hello world',
 size_hint=(.5, .25),
 pos=(20, 20))

If you want to create a button that will always be the size of layout minus
20% on each side:

button = Button(text='Hello world', size_hint=(.6, .6),
 pos_hint={'x':.2, 'y':.2})

Note

This layout can be used for an application. Most of the time, you will
use the size of Window.

Warning

If you are not using pos_hint, you must handle the positioning of the
children: if the float layout is moving, you must handle moving the
children too.

	
class kivy.uix.floatlayout.FloatLayout(**kwargs)

	Bases: kivy.uix.layout.Layout

Float layout class. See module documentation for more information.

	
add_widget(widget, *args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
do_layout(*largs, **kwargs)

	This function is called when a layout is called by a trigger.
If you are writing a new Layout subclass, don’t call this function
directly but use _trigger_layout() instead.

The function is by default called before the next frame, therefore
the layout isn’t updated immediately. Anything depending on the
positions of e.g. children should be scheduled for the next frame.

New in version 1.0.8.

	
remove_widget(widget, *args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

Gesture Surface

New in version 1.9.0.

Warning

This is experimental and subject to change as long as this warning notice
is present.

See kivy/examples/demo/multistroke/main.py for a complete application
example.

	
class kivy.uix.gesturesurface.GestureContainer(touch, **kwargs)

	Bases: kivy.event.EventDispatcher

Container object that stores information about a gesture. It has
various properties that are updated by GestureSurface as drawing
progresses.

	Arguments:

	
	touch
	Touch object (as received by on_touch_down) used to initialize
the gesture container. Required.

	Properties:

	
	active
	Set to False once the gesture is complete (meets
max_stroke setting or GestureSurface.temporal_window)

active is a
BooleanProperty

	active_strokes
	Number of strokes currently active in the gesture, ie
concurrent touches associated with this gesture.

active_strokes is a
NumericProperty

	max_strokes
	Max number of strokes allowed in the gesture. This
is set by GestureSurface.max_strokes but can
be overridden for example from on_gesture_start.

max_strokes is a
NumericProperty

	was_merged
	Indicates that this gesture has been merged with another
gesture and should be considered discarded.

was_merged is a
BooleanProperty

	bbox
	Dictionary with keys minx, miny, maxx, maxy. Represents the size
of the gesture bounding box.

bbox is a
DictProperty

	width
	Represents the width of the gesture.

width is a
NumericProperty

	height
	Represents the height of the gesture.

height is a
NumericProperty

	
accept_stroke(count=1)

	Returns True if this container can accept count new strokes

	
add_stroke(touch, line)

	Associate a list of points with a touch.uid; the line itself is
created by the caller, but subsequent move/up events look it
up via us. This is done to avoid problems during merge.

	
complete_stroke()

	Called on touch up events to keep track of how many strokes
are active in the gesture (we only want to dispatch event when
the last stroke in the gesture is released)

	
get_vectors(**kwargs)

	Return strokes in a format that is acceptable for
kivy.multistroke.Recognizer as a gesture candidate or template. The
result is cached automatically; the cache is invalidated at the start
and end of a stroke and if update_bbox is called. If you are going
to analyze a gesture mid-stroke, you may need to set the no_cache
argument to True.

	
handles(touch)

	Returns True if this container handles the given touch

	
single_points_test()

	Returns True if the gesture consists only of single-point strokes,
we must discard it in this case, or an exception will be raised

	
update_bbox(touch)

	Update gesture bbox from a touch coordinate

	
class kivy.uix.gesturesurface.GestureSurface(**kwargs)

	Bases: kivy.uix.floatlayout.FloatLayout

Simple gesture surface to track/draw touch movements. Typically used
to gather user input suitable for kivy.multistroke.Recognizer.

	Properties:

	
	temporal_window
	Time to wait from the last touch_up event before attempting
to recognize the gesture. If you set this to 0, the
on_gesture_complete event is not fired unless the
max_strokes condition is met.

temporal_window is a
NumericProperty and defaults to 2.0

	max_strokes
	Max number of strokes in a single gesture; if this is reached,
recognition will start immediately on the final touch_up event.
If this is set to 0, the on_gesture_complete event is not
fired unless the temporal_window expires.

max_strokes is a
NumericProperty and defaults to 2.0

	bbox_margin
	Bounding box margin for detecting gesture collisions, in
pixels.

bbox_margin is a
NumericProperty and defaults to 30

	draw_timeout
	Number of seconds to keep lines/bbox on canvas after the
on_gesture_complete event is fired. If this is set to 0,
gestures are immediately removed from the surface when
complete.

draw_timeout is a
NumericProperty and defaults to 3.0

	color
	Color used to draw the gesture, in RGB. This option does not
have an effect if use_random_color is True.

color is a
ColorProperty and defaults to
[1, 1, 1, 1] (white)

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	use_random_color
	Set to True to pick a random color for each gesture, if you do
this then color is ignored. Defaults to False.

use_random_color is a
BooleanProperty and defaults to False

	line_width
	Line width used for tracing touches on the surface. Set to 0
if you only want to detect gestures without drawing anything.
If you use 1.0, OpenGL GL_LINE is used for drawing; values > 1
will use an internal drawing method based on triangles (less
efficient), see kivy.graphics.

line_width is a
NumericProperty and defaults to 2

	draw_bbox
	Set to True if you want to draw bounding box behind gestures.
This only works if line_width >= 1. Default is False.

draw_bbox is a
BooleanProperty and defaults to True

	bbox_alpha
	Opacity for bounding box if draw_bbox is True. Default 0.1

bbox_alpha is a
NumericProperty and defaults to 0.1

	Events:

	
	on_gesture_start GestureContainer
	Fired when a new gesture is initiated on the surface, i.e. the
first on_touch_down that does not collide with an existing
gesture on the surface.

	on_gesture_extend GestureContainer
	Fired when a touch_down event occurs within an existing gesture.

	on_gesture_merge GestureContainer, GestureContainer
	Fired when two gestures collide and get merged to one gesture.
The first argument is the gesture that has been merged (no longer
valid); the second is the combined (resulting) gesture.

	on_gesture_complete GestureContainer
	Fired when a set of strokes is considered a complete gesture,
this happens when temporal_window expires or max_strokes
is reached. Typically you will bind to this event and use
the provided GestureContainer get_vectors() method to
match against your gesture database.

	on_gesture_cleanup GestureContainer
	Fired draw_timeout seconds after on_gesture_complete,
The gesture will be removed from the canvas (if line_width > 0 or
draw_bbox is True) and the internal gesture list before this.

	on_gesture_discard GestureContainer
	Fired when a gesture does not meet the minimum size requirements
for recognition (width/height < 5, or consists only of single-
point strokes).

	
find_colliding_gesture(touch)

	Checks if a touch x/y collides with the bounding box of an existing
gesture. If so, return it (otherwise returns None)

	
get_gesture(touch)

	Returns GestureContainer associated with given touch

	
init_gesture(touch)

	Create a new gesture from touch, i.e. it’s the first on
surface, or was not close enough to any existing gesture (yet)

	
merge_gestures(g, other)

	Merges two gestures together, the oldest one is retained and the
newer one gets the GestureContainer.was_merged flag raised.

	
on_touch_down(touch)

	When a new touch is registered, the first thing we do is to test if
it collides with the bounding box of another known gesture. If so, it
is assumed to be part of that gesture.

	
on_touch_move(touch)

	When a touch moves, we add a point to the line on the canvas so the
path is updated. We must also check if the new point collides with the
bounding box of another gesture - if so, they should be merged.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

Grid Layout

[image: _images/gridlayout.gif]

New in version 1.0.4.

The GridLayout arranges children in a matrix. It takes the available
space and divides it into columns and rows, then adds widgets to the resulting
“cells”.

Changed in version 1.0.7: The implementation has changed to use the widget size_hint for calculating
column/row sizes. uniform_width and uniform_height have been removed
and other properties have added to give you more control.

Background

Unlike many other toolkits, you cannot explicitly place a widget in a specific
column/row. Each child is automatically assigned a position determined by the
layout configuration and the child’s index in the children list.

A GridLayout must always have at least one input constraint:
GridLayout.cols or GridLayout.rows. If you do not specify cols
or rows, the Layout will throw an exception.

Column Width and Row Height

The column width/row height are determined in 3 steps:

	The initial size is given by the col_default_width and
row_default_height properties. To customize the size of a single
column or row, use cols_minimum or rows_minimum.

	The size_hint_x/size_hint_y of the children are taken into account.
If no widgets have a size hint, the maximum size is used for all
children.

	You can force the default size by setting the col_force_default
or row_force_default property. This will force the layout to
ignore the width and size_hint properties of children and use the
default size.

Using a GridLayout

In the example below, all widgets will have an equal size. By default, the
size_hint is (1, 1), so a Widget will take the full size of the parent:

layout = GridLayout(cols=2)
layout.add_widget(Button(text='Hello 1'))
layout.add_widget(Button(text='World 1'))
layout.add_widget(Button(text='Hello 2'))
layout.add_widget(Button(text='World 2'))

[image: _images/gridlayout_1.jpg]
Now, let’s fix the size of Hello buttons to 100px instead of using
size_hint_x=1:

layout = GridLayout(cols=2)
layout.add_widget(Button(text='Hello 1', size_hint_x=None, width=100))
layout.add_widget(Button(text='World 1'))
layout.add_widget(Button(text='Hello 2', size_hint_x=None, width=100))
layout.add_widget(Button(text='World 2'))

[image: _images/gridlayout_2.jpg]
Next, let’s fix the row height to a specific size:

layout = GridLayout(cols=2, row_force_default=True, row_default_height=40)
layout.add_widget(Button(text='Hello 1', size_hint_x=None, width=100))
layout.add_widget(Button(text='World 1'))
layout.add_widget(Button(text='Hello 2', size_hint_x=None, width=100))
layout.add_widget(Button(text='World 2'))

[image: _images/gridlayout_3.jpg]

	
class kivy.uix.gridlayout.GridLayout(**kwargs)

	Bases: kivy.uix.layout.Layout

Grid layout class. See module documentation for more information.

	
col_default_width

	Default minimum size to use for a column.

New in version 1.0.7.

col_default_width is a NumericProperty
and defaults to 0.

	
col_force_default

	If True, ignore the width and size_hint_x of the child and use the
default column width.

New in version 1.0.7.

col_force_default is a BooleanProperty
and defaults to False.

	
cols

	Number of columns in the grid.

Changed in version 1.0.8: Changed from a NumericProperty to BoundedNumericProperty. You can no
longer set this to a negative value.

cols is a NumericProperty and defaults to
None.

	
cols_minimum

	Dict of minimum width for each column. The dictionary keys are the
column numbers, e.g. 0, 1, 2…

New in version 1.0.7.

cols_minimum is a DictProperty and
defaults to {}.

	
do_layout(*largs)

	This function is called when a layout is called by a trigger.
If you are writing a new Layout subclass, don’t call this function
directly but use _trigger_layout() instead.

The function is by default called before the next frame, therefore
the layout isn’t updated immediately. Anything depending on the
positions of e.g. children should be scheduled for the next frame.

New in version 1.0.8.

	
minimum_height

	Automatically computed minimum height needed to contain all children.

New in version 1.0.8.

minimum_height is a NumericProperty and
defaults to 0. It is read only.

	
minimum_size

	Automatically computed minimum size needed to contain all children.

New in version 1.0.8.

minimum_size is a
ReferenceListProperty of
(minimum_width, minimum_height) properties. It is read
only.

	
minimum_width

	Automatically computed minimum width needed to contain all children.

New in version 1.0.8.

minimum_width is a NumericProperty and
defaults to 0. It is read only.

	
orientation

	Orientation of the layout.

orientation is an OptionProperty and
defaults to ‘lr-tb’.

Valid orientations are ‘lr-tb’, ‘tb-lr’, ‘rl-tb’, ‘tb-rl’, ‘lr-bt’,
‘bt-lr’, ‘rl-bt’ and ‘bt-rl’.

New in version 2.0.0.

Note

‘lr’ means Left to Right.
‘rl’ means Right to Left.
‘tb’ means Top to Bottom.
‘bt’ means Bottom to Top.

	
padding

	Padding between the layout box and its children: [padding_left,
padding_top, padding_right, padding_bottom].

padding also accepts a two argument form [padding_horizontal,
padding_vertical] and a one argument form [padding].

Changed in version 1.7.0: Replaced NumericProperty with VariableListProperty.

padding is a VariableListProperty and
defaults to [0, 0, 0, 0].

	
row_default_height

	Default minimum size to use for row.

New in version 1.0.7.

row_default_height is a NumericProperty
and defaults to 0.

	
row_force_default

	If True, ignore the height and size_hint_y of the child and use the
default row height.

New in version 1.0.7.

row_force_default is a BooleanProperty
and defaults to False.

	
rows

	Number of rows in the grid.

Changed in version 1.0.8: Changed from a NumericProperty to a BoundedNumericProperty. You can no
longer set this to a negative value.

rows is a NumericProperty and defaults to
None.

	
rows_minimum

	Dict of minimum height for each row. The dictionary keys are the
row numbers, e.g. 0, 1, 2…

New in version 1.0.7.

rows_minimum is a DictProperty and
defaults to {}.

	
spacing

	Spacing between children: [spacing_horizontal, spacing_vertical].

spacing also accepts a one argument form [spacing].

spacing is a
VariableListProperty and defaults to [0, 0].

	
exception kivy.uix.gridlayout.GridLayoutException

	Bases: Exception

Exception for errors if the grid layout manipulation fails.

Image

The Image widget is used to display an image:

Example in python:

wimg = Image(source='mylogo.png')

Kv Example:

Image:
 source: 'mylogo.png'
 size: self.texture_size

Asynchronous Loading

To load an image asynchronously (for example from an external webserver), use
the AsyncImage subclass:

aimg = AsyncImage(source='http://mywebsite.com/logo.png')

This can be useful as it prevents your application from waiting until the image
is loaded. If you want to display large images or retrieve them from URL’s,
using AsyncImage will allow these resources to be retrieved on a
background thread without blocking your application.

Alignment

By default, the image is centered inside the widget bounding box.

Adjustment

To control how the image should be adjusted to fit inside the widget box, you
should use the fit_mode property. Available
options include:

	"scale-down": maintains aspect ratio without stretching.

	"fill": stretches to fill widget, may cause distortion.

	"contain": maintains aspect ratio and resizes to fit inside widget.

	"cover": maintains aspect ratio and stretches to fill widget, may clip

image.

For more details, refer to the fit_mode.

You can also inherit from Image and create your own style. For example, if you
want your image to be greater than the size of your widget, you could do:

class FullImage(Image):
 pass

And in your kivy language file:

<-FullImage>:
 canvas:
 Color:
 rgb: (1, 1, 1)
 Rectangle:
 texture: self.texture
 size: self.width + 20, self.height + 20
 pos: self.x - 10, self.y - 10

	
class kivy.uix.image.AsyncImage(**kwargs)

	Bases: kivy.uix.image.Image

Asynchronous Image class. See the module documentation for more
information.

Note

The AsyncImage is a specialized form of the Image class. You may
want to refer to the loader documentation and in
particular, the ProxyImage for more detail
on how to handle events around asynchronous image loading.

Note

AsyncImage currently does not support properties
anim_loop and mipmap and setting those properties will
have no effect.

	
remove_from_cache()

	Remove image from cache.

New in version 2.0.0.

	
class kivy.uix.image.Image(**kwargs)

	Bases: kivy.uix.widget.Widget

Image class, see module documentation for more information.

	
allow_stretch

	If True, the normalized image size will be maximized to fit in the image
box. Otherwise, if the box is too tall, the image will not be
stretched more than 1:1 pixels.

New in version 1.0.7.

Deprecated since version 2.2.0: allow_stretch have been deprecated. Please use fit_mode
instead.

allow_stretch is a BooleanProperty and
defaults to False.

	
anim_delay

	Delay the animation if the image is sequenced (like an animated gif).
If anim_delay is set to -1, the animation will be stopped.

New in version 1.0.8.

anim_delay is a NumericProperty and
defaults to 0.25 (4 FPS).

	
anim_loop

	Number of loops to play then stop animating. 0 means keep animating.

New in version 1.9.0.

anim_loop is a NumericProperty and
defaults to 0.

	
color

	Image color, in the format (r, g, b, a). This attribute can be used to
‘tint’ an image. Be careful: if the source image is not gray/white, the
color will not really work as expected.

New in version 1.0.6.

color is a ColorProperty and defaults to
[1, 1, 1, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
fit_mode

	If the size of the image is different than the size of the widget,
determine how the image should be resized to fit inside the widget box.

Available options:

	"scale-down": the image will be scaled down to fit inside the widget

box, maintaining its aspect ratio and without stretching. If the size
of the image is smaller than the widget, it will be displayed at its
original size. If the image has a different aspect ratio than the widget,
there will be blank areas on the widget box.

	"fill": the image is stretched to fill the widget, **regardless of

its aspect ratio or dimensions**. If the image has a different aspect ratio
than the widget, this option can lead to distortion of the image.

	"contain": the image is resized to fit inside the widget box,

maintaining its aspect ratio. If the image size is larger than the
widget size, the behavior will be similar to "scale-down". However, if
the size of the image size is smaller than the widget size, unlike
"scale-down, the image will be resized to fit inside the widget.
If the image has a different aspect ratio than the widget, there will be
blank areas on the widget box.

	"cover": the image will be stretched horizontally or vertically to

fill the widget box, maintaining its aspect ratio. If the image has a
different aspect ratio than the widget, then the image will be clipped to
fit.

fit_mode is a OptionProperty and
defaults to "scale-down".

	
image_ratio

	Ratio of the image (width / float(height).

image_ratio is an AliasProperty and is
read-only.

	
keep_data

	If True, the underlying _coreimage will store the raw image data.
This is useful when performing pixel based collision detection.

New in version 1.3.0.

keep_data is a BooleanProperty and
defaults to False.

	
keep_ratio

	If False along with allow_stretch being True, the normalized image
size will be maximized to fit in the image box and ignores the aspect
ratio of the image.
Otherwise, if the box is too tall, the image will not be stretched more
than 1:1 pixels.

New in version 1.0.8.

Deprecated since version 2.2.0: keep_ratio have been deprecated. Please use fit_mode
instead.

keep_ratio is a BooleanProperty and
defaults to True.

	
mipmap

	Indicate if you want OpenGL mipmapping to be applied to the texture.
Read Mipmapping for more information.

New in version 1.0.7.

mipmap is a BooleanProperty and defaults
to False.

	
nocache

	If this property is set True, the image will not be added to the
internal cache. The cache will simply ignore any calls trying to
append the core image.

New in version 1.6.0.

nocache is a BooleanProperty and defaults
to False.

	
norm_image_size

	Normalized image size within the widget box.

This size will always fit the widget size and will preserve the image
ratio.

norm_image_size is an AliasProperty and
is read-only.

	
reload()

	Reload image from disk. This facilitates re-loading of
images from disk in case the image content changes.

New in version 1.3.0.

Usage:

im = Image(source = '1.jpg')
-- do something --
im.reload()
image will be re-loaded from disk

	
remove_from_cache()

	Remove image from cache.

New in version 2.0.0.

	
source

	Filename / source of your image.

source is a StringProperty and
defaults to None.

	
texture

	Texture object of the image. The texture represents the original, loaded
image texture. It is stretched and positioned during rendering according to
the fit_mode property.

Depending of the texture creation, the value will be a
Texture or a
TextureRegion object.

texture is an ObjectProperty and defaults
to None.

	
texture_size

	Texture size of the image. This represents the original, loaded image
texture size.

Warning

The texture size is set after the texture property. So if you listen to
the change on texture, the property texture_size will not be
up-to-date. Use self.texture.size instead.

Label

[image: _images/label.png]
The Label widget is for rendering text:

hello world text
l = Label(text='Hello world')

unicode text; can only display glyphs that are available in the font
l = Label(text='Hello world ' + chr(2764))

multiline text
l = Label(text='Multi\nLine')

size
l = Label(text='Hello world', font_size='20sp')

Sizing and text content

By default, the size of Label is not affected by text
content and the text is not affected by the size. In order to control
sizing, you must specify text_size to constrain the text
and/or bind size to texture_size to grow with
the text.

For example, this label’s size will be set to the text content
(plus padding):

Label:
 size: self.texture_size

This label’s text will wrap at the specified width and be clipped to the
height:

Label:
 text_size: cm(6), cm(4)

Note

The shorten and max_lines attributes
control how overflowing text behaves.

Combine these concepts to create a Label that can grow vertically but wraps the
text at a certain width:

Label:
 text_size: root.width, None
 size: self.texture_size

How to have a custom background color in the label:

Define your background color Template
<BackgroundColor@Widget>
 background_color: 1, 1, 1, 1
 canvas.before:
 Color:
 rgba: root.background_color
 Rectangle:
 size: self.size
 pos: self.pos
Now you can simply Mix the `BackgroundColor` class with almost
any other widget... to give it a background.
<BackgroundLabel@Label+BackgroundColor>
 background_color: 0, 0, 0, 0
 # Default the background color for this label
 # to r 0, g 0, b 0, a 0
Use the BackgroundLabel any where in your kv code like below
BackgroundLabel
 text: 'Hello'
 background_color: 1, 0, 0, 1

Text alignment and wrapping

The Label has halign and valign
properties to control the alignment of its text. However, by default the text
image (texture) is only just large enough to contain the
characters and is positioned in the center of the Label. The valign property
will have no effect and halign will only have an effect if your text has
newlines; a single line of text will appear to be centered even though halign
is set to left (by default).

In order for the alignment properties to take effect, set the
text_size, which specifies the size of the bounding box within
which text is aligned. For instance, the following code binds this size to the
size of the Label, so text will be aligned within the widget bounds. This
will also automatically wrap the text of the Label to remain within this area.

Label:
 text_size: self.size
 halign: 'right'
 valign: 'middle'

Markup text

New in version 1.1.0.

You can change the style of the text using Text Markup.
The syntax is similar to the bbcode syntax but only the inline styling is
allowed:

hello world with world in bold
l = Label(text='Hello [b]World[/b]', markup=True)

hello in red, world in blue
l = Label(text='[color=ff3333]Hello[/color][color=3333ff]World[/color]',
 markup = True)

If you need to escape the markup from the current text, use
kivy.utils.escape_markup():

text = 'This is an important message [1]'
l = Label(text='[b]' + escape_markup(text) + '[/b]', markup=True)

The following tags are available:

	[b][/b]
	Activate bold text

	[i][/i]
	Activate italic text

	[u][/u]
	Underlined text

	[s][/s]
	Strikethrough text

	[font=<str>][/font]
	Change the font (note: this refers to a TTF file or registered alias)

	[font_context=<str>][/font_context]
	Change context for the font, use string value “none” for isolated context
(this is equivalent to None; if you created a font context named
‘none’, it cannot be referred to using markup)

	[font_family=<str>][/font_family]
	Font family to request for drawing. This is only valid when using a
font context, see kivy.uix.label.Label for details.

	[font_features=<str>][/font_features]
	OpenType font features, in CSS format, this is passed straight
through to Pango. The effects of requesting a feature depends on loaded
fonts, library versions, etc. Pango only, requires v1.38 or later.

	[size=<integer>][/size]
	Change the font size

	[color=#<color>][/color]
	Change the text color

	[ref=<str>][/ref]
	Add an interactive zone. The reference + bounding box inside the
reference will be available in Label.refs

	[anchor=<str>]
	Put an anchor in the text. You can get the position of your anchor within
the text with Label.anchors

	[sub][/sub]
	Display the text at a subscript position relative to the text before it.

	[sup][/sup]
	Display the text at a superscript position relative to the text before it.

	[text_language=<str>][/text_language]
	Language of the text, this is an RFC-3066 format language tag (as string),
for example “en_US”, “zh_CN”, “fr” or “ja”. This can impact font selection
and metrics. Use the string “None” to revert to locale detection.
Pango only.

If you want to render the markup text with a [or] or & character, you need to
escape them. We created a simple syntax:

[-> &bl;
] -> &br;
& -> &

Then you can write:

"[size=24]Hello &bl;World&br;[/size]"

Interactive zone in text

New in version 1.1.0.

You can now have definable “links” using text markup. The idea is to be able
to detect when the user clicks on part of the text and to react.
The tag [ref=xxx] is used for that.

In this example, we are creating a reference on the word “World”. When
this word is clicked, the function print_it will be called with the
name of the reference:

def print_it(instance, value):
 print('User clicked on', value)
widget = Label(text='Hello [ref=world]World[/ref]', markup=True)
widget.bind(on_ref_press=print_it)

For prettier rendering, you could add a color for the reference. Replace the
text= in the previous example with:

'Hello [ref=world][color=0000ff]World[/color][/ref]'

Catering for Unicode languages

The font kivy uses does not contain all the characters required for displaying
all languages. When you use the built-in widgets, this results in a block being
drawn where you expect a character.

If you want to display such characters, you can chose a font that supports them
and deploy it universally via kv:

<Label>:
 font_name: '/<path>/<to>/'

Note that this needs to be done before your widgets are loaded as kv rules are
only applied at load time.

Usage example

The following example marks the anchors and references contained in a label:

from kivy.app import App
from kivy.uix.label import Label
from kivy.clock import Clock
from kivy.graphics import Color, Rectangle

class TestApp(App):

 @staticmethod
 def get_x(label, ref_x):
 """ Return the x value of the ref/anchor relative to the canvas """
 return label.center_x - label.texture_size[0] * 0.5 + ref_x

 @staticmethod
 def get_y(label, ref_y):
 """ Return the y value of the ref/anchor relative to the canvas """
 # Note the inversion of direction, as y values start at the top of
 # the texture and increase downwards
 return label.center_y + label.texture_size[1] * 0.5 - ref_y

 def show_marks(self, label):

 # Indicate the position of the anchors with a red top marker
 for name, anc in label.anchors.items():
 with label.canvas:
 Color(1, 0, 0)
 Rectangle(pos=(self.get_x(label, anc[0]),
 self.get_y(label, anc[1])),
 size=(3, 3))

 # Draw a green surround around the refs. Note the sizes y inversion
 for name, boxes in label.refs.items():
 for box in boxes:
 with label.canvas:
 Color(0, 1, 0, 0.25)
 Rectangle(pos=(self.get_x(label, box[0]),
 self.get_y(label, box[1])),
 size=(box[2] - box[0],
 box[1] - box[3]))

 def build(self):
 label = Label(
 text='[anchor=a]a\nChars [anchor=b]b\n[ref=myref]ref[/ref]',
 markup=True)
 Clock.schedule_once(lambda dt: self.show_marks(label), 1)
 return label

TestApp().run()

	
class kivy.uix.label.Label(**kwargs)

	Bases: kivy.uix.widget.Widget

Label class, see module documentation for more information.

	Events:

	
	on_ref_press
	Fired when the user clicks on a word referenced with a
[ref] tag in a text markup.

	
anchors

	
New in version 1.1.0.

Position of all the [anchor=xxx] markup in the text.
These coordinates are relative to the top left corner of the text, with
the y value increasing downwards. Anchors names should be unique and only
the first occurrence of any duplicate anchors will be recorded.

You can place anchors in your markup text as follows:

text = """
 [anchor=title1][size=24]This is my Big title.[/size]
 [anchor=content]Hello world
"""

Then, all the [anchor=] references will be removed and you’ll get all
the anchor positions in this property (only after rendering):

>>> widget = Label(text=text, markup=True)
>>> widget.texture_update()
>>> widget.anchors
{"content": (20, 32), "title1": (20, 16)}

Note

This works only with markup text. You need markup set to
True.

	
base_direction

	Base direction of text, this impacts horizontal alignment when
halign is auto (the default). Available options are: None,
“ltr” (left to right), “rtl” (right to left) plus “weak_ltr” and
“weak_rtl”.

Note

This feature requires the Pango text provider.

Note

Weak modes are currently not implemented in Kivy text layout, and
have the same effect as setting strong mode.

New in version 1.11.0.

base_direction is an OptionProperty and
defaults to None (autodetect RTL if possible, otherwise LTR).

	
bold

	Indicates use of the bold version of your font.

Note

Depending of your font, the bold attribute may have no impact on your
text rendering.

bold is a BooleanProperty and defaults to
False.

	
color

	Text color, in the format (r, g, b, a).

color is a ColorProperty and defaults to
[1, 1, 1, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
disabled_color

	The color of the text when the widget is disabled, in the (r, g, b, a)
format.

New in version 1.8.0.

disabled_color is a ColorProperty and
defaults to [1, 1, 1, .3].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
disabled_outline_color

	The color of the text outline when the widget is disabled, in the
(r, g, b) format.

Note

This feature requires the SDL2 text provider.

New in version 1.10.0.

disabled_outline_color is a ColorProperty
and defaults to [0, 0, 0].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty. Alpha component is ignored
and assigning value to it has no effect.

	
ellipsis_options

	Font options for the ellipsis string(’…’) used to split the text.

Accepts a dict as option name with the value. Only applied when
markup is true and text is shortened. All font options which work
for Label will work for ellipsis_options. Defaults for
the options not specified are taken from the surronding text.

Label:
 text: 'Some very long line which will be cut'
 markup: True
 shorten: True
 ellipsis_options: {'color':(1,0.5,0.5,1),'underline':True}

New in version 2.0.0.

ellipsis_options is a DictProperty and
defaults to {} (the empty dict).

	
font_blended

	Whether blended or solid font rendering should be used.

Note

This feature requires the SDL2 text provider.

New in version 1.10.0.

font_blended is a BooleanProperty and
defaults to True.

	
font_context

	Font context. None means the font is used in isolation, so you are
guaranteed to be drawing with the TTF file resolved by font_name.
Specifying a value here will load the font file into a named context,
enabling fallback between all fonts in the same context. If a font
context is set, you are not guaranteed that rendering will actually use
the specified TTF file for all glyphs (Pango will pick the one it
thinks is best).

If Kivy is linked against a system-wide installation of FontConfig,
you can load the system fonts by specifying a font context starting
with the special string system://. This will load the system
fontconfig configuration, and add your application-specific fonts on
top of it (this imposes a significant risk of family name collision,
Pango may not use your custom font file, but pick one from the system)

Note

This feature requires the Pango text provider.

New in version 1.11.0.

font_context is a StringProperty and
defaults to None.

	
font_direction

	Direction for the specific font, can be one of ltr, rtl, ttb,`btt`.

font_direction currently only works with SDL2 ttf providers.

New in version 2.2.0.

font_direction is a OptionProperty and
defults to ‘ltr’.

	
font_family

	Font family, this is only applicable when using font_context
option. The specified font family will be requested, but note that it may
not be available, or there could be multiple fonts registered with the
same family. The value can be a family name (string) available in the
font context (for example a system font in a system:// context, or a
custom font file added using kivy.core.text.FontContextManager).
If set to None, font selection is controlled by the font_name
setting.

Note

If using font_name to reference a custom font file, you
should leave this as None. The family name is managed automatically
in this case.

Note

This feature requires the Pango text provider.

New in version 1.11.0.

font_family is a StringProperty and
defaults to None.

	
font_features

	OpenType font features, in CSS format, this is passed straight
through to Pango. The effects of requesting a feature depends on loaded
fonts, library versions, etc. For a complete list of features, see:

https://en.wikipedia.org/wiki/List_of_typographic_features

Note

This feature requires the Pango text provider, and Pango library
v1.38 or later.

New in version 1.11.0.

font_features is a StringProperty and
defaults to an empty string.

	
font_hinting

	What hinting option to use for font rendering.
Can be one of ‘normal’, ‘light’, ‘mono’ or None.

Note

This feature requires SDL2 or Pango text provider.

New in version 1.10.0.

font_hinting is an OptionProperty and
defaults to ‘normal’.

	
font_kerning

	Whether kerning is enabled for font rendering. You should normally
only disable this if rendering is broken with a particular font file.

Note

This feature requires the SDL2 text provider.

New in version 1.10.0.

font_kerning is a BooleanProperty and
defaults to True.

	
font_name

	Filename of the font to use. The path can be absolute or relative.
Relative paths are resolved by the resource_find()
function.

Warning

Depending of your text provider, the font file can be ignored. However,
you can mostly use this without problems.

If the font used lacks the glyphs for the particular language/symbols
you are using, you will see ‘[]’ blank box characters instead of the
actual glyphs. The solution is to use a font that has the glyphs you
need to display. For example, to display [image: unicodechar], use a font such
as freesans.ttf that has the glyph.

font_name is a StringProperty and
defaults to ‘Roboto’. This value is taken
from Config.

	
font_script_name

	script_code from https://bit.ly/TypeScriptCodes .

New in version 2.2.0.

Warning

font_script_name is only currently supported in SDL2 ttf providers.

font_script_name is a OptionProperty and
defaults to ‘Latn’.

	
font_size

	Font size of the text, in pixels.

font_size is a NumericProperty and
defaults to 15sp.

	
halign

	Horizontal alignment of the text.

halign is an OptionProperty and
defaults to ‘auto’. Available options are : auto, left, center, right and
justify. Auto will attempt to autodetect horizontal alignment for RTL text
(Pango only), otherwise it behaves like left.

Warning

This doesn’t change the position of the text texture of the Label
(centered), only the position of the text in this texture. You probably
want to bind the size of the Label to the texture_size or set a
text_size.

Changed in version 1.10.1: Added auto option

Changed in version 1.6.0: A new option was added to halign, namely justify.

	
is_shortened

	This property indicates if text was rendered with or without
shortening when shorten is True.

New in version 1.10.0.

is_shortened is a BooleanProperty and
defaults to False.

	
italic

	Indicates use of the italic version of your font.

Note

Depending of your font, the italic attribute may have no impact on your
text rendering.

italic is a BooleanProperty and defaults
to False.

	
line_height

	Line Height for the text. e.g. line_height = 2 will cause the spacing
between lines to be twice the size.

line_height is a NumericProperty and
defaults to 1.0.

New in version 1.5.0.

	
markup

	
New in version 1.1.0.

If True, the text will be rendered using the
MarkupLabel: you can change the
style of the text using tags. Check the
Text Markup documentation for more information.

markup is a BooleanProperty and defaults
to False.

	
max_lines

	Maximum number of lines to use, defaults to 0, which means unlimited.
Please note that shorten take over this property. (with
shorten, the text is always one line.)

New in version 1.8.0.

max_lines is a NumericProperty and
defaults to 0.

	
mipmap

	Indicates whether OpenGL mipmapping is applied to the texture or not.
Read Mipmapping for more information.

New in version 1.0.7.

mipmap is a BooleanProperty and defaults
to False.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
outline_color

	The color of the text outline, in the (r, g, b) format.

Note

This feature requires the SDL2 text provider.

New in version 1.10.0.

outline_color is a ColorProperty and
defaults to [0, 0, 0, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty. Alpha component is ignored
and assigning value to it has no effect.

	
outline_width

	Width in pixels for the outline around the text. No outline will be
rendered if the value is None.

Note

This feature requires the SDL2 text provider.

New in version 1.10.0.

outline_width is a NumericProperty and
defaults to None.

	
padding

	Padding of the text in the format [padding_left, padding_top,
padding_right, padding_bottom]

padding also accepts a two argument form [padding_horizontal,
padding_vertical] and a one argument form [padding].

Changed in version 2.2.0: Replaced ReferenceListProperty with VariableListProperty.

padding is a VariableListProperty and
defaults to [0, 0, 0, 0].

	
padding_x

	Horizontal padding of the text inside the widget box.

padding_x is a NumericProperty and
defaults to 0.

Changed in version 1.9.0: padding_x has been fixed to work as expected.
In the past, the text was padded by the negative of its values.

Deprecated since version 2.2.0: Please use padding instead.

	
padding_y

	Vertical padding of the text inside the widget box.

padding_y is a NumericProperty and
defaults to 0.

Changed in version 1.9.0: padding_y has been fixed to work as expected.
In the past, the text was padded by the negative of its values.

Deprecated since version 2.2.0: Please use padding instead.

	
refs

	
New in version 1.1.0.

List of [ref=xxx] markup items in the text with the bounding box of
all the words contained in a ref, available only after rendering.

For example, if you wrote:

Check out my [ref=hello]link[/ref]

The refs will be set with:

{'hello': ((64, 0, 78, 16),)}

The references marked “hello” have a bounding box at (x1, y1, x2, y2).
These coordinates are relative to the top left corner of the text, with
the y value increasing downwards. You can define multiple refs with the
same name: each occurrence will be added as another (x1, y1, x2, y2) tuple
to this list.

The current Label implementation uses these references if they exist in
your markup text, automatically doing the collision with the touch and
dispatching an on_ref_press event.

You can bind a ref event like this:

def print_it(instance, value):
 print('User click on', value)
widget = Label(text='Hello [ref=world]World[/ref]', markup=True)
widget.bind(on_ref_press=print_it)

Note

This works only with markup text. You need markup set to
True.

	
shorten

	Indicates whether the label should attempt to shorten its textual contents
as much as possible if a text_size is given. Setting this to True
without an appropriately set text_size will lead to unexpected
results.

shorten_from and split_str control the direction from
which the text is split, as well as where in the text we
are allowed to split.

shorten is a BooleanProperty and defaults
to False.

	
shorten_from

	The side from which we should shorten the text from, can be left,
right, or center.

For example, if left, the ellipsis will appear towards the left side and we
will display as much text starting from the right as possible. Similar to
shorten, this option only applies when text_size [0] is
not None, In this case, the string is shortened to fit within the specified
width.

New in version 1.9.0.

shorten_from is a OptionProperty and
defaults to center.

	
split_str

	The string used to split the text while shortening the string
when shorten is True.

For example, if it’s a space, the string will be broken into words and as
many whole words that can fit into a single line will be displayed. If
split_str is the empty string, ‘’, we split on every character
fitting as much text as possible into the line.

New in version 1.9.0.

split_str is a StringProperty and
defaults to ‘’ (the empty string).

	
strikethrough

	Adds a strikethrough line to the text.

Note

This feature requires the SDL2 text provider.

New in version 1.10.0.

strikethrough is a BooleanProperty and
defaults to False.

	
strip

	Whether leading and trailing spaces and newlines should be stripped from
each displayed line. If True, every line will start at the right or left
edge, depending on halign. If halign is justify it is
implicitly True.

New in version 1.9.0.

strip is a BooleanProperty and
defaults to False.

	
text

	Text of the label.

Creation of a simple hello world:

widget = Label(text='Hello world')

text is a StringProperty and defaults to
‘’.

	
text_language

	Language of the text, if None Pango will determine it from locale.
This is an RFC-3066 format language tag (as a string), for example
“en_US”, “zh_CN”, “fr” or “ja”. This can impact font selection, metrics
and rendering. For example, the same bytes of text can look different
for ur and ar languages, though both use Arabic script.

Note

This feature requires the Pango text provider.

New in version 1.11.0.

text_language is a StringProperty and
defaults to None.

	
text_size

	By default, the label is not constrained to any bounding box.
You can set the size constraint of the label with this property.
The text will autoflow into the constraints. So although the font size
will not be reduced, the text will be arranged to fit into the box as best
as possible, with any text still outside the box clipped.

This sets and clips texture_size to text_size if not None.

New in version 1.0.4.

For example, whatever your current widget size is, if you want the label to
be created in a box with width=200 and unlimited height:

Label(text='Very big big line', text_size=(200, None))

Note

This text_size property is the same as the
usersize property in the
Label class. (It is named size= in the
constructor.)

text_size is a ListProperty and
defaults to (None, None), meaning no size restriction by default.

	
texture

	Texture object of the text.
The text is rendered automatically when a property changes. The OpenGL
texture created in this operation is stored in this property. You can use
this texture for any graphics elements.

Depending on the texture creation, the value will be a
Texture or
TextureRegion object.

Warning

The texture update is scheduled for the next frame. If you need
the texture immediately after changing a property, you have to call
the texture_update() method before accessing texture:

l = Label(text='Hello world')
l.texture is good
l.font_size = '50sp'
l.texture is not updated yet
l.texture_update()
l.texture is good now.

texture is an ObjectProperty and defaults
to None.

	
texture_size

	Texture size of the text. The size is determined by the font size and
text. If text_size is [None, None], the texture will be the size
required to fit the text, otherwise it’s clipped to fit text_size.

When text_size is [None, None], one can bind to texture_size
and rescale it proportionally to fit the size of the label in order to
make the text fit maximally in the label.

Warning

The texture_size is set after the texture
property. If you listen for changes to texture,
texture_size will not be up-to-date in your callback.
Bind to texture_size instead.

	
texture_update(*largs)

	Force texture recreation with the current Label properties.

After this function call, the texture and texture_size
will be updated in this order.

	
underline

	Adds an underline to the text.

Note

This feature requires the SDL2 text provider.

New in version 1.10.0.

underline is a BooleanProperty and
defaults to False.

	
unicode_errors

	How to handle unicode decode errors. Can be ‘strict’, ‘replace’ or
‘ignore’.

New in version 1.9.0.

unicode_errors is an OptionProperty and
defaults to ‘replace’.

	
valign

	Vertical alignment of the text.

valign is an OptionProperty and defaults
to ‘bottom’. Available options are : ‘bottom’,
‘middle’ (or ‘center’) and ‘top’.

Changed in version 1.10.0: The ‘center’ option has been added as an alias of ‘middle’.

Warning

This doesn’t change the position of the text texture of the Label
(centered), only the position of the text within this texture. You
probably want to bind the size of the Label to the texture_size
or set a text_size to change this behavior.

Layout

Layouts are used to calculate and assign widget positions.

The Layout class itself cannot be used directly.
You should use one of the following layout classes:

	Anchor layout: kivy.uix.anchorlayout.AnchorLayout

	Box layout: kivy.uix.boxlayout.BoxLayout

	Float layout: kivy.uix.floatlayout.FloatLayout

	Grid layout: kivy.uix.gridlayout.GridLayout

	Page Layout: kivy.uix.pagelayout.PageLayout

	Relative layout: kivy.uix.relativelayout.RelativeLayout

	Scatter layout: kivy.uix.scatterlayout.ScatterLayout

	Stack layout: kivy.uix.stacklayout.StackLayout

Understanding the size_hint Property in Widget

The size_hint is a tuple of values used by
layouts to manage the sizes of their children. It indicates the size
relative to the layout’s size instead of an absolute size (in
pixels/points/cm/etc). The format is:

widget.size_hint = (width_proportion, height_proportion)

The proportions are specified as floating point numbers in the range 0-1. For
example, 0.5 represents 50%, 1 represents 100%.

If you want a widget’s width to be half of the parent’s width and the
height to be identical to the parent’s height, you would do:

widget.size_hint = (0.5, 1.0)

If you don’t want to use a size_hint for either the width or height, set the
value to None. For example, to make a widget that is 250px wide and 30%
of the parent’s height, do:

widget.size_hint = (None, 0.3)
widget.width = 250

Being Kivy properties, these can also be set via
constructor arguments:

widget = Widget(size_hint=(None, 0.3), width=250)

Changed in version 1.4.1: The reposition_child internal method (made public by mistake) has
been removed.

	
class kivy.uix.layout.Layout(**kwargs)

	Bases: kivy.uix.widget.Widget

Layout interface class, used to implement every layout. See module
documentation for more information.

	
add_widget(widget, *args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
do_layout(*largs)

	This function is called when a layout is called by a trigger.
If you are writing a new Layout subclass, don’t call this function
directly but use _trigger_layout() instead.

The function is by default called before the next frame, therefore
the layout isn’t updated immediately. Anything depending on the
positions of e.g. children should be scheduled for the next frame.

New in version 1.0.8.

	
layout_hint_with_bounds(sh_sum, available_space, min_bounded_size, sh_min_vals, sh_max_vals, hint)

	(internal) Computes the appropriate (size) hint for all the
widgets given (potential) min or max bounds on the widgets’ size.
The hint list is updated with appropriate sizes.

It walks through the hints and for any widgets whose hint will result
in violating min or max constraints, it fixes the hint. Any remaining
or missing space after all the widgets are fixed get distributed
to the widgets making them smaller or larger according to their
size hint.

This algorithms knows nothing about the widgets other than what is
passed through the input params, so it’s fairly generic for laying
things out according to constraints using size hints.

	Parameters:

	
	sh_sum: float
	The sum of the size hints (basically sum(size_hint)).

	available_space: float
	The amount of pixels available for all the widgets
whose size hint is not None. Cannot be zero.

	min_bounded_size: float
	The minimum amount of space required according to the
size_hint_min of the widgets (basically
sum(size_hint_min)).

	sh_min_vals: list or iterable
	Items in the iterable are the size_hint_min for each widget.
Can be None. The length should be the same as hint

	sh_max_vals: list or iterable
	Items in the iterable are the size_hint_max for each widget.
Can be None. The length should be the same as hint

	hint: list
	A list whose size is the same as the length of sh_min_vals
and sh_min_vals whose each element is the corresponding
size hint value of that element. This list is updated in place
with correct size hints that ensure the constraints are not
violated.

	Returns:

	Nothing. hint is updated in place.

	
remove_widget(widget, *args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

ModalView

New in version 1.4.0.

The ModalView widget is used to create modal views. By default, the
view will cover the whole “main” window.

Remember that the default size of a Widget is size_hint=(1, 1). If you don’t
want your view to be fullscreen, either use size hints with values lower than
1 (for instance size_hint=(.8, .8)) or deactivate the size_hint and use fixed
size attributes.

Examples

Example of a simple 400x400 Hello world view:

view = ModalView(size_hint=(None, None), size=(400, 400))
view.add_widget(Label(text='Hello world'))

By default, any click outside the view will dismiss it. If you don’t
want that, you can set ModalView.auto_dismiss to False:

view = ModalView(auto_dismiss=False)
view.add_widget(Label(text='Hello world'))
view.open()

To manually dismiss/close the view, use the ModalView.dismiss() method of
the ModalView instance:

view.dismiss()

Both ModalView.open() and ModalView.dismiss() are bind-able. That
means you can directly bind the function to an action, e.g. to a button’s
on_press

create content and add it to the view
content = Button(text='Close me!')
view = ModalView(auto_dismiss=False)
view.add_widget(content)

bind the on_press event of the button to the dismiss function
content.bind(on_press=view.dismiss)

open the view
view.open()

ModalView Events

There are four events available: on_pre_open and on_open which are raised
when the view is opening; on_pre_dismiss and on_dismiss which are raised
when the view is closed.

For on_dismiss, you can prevent the view from closing by explicitly
returning True from your callback:

def my_callback(instance):
 print('ModalView', instance, 'is being dismissed, but is prevented!')
 return True
view = ModalView()
view.add_widget(Label(text='Hello world'))
view.bind(on_dismiss=my_callback)
view.open()

Changed in version 1.5.0: The ModalView can be closed by hitting the escape key on the
keyboard if the ModalView.auto_dismiss property is True (the
default).

	
class kivy.uix.modalview.ModalView(**kwargs)

	Bases: kivy.uix.anchorlayout.AnchorLayout

ModalView class. See module documentation for more information.

	Events:

	
	on_pre_open:
	Fired before the ModalView is opened. When this event is fired
ModalView is not yet added to window.

	on_open:
	Fired when the ModalView is opened.

	on_pre_dismiss:
	Fired before the ModalView is closed.

	on_dismiss:
	Fired when the ModalView is closed. If the callback returns True,
the dismiss will be canceled.

Changed in version 1.11.0: Added events on_pre_open and on_pre_dismiss.

Changed in version 2.0.0: Added property ‘overlay_color’.

Changed in version 2.1.0: Marked attach_to property as deprecated.

	
attach_to

	If a widget is set on attach_to, the view will attach to the nearest
parent window of the widget. If none is found, it will attach to the
main/global Window.

attach_to is an ObjectProperty and
defaults to None.

	
auto_dismiss

	This property determines if the view is automatically
dismissed when the user clicks outside it.

auto_dismiss is a BooleanProperty and
defaults to True.

	
background

	Background image of the view used for the view background.

background is a StringProperty and
defaults to ‘atlas://data/images/defaulttheme/modalview-background’.

	
background_color

	Background color, in the format (r, g, b, a).

This acts as a multiplier to the texture colour. The default
texture is grey, so just setting the background color will give
a darker result. To set a plain color, set the
background_normal to ''.

The background_color is a
ColorProperty and defaults to [1, 1, 1, 1].

Changed in version 2.0.0: Changed behavior to affect the background of the widget itself, not
the overlay dimming.
Changed from ListProperty to
ColorProperty.

	
border

	Border used for BorderImage
graphics instruction. Used for the background_normal and the
background_down properties. Can be used when using custom
backgrounds.

It must be a list of four values: (bottom, right, top, left). Read the
BorderImage instructions for more information about how to use it.

border is a ListProperty and defaults to
(16, 16, 16, 16).

	
dismiss(*_args, **kwargs)

	Close the view if it is open.

If you really want to close the view, whatever the on_dismiss
event returns, you can use the force keyword argument:

view = ModalView()
view.dismiss(force=True)

When the view is dismissed, it will be faded out before being
removed from the parent. If you don’t want this animation, use:

view.dismiss(animation=False)

	
on__anim_alpha(_instance, value)

	animation progress callback.

	
on_dismiss()

	default dismiss event handler.

	
on_motion(etype, me)

	Called when a motion event is received.

	Parameters:

	
	etype: str
	Event type, one of “begin”, “update” or “end”

	me: MotionEvent
	Received motion event

	Returns:

	bool
True to stop event dispatching

New in version 2.1.0.

Warning

This is an experimental method and it remains so while this warning
is present.

	
on_open()

	default open event handler.

	
on_pre_dismiss()

	default pre-dismiss event handler.

	
on_pre_open()

	default pre-open event handler.

	
on_touch_down(touch)

	touch down event handler.

	
on_touch_move(touch)

	touch moved event handler.

	
on_touch_up(touch)

	touch up event handler.

	
open(*_args, **kwargs)

	Display the modal in the Window.

When the view is opened, it will be faded in with an animation. If you
don’t want the animation, use:

view.open(animation=False)

	
overlay_color

	Overlay color in the format (r, g, b, a).
Used for dimming the window behind the modal view.

overlay_color is a ColorProperty and
defaults to [0, 0, 0, .7].

New in version 2.0.0.

PageLayout

[image: _images/pagelayout.gif]
The PageLayout class is used to create a simple multi-page
layout, in a way that allows easy flipping from one page to another using
borders.

PageLayout does not currently honor the
size_hint,
size_hint_min,
size_hint_max, or
pos_hint properties.

New in version 1.8.0.

Example:

PageLayout:
 Button:
 text: 'page1'
 Button:
 text: 'page2'
 Button:
 text: 'page3'

Transitions from one page to the next are made by swiping in from the border
areas on the right or left hand side. If you wish to display multiple widgets
in a page, we suggest you use a containing layout. Ideally, each page should
consist of a single layout widget that contains the remaining
widgets on that page.

	
class kivy.uix.pagelayout.PageLayout(**kwargs)

	Bases: kivy.uix.layout.Layout

PageLayout class. See module documentation for more information.

	
anim_kwargs

	The animation kwargs used to construct the animation

anim_kwargs is a DictProperty
and defaults to {‘d’: .5, ‘t’: ‘in_quad’}.

New in version 1.11.0.

	
border

	The width of the border around the current page used to display
the previous/next page swipe areas when needed.

border is a NumericProperty and
defaults to 50dp.

	
do_layout(*largs)

	This function is called when a layout is called by a trigger.
If you are writing a new Layout subclass, don’t call this function
directly but use _trigger_layout() instead.

The function is by default called before the next frame, therefore
the layout isn’t updated immediately. Anything depending on the
positions of e.g. children should be scheduled for the next frame.

New in version 1.0.8.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_move(touch)

	Receive a touch move event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
page

	The currently displayed page.

page is a NumericProperty and defaults
to 0.

	
swipe_threshold

	The threshold used to trigger swipes as ratio of the widget
size.

swipe_threshold is a NumericProperty
and defaults to .5.

Popup

New in version 1.0.7.

[image: _images/popup.jpg]
The Popup widget is used to create modal popups. By default, the popup
will cover the whole “parent” window. When you are creating a popup, you
must at least set a Popup.title and Popup.content.

Remember that the default size of a Widget is size_hint=(1, 1). If you don’t
want your popup to be fullscreen, either use size hints with values less than 1
(for instance size_hint=(.8, .8)) or deactivate the size_hint and use
fixed size attributes.

Changed in version 1.4.0: The Popup class now inherits from
ModalView. The Popup offers a default
layout with a title and a separation bar.

Examples

Example of a simple 400x400 Hello world popup:

popup = Popup(title='Test popup',
 content=Label(text='Hello world'),
 size_hint=(None, None), size=(400, 400))

By default, any click outside the popup will dismiss/close it. If you don’t
want that, you can set
auto_dismiss to False:

popup = Popup(title='Test popup', content=Label(text='Hello world'),
 auto_dismiss=False)
popup.open()

To manually dismiss/close the popup, use
dismiss:

popup.dismiss()

Both open() and
dismiss() are bindable. That means you
can directly bind the function to an action, e.g. to a button’s on_press:

create content and add to the popup
content = Button(text='Close me!')
popup = Popup(content=content, auto_dismiss=False)

bind the on_press event of the button to the dismiss function
content.bind(on_press=popup.dismiss)

open the popup
popup.open()

Same thing in KV language only with Factory:

#:import Factory kivy.factory.Factory
<MyPopup@Popup>:
 auto_dismiss: False
 Button:
 text: 'Close me!'
 on_release: root.dismiss()

Button:
 text: 'Open popup'
 on_release: Factory.MyPopup().open()

Note

Popup is a special widget. Don’t try to add it as a child to any other
widget. If you do, Popup will be handled like an ordinary widget and
won’t be created hidden in the background.

BoxLayout:
 MyPopup: # bad!

Popup Events

There are two events available: on_open which is raised when the popup is
opening, and on_dismiss which is raised when the popup is closed.
For on_dismiss, you can prevent the
popup from closing by explicitly returning True from your callback:

def my_callback(instance):
 print('Popup', instance, 'is being dismissed but is prevented!')
 return True
popup = Popup(content=Label(text='Hello world'))
popup.bind(on_dismiss=my_callback)
popup.open()

	
class kivy.uix.popup.Popup(**kwargs)

	Bases: kivy.uix.modalview.ModalView

Popup class. See module documentation for more information.

	Events:

	
	on_open:
	Fired when the Popup is opened.

	on_dismiss:
	Fired when the Popup is closed. If the callback returns True, the
dismiss will be canceled.

	
add_widget(widget, *args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
content

	Content of the popup that is displayed just under the title.

content is an ObjectProperty and defaults
to None.

	
on_touch_down(touch)

	touch down event handler.

	
separator_color

	Color used by the separator between title and content.

New in version 1.1.0.

separator_color is a ColorProperty and
defaults to [47 / 255., 167 / 255., 212 / 255., 1.].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
separator_height

	Height of the separator.

New in version 1.1.0.

separator_height is a NumericProperty and
defaults to 2dp.

	
title

	String that represents the title of the popup.

title is a StringProperty and defaults to
‘No title’.

	
title_align

	Horizontal alignment of the title.

New in version 1.9.0.

title_align is a OptionProperty and
defaults to ‘left’. Available options are left, center, right and justify.

	
title_color

	Color used by the Title.

New in version 1.8.0.

title_color is a ColorProperty and
defaults to [1, 1, 1, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
title_font

	Font used to render the title text.

New in version 1.9.0.

title_font is a StringProperty and
defaults to ‘Roboto’. This value is taken
from Config.

	
title_size

	Represents the font size of the popup title.

New in version 1.6.0.

title_size is a NumericProperty and
defaults to ’14sp’.

	
exception kivy.uix.popup.PopupException

	Bases: Exception

Popup exception, fired when multiple content widgets are added to the
popup.

New in version 1.4.0.

Progress Bar

New in version 1.0.8.

[image: _images/progressbar.jpg]
The ProgressBar widget is used to visualize the progress of some task.
Only the horizontal mode is currently supported: the vertical mode is not
yet available.

The progress bar has no interactive elements and is a display-only widget.

To use it, simply assign a value to indicate the current progress:

from kivy.uix.progressbar import ProgressBar
pb = ProgressBar(max=1000)

this will update the graphics automatically (75% done)
pb.value = 750

	
class kivy.uix.progressbar.ProgressBar(**kwargs)

	Bases: kivy.uix.widget.Widget

Class for creating a progress bar widget.

See module documentation for more details.

	
max

	Maximum value allowed for value.

max is a NumericProperty and defaults to
100.

	
value

	Current value used for the slider.

value is an AliasProperty that
returns the value of the progress bar. If the value is < 0 or >
max, it will be normalized to those boundaries.

Changed in version 1.6.0: The value is now limited to between 0 and max.

	
value_normalized

	Normalized value inside the range 0-1:

>>> pb = ProgressBar(value=50, max=100)
>>> pb.value
50
>>> pb.value_normalized
0.5

value_normalized is an AliasProperty.

RecycleBoxLayout

New in version 1.10.0.

Warning

This module is highly experimental, its API may change in the future and
the documentation is not complete at this time.

The RecycleBoxLayout is designed to provide a
BoxLayout type layout when used with the
RecycleView widget. Please refer to the
recycleview module documentation for more information.

	
class kivy.uix.recycleboxlayout.RecycleBoxLayout(**kwargs)

	Bases: kivy.uix.recyclelayout.RecycleLayout, kivy.uix.boxlayout.BoxLayout

	
compute_visible_views(data, viewport)

	viewport is in coordinates of the layout manager.

	
get_view_index_at(pos)

	Return the view index on which position, pos, falls.

pos is in coordinates of the layout manager.

RecycleGridLayout

New in version 1.10.0.

Warning

This module is highly experimental, its API may change in the future and
the documentation is not complete at this time.

The RecycleGridLayout is designed to provide a
GridLayout type layout when used with the
RecycleView widget. Please refer to the
recycleview module documentation for more information.

	
class kivy.uix.recyclegridlayout.RecycleGridLayout(**kwargs)

	Bases: kivy.uix.recyclelayout.RecycleLayout, kivy.uix.gridlayout.GridLayout

	
compute_visible_views(data, viewport)

	viewport is in coordinates of the layout manager.

	
get_view_index_at(pos)

	Return the view index on which position, pos, falls.

pos is in coordinates of the layout manager.

RecycleLayout

New in version 1.10.0.

Warning

This module is highly experimental, its API may change in the future and
the documentation is not complete at this time.

	
class kivy.uix.recyclelayout.RecycleLayout(**kwargs)

	Bases: kivy.uix.recycleview.layout.RecycleLayoutManagerBehavior, kivy.uix.layout.Layout

RecycleLayout provides the default layout for RecycleViews.

	
default_height

	Default height for items

default_height is a NumericProperty and
default to 100.

	
default_pos_hint

	Default pos_hint value for items

default_pos_hint is a DictProperty and
defaults to {}.

	
default_size

	size (width, height). Each value can be None.

default_size is an ReferenceListProperty
to [default_width, default_height].

	
default_size_hint

	size (width, height). Each value can be None.

default_size_hint is an
ReferenceListProperty to
[default_size_hint_x, default_size_hint_y].

	
default_size_hint_max

	Default value for size_hint_max of items

default_size_max is a
ReferenceListProperty to
[default_size_hint_x_max, default_size_hint_y_max].

	
default_size_hint_min

	Default value for size_hint_min of items

default_size_min is a
ReferenceListProperty to
[default_size_hint_x_min, default_size_hint_y_min].

	
default_size_hint_x

	Default size_hint_x for items

default_size_hint_x is a NumericProperty
and default to None.

	
default_size_hint_x_max

	Default value for size_hint_x_max of items

default_pos_hint_x_max is a
NumericProperty and defaults to None.

	
default_size_hint_x_min

	Default value for size_hint_x_min of items

default_pos_hint_x_min is a
NumericProperty and defaults to None.

	
default_size_hint_y

	Default size_hint_y for items

default_size_hint_y is a NumericProperty
and default to None.

	
default_size_hint_y_max

	Default value for size_hint_y_max of items

default_pos_hint_y_max is a
NumericProperty and defaults to None.

	
default_size_hint_y_min

	Default value for size_hint_y_min of items

default_pos_hint_y_min is a
NumericProperty and defaults to None.

	
default_width

	Default width for items

default_width is a NumericProperty and default to 100

	
do_layout(*largs)

	This function is called when a layout is called by a trigger.
If you are writing a new Layout subclass, don’t call this function
directly but use _trigger_layout() instead.

The function is by default called before the next frame, therefore
the layout isn’t updated immediately. Anything depending on the
positions of e.g. children should be scheduled for the next frame.

New in version 1.0.8.

	
initial_height

	Initial height for the items.

initial_height is a NumericProperty and
defaults to 100.

	
initial_size

	Initial size of items

initial_size is a ReferenceListProperty
to [initial_width, initial_height].

	
initial_width

	Initial width for the items.

initial_width is a NumericProperty and
defaults to 100.

	
key_pos_hint

	If set, which key in the dict should be used to set the pos_hint of
items.

key_pos_hint is a StringProperty and
defaults to None.

	
key_size

	If set, which key in the dict should be used to set the size property of
the item.

key_size is a StringProperty and defaults
to None.

	
key_size_hint

	If set, which key in the dict should be used to set the size_hint
property of the item.

key_size_hint is a StringProperty and
defaults to None.

	
key_size_hint_max

	If set, which key in the dict should be used to set the size_hint_max
property of the item.

key_size_hint_max is a StringProperty and
defaults to None.

	
key_size_hint_min

	If set, which key in the dict should be used to set the size_hint_min
property of the item.

key_size_hint_min is a StringProperty and
defaults to None.

	
refresh_view_layout(index, layout, view, viewport)

	See :meth:`~kivy.uix.recycleview.views.RecycleDataAdapter.refresh_view_layout.

	
set_visible_views(indices, data, viewport)

	viewport is in coordinates of the layout manager.

Relative Layout

New in version 1.4.0.

This layout allows you to set relative coordinates for children. If you want
absolute positioning, use the FloatLayout.

The RelativeLayout class behaves just like the regular
FloatLayout except that its child widgets are positioned relative to
the layout.

When a widget with position = (0,0) is added to a RelativeLayout,
the child widget will also move when the position of the RelativeLayout
is changed. The child widgets coordinates remain (0,0) as they are
always relative to the parent layout.

Coordinate Systems

Window coordinates

By default, there’s only one coordinate system that defines the position of
widgets and touch events dispatched to them: the window coordinate system,
which places (0, 0) at the bottom left corner of the window.
Although there are other coordinate systems defined, e.g. local
and parent coordinates, these coordinate systems are identical to the window
coordinate system as long as a relative layout type widget is not in the
widget’s parent stack. When widget.pos is read or a touch is received,
the coordinate values are in parent coordinates. But as mentioned, these are
identical to window coordinates, even in complex widget stacks as long as
there’s no relative layout type widget in the widget’s parent stack.

For example:

BoxLayout:
 Label:
 text: 'Left'
 Button:
 text: 'Middle'
 on_touch_down: print('Middle: {}'.format(args[1].pos))
 BoxLayout:
 on_touch_down: print('Box: {}'.format(args[1].pos))
 Button:
 text: 'Right'
 on_touch_down: print('Right: {}'.format(args[1].pos))

When the middle button is clicked and the touch propagates through the
different parent coordinate systems, it prints the following:

>>> Box: (430.0, 282.0)
>>> Right: (430.0, 282.0)
>>> Middle: (430.0, 282.0)

As claimed, the touch has identical coordinates to the window coordinates
in every coordinate system. collide_point()
for example, takes the point in window coordinates.

Parent coordinates

Other RelativeLayout type widgets are
Scatter,
ScatterLayout,
and ScrollView. If such a special widget is in
the parent stack, only then does the parent and local coordinate system
diverge from the window coordinate system. For each such widget in the stack,
a coordinate system with (0, 0) of that coordinate system being at the bottom
left corner of that widget is created. Position and touch coordinates
received and read by a widget are in the coordinate system of the most
recent special widget in its parent stack (not including itself) or in window
coordinates if there are none (as in the first example). We call these
coordinates parent coordinates.

For example:

BoxLayout:
 Label:
 text: 'Left'
 Button:
 text: 'Middle'
 on_touch_down: print('Middle: {}'.format(args[1].pos))
 RelativeLayout:
 on_touch_down: print('Relative: {}'.format(args[1].pos))
 Button:
 text: 'Right'
 on_touch_down: print('Right: {}'.format(args[1].pos))

Clicking on the middle button prints:

>>> Relative: (396.0, 298.0)
>>> Right: (-137.33, 298.0)
>>> Middle: (396.0, 298.0)

As the touch propagates through the widgets, for each widget, the
touch is received in parent coordinates. Because both the relative and middle
widgets don’t have these special widgets in their parent stack, the touch is
the same as window coordinates. Only the right widget, which has a
RelativeLayout in its parent stack, receives the touch in coordinates relative
to that RelativeLayout which is different than window coordinates.

Local and Widget coordinates

When expressed in parent coordinates, the position is expressed in the
coordinates of the most recent special widget in its parent stack, not
including itself. When expressed in local or widget coordinates, the widgets
themselves are also included.

Changing the above example to transform the parent coordinates into local
coordinates:

BoxLayout:
 Label:
 text: 'Left'
 Button:
 text: 'Middle'
 on_touch_down: print('Middle: {}'.format(self.to_local(*args[1].pos)))
 RelativeLayout:
 on_touch_down: print('Relative: {}'.format(self.to_local(*args[1].pos)))
 Button:
 text: 'Right'
 on_touch_down: print('Right: {}'.format(self.to_local(*args[1].pos)))

Now, clicking on the middle button prints:

>>> Relative: (-135.33, 301.0)
>>> Right: (-135.33, 301.0)
>>> Middle: (398.0, 301.0)

This is because now the relative widget also expresses the coordinates
relative to itself.

Note

Although all widgets including RelativeLayout receive their touch
events in on_touch_xxx in parent coordinates, these special widgets
will transform the touch position to be in local coordinates before it
calls super. This may only be noticeable in a complex inheritance
class.

Coordinate transformations

Widget provides 4 functions to transform coordinates
between the various coordinate systems. For now, we assume that the relative
keyword of these functions is False.
to_widget() takes the coordinates expressed in
window coordinates and returns them in local (widget) coordinates.
to_window() takes the coordinates expressed in
local coordinates and returns them in window coordinates.
to_parent() takes the coordinates expressed in
local coordinates and returns them in parent coordinates.
to_local() takes the coordinates expressed in
parent coordinates and returns them in local coordinates.

Each of the 4 transformation functions take a relative parameter. When the
relative parameter is True, the coordinates are returned or originate in
true relative coordinates - relative to a coordinate system with its (0, 0) at
the bottom left corner of the widget in question.

Common Pitfalls

As all positions within a RelativeLayout are relative to the position
of the layout itself, the position of the layout should never be used in
determining the position of sub-widgets or the layout’s canvas.

Take the following kv code for example:

[image: _images/relativelayout-fixedposition.png]

expected result

[image: _images/relativelayout-doubleposition.png]

actual result

FloatLayout:
 Widget:
 size_hint: None, None
 size: 200, 200
 pos: 200, 200

 canvas:
 Color:
 rgba: 1, 1, 1, 1
 Rectangle:
 pos: self.pos
 size: self.size

 RelativeLayout:
 size_hint: None, None
 size: 200, 200
 pos: 200, 200

 canvas:
 Color:
 rgba: 1, 0, 0, 0.5
 Rectangle:
 pos: self.pos # incorrect
 size: self.size

You might expect this to render a single pink rectangle; however, the content
of the RelativeLayout is already transformed, so the use of
pos: self.pos will double that transformation. In this case, using
pos: 0, 0 or omitting pos completely will provide the expected result.

This also applies to the position of sub-widgets. Instead of positioning a
Widget based on the layout’s own position:

RelativeLayout:
 Widget:
 pos: self.parent.pos
 Widget:
 center: self.parent.center

use the pos_hint property:

RelativeLayout:
 Widget:
 pos_hint: {'x': 0, 'y': 0}
 Widget:
 pos_hint: {'center_x': 0.5, 'center_y': 0.5}

Changed in version 1.7.0: Prior to version 1.7.0, the RelativeLayout was implemented as a
FloatLayout inside a
Scatter. This behaviour/widget has
been renamed to ScatterLayout. The RelativeLayout now only
supports relative positions (and can’t be rotated, scaled or translated on
a multitouch system using two or more fingers). This was done so that the
implementation could be optimized and avoid the heavier calculations of
Scatter (e.g. inverse matrix, recalculating multiple properties
etc.)

	
class kivy.uix.relativelayout.RelativeLayout(**kw)

	Bases: kivy.uix.floatlayout.FloatLayout

RelativeLayout class, see module documentation for more information.

	
do_layout(*args)

	This function is called when a layout is called by a trigger.
If you are writing a new Layout subclass, don’t call this function
directly but use _trigger_layout() instead.

The function is by default called before the next frame, therefore
the layout isn’t updated immediately. Anything depending on the
positions of e.g. children should be scheduled for the next frame.

New in version 1.0.8.

	
on_motion(etype, me)

	Called when a motion event is received.

	Parameters:

	
	etype: str
	Event type, one of “begin”, “update” or “end”

	me: MotionEvent
	Received motion event

	Returns:

	bool
True to stop event dispatching

New in version 2.1.0.

Warning

This is an experimental method and it remains so while this warning
is present.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_move(touch)

	Receive a touch move event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
to_local(x, y, **k)

	Transform parent coordinates to local (current widget) coordinates.

See relativelayout for details on the coordinate
systems.

	Parameters:

	
	relative: bool, defaults to False
	Change to True if you want to translate coordinates to
relative widget coordinates.

	
to_parent(x, y, **k)

	Transform local (current widget) coordinates to parent coordinates.

See relativelayout for details on the coordinate
systems.

	Parameters:

	
	relative: bool, defaults to False
	Change to True if you want to translate relative positions from
a widget to its parent coordinates.

reStructuredText renderer

New in version 1.1.0.

reStructuredText [http://docutils.sourceforge.net/rst.html] is an
easy-to-read, what-you-see-is-what-you-get plaintext markup syntax and parser
system.

Note

This widget requires the docutils package to run. Install it with
pip or include it as one of your deployment requirements.

Warning

This widget is highly experimental. The styling and implementation should
not be considered stable until this warning has been removed.

Usage with Text

text = """
.. _top:

Hello world
===========

This is an **emphased text**, some ``interpreted text``.
And this is a reference to top_::

 $ print("Hello world")

"""
document = RstDocument(text=text)

The rendering will output:

[image: _images/rstdocument.png]

Usage with Source

You can also render a rst file using the source property:

document = RstDocument(source='index.rst')

You can reference other documents using the role :doc:. For example, in the
document index.rst you can write:

Go to my next document: :doc:`moreinfo.rst`

It will generate a link that, when clicked, opens the moreinfo.rst
document.

	
class kivy.uix.rst.RstDocument(**kwargs)

	Bases: kivy.uix.scrollview.ScrollView

Base widget used to store an Rst document. See module documentation for
more information.

	
background_color

	Specifies the background_color to be used for the RstDocument.

New in version 1.8.0.

background_color is an AliasProperty
for colors[‘background’].

	
base_font_size

	Font size for the biggest title, 31 by default. All other font sizes are
derived from this.

New in version 1.8.0.

	
colors

	Dictionary of all the colors used in the RST rendering.

Warning

This dictionary is needs special handling. You also need to call
RstDocument.render() if you change them after loading.

colors is a DictProperty.

	
document_root

	Root path where :doc: will search for rst documents. If no path is
given, it will use the directory of the first loaded source file.

document_root is a StringProperty and
defaults to None.

	
goto(ref, *largs)

	Scroll to the reference. If it’s not found, nothing will be done.

For this text:

.. _myref:

This is something I always wanted.

You can do:

from kivy.clock import Clock
from functools import partial

doc = RstDocument(...)
Clock.schedule_once(partial(doc.goto, 'myref'), 0.1)

Note

It is preferable to delay the call of the goto if you just loaded
the document because the layout might not be finished or the
size of the RstDocument has not yet been determined. In
either case, the calculation of the scrolling would be
wrong.

You can, however, do a direct call if the document is already
loaded.

New in version 1.3.0.

	
preload(filename, encoding='utf-8', errors='strict')

	Preload a rst file to get its toctree and its title.

The result will be stored in toctrees with the filename as
key.

	
render()

	Force document rendering.

	
resolve_path(filename)

	Get the path for this filename. If the filename doesn’t exist,
it returns the document_root + filename.

	
show_errors

	Indicate whether RST parsers errors should be shown on the screen
or not.

show_errors is a BooleanProperty and
defaults to False.

	
source

	Filename of the RST document.

source is a StringProperty and
defaults to None.

	
source_encoding

	Encoding to be used for the source file.

source_encoding is a StringProperty and
defaults to utf-8.

Note

It is your responsibility to ensure that the value provided is a
valid codec supported by python.

	
source_error

	Error handling to be used while encoding the source file.

source_error is an OptionProperty and
defaults to strict. Can be one of ‘strict’, ‘ignore’, ‘replace’,
‘xmlcharrefreplace’ or ‘backslashreplac’.

	
text

	RST markup text of the document.

text is a StringProperty and defaults to
None.

	
title

	Title of the current document.

title is a StringProperty and defaults to
‘’. It is read-only.

	
toctrees

	Toctree of all loaded or preloaded documents. This dictionary is filled
when a rst document is explicitly loaded or where preload() has been
called.

If the document has no filename, e.g. when the document is loaded from a
text file, the key will be ‘’.

toctrees is a DictProperty and defaults
to {}.

	
underline_color

	underline color of the titles, expressed in html color notation

underline_color is a
StringProperty and defaults to ‘204a9699’.

Sandbox

New in version 1.8.0.

Warning

This is experimental and subject to change as long as this warning notice
is present.

This is a widget that runs itself and all of its children in a Sandbox. That
means if a child raises an Exception, it will be caught. The Sandbox
itself runs its own Clock, Cache, etc.

The SandBox widget is still experimental and required for the Kivy designer.
When the user designs their own widget, if they do something wrong (wrong size
value, invalid python code), it will be caught correctly without breaking
the whole application. Because it has been designed that way, we are still
enhancing this widget and the kivy.context module.
Don’t use it unless you know what you are doing.

	
class kivy.uix.sandbox.Sandbox(**kwargs)

	Bases: kivy.uix.floatlayout.FloatLayout

Sandbox widget, used to trap all the exceptions raised by child
widgets.

	
add_widget(*args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
clear_widgets(*args, **kwargs)

	Remove all (or the specified) children of this widget.
If the ‘children’ argument is specified, it should be a list (or
filtered list) of children of the current widget.

Changed in version 1.8.0: The children argument can be used to specify the children you
want to remove.

Changed in version 2.1.0: Specifying an empty children list leaves the widgets unchanged.
Previously it was treated like None and all children were
removed.

	
on_context_created()

	Override this method in order to load your kv file or do anything
else with the newly created context.

	
on_exception(exception, _traceback=None)

	Override this method in order to catch all the exceptions from
children.

If you return True, it will not reraise the exception.
If you return False, the exception will be raised to the parent.

	
on_motion(etype, me)

	Called when a motion event is received.

	Parameters:

	
	etype: str
	Event type, one of “begin”, “update” or “end”

	me: MotionEvent
	Received motion event

	Returns:

	bool
True to stop event dispatching

New in version 2.1.0.

Warning

This is an experimental method and it remains so while this warning
is present.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_move(touch)

	Receive a touch move event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
remove_widget(*args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

Scatter

[image: _images/scatter.gif]
Scatter is used to build interactive widgets that can be translated,
rotated and scaled with two or more fingers on a multitouch system.

Scatter has its own matrix transformation: the modelview matrix is changed
before the children are drawn and the previous matrix is restored when the
drawing is finished. That makes it possible to perform rotation, scaling and
translation over the entire children tree without changing any widget
properties. That specific behavior makes the scatter unique, but there are some
advantages / constraints that you should consider:

	The children are positioned relative to the scatter similarly to a
RelativeLayout. So when dragging the
scatter, the position of the children don’t change, only the position of
the scatter does.

	The scatter size has no impact on the size of its children.

	If you want to resize the scatter, use scale, not size (read #2). Scale
transforms both the scatter and its children, but does not change size.

	The scatter is not a layout. You must manage the size of the children
yourself.

For touch events, the scatter converts from the parent matrix to the scatter
matrix automatically in on_touch_down/move/up events. If you are doing things
manually, you will need to use to_parent() and
to_local().

Usage

By default, the Scatter does not have a graphical representation: it is a
container only. The idea is to combine the Scatter with another widget, for
example an Image:

scatter = Scatter()
image = Image(source='sun.jpg')
scatter.add_widget(image)

Control Interactions

By default, all interactions are enabled. You can selectively disable
them using the do_rotation, do_translation and do_scale properties.

Disable rotation:

scatter = Scatter(do_rotation=False)

Allow only translation:

scatter = Scatter(do_rotation=False, do_scale=False)

Allow only translation on x axis:

scatter = Scatter(do_rotation=False, do_scale=False,
 do_translation_y=False)

Automatic Bring to Front

If the Scatter.auto_bring_to_front property is True, the scatter
widget will be removed and re-added to the parent when it is touched
(brought to front, above all other widgets in the parent). This is useful
when you are manipulating several scatter widgets and don’t want the active
one to be partially hidden.

Scale Limitation

We are using a 32-bit matrix in double representation. That means we have
a limit for scaling. You cannot do infinite scaling down/up with our
implementation. Generally, you don’t hit the minimum scale (because you don’t
see it on the screen), but the maximum scale is 9.99506983235e+19 (2^66).

You can also limit the minimum and maximum scale allowed:

scatter = Scatter(scale_min=.5, scale_max=3.)

Behavior

Changed in version 1.1.0: If no control interactions are enabled, then the touch handler will never
return True.

	
class kivy.uix.scatter.Scatter(**kwargs)

	Bases: kivy.uix.widget.Widget

Scatter class. See module documentation for more information.

	Events:

	
	on_transform_with_touch:
	Fired when the scatter has been transformed by user touch
or multitouch, such as panning or zooming.

	on_bring_to_front:
	Fired when the scatter is brought to the front.

Changed in version 1.9.0: Event on_bring_to_front added.

Changed in version 1.8.0: Event on_transform_with_touch added.

	
apply_transform(trans, post_multiply=False, anchor=(0, 0))

	Transforms the scatter by applying the “trans” transformation
matrix (on top of its current transformation state). The resultant
matrix can be found in the transform property.

	Parameters:

	
	trans: Matrix.
	Transformation matrix to be applied to the scatter widget.

	anchor: tuple, defaults to (0, 0).
	The point to use as the origin of the transformation
(uses local widget space).

	post_multiply: bool, defaults to False.
	If True, the transform matrix is post multiplied
(as if applied before the current transform).

Usage example:

from kivy.graphics.transformation import Matrix
mat = Matrix().scale(3, 3, 3)
scatter_instance.apply_transform(mat)

	
auto_bring_to_front

	If True, the widget will be automatically pushed on the top of parent
widget list for drawing.

auto_bring_to_front is a BooleanProperty
and defaults to True.

	
bbox

	Bounding box of the widget in parent space:

((x, y), (w, h))
x, y = lower left corner

bbox is an AliasProperty.

	
center

	Center position of the widget.

center is a ReferenceListProperty of
(center_x, center_y) properties.

	
center_x

	X center position of the widget.

center_x is an AliasProperty of
(x + width / 2.).

	
center_y

	Y center position of the widget.

center_y is an AliasProperty of
(y + height / 2.).

	
collide_point(x, y)

	Check if a point (x, y) is inside the widget’s axis aligned bounding
box.

	Parameters:

	
	x: numeric
	x position of the point (in parent coordinates)

	y: numeric
	y position of the point (in parent coordinates)

	Returns:

	A bool. True if the point is inside the bounding box, False
otherwise.

>>> Widget(pos=(10, 10), size=(50, 50)).collide_point(40, 40)
True

	
do_collide_after_children

	If True, the collision detection for limiting the touch inside the
scatter will be done after dispaching the touch to the children.
You can put children outside the bounding box of the scatter and still be
able to touch them.

do_collide_after_children is a
BooleanProperty and defaults to False.

New in version 1.3.0.

	
do_rotation

	Allow rotation.

do_rotation is a BooleanProperty and
defaults to True.

	
do_scale

	Allow scaling.

do_scale is a BooleanProperty and
defaults to True.

	
do_translation

	Allow translation on the X or Y axis.

do_translation is an AliasProperty of
(do_translation_x + do_translation_y)

	
do_translation_x

	Allow translation on the X axis.

do_translation_x is a BooleanProperty and
defaults to True.

	
do_translation_y

	Allow translation on Y axis.

do_translation_y is a BooleanProperty and
defaults to True.

	
on_bring_to_front(touch)

	Called when a touch event causes the scatter to be brought to the
front of the parent (only if auto_bring_to_front is True)

	Parameters:

	
	touch:
	The touch object which brought the scatter to front.

New in version 1.9.0.

	
on_motion(etype, me)

	Called when a motion event is received.

	Parameters:

	
	etype: str
	Event type, one of “begin”, “update” or “end”

	me: MotionEvent
	Received motion event

	Returns:

	bool
True to stop event dispatching

New in version 2.1.0.

Warning

This is an experimental method and it remains so while this warning
is present.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_move(touch)

	Receive a touch move event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_transform_with_touch(touch)

	Called when a touch event has transformed the scatter widget.
By default this does nothing, but can be overridden by derived
classes that need to react to transformations caused by user
input.

	Parameters:

	
	touch:
	The touch object which triggered the transformation.

New in version 1.8.0.

	
pos

	Position of the widget.

pos is a ReferenceListProperty of
(x, y) properties.

	
right

	Right position of the widget.

right is an AliasProperty of
(x + width).

	
rotation

	Rotation value of the scatter in degrees moving in a counterclockwise
direction.

rotation is an AliasProperty and defaults
to 0.0.

	
scale

	Scale value of the scatter.

scale is an AliasProperty and defaults to
1.0.

	
scale_max

	Maximum scaling factor allowed.

scale_max is a NumericProperty and
defaults to 1e20.

	
scale_min

	Minimum scaling factor allowed.

scale_min is a NumericProperty and
defaults to 0.01.

	
to_local(x, y, **k)

	Transform parent coordinates to local (current widget) coordinates.

See relativelayout for details on the coordinate
systems.

	Parameters:

	
	relative: bool, defaults to False
	Change to True if you want to translate coordinates to
relative widget coordinates.

	
to_parent(x, y, **k)

	Transform local (current widget) coordinates to parent coordinates.

See relativelayout for details on the coordinate
systems.

	Parameters:

	
	relative: bool, defaults to False
	Change to True if you want to translate relative positions from
a widget to its parent coordinates.

	
top

	Top position of the widget.

top is an AliasProperty of
(y + height).

	
transform

	Transformation matrix.

transform is an ObjectProperty and
defaults to the identity matrix.

Note

This matrix reflects the current state of the transformation matrix
but setting it directly will erase previously applied
transformations. To apply a transformation considering context,
please use the apply_transform method.

	
transform_inv

	Inverse of the transformation matrix.

transform_inv is an ObjectProperty and
defaults to the identity matrix.

	
translation_touches

	Determine whether translation was triggered by a single or multiple
touches. This only has effect when do_translation = True.

translation_touches is a NumericProperty
and defaults to 1.

New in version 1.7.0.

	
x

	X position of the widget.

x is a NumericProperty and defaults to 0.

	
y

	Y position of the widget.

y is a NumericProperty and defaults to 0.

	
class kivy.uix.scatter.ScatterPlane(**kwargs)

	Bases: kivy.uix.scatter.Scatter

This is essentially an unbounded Scatter widget. It’s a convenience
class to make it easier to handle infinite planes.

	
collide_point(x, y)

	Check if a point (x, y) is inside the widget’s axis aligned bounding
box.

	Parameters:

	
	x: numeric
	x position of the point (in parent coordinates)

	y: numeric
	y position of the point (in parent coordinates)

	Returns:

	A bool. True if the point is inside the bounding box, False
otherwise.

>>> Widget(pos=(10, 10), size=(50, 50)).collide_point(40, 40)
True

Scatter Layout

New in version 1.6.0.

This layout behaves just like a
RelativeLayout.
When a widget is added with position = (0,0) to a ScatterLayout,
the child widget will also move when you change the position of the
ScatterLayout. The child widget’s coordinates remain
(0,0) as they are relative to the parent layout.

However, since ScatterLayout is implemented using a
Scatter
widget, you can also translate, rotate and scale the layout using touches
or clicks, just like in the case of a normal Scatter widget, and the child
widgets will behave as expected.

In contrast to a Scatter, the Layout favours ‘hint’ properties, such as
size_hint, size_hint_x, size_hint_y and pos_hint.

Note

The ScatterLayout is implemented as a
FloatLayout
inside a Scatter.

Warning

Since the actual ScatterLayout is a
Scatter, its
add_widget and remove_widget functions are overridden to add children
to the embedded FloatLayout (accessible as
the content property of Scatter)
automatically. So if you want to access the added child elements,
you need self.content.children instead of self.children.

Warning

The ScatterLayout was introduced in 1.7.0 and was called
RelativeLayout in prior versions.
The RelativeLayout is now an optimized
implementation that uses only a positional transform to avoid some of the
heavier calculation involved for Scatter.

	
class kivy.uix.scatterlayout.ScatterLayout(**kw)

	Bases: kivy.uix.scatter.Scatter

ScatterLayout class, see module documentation for more information.

	
add_widget(*args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
clear_widgets(*args, **kwargs)

	Remove all (or the specified) children of this widget.
If the ‘children’ argument is specified, it should be a list (or
filtered list) of children of the current widget.

Changed in version 1.8.0: The children argument can be used to specify the children you
want to remove.

Changed in version 2.1.0: Specifying an empty children list leaves the widgets unchanged.
Previously it was treated like None and all children were
removed.

	
remove_widget(*args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
class kivy.uix.scatterlayout.ScatterPlaneLayout(**kwargs)

	Bases: kivy.uix.scatter.ScatterPlane

ScatterPlaneLayout class, see module documentation for more information.

Similar to ScatterLayout, but based on ScatterPlane - so the input is not
bounded.

New in version 1.9.0.

	
collide_point(x, y)

	Check if a point (x, y) is inside the widget’s axis aligned bounding
box.

	Parameters:

	
	x: numeric
	x position of the point (in parent coordinates)

	y: numeric
	y position of the point (in parent coordinates)

	Returns:

	A bool. True if the point is inside the bounding box, False
otherwise.

>>> Widget(pos=(10, 10), size=(50, 50)).collide_point(40, 40)
True

Screen Manager

[image: _images/screenmanager.gif]

New in version 1.4.0.

The screen manager is a widget dedicated to managing multiple screens for your
application. The default ScreenManager displays only one
Screen at a time and uses a TransitionBase to switch from one
Screen to another.

Multiple transitions are supported based on changing the screen coordinates /
scale or even performing fancy animation using custom shaders.

Basic Usage

Let’s construct a Screen Manager with 4 named screens. When you are creating
a screen, you absolutely need to give a name to it:

from kivy.uix.screenmanager import ScreenManager, Screen

Create the manager
sm = ScreenManager()

Add few screens
for i in range(4):
 screen = Screen(name='Title %d' % i)
 sm.add_widget(screen)

By default, the first screen added into the ScreenManager will be
displayed. You can then change to another screen.

Let's display the screen named 'Title 2'
A transition will automatically be used.
sm.current = 'Title 2'

The default ScreenManager.transition is a SlideTransition with
options direction and
duration.

Please note that by default, a Screen displays nothing: it’s just a
RelativeLayout. You need to use that class as
a root widget for your own screen, the best way being to subclass.

Warning

As Screen is a RelativeLayout,
it is important to understand the
Common Pitfalls.

Here is an example with a ‘Menu Screen’ and a ‘Settings Screen’:

from kivy.app import App
from kivy.lang import Builder
from kivy.uix.screenmanager import ScreenManager, Screen

Create both screens. Please note the root.manager.current: this is how
you can control the ScreenManager from kv. Each screen has by default a
property manager that gives you the instance of the ScreenManager used.
Builder.load_string("""
<MenuScreen>:
 BoxLayout:
 Button:
 text: 'Goto settings'
 on_press: root.manager.current = 'settings'
 Button:
 text: 'Quit'

<SettingsScreen>:
 BoxLayout:
 Button:
 text: 'My settings button'
 Button:
 text: 'Back to menu'
 on_press: root.manager.current = 'menu'
""")

Declare both screens
class MenuScreen(Screen):
 pass

class SettingsScreen(Screen):
 pass

class TestApp(App):

 def build(self):
 # Create the screen manager
 sm = ScreenManager()
 sm.add_widget(MenuScreen(name='menu'))
 sm.add_widget(SettingsScreen(name='settings'))

 return sm

if __name__ == '__main__':
 TestApp().run()

Changing Direction

A common use case for ScreenManager involves using a
SlideTransition which slides right to the next screen
and slides left to the previous screen. Building on the previous
example, this can be accomplished like so:

Builder.load_string("""
<MenuScreen>:
 BoxLayout:
 Button:
 text: 'Goto settings'
 on_press:
 root.manager.transition.direction = 'left'
 root.manager.current = 'settings'
 Button:
 text: 'Quit'

<SettingsScreen>:
 BoxLayout:
 Button:
 text: 'My settings button'
 Button:
 text: 'Back to menu'
 on_press:
 root.manager.transition.direction = 'right'
 root.manager.current = 'menu'
""")

Advanced Usage

From 1.8.0, you can now switch dynamically to a new screen, change the
transition options and remove the previous one by using
switch_to():

sm = ScreenManager()
screens = [Screen(name='Title {}'.format(i)) for i in range(4)]

sm.switch_to(screens[0])
later
sm.switch_to(screens[1], direction='right')

Note that this method adds the screen to the ScreenManager instance
and should not be used if your screens have already been added to this
instance. To switch to a screen which is already added, you should use the
current property.

Changing transitions

You have multiple transitions available by default, such as:

	NoTransition - switches screens instantly with no animation

	SlideTransition - slide the screen in/out, from any direction

	CardTransition - new screen slides on the previous
or the old one slides off the new one depending on the mode

	SwapTransition - implementation of the iOS swap transition

	FadeTransition - shader to fade the screen in/out

	WipeTransition - shader to wipe the screens from right to left

	FallOutTransition - shader where the old screen ‘falls’ and
becomes transparent, revealing the new one behind it.

	RiseInTransition - shader where the new screen rises from the
screen centre while fading from transparent to opaque.

You can easily switch transitions by changing the
ScreenManager.transition property:

sm = ScreenManager(transition=FadeTransition())

Note

Currently, none of Shader based Transitions use
anti-aliasing. This is because they use the FBO which doesn’t have
any logic to handle supersampling. This is a known issue and we
are working on a transparent implementation that will give the
same results as if it had been rendered on screen.

To be more concrete, if you see sharp edged text during the animation, it’s
normal.

	
class kivy.uix.screenmanager.CardTransition

	Bases: kivy.uix.screenmanager.SlideTransition

Card transition that looks similar to Android 4.x application drawer
interface animation.

It supports 4 directions like SlideTransition: left, right, up and down,
and two modes, pop and push. If push mode is activated, the previous
screen does not move, and the new one slides in from the given direction.
If the pop mode is activated, the previous screen slides out, when the new
screen is already on the position of the ScreenManager.

New in version 1.10.

	
mode

	Indicates if the transition should push or pop
the screen on/off the ScreenManager.

	‘push’ means the screen slides in in the given direction

	‘pop’ means the screen slides out in the given direction

mode is an OptionProperty and
defaults to ‘push’.

	
start(manager)

	(internal) Starts the transition. This is automatically
called by the ScreenManager.

	
class kivy.uix.screenmanager.FadeTransition

	Bases: kivy.uix.screenmanager.ShaderTransition

Fade transition, based on a fragment Shader.

	
fs

	Fragment shader to use.

fs is a StringProperty and defaults to
None.

	
class kivy.uix.screenmanager.FallOutTransition

	Bases: kivy.uix.screenmanager.ShaderTransition

Transition where the new screen ‘falls’ from the screen centre,
becoming smaller and more transparent until it disappears, and
revealing the new screen behind it. Mimics the popular/standard
Android transition.

New in version 1.8.0.

	
duration

	Duration in seconds of the transition, replacing the default of
TransitionBase.

duration is a NumericProperty and
defaults to .15 (= 150ms).

	
fs

	Fragment shader to use.

fs is a StringProperty and defaults to
None.

	
class kivy.uix.screenmanager.NoTransition

	Bases: kivy.uix.screenmanager.TransitionBase

No transition, instantly switches to the next screen with no delay or
animation.

New in version 1.8.0.

	
duration

	Duration in seconds of the transition.

duration is a NumericProperty and
defaults to .4 (= 400ms).

Changed in version 1.8.0: Default duration has been changed from 700ms to 400ms.

	
class kivy.uix.screenmanager.RiseInTransition

	Bases: kivy.uix.screenmanager.ShaderTransition

Transition where the new screen rises from the screen centre,
becoming larger and changing from transparent to opaque until it
fills the screen. Mimics the popular/standard Android transition.

New in version 1.8.0.

	
duration

	Duration in seconds of the transition, replacing the default of
TransitionBase.

duration is a NumericProperty and
defaults to .2 (= 200ms).

	
fs

	Fragment shader to use.

fs is a StringProperty and defaults to
None.

	
class kivy.uix.screenmanager.Screen(**kw)

	Bases: kivy.uix.relativelayout.RelativeLayout

Screen is an element intended to be used with a ScreenManager.
Check module documentation for more information.

	Events:

	
	on_pre_enter: ()
	Event fired when the screen is about to be used: the entering
animation is started.

	on_enter: ()
	Event fired when the screen is displayed: the entering animation is
complete.

	on_pre_leave: ()
	Event fired when the screen is about to be removed: the leaving
animation is started.

	on_leave: ()
	Event fired when the screen is removed: the leaving animation is
finished.

Changed in version 1.6.0: Events on_pre_enter, on_enter, on_pre_leave and on_leave were
added.

	
manager

	ScreenManager object, set when the screen is added to a
manager.

manager is an ObjectProperty and
defaults to None, read-only.

	
name

	Name of the screen which must be unique within a ScreenManager.
This is the name used for ScreenManager.current.

name is a StringProperty and defaults to
‘’.

	
transition_progress

	Value that represents the completion of the current transition, if any
is occurring.

If a transition is in progress, whatever the mode, the value will change
from 0 to 1. If you want to know if it’s an entering or leaving animation,
check the transition_state.

transition_progress is a NumericProperty
and defaults to 0.

	
transition_state

	Value that represents the state of the transition:

	‘in’ if the transition is going to show your screen

	‘out’ if the transition is going to hide your screen

After the transition is complete, the state will retain its last value (in
or out).

transition_state is an OptionProperty and
defaults to ‘out’.

	
class kivy.uix.screenmanager.ScreenManager(**kwargs)

	Bases: kivy.uix.floatlayout.FloatLayout

Screen manager. This is the main class that will control your
Screen stack and memory.

By default, the manager will show only one screen at a time.

	
add_widget(widget, *args, **kwargs)

	
Changed in version 2.1.0: Renamed argument screen to widget.

	
clear_widgets(children=None, *args, **kwargs)

	
Changed in version 2.1.0: Renamed argument screens to children.

	
current

	Name of the screen currently shown, or the screen to show.

from kivy.uix.screenmanager import ScreenManager, Screen

sm = ScreenManager()
sm.add_widget(Screen(name='first'))
sm.add_widget(Screen(name='second'))

By default, the first added screen will be shown. If you want to
show another one, just set the 'current' property.
sm.current = 'second'

current is a StringProperty and defaults
to None.

	
current_screen

	Contains the currently displayed screen. You must not change this
property manually, use current instead.

current_screen is an ObjectProperty and
defaults to None, read-only.

	
get_screen(name)

	Return the screen widget associated with the name or raise a
ScreenManagerException if not found.

	
has_screen(name)

	Return True if a screen with the name has been found.

New in version 1.6.0.

	
next()

	Return the name of the next screen from the screen list.

	
on_motion(etype, me)

	Called when a motion event is received.

	Parameters:

	
	etype: str
	Event type, one of “begin”, “update” or “end”

	me: MotionEvent
	Received motion event

	Returns:

	bool
True to stop event dispatching

New in version 2.1.0.

Warning

This is an experimental method and it remains so while this warning
is present.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_move(touch)

	Receive a touch move event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
previous()

	Return the name of the previous screen from the screen list.

	
remove_widget(widget, *args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
screen_names

	List of the names of all the Screen widgets added. The list
is read only.

screens_names is an AliasProperty and
is read-only. It is updated if the screen list changes or the name
of a screen changes.

	
screens

	List of all the Screen widgets added. You should not change
this list manually. Use the
add_widget method instead.

screens is a ListProperty and defaults to
[], read-only.

	
switch_to(screen, **options)

	Add a new or existing screen to the ScreenManager and switch to it.
The previous screen will be “switched away” from. options are the
transition options that will be changed before the animation
happens.

If no previous screens are available, the screen will be used as the
main one:

sm = ScreenManager()
sm.switch_to(screen1)
later
sm.switch_to(screen2, direction='left')
later
sm.switch_to(screen3, direction='right', duration=1.)

If any animation is in progress, it will be stopped and replaced by
this one: you should avoid this because the animation will just look
weird. Use either switch_to() or current but not both.

The screen name will be changed if there is any conflict with the
current screen.

	
transition

	Transition object to use for animating the transition from the current
screen to the next one being shown.

For example, if you want to use a WipeTransition between
slides:

from kivy.uix.screenmanager import ScreenManager, Screen,
WipeTransition

sm = ScreenManager(transition=WipeTransition())
sm.add_widget(Screen(name='first'))
sm.add_widget(Screen(name='second'))

by default, the first added screen will be shown. If you want to
show another one, just set the 'current' property.
sm.current = 'second'

transition is an ObjectProperty and
defaults to a SlideTransition.

Changed in version 1.8.0: Default transition has been changed from SwapTransition to
SlideTransition.

	
exception kivy.uix.screenmanager.ScreenManagerException

	Bases: Exception

Exception for the ScreenManager.

	
class kivy.uix.screenmanager.ShaderTransition

	Bases: kivy.uix.screenmanager.TransitionBase

Transition class that uses a Shader for animating the transition between
2 screens. By default, this class doesn’t assign any fragment/vertex
shader. If you want to create your own fragment shader for the transition,
you need to declare the header yourself and include the “t”, “tex_in” and
“tex_out” uniform:

Create your own transition. This shader implements a "fading"
transition.
fs = """$HEADER
 uniform float t;
 uniform sampler2D tex_in;
 uniform sampler2D tex_out;

 void main(void) {
 vec4 cin = texture2D(tex_in, tex_coord0);
 vec4 cout = texture2D(tex_out, tex_coord0);
 gl_FragColor = mix(cout, cin, t);
 }
"""

And create your transition
tr = ShaderTransition(fs=fs)
sm = ScreenManager(transition=tr)

	
add_screen(screen)

	(internal) Used to add a screen to the ScreenManager.

	
clearcolor

	Sets the color of Fbo ClearColor.

New in version 1.9.0.

clearcolor is a ColorProperty
and defaults to [0, 0, 0, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
fs

	Fragment shader to use.

fs is a StringProperty and defaults to
None.

	
remove_screen(screen)

	(internal) Used to remove a screen from the ScreenManager.

	
stop()

	(internal) Stops the transition. This is automatically called by the
ScreenManager.

	
vs

	Vertex shader to use.

vs is a StringProperty and defaults to
None.

	
class kivy.uix.screenmanager.SlideTransition

	Bases: kivy.uix.screenmanager.TransitionBase

Slide Transition, can be used to show a new screen from any direction:
left, right, up or down.

	
direction

	Direction of the transition.

direction is an OptionProperty and
defaults to ‘left’. Can be one of ‘left’, ‘right’, ‘up’ or ‘down’.

	
class kivy.uix.screenmanager.SwapTransition(**kwargs)

	Bases: kivy.uix.screenmanager.TransitionBase

Swap transition that looks like iOS transition when a new window
appears on the screen.

	
add_screen(screen)

	(internal) Used to add a screen to the ScreenManager.

	
start(manager)

	(internal) Starts the transition. This is automatically
called by the ScreenManager.

	
class kivy.uix.screenmanager.TransitionBase

	Bases: kivy.event.EventDispatcher

TransitionBase is used to animate 2 screens within the
ScreenManager. This class acts as a base for other
implementations like the SlideTransition and
SwapTransition.

	Events:

	
	on_progress: Transition object, progression float
	Fired during the animation of the transition.

	on_complete: Transition object
	Fired when the transition is finished.

	
add_screen(screen)

	(internal) Used to add a screen to the ScreenManager.

	
duration

	Duration in seconds of the transition.

duration is a NumericProperty and
defaults to .4 (= 400ms).

Changed in version 1.8.0: Default duration has been changed from 700ms to 400ms.

	
is_active

	Indicate whether the transition is currently active or not.

is_active is a BooleanProperty and
defaults to False, read-only.

	
manager

	ScreenManager object, set when the screen is added to a
manager.

manager is an ObjectProperty and
defaults to None, read-only.

	
remove_screen(screen)

	(internal) Used to remove a screen from the ScreenManager.

	
screen_in

	Property that contains the screen to show.
Automatically set by the ScreenManager.

screen_in is an ObjectProperty and
defaults to None.

	
screen_out

	Property that contains the screen to hide.
Automatically set by the ScreenManager.

screen_out is an ObjectProperty and
defaults to None.

	
start(manager)

	(internal) Starts the transition. This is automatically
called by the ScreenManager.

	
stop()

	(internal) Stops the transition. This is automatically called by the
ScreenManager.

	
class kivy.uix.screenmanager.WipeTransition

	Bases: kivy.uix.screenmanager.ShaderTransition

Wipe transition, based on a fragment Shader.

	
fs

	Fragment shader to use.

fs is a StringProperty and defaults to
None.

ScrollView

New in version 1.0.4.

The ScrollView widget provides a scrollable/pannable viewport that is
clipped at the scrollview’s bounding box.

Scrolling Behavior

The ScrollView accepts only one child and applies a viewport/window to
it according to the scroll_x and
scroll_y properties. Touches are analyzed to
determine if the user wants to scroll or control the child in some
other manner: you cannot do both at the same time. To determine if
interaction is a scrolling gesture, these properties are used:

	scroll_distance: the minimum distance to travel,
defaults to 20 pixels.

	scroll_timeout: the maximum time period, defaults
to 55 milliseconds.

If a touch travels scroll_distance pixels within the
scroll_timeout period, it is recognized as a scrolling
gesture and translation (scroll/pan) will begin. If the timeout occurs, the
touch down event is dispatched to the child instead (no translation).

The default value for those settings can be changed in the configuration file:

[widgets]
scroll_timeout = 250
scroll_distance = 20

New in version 1.1.1: ScrollView now animates scrolling in Y when a mousewheel is used.

Limiting to the X or Y Axis

By default, the ScrollView allows scrolling along both the X and Y axes. You
can explicitly disable scrolling on an axis by setting the
do_scroll_x or do_scroll_y properties
to False.

Managing the Content Size and Position

The ScrollView manages the position of its children similarly to a
RelativeLayout but does not use the
size_hint. You must
carefully specify the size of your content to
get the desired scroll/pan effect.

By default, the size_hint is (1, 1), so the
content size will fit your ScrollView
exactly (you will have nothing to scroll). You must deactivate at least one of
the size_hint instructions (x or y) of the child to enable scrolling.
Setting size_hint_min to not be None will
also enable scrolling for that dimension when the ScrollView is
smaller than the minimum size.

To scroll a GridLayout on it’s Y-axis/vertically,
set the child’s width to that of the ScrollView (size_hint_x=1), and set
the size_hint_y property to None:

from kivy.uix.gridlayout import GridLayout
from kivy.uix.button import Button
from kivy.uix.scrollview import ScrollView
from kivy.core.window import Window
from kivy.app import runTouchApp

layout = GridLayout(cols=1, spacing=10, size_hint_y=None)
Make sure the height is such that there is something to scroll.
layout.bind(minimum_height=layout.setter('height'))
for i in range(100):
 btn = Button(text=str(i), size_hint_y=None, height=40)
 layout.add_widget(btn)
root = ScrollView(size_hint=(1, None), size=(Window.width, Window.height))
root.add_widget(layout)

runTouchApp(root)

Kv Example:

ScrollView:
 do_scroll_x: False
 do_scroll_y: True

 Label:
 size_hint_y: None
 height: self.texture_size[1]
 text_size: self.width, None
 padding: 10, 10
 text:
 'really some amazing text\n' * 100

Overscroll Effects

New in version 1.7.0.

When scrolling would exceed the bounds of the ScrollView, it
uses a ScrollEffect to handle the
overscroll. These effects can perform actions like bouncing back,
changing opacity, or simply preventing scrolling beyond the normal
boundaries. Note that complex effects may perform many computations,
which can be slow on weaker hardware.

You can change what effect is being used by setting
effect_cls to any effect class. Current options
include:

	ScrollEffect: Does not allow
scrolling beyond the ScrollView boundaries.

	DampedScrollEffect: The
current default. Allows the user to scroll beyond the normal
boundaries, but has the content spring back once the
touch/click is released.

	OpacityScrollEffect: Similar
to the DampedScrollEffect, but
also reduces opacity during overscroll.

You can also create your own scroll effect by subclassing one of these,
then pass it as the effect_cls in the same way.

Alternatively, you can set effect_x and/or
effect_y to an instance of the effect you want to
use. This will override the default effect set in
effect_cls.

All the effects are located in the kivy.effects.

	
class kivy.uix.scrollview.ScrollView(**kwargs)

	Bases: kivy.uix.stencilview.StencilView

ScrollView class. See module documentation for more information.

	Events:

	
	on_scroll_start
	Generic event fired when scrolling starts from touch.

	on_scroll_move
	Generic event fired when scrolling move from touch.

	on_scroll_stop
	Generic event fired when scrolling stops from touch.

Changed in version 1.9.0: on_scroll_start, on_scroll_move and on_scroll_stop events are
now dispatched when scrolling to handle nested ScrollViews.

Changed in version 1.7.0: auto_scroll, scroll_friction, scroll_moves, scroll_stoptime’ has
been deprecated, use :attr:`effect_cls instead.

	
add_widget(widget, *args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
always_overscroll

	Make sure user can overscroll even if there is not enough content
to require scrolling.

This is useful if you want to trigger some action on overscroll, but
there is not always enough content to trigger it.

always_overscroll is a
BooleanProperty and defaults to True.

New in version 2.0.0.

The option was added and enabled by default, set to False to get the
previous behavior of only allowing to overscroll when there is
enough content to allow scrolling.

	
bar_color

	Color of horizontal / vertical scroll bar, in RGBA format.

New in version 1.2.0.

bar_color is a ColorProperty and defaults
to [.7, .7, .7, .9].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
bar_inactive_color

	Color of horizontal / vertical scroll bar (in RGBA format), when no
scroll is happening.

New in version 1.9.0.

bar_inactive_color is a
ColorProperty and defaults to [.7, .7, .7, .2].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
bar_margin

	Margin between the bottom / right side of the scrollview when drawing
the horizontal / vertical scroll bar.

New in version 1.2.0.

bar_margin is a NumericProperty, default
to 0

	
bar_pos

	Which side of the scroll view to place each of the bars on.

bar_pos is a ReferenceListProperty of
(bar_pos_x, bar_pos_y)

	
bar_pos_x

	Which side of the ScrollView the horizontal scroll bar should go
on. Possible values are ‘top’ and ‘bottom’.

New in version 1.8.0.

bar_pos_x is an OptionProperty,
defaults to ‘bottom’.

	
bar_pos_y

	Which side of the ScrollView the vertical scroll bar should go
on. Possible values are ‘left’ and ‘right’.

New in version 1.8.0.

bar_pos_y is an OptionProperty and
defaults to ‘right’.

	
bar_width

	Width of the horizontal / vertical scroll bar. The width is interpreted
as a height for the horizontal bar.

New in version 1.2.0.

bar_width is a NumericProperty and
defaults to 2.

	
convert_distance_to_scroll(dx, dy)

	Convert a distance in pixels to a scroll distance, depending on the
content size and the scrollview size.

The result will be a tuple of scroll distance that can be added to
scroll_x and scroll_y

	
do_scroll

	Allow scroll on X or Y axis.

do_scroll is a AliasProperty of
(do_scroll_x + do_scroll_y)

	
do_scroll_x

	Allow scroll on X axis.

do_scroll_x is a BooleanProperty and
defaults to True.

	
do_scroll_y

	Allow scroll on Y axis.

do_scroll_y is a BooleanProperty and
defaults to True.

	
effect_cls

	Class effect to instantiate for X and Y axis.

New in version 1.7.0.

effect_cls is an ObjectProperty and
defaults to DampedScrollEffect.

Changed in version 1.8.0: If you set a string, the Factory will be used to
resolve the class.

	
effect_x

	Effect to apply for the X axis. If None is set, an instance of
effect_cls will be created.

New in version 1.7.0.

effect_x is an ObjectProperty and
defaults to None.

	
effect_y

	Effect to apply for the Y axis. If None is set, an instance of
effect_cls will be created.

New in version 1.7.0.

effect_y is an ObjectProperty and
defaults to None, read-only.

	
hbar

	Return a tuple of (position, size) of the horizontal scrolling bar.

New in version 1.2.0.

The position and size are normalized between 0-1, and represent a
proportion of the current scrollview height. This property is used
internally for drawing the little horizontal bar when you’re scrolling.

hbar is a AliasProperty, readonly.

	
on_motion(etype, me)

	Called when a motion event is received.

	Parameters:

	
	etype: str
	Event type, one of “begin”, “update” or “end”

	me: MotionEvent
	Received motion event

	Returns:

	bool
True to stop event dispatching

New in version 2.1.0.

Warning

This is an experimental method and it remains so while this warning
is present.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_move(touch)

	Receive a touch move event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
remove_widget(widget, *args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
scroll_distance

	Distance to move before scrolling the ScrollView, in pixels. As
soon as the distance has been traveled, the ScrollView will start
to scroll, and no touch event will go to children.
It is advisable that you base this value on the dpi of your target device’s
screen.

scroll_distance is a NumericProperty and
defaults to 20 (pixels), according to the default value in user
configuration.

	
scroll_timeout

	Timeout allowed to trigger the scroll_distance, in milliseconds.
If the user has not moved scroll_distance within the timeout,
the scrolling will be disabled, and the touch event will go to the
children.

scroll_timeout is a NumericProperty and
defaults to 55 (milliseconds) according to the default value in user
configuration.

Changed in version 1.5.0: Default value changed from 250 to 55.

	
scroll_to(widget, padding=10, animate=True)

	Scrolls the viewport to ensure that the given widget is visible,
optionally with padding and animation. If animate is True (the
default), then the default animation parameters will be used.
Otherwise, it should be a dict containing arguments to pass to
Animation constructor.

New in version 1.9.1.

	
scroll_type

	Sets the type of scrolling to use for the content of the scrollview.
Available options are: [‘content’], [‘bars’], [‘bars’, ‘content’].

	[‘content’]

	Content is scrolled by dragging or swiping the
content directly.

	[‘bars’]

	Content is scrolled by dragging or swiping the
scroll bars.

	[‘bars’, ‘content’]

	Content is scrolled by either of the above
methods.

New in version 1.8.0.

scroll_type is an OptionProperty and
defaults to [‘content’].

	
scroll_wheel_distance

	Distance to move when scrolling with a mouse wheel.
It is advisable that you base this value on the dpi of your target device’s
screen.

New in version 1.8.0.

scroll_wheel_distance is a
NumericProperty , defaults to 20 pixels.

	
scroll_x

	X scrolling value, between 0 and 1. If 0, the content’s left side will
touch the left side of the ScrollView. If 1, the content’s right side will
touch the right side.

This property is controlled by ScrollView only if
do_scroll_x is True.

scroll_x is a NumericProperty and
defaults to 0.

	
scroll_y

	Y scrolling value, between 0 and 1. If 0, the content’s bottom side will
touch the bottom side of the ScrollView. If 1, the content’s top side will
touch the top side.

This property is controlled by ScrollView only if
do_scroll_y is True.

scroll_y is a NumericProperty and
defaults to 1.

	
smooth_scroll_end

	Whether smooth scroll end should be used when scrolling with the
mouse-wheel and the factor of transforming the scroll distance to
velocity. This option also enables velocity addition meaning if you
scroll more, you will scroll faster and further. The recommended value
is 10. The velocity is calculated as scroll_wheel_distance *
smooth_scroll_end.

New in version 1.11.0.

smooth_scroll_end is a NumericProperty
and defaults to None.

	
to_local(x, y, **k)

	Transform parent coordinates to local (current widget) coordinates.

See relativelayout for details on the coordinate
systems.

	Parameters:

	
	relative: bool, defaults to False
	Change to True if you want to translate coordinates to
relative widget coordinates.

	
to_parent(x, y, **k)

	Transform local (current widget) coordinates to parent coordinates.

See relativelayout for details on the coordinate
systems.

	Parameters:

	
	relative: bool, defaults to False
	Change to True if you want to translate relative positions from
a widget to its parent coordinates.

	
update_from_scroll(*largs)

	Force the reposition of the content, according to current value of
scroll_x and scroll_y.

This method is automatically called when one of the scroll_x,
scroll_y, pos or size properties change, or
if the size of the content changes.

	
vbar

	Return a tuple of (position, size) of the vertical scrolling bar.

New in version 1.2.0.

The position and size are normalized between 0-1, and represent a
proportion of the current scrollview height. This property is used
internally for drawing the little vertical bar when you’re scrolling.

vbar is a AliasProperty, readonly.

	
viewport_size

	(internal) Size of the internal viewport. This is the size of your only
child in the scrollview.

Settings

New in version 1.0.7.

This module provides a complete and extensible framework for adding a
Settings interface to your application. By default, the interface uses
a SettingsWithSpinner, which consists of a
Spinner (top) to switch between individual
settings panels (bottom). See Different panel layouts for some
alternatives.

[image: _images/settingswithspinner_kivy.jpg]
A SettingsPanel represents a group of configurable options. The
SettingsPanel.title property is used by Settings when a panel
is added: it determines the name of the sidebar button. SettingsPanel controls
a ConfigParser instance.

The panel can be automatically constructed from a JSON definition file: you
describe the settings you want and corresponding sections/keys in the
ConfigParser instance… and you’re done!

Settings are also integrated into the App class. Use
Settings.add_kivy_panel() to configure the Kivy core settings in a panel.

Create a panel from JSON

To create a panel from a JSON-file, you need two things:

	a ConfigParser instance with default values

	a JSON file

Warning

The kivy.config.ConfigParser is required. You cannot use the
default ConfigParser from Python libraries.

You must create and handle the ConfigParser
object. SettingsPanel will read the values from the associated
ConfigParser instance. Make sure you have set default values (using
setdefaults) for all the sections/keys
in your JSON file!

The JSON file contains structured information to describe the available
settings. Here is an example:

[
 {
 "type": "title",
 "title": "Windows"
 },
 {
 "type": "bool",
 "title": "Fullscreen",
 "desc": "Set the window in windowed or fullscreen",
 "section": "graphics",
 "key": "fullscreen"
 }
]

Each element in the root list represents a setting that the user can
configure. Only the “type” key is mandatory: an instance of the associated
class will be created and used for the setting - other keys are assigned to
corresponding properties of that class.

	Type

	Associated class

	title

	SettingTitle

	bool

	SettingBoolean

	numeric

	SettingNumeric

	options

	SettingOptions

	string

	SettingString

	path

	SettingPath

	color

	SettingColor

New in version 1.1.0: Added SettingPath type

New in version 2.1.0: Added SettingColor type

In the JSON example above, the first element is of type “title”. It will create
a new instance of SettingTitle and apply the rest of the key-value
pairs to the properties of that class, i.e. “title”: “Windows” sets the
title property of the panel to “Windows”.

To load the JSON example to a Settings instance, use the
Settings.add_json_panel() method. It will automatically instantiate a
SettingsPanel and add it to Settings:

from kivy.config import ConfigParser

config = ConfigParser()
config.read('myconfig.ini')

s = Settings()
s.add_json_panel('My custom panel', config, 'settings_custom.json')
s.add_json_panel('Another panel', config, 'settings_test2.json')

then use the s as a widget...

Different panel layouts

A kivy App can automatically create and display a
Settings instance. See the settings_cls
documentation for details on how to choose which settings class to
display.

Several pre-built settings widgets are available. All except
SettingsWithNoMenu include close buttons triggering the
on_close event.

	Settings: Displays settings with a sidebar at the left to
switch between json panels.

	SettingsWithSidebar: A trivial subclass of
Settings.

	SettingsWithSpinner: Displays settings with a spinner at
the top, which can be used to switch between json panels. Uses
InterfaceWithSpinner as the
interface_cls. This is the default behavior from
Kivy 1.8.0.

	SettingsWithTabbedPanel: Displays json panels as individual
tabs in a TabbedPanel. Uses
InterfaceWithTabbedPanel as the interface_cls.

	SettingsWithNoMenu: Displays a single json panel, with no
way to switch to other panels and no close button. This makes it
impossible for the user to exit unless
close_settings() is overridden with a different
close trigger! Uses InterfaceWithNoMenu as the
interface_cls.

You can construct your own settings panels with any layout you choose
by setting Settings.interface_cls. This should be a widget
that displays a json settings panel with some way to switch between
panels. An instance will be automatically created by Settings.

Interface widgets may be anything you like, but must have a method
add_panel that receives newly created json settings panels for the
interface to display. See the documentation for
InterfaceWithSidebar for more information. They may
optionally dispatch an on_close event, for instance if a close button
is clicked. This event is used by Settings to trigger its own
on_close event.

For a complete, working example, please see
kivy/examples/settings/main.py.

	
class kivy.uix.settings.ContentPanel(**kwargs)

	Bases: kivy.uix.scrollview.ScrollView

A class for displaying settings panels. It displays a single
settings panel at a time, taking up the full size and shape of the
ContentPanel. It is used by InterfaceWithSidebar and
InterfaceWithSpinner to display settings.

	
add_panel(panel, name, uid)

	This method is used by Settings to add new panels for possible
display. Any replacement for ContentPanel must implement
this method.

	Parameters:

	
	panel: SettingsPanel
	It should be stored and displayed when requested.

	name:
	The name of the panel as a string. It may be used to represent
the panel.

	uid:
	A unique int identifying the panel. It should be stored and
used to identify panels when switching.

	
add_widget(*args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
container

	(internal) A reference to the GridLayout that contains the
settings panel.

container is an ObjectProperty and
defaults to None.

	
current_panel

	(internal) A reference to the current settings panel.

current_panel is an ObjectProperty and
defaults to None.

	
current_uid

	(internal) A reference to the uid of the current settings panel.

current_uid is a
NumericProperty and defaults to 0.

	
on_current_uid(*args)

	The uid of the currently displayed panel. Changing this will
automatically change the displayed panel.

	Parameters:

	
	uid:
	A panel uid. It should be used to retrieve and display
a settings panel that has previously been added with
add_panel().

	
panels

	(internal) Stores a dictionary mapping settings panels to their uids.

panels is a DictProperty and
defaults to {}.

	
remove_widget(*args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
class kivy.uix.settings.InterfaceWithSidebar(*args, **kwargs)

	Bases: kivy.uix.boxlayout.BoxLayout

The default Settings interface class. It displays a sidebar menu
with names of available settings panels, which may be used to switch
which one is currently displayed.

See add_panel() for information on the
method you must implement if creating your own interface.

This class also dispatches an event ‘on_close’, which is triggered
when the sidebar menu’s close button is released. If creating your
own interface widget, it should also dispatch such an event which
will automatically be caught by Settings and used to
trigger its own ‘on_close’ event.

	
add_panel(panel, name, uid)

	This method is used by Settings to add new panels for possible
display. Any replacement for ContentPanel must implement
this method.

	Parameters:

	
	panel: SettingsPanel
	It should be stored and the interface should provide a way to
switch between panels.

	name:
	The name of the panel as a string. It may be used to represent
the panel but isn’t necessarily unique.

	uid:
	A unique int identifying the panel. It should be used to
identify and switch between panels.

	
content

	(internal) A reference to the panel display widget (a
ContentPanel).

content is an ObjectProperty and
defaults to None.

	
menu

	(internal) A reference to the sidebar menu widget.

menu is an ObjectProperty and
defaults to None.

	
class kivy.uix.settings.MenuSidebar(**kwargs)

	Bases: kivy.uix.floatlayout.FloatLayout

The menu used by InterfaceWithSidebar. It provides a
sidebar with an entry for each settings panel, which the user may
click to select.

	
add_item(name, uid)

	This method is used to add new panels to the menu.

	Parameters:

	
	name:
	The name (a string) of the panel. It should be used
to represent the panel in the menu.

	uid:
	The name (an int) of the panel. It should be used internally
to represent the panel and used to set self.selected_uid when
the panel is changed.

	
buttons_layout

	(internal) Reference to the GridLayout that contains individual
settings panel menu buttons.

buttons_layout is an
ObjectProperty and defaults to None.

	
close_button

	(internal) Reference to the widget’s Close button.

buttons_layout is an
ObjectProperty and defaults to None.

	
on_selected_uid(*args)

	(internal) unselects any currently selected menu buttons, unless
they represent the current panel.

	
selected_uid

	The uid of the currently selected panel. This may be used to switch
between displayed panels, e.g. by binding it to the
current_uid of a ContentPanel.

selected_uid is a
NumericProperty and defaults to 0.

	
class kivy.uix.settings.SettingBoolean(**kwargs)

	Bases: kivy.uix.settings.SettingItem

Implementation of a boolean setting on top of a SettingItem.
It is visualized with a Switch widget.
By default, 0 and 1 are used for values: you can change them by setting
values.

	
values

	Values used to represent the state of the setting. If you want to use
“yes” and “no” in your ConfigParser instance:

SettingBoolean(..., values=['no', 'yes'])

Warning

You need a minimum of two values, the index 0 will be used as False,
and index 1 as True

values is a ListProperty and defaults to
[‘0’, ‘1’]

	
class kivy.uix.settings.SettingItem(**kwargs)

	Bases: kivy.uix.floatlayout.FloatLayout

Base class for individual settings (within a panel). This class cannot
be used directly; it is used for implementing the other setting classes.
It builds a row with a title/description (left) and a setting control
(right).

Look at SettingBoolean, SettingNumeric and
SettingOptions for usage examples.

	Events:

	
	on_release
	Fired when the item is touched and then released.

	
add_widget(*args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
content

	(internal) Reference to the widget that contains the real setting.
As soon as the content object is set, any further call to add_widget will
call the content.add_widget. This is automatically set.

content is an ObjectProperty and
defaults to None.

	
desc

	Description of the setting, rendered on the line below the title.

desc is a StringProperty and defaults to
None.

	
disabled

	Indicate if this setting is disabled. If True, all touches on the
setting item will be discarded.

disabled is a BooleanProperty and
defaults to False.

	
key

	Key of the token inside the section in the
ConfigParser instance.

key is a StringProperty and defaults to
None.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
panel

	(internal) Reference to the SettingsPanel for this setting. You don’t
need to use it.

panel is an ObjectProperty and defaults
to None.

	
section

	Section of the token inside the ConfigParser
instance.

section is a StringProperty and defaults
to None.

	
selected_alpha

	(internal) Float value from 0 to 1, used to animate the background when
the user touches the item.

selected_alpha is a NumericProperty and
defaults to 0.

	
title

	Title of the setting, defaults to ‘<No title set>’.

title is a StringProperty and defaults
to ‘<No title set>’.

	
value

	Value of the token according to the ConfigParser
instance. Any change to this value will trigger a
Settings.on_config_change() event.

value is an ObjectProperty and defaults
to None.

	
class kivy.uix.settings.SettingNumeric(**kwargs)

	Bases: kivy.uix.settings.SettingString

Implementation of a numeric setting on top of a SettingString.
It is visualized with a Label widget that, when
clicked, will open a Popup with a
Textinput so the user can enter a custom
value.

	
class kivy.uix.settings.SettingOptions(**kwargs)

	Bases: kivy.uix.settings.SettingItem

Implementation of an option list on top of a SettingItem.
It is visualized with a Label widget that, when
clicked, will open a Popup with a
list of options from which the user can select.

	
options

	List of all availables options. This must be a list of “string” items.
Otherwise, it will crash. :)

options is a ListProperty and defaults
to [].

	
popup

	(internal) Used to store the current popup when it is shown.

popup is an ObjectProperty and defaults
to None.

	
class kivy.uix.settings.SettingPath(**kwargs)

	Bases: kivy.uix.settings.SettingItem

Implementation of a Path setting on top of a SettingItem.
It is visualized with a Label widget that, when
clicked, will open a Popup with a
FileChooserListView so the user can enter
a custom value.

New in version 1.1.0.

	
dirselect

	Whether to allow selection of directories.

dirselect is a BooleanProperty and
defaults to True.

New in version 1.10.0.

	
popup

	(internal) Used to store the current popup when it is shown.

popup is an ObjectProperty and defaults
to None.

	
show_hidden

	Whether to show ‘hidden’ filenames. What that means is
operating-system-dependent.

show_hidden is an BooleanProperty and
defaults to False.

New in version 1.10.0.

	
textinput

	(internal) Used to store the current textinput from the popup and
to listen for changes.

textinput is an ObjectProperty and
defaults to None.

	
class kivy.uix.settings.SettingString(**kwargs)

	Bases: kivy.uix.settings.SettingItem

Implementation of a string setting on top of a SettingItem.
It is visualized with a Label widget that, when
clicked, will open a Popup with a
Textinput so the user can enter a custom
value.

	
popup

	(internal) Used to store the current popup when it’s shown.

popup is an ObjectProperty and defaults
to None.

	
textinput

	(internal) Used to store the current textinput from the popup and
to listen for changes.

textinput is an ObjectProperty and
defaults to None.

	
class kivy.uix.settings.SettingTitle(**kwargs)

	Bases: kivy.uix.label.Label

A simple title label, used to organize the settings in sections.

	
class kivy.uix.settings.Settings(*args, **kargs)

	Bases: kivy.uix.boxlayout.BoxLayout

Settings UI. Check module documentation for more information on how
to use this class.

	Events:

	
	on_config_change: ConfigParser instance, section, key, value
	Fired when the section’s key-value pair of a ConfigParser changes.

	on_close
	Fired by the default panel when the Close button is pressed.

	
add_interface()

	(Internal) creates an instance of Settings.interface_cls,
and sets it to interface. When json panels are
created, they will be added to this interface which will display them
to the user.

	
add_json_panel(title, config, filename=None, data=None)

	Create and add a new SettingsPanel using the configuration
config with the JSON definition filename. If filename is not set,
then the JSON definition is read from the data parameter instead.

Check the Create a panel from JSON section in the documentation for more
information about JSON format and the usage of this function.

	
add_kivy_panel()

	Add a panel for configuring Kivy. This panel acts directly on the
kivy configuration. Feel free to include or exclude it in your
configuration.

See use_kivy_settings() for information on
enabling/disabling the automatic kivy panel.

	
create_json_panel(title, config, filename=None, data=None)

	Create new SettingsPanel.

New in version 1.5.0.

Check the documentation of add_json_panel() for more information.

	
interface

	(internal) Reference to the widget that will contain, organise and
display the panel configuration panel widgets.

interface is an ObjectProperty and
defaults to None.

	
interface_cls

	The widget class that will be used to display the graphical
interface for the settings panel. By default, it displays one Settings
panel at a time with a sidebar to switch between them.

interface_cls is an
ObjectProperty and defaults to
InterfaceWithSidebar.

Changed in version 1.8.0: If you set a string, the Factory will be used to
resolve the class.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
register_type(tp, cls)

	Register a new type that can be used in the JSON definition.

	
class kivy.uix.settings.SettingsPanel(**kwargs)

	Bases: kivy.uix.gridlayout.GridLayout

This class is used to construct panel settings, for use with a
Settings instance or subclass.

	
config

	A kivy.config.ConfigParser instance. See module documentation
for more information.

	
get_value(section, key)

	Return the value of the section/key from the config
ConfigParser instance. This function is used by SettingItem to
get the value for a given section/key.

If you don’t want to use a ConfigParser instance, you might want to
override this function.

	
settings

	A Settings instance that will be used to fire the
on_config_change event.

	
title

	Title of the panel. The title will be reused by the Settings in
the sidebar.

	
class kivy.uix.settings.SettingsWithNoMenu(*args, **kwargs)

	Bases: kivy.uix.settings.Settings

A settings widget that displays a single settings panel with no
Close button. It will not accept more than one Settings panel. It
is intended for use in programs with few enough settings that a
full panel switcher is not useful.

Warning

This Settings panel does not provide a Close
button, and so it is impossible to leave the settings screen
unless you also add other behaviour or override
display_settings() and
close_settings().

	
class kivy.uix.settings.SettingsWithSidebar(*args, **kargs)

	Bases: kivy.uix.settings.Settings

A settings widget that displays settings panels with a sidebar to
switch between them. This is the default behaviour of
Settings, and this widget is a trivial wrapper subclass.

	
class kivy.uix.settings.SettingsWithSpinner(*args, **kwargs)

	Bases: kivy.uix.settings.Settings

A settings widget that displays one settings panel at a time with a
spinner at the top to switch between them.

	
class kivy.uix.settings.SettingsWithTabbedPanel(*args, **kwargs)

	Bases: kivy.uix.settings.Settings

A settings widget that displays settings panels as pages in a
TabbedPanel.

Slider

[image: _images/slider.jpg]
The Slider widget looks like a scrollbar. It supports horizontal and
vertical orientations, min/max values and a default value.

To create a slider from -100 to 100 starting from 25:

from kivy.uix.slider import Slider
s = Slider(min=-100, max=100, value=25)

To create a vertical slider:

from kivy.uix.slider import Slider
s = Slider(orientation='vertical')

To create a slider with a red line tracking the value:

from kivy.uix.slider import Slider
s = Slider(value_track=True, value_track_color=[1, 0, 0, 1])

Kv Example:

BoxLayout:
 Slider:
 id: slider
 min: 0
 max: 100
 step: 1
 orientation: 'vertical'

 Label:
 text: str(slider.value)

	
class kivy.uix.slider.Slider(**kwargs)

	Bases: kivy.uix.widget.Widget

Class for creating a Slider widget.

Check module documentation for more details.

	
background_disabled_horizontal

	Background of the disabled slider used in the horizontal orientation.

New in version 1.10.0.

background_disabled_horizontal is a
StringProperty and defaults to
atlas://data/images/defaulttheme/sliderh_background_disabled.

	
background_disabled_vertical

	Background of the disabled slider used in the vertical orientation.

New in version 1.10.0.

background_disabled_vertical is a
StringProperty and defaults to
atlas://data/images/defaulttheme/sliderv_background_disabled.

	
background_horizontal

	Background of the slider used in the horizontal orientation.

New in version 1.10.0.

background_horizontal is a StringProperty
and defaults to atlas://data/images/defaulttheme/sliderh_background.

	
background_vertical

	Background of the slider used in the vertical orientation.

New in version 1.10.0.

background_vertical is a StringProperty
and defaults to atlas://data/images/defaulttheme/sliderv_background.

	
background_width

	Slider’s background’s width (thickness), used in both horizontal
and vertical orientations.

background_width is a
NumericProperty and defaults to 36sp.

	
border_horizontal

	Border used to draw the slider background in horizontal orientation.

border_horizontal is a ListProperty
and defaults to [0, 18, 0, 18].

	
border_vertical

	Border used to draw the slider background in vertical orientation.

border_horizontal is a ListProperty
and defaults to [18, 0, 18, 0].

	
cursor_disabled_image

	Path of the image used to draw the disabled slider cursor.

cursor_image is a StringProperty
and defaults to atlas://data/images/defaulttheme/slider_cursor_disabled.

	
cursor_height

	Height of the cursor image.

cursor_height is a NumericProperty
and defaults to 32sp.

	
cursor_image

	Path of the image used to draw the slider cursor.

cursor_image is a StringProperty
and defaults to atlas://data/images/defaulttheme/slider_cursor.

	
cursor_size

	Size of the cursor image.

cursor_size is a ReferenceListProperty
of (cursor_width, cursor_height) properties.

	
cursor_width

	Width of the cursor image.

cursor_width is a NumericProperty
and defaults to 32sp.

	
max

	Maximum value allowed for value.

max is a NumericProperty and defaults to
100.

	
min

	Minimum value allowed for value.

min is a NumericProperty and defaults to
0.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_move(touch)

	Receive a touch move event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
orientation

	Orientation of the slider.

orientation is an OptionProperty and
defaults to ‘horizontal’. Can take a value of ‘vertical’ or ‘horizontal’.

	
padding

	Padding of the slider. The padding is used for graphical representation
and interaction. It prevents the cursor from going out of the bounds of the
slider bounding box.

By default, padding is 16sp. The range of the slider is reduced from
padding *2 on the screen. It allows drawing the default cursor of 32sp
width without having the cursor go out of the widget.

padding is a NumericProperty and defaults
to 16sp.

	
range

	Range of the slider in the format (minimum value, maximum value):

>>> slider = Slider(min=10, max=80)
>>> slider.range
[10, 80]
>>> slider.range = (20, 100)
>>> slider.min
20
>>> slider.max
100

range is a ReferenceListProperty of
(min, max) properties.

	
sensitivity

	Whether the touch collides with the whole body of the widget
or with the slider handle part only.

New in version 1.10.1.

sensitivity is a OptionProperty
and defaults to ‘all’. Can take a value of ‘all’ or ‘handle’.

	
step

	Step size of the slider.

New in version 1.4.0.

Determines the size of each interval or step the slider takes between
min and max. If the value range can’t be evenly
divisible by step the last step will be capped by slider.max.
A zero value will result in the smallest possible intervals/steps,
calculated from the (pixel) position of the slider.

step is a NumericProperty and defaults
to 0.

	
value

	Current value used for the slider.

value is a NumericProperty and defaults
to 0.

	
value_normalized

	Normalized value inside the range (min/max) to 0-1 range:

>>> slider = Slider(value=50, min=0, max=100)
>>> slider.value
50
>>> slider.value_normalized
0.5
>>> slider.value = 0
>>> slider.value_normalized
0
>>> slider.value = 100
>>> slider.value_normalized
1

You can also use it for setting the real value without knowing the minimum
and maximum:

>>> slider = Slider(min=0, max=200)
>>> slider.value_normalized = .5
>>> slider.value
100
>>> slider.value_normalized = 1.
>>> slider.value
200

value_normalized is an AliasProperty.

	
value_pos

	Position of the internal cursor, based on the normalized value.

value_pos is an AliasProperty.

	
value_track

	Decides if slider should draw the line indicating the
space between min and value properties values.

value_track is a BooleanProperty
and defaults to False.

	
value_track_color

	Color of the value_line in rgba format.

value_track_color is a ColorProperty
and defaults to [1, 1, 1, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
value_track_width

	Width of the track line.

value_track_width is a NumericProperty
and defaults to 3dp.

Spinner

New in version 1.4.0.

[image: _images/spinner.jpg]
Spinner is a widget that provides a quick way to select one value from a set.
In the default state, a spinner shows its currently selected value.
Touching the spinner displays a dropdown menu with all the other available
values from which the user can select a new one.

Example:

from kivy.base import runTouchApp
from kivy.uix.spinner import Spinner

spinner = Spinner(
 # default value shown
 text='Home',
 # available values
 values=('Home', 'Work', 'Other', 'Custom'),
 # just for positioning in our example
 size_hint=(None, None),
 size=(100, 44),
 pos_hint={'center_x': .5, 'center_y': .5})

def show_selected_value(spinner, text):
 print('The spinner', spinner, 'has text', text)

spinner.bind(text=show_selected_value)

runTouchApp(spinner)

Kv Example:

FloatLayout:
 Spinner:
 size_hint: None, None
 size: 100, 44
 pos_hint: {'center': (.5, .5)}
 text: 'Home'
 values: 'Home', 'Work', 'Other', 'Custom'
 on_text:
 print("The spinner {} has text {}".format(self, self.text))

	
class kivy.uix.spinner.Spinner(**kwargs)

	Bases: kivy.uix.button.Button

Spinner class, see module documentation for more information.

	
dropdown_cls

	Class used to display the dropdown list when the Spinner is pressed.

dropdown_cls is an ObjectProperty and
defaults to DropDown.

Changed in version 1.8.0: If set to a string, the Factory will be used to
resolve the class name.

	
is_open

	By default, the spinner is not open. Set to True to open it.

is_open is a BooleanProperty and
defaults to False.

New in version 1.4.0.

	
option_cls

	Class used to display the options within the dropdown list displayed
under the Spinner. The text property of the class will be used to
represent the value.

The option class requires:

	a text property, used to display the value.

	an on_release event, used to trigger the option when pressed/touched.

	a size_hint_y of None.

	the height to be set.

option_cls is an ObjectProperty and
defaults to SpinnerOption.

Changed in version 1.8.0: If you set a string, the Factory will be used to
resolve the class.

	
sync_height

	Each element in a dropdown list uses a default/user-supplied height.
Set to True to propagate the Spinner’s height value to each dropdown
list element.

New in version 1.10.0.

sync_height is a BooleanProperty and
defaults to False.

	
text_autoupdate

	Indicates if the spinner’s text should be automatically
updated with the first value of the values property.
Setting it to True will cause the spinner to update its text
property every time attr:values are changed.

New in version 1.10.0.

text_autoupdate is a BooleanProperty and
defaults to False.

	
values

	Values that can be selected by the user. It must be a list of strings.

values is a ListProperty and defaults to
[].

	
class kivy.uix.spinner.SpinnerOption(**kwargs)

	Bases: kivy.uix.button.Button

Special button used in the Spinner dropdown list. By default,
this is just a Button with a size_hint_y of None
and a height of 48dp.

Splitter

New in version 1.5.0.

[image: _images/splitter.jpg]
The Splitter is a widget that helps you re-size its child
widget/layout by letting you re-size it via dragging the boundary or
double tapping the boundary. This widget is similar to the
ScrollView in that it allows only one
child widget.

Usage:

splitter = Splitter(sizable_from = 'right')
splitter.add_widget(layout_or_widget_instance)
splitter.min_size = 100
splitter.max_size = 250

To change the size of the strip/border used for resizing:

splitter.strip_size = '10pt'

To change its appearance:

splitter.strip_cls = your_custom_class

You can also change the appearance of the strip_cls, which defaults to
SplitterStrip, by overriding the kv rule in your app:

<SplitterStrip>:
 horizontal: True if self.parent and self.parent.sizable_from[0] in ('t', 'b') else False
 background_normal: 'path to normal horizontal image' if self.horizontal else 'path to vertical normal image'
 background_down: 'path to pressed horizontal image' if self.horizontal else 'path to vertical pressed image'

	
class kivy.uix.splitter.Splitter(**kwargs)

	Bases: kivy.uix.boxlayout.BoxLayout

See module documentation.

	Events:

	
	on_press:
	Fired when the splitter is pressed.

	on_release:
	Fired when the splitter is released.

Changed in version 1.6.0: Added on_press and on_release events.

	
add_widget(widget, index=0, *args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
border

	Border used for the
BorderImage
graphics instruction.

This must be a list of four values: (bottom, right, top, left).
Read the BorderImage instructions for more information about how
to use it.

border is a ListProperty and
defaults to (4, 4, 4, 4).

	
clear_widgets(*args, **kwargs)

	Remove all (or the specified) children of this widget.
If the ‘children’ argument is specified, it should be a list (or
filtered list) of children of the current widget.

Changed in version 1.8.0: The children argument can be used to specify the children you
want to remove.

Changed in version 2.1.0: Specifying an empty children list leaves the widgets unchanged.
Previously it was treated like None and all children were
removed.

	
keep_within_parent

	If True, will limit the splitter to stay within its parent widget.

keep_within_parent is a
BooleanProperty and defaults to False.

New in version 1.9.0.

	
max_size

	Specifies the maximum size beyond which the widget is not resizable.

max_size is a NumericProperty
and defaults to 500pt.

	
min_size

	Specifies the minimum size beyond which the widget is not resizable.

min_size is a NumericProperty and
defaults to 100pt.

	
remove_widget(widget, *args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
rescale_with_parent

	If True, will automatically change size to take up the same
proportion of the parent widget when it is resized, while
staying within min_size and max_size. As long as
these attributes can be satisfied, this stops the
Splitter from exceeding the parent size during rescaling.

rescale_with_parent is a
BooleanProperty and defaults to False.

New in version 1.9.0.

	
sizable_from

	Specifies whether the widget is resizable. Options are:
left, right, top or bottom

sizable_from is an OptionProperty
and defaults to left.

	
strip_cls

	Specifies the class of the resize Strip.

strip_cls is an kivy.properties.ObjectProperty and
defaults to SplitterStrip, which is of type
Button.

Changed in version 1.8.0: If you set a string, the Factory will be used to
resolve the class.

	
strip_size

	Specifies the size of resize strip

strp_size is a NumericProperty
defaults to 10pt

Stack Layout

[image: _images/stacklayout.gif]

New in version 1.0.5.

The StackLayout arranges children vertically or horizontally, as many
as the layout can fit. The size of the individual children widgets do not
have to be uniform.

For example, to display widgets that get progressively larger in width:

root = StackLayout()
for i in range(25):
 btn = Button(text=str(i), width=40 + i * 5, size_hint=(None, 0.15))
 root.add_widget(btn)

[image: _images/stacklayout_sizing.png]

	
class kivy.uix.stacklayout.StackLayout(**kwargs)

	Bases: kivy.uix.layout.Layout

Stack layout class. See module documentation for more information.

	
do_layout(*largs)

	This function is called when a layout is called by a trigger.
If you are writing a new Layout subclass, don’t call this function
directly but use _trigger_layout() instead.

The function is by default called before the next frame, therefore
the layout isn’t updated immediately. Anything depending on the
positions of e.g. children should be scheduled for the next frame.

New in version 1.0.8.

	
minimum_height

	Minimum height needed to contain all children. It is automatically set
by the layout.

New in version 1.0.8.

minimum_height is a kivy.properties.NumericProperty and
defaults to 0.

	
minimum_size

	Minimum size needed to contain all children. It is automatically set
by the layout.

New in version 1.0.8.

minimum_size is a
ReferenceListProperty of
(minimum_width, minimum_height) properties.

	
minimum_width

	Minimum width needed to contain all children. It is automatically set
by the layout.

New in version 1.0.8.

minimum_width is a kivy.properties.NumericProperty and
defaults to 0.

	
orientation

	Orientation of the layout.

orientation is an OptionProperty and
defaults to ‘lr-tb’.

Valid orientations are ‘lr-tb’, ‘tb-lr’, ‘rl-tb’, ‘tb-rl’, ‘lr-bt’,
‘bt-lr’, ‘rl-bt’ and ‘bt-rl’.

Changed in version 1.5.0: orientation now correctly handles all valid combinations of
‘lr’,’rl’,’tb’,’bt’. Before this version only ‘lr-tb’ and
‘tb-lr’ were supported, and ‘tb-lr’ was misnamed and placed
widgets from bottom to top and from right to left (reversed compared
to what was expected).

Note

‘lr’ means Left to Right.
‘rl’ means Right to Left.
‘tb’ means Top to Bottom.
‘bt’ means Bottom to Top.

	
padding

	Padding between the layout box and it’s children: [padding_left,
padding_top, padding_right, padding_bottom].

padding also accepts a two argument form [padding_horizontal,
padding_vertical] and a single argument form [padding].

Changed in version 1.7.0: Replaced the NumericProperty with a VariableListProperty.

padding is a
VariableListProperty and defaults to
[0, 0, 0, 0].

	
spacing

	Spacing between children: [spacing_horizontal, spacing_vertical].

spacing also accepts a single argument form [spacing].

spacing is a
VariableListProperty and defaults to [0, 0].

Stencil View

[image: _images/stencilview.gif]

New in version 1.0.4.

StencilView limits the drawing of child widgets to the StencilView’s
bounding box. Any drawing outside the bounding box will be clipped (trashed).

The StencilView uses the stencil graphics instructions under the hood. It
provides an efficient way to clip the drawing area of children.

Note

As with the stencil graphics instructions, you cannot stack more than 128
stencil-aware widgets.

Note

StencilView is not a layout. Consequently, you have to manage the size and
position of its children directly. You can combine (subclass both)
a StencilView and a Layout in order to achieve a layout’s behavior.
For example:

class BoxStencil(BoxLayout, StencilView):
 pass

	
class kivy.uix.stencilview.StencilView(**kwargs)

	Bases: kivy.uix.widget.Widget

StencilView class. See module documentation for more information.

Switch

New in version 1.0.7.

[image: _images/switch-on.jpg]
[image: _images/switch-off.jpg]
The Switch widget is active or inactive, like a mechanical light
switch. The user can swipe to the left/right to activate/deactivate it:

switch = Switch(active=True)

To attach a callback that listens to the activation state:

def callback(instance, value):
 print('the switch', instance, 'is', value)

switch = Switch()
switch.bind(active=callback)

By default, the representation of the widget is static. The minimum size
required is 83x32 pixels (defined by the background image). The image is
centered within the widget.

The entire widget is active, not just the part with graphics. As long as you
swipe over the widget’s bounding box, it will work.

Note

If you want to control the state with a single touch instead of a swipe,
use the ToggleButton instead.

Kv Example:

BoxLayout:
 Label:
 text: 'power up'
 Switch:
 id: switch
 Label:
 text: 'woooooooooooh' if switch.active else ''

	
class kivy.uix.switch.Switch(**kwargs)

	Bases: kivy.uix.widget.Widget

Switch class. See module documentation for more information.

	
active

	Indicate whether the switch is active or inactive.

active is a BooleanProperty and defaults
to False.

	
active_norm_pos

	(internal) Contains the normalized position of the movable element
inside the switch, in the 0-1 range.

active_norm_pos is a NumericProperty
and defaults to 0.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_move(touch)

	Receive a touch move event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
touch_control

	(internal) Contains the touch that currently interacts with the switch.

touch_control is an ObjectProperty
and defaults to None.

	
touch_distance

	(internal) Contains the distance between the initial position of the
touch and the current position to determine if the swipe is from the left
or right.

touch_distance is a NumericProperty
and defaults to 0.

TabbedPanel

[image: _images/tabbed_panel.jpg]

New in version 1.3.0.

The TabbedPanel widget manages different widgets in tabs, with a header area
for the actual tab buttons and a content area for showing the current tab
content.

The TabbedPanel provides one default tab.

Simple example

'''
TabbedPanel
============

Test of the widget TabbedPanel.
'''

from kivy.app import App
from kivy.uix.tabbedpanel import TabbedPanel
from kivy.lang import Builder

Builder.load_string("""

<Test>:
 size_hint: .5, .5
 pos_hint: {'center_x': .5, 'center_y': .5}
 do_default_tab: False

 TabbedPanelItem:
 text: 'first tab'
 Label:
 text: 'First tab content area'
 TabbedPanelItem:
 text: 'tab2'
 BoxLayout:
 Label:
 text: 'Second tab content area'
 Button:
 text: 'Button that does nothing'
 TabbedPanelItem:
 text: 'tab3'
 RstDocument:
 text:
 '\\n'.join(("Hello world", "-----------",
 "You are in the third tab."))

""")

class Test(TabbedPanel):
 pass

class TabbedPanelApp(App):
 def build(self):
 return Test()

if __name__ == '__main__':
 TabbedPanelApp().run()

Note

A new class TabbedPanelItem has been introduced in 1.5.0 for
convenience. So now one can simply add a TabbedPanelItem to a
TabbedPanel and content to the TabbedPanelItem
as in the example provided above.

Customize the Tabbed Panel

You can choose the position in which the tabs are displayed:

tab_pos = 'top_mid'

An individual tab is called a TabbedPanelHeader. It is a special button
containing a content property. You add the TabbedPanelHeader first, and set
its content property separately:

tp = TabbedPanel()
th = TabbedPanelHeader(text='Tab2')
tp.add_widget(th)

An individual tab, represented by a TabbedPanelHeader, needs its content set.
This content can be any widget. It could be a layout with a deep
hierarchy of widgets, or it could be an individual widget, such as a label or a
button:

th.content = your_content_instance

There is one “shared” main content area active at any given time, for all
the tabs. Your app is responsible for adding the content of individual tabs
and for managing them, but it’s not responsible for content switching. The
tabbed panel handles switching of the main content object as per user action.

There is a default tab added when the tabbed panel is instantiated.
Tabs that you add individually as above, are added in addition to the default
tab. Thus, depending on your needs and design, you will want to customize the
default tab:

tp.default_tab_text = 'Something Specific To Your Use'

The default tab machinery requires special consideration and management.
Accordingly, an on_default_tab event is provided for associating a callback:

tp.bind(default_tab = my_default_tab_callback)

It’s important to note that by default, default_tab_cls is of type
TabbedPanelHeader and thus has the same properties as other tabs.

Since 1.5.0, it is now possible to disable the creation of the
default_tab by setting do_default_tab to False.

Tabs and content can be removed in several ways:

tp.remove_widget(widget/tabbed_panel_header)
or
tp.clear_widgets() # to clear all the widgets in the content area
or
tp.clear_tabs() # to remove the TabbedPanelHeaders

To access the children of the tabbed panel, use content.children:

tp.content.children

To access the list of tabs:

tp.tab_list

To change the appearance of the main tabbed panel content:

background_color = (1, 0, 0, .5) #50% translucent red
border = [0, 0, 0, 0]
background_image = 'path/to/background/image'

To change the background of a individual tab, use these two properties:

tab_header_instance.background_normal = 'path/to/tab_head/img'
tab_header_instance.background_down = 'path/to/tab_head/img_pressed'

A TabbedPanelStrip contains the individual tab headers. To change the
appearance of this tab strip, override the canvas of TabbedPanelStrip.
For example, in the kv language:

<TabbedPanelStrip>
 canvas:
 Color:
 rgba: (0, 1, 0, 1) # green
 Rectangle:
 size: self.size
 pos: self.pos

By default the tabbed panel strip takes its background image and color from the
tabbed panel’s background_image and background_color.

	
class kivy.uix.tabbedpanel.StripLayout(**kwargs)

	Bases: kivy.uix.gridlayout.GridLayout

The main layout that is used to house the entire tabbedpanel strip
including the blank areas in case the tabs don’t cover the entire
width/height.

New in version 1.8.0.

	
background_image

	Background image to be used for the Strip layout of the TabbedPanel.

background_image is a StringProperty and
defaults to a transparent image.

	
border

	Border property for the background_image.

border is a ListProperty and defaults
to [4, 4, 4, 4]

	
class kivy.uix.tabbedpanel.TabbedPanel(**kwargs)

	Bases: kivy.uix.gridlayout.GridLayout

The TabbedPanel class. See module documentation for more information.

	
add_widget(widget, *args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
background_color

	Background color, in the format (r, g, b, a).

background_color is a ColorProperty and
defaults to [1, 1, 1, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
background_disabled_image

	Background image of the main shared content object when disabled.

New in version 1.8.0.

background_disabled_image is a
StringProperty and defaults to
‘atlas://data/images/defaulttheme/tab’.

	
background_image

	Background image of the main shared content object.

background_image is a StringProperty and
defaults to ‘atlas://data/images/defaulttheme/tab’.

	
bar_width

	Width of the horizontal scroll bar. The width is interpreted
as a height for the horizontal bar.

New in version 2.2.0.

bar_width is a NumericProperty and
defaults to 2.

	
border

	Border used for BorderImage
graphics instruction, used itself for background_image.
Can be changed for a custom background.

It must be a list of four values: (bottom, right, top, left). Read the
BorderImage instructions for more information.

border is a ListProperty and
defaults to (16, 16, 16, 16)

	
clear_widgets(*args, **kwargs)

	Remove all (or the specified) children of this widget.
If the ‘children’ argument is specified, it should be a list (or
filtered list) of children of the current widget.

Changed in version 1.8.0: The children argument can be used to specify the children you
want to remove.

Changed in version 2.1.0: Specifying an empty children list leaves the widgets unchanged.
Previously it was treated like None and all children were
removed.

	
content

	This is the object holding (current_tab’s content is added to this)
the content of the current tab. To Listen to the changes in the content
of the current tab, you should bind to current_tabs content property.

content is an ObjectProperty and
defaults to ‘None’.

	
current_tab

	Links to the currently selected or active tab.

New in version 1.4.0.

current_tab is an AliasProperty, read-only.

	
default_tab

	Holds the default tab.

Note

For convenience, the automatically provided default tab is
deleted when you change default_tab to something else.
As of 1.5.0, this behaviour has been extended to every
default_tab for consistency and not just the automatically
provided one.

default_tab is an AliasProperty.

	
default_tab_cls

	Specifies the class to use for the styling of the default tab.

New in version 1.4.0.

Warning

default_tab_cls should be subclassed from TabbedPanelHeader

default_tab_cls is an ObjectProperty
and defaults to TabbedPanelHeader. If you set a string, the
Factory will be used to resolve the class.

Changed in version 1.8.0: The Factory will resolve the class if a string
is set.

	
default_tab_content

	Holds the default tab content.

default_tab_content is an AliasProperty.

	
default_tab_text

	Specifies the text displayed on the default tab header.

default_tab_text is a StringProperty and
defaults to ‘default tab’.

	
do_default_tab

	Specifies whether a default_tab head is provided.

New in version 1.5.0.

do_default_tab is a BooleanProperty and
defaults to ‘True’.

	
remove_widget(widget, *args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
scroll_type

	Sets the type of scrolling to use for the content of the scrollview.
Available options are: [‘content’], [‘bars’], [‘bars’, ‘content’].

New in version 2.2.0.

scroll_type is an OptionProperty and
defaults to [‘content’].

	
strip_border

	Border to be used on strip_image.

New in version 1.8.0.

strip_border is a ListProperty and
defaults to [4, 4, 4, 4].

	
strip_image

	Background image of the tabbed strip.

New in version 1.8.0.

strip_image is a StringProperty
and defaults to a empty image.

	
switch_to(header, do_scroll=False)

	Switch to a specific panel header.

Changed in version 1.10.0.

If used with do_scroll=True, it scrolls
to the header’s tab too.

switch_to() cannot be called from within the
TabbedPanel or its subclass’ __init__ method.
If that is required, use the Clock to schedule it. See discussion [https://github.com/kivy/kivy/issues/3493#issuecomment-121567969]
for full example.

	
tab_height

	Specifies the height of the tab header.

tab_height is a NumericProperty and
defaults to 40.

	
tab_list

	List of all the tab headers.

tab_list is an AliasProperty and is
read-only.

	
tab_pos

	Specifies the position of the tabs relative to the content.
Can be one of: left_top, left_mid, left_bottom, top_left,
top_mid, top_right, right_top, right_mid, right_bottom,
bottom_left, bottom_mid, bottom_right.

tab_pos is an OptionProperty and
defaults to ‘top_left’.

	
tab_width

	Specifies the width of the tab header.

tab_width is a NumericProperty and
defaults to 100.

	
class kivy.uix.tabbedpanel.TabbedPanelContent(**kwargs)

	Bases: kivy.uix.floatlayout.FloatLayout

The TabbedPanelContent class.

	
exception kivy.uix.tabbedpanel.TabbedPanelException

	Bases: Exception

The TabbedPanelException class.

	
class kivy.uix.tabbedpanel.TabbedPanelHeader(**kwargs)

	Bases: kivy.uix.togglebutton.ToggleButton

A Base for implementing a Tabbed Panel Head. A button intended to be
used as a Heading/Tab for a TabbedPanel widget.

You can use this TabbedPanelHeader widget to add a new tab to a
TabbedPanel.

	
content

	Content to be loaded when this tab header is selected.

content is an ObjectProperty and defaults
to None.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
class kivy.uix.tabbedpanel.TabbedPanelItem(**kwargs)

	Bases: kivy.uix.tabbedpanel.TabbedPanelHeader

This is a convenience class that provides a header of type
TabbedPanelHeader and links it with the content automatically. Thus
facilitating you to simply do the following in kv language:

<TabbedPanel>:
 # ...other settings
 TabbedPanelItem:
 BoxLayout:
 Label:
 text: 'Second tab content area'
 Button:
 text: 'Button that does nothing'

New in version 1.5.0.

	
add_widget(widget, *args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
remove_widget(*args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
class kivy.uix.tabbedpanel.TabbedPanelStrip(**kwargs)

	Bases: kivy.uix.gridlayout.GridLayout

A strip intended to be used as background for Heading/Tab.
This does not cover the blank areas in case the tabs don’t cover
the entire width/height of the TabbedPanel(use StripLayout
for that).

	
tabbed_panel

	Link to the panel that the tab strip is a part of.

tabbed_panel is an ObjectProperty and
defaults to None .

Text Input

New in version 1.0.4.

[image: _images/textinput-mono.jpg]
[image: _images/textinput-multi.jpg]
The TextInput widget provides a box for editable plain text.

Unicode, multiline, cursor navigation, selection and clipboard features
are supported.

The TextInput uses two different coordinate systems:

	(x, y) - coordinates in pixels, mostly used for rendering on screen.

	(col, row) - cursor index in characters / lines, used for selection
and cursor movement.

Usage example

To create a multiline TextInput (the ‘enter’ key adds a new line):

from kivy.uix.textinput import TextInput
textinput = TextInput(text='Hello world')

To create a singleline TextInput, set the TextInput.multiline
property to False (the ‘enter’ key will defocus the TextInput and emit an
TextInput.on_text_validate() event):

def on_enter(instance, value):
 print('User pressed enter in', instance)

textinput = TextInput(text='Hello world', multiline=False)
textinput.bind(on_text_validate=on_enter)

The textinput’s text is stored in its TextInput.text property. To run a
callback when the text changes:

def on_text(instance, value):
 print('The widget', instance, 'have:', value)

textinput = TextInput()
textinput.bind(text=on_text)

You can set the focus to a
Textinput, meaning that the input box will be highlighted and keyboard focus
will be requested:

textinput = TextInput(focus=True)

The textinput is defocused if the ‘escape’ key is pressed, or if another
widget requests the keyboard. You can bind a callback to the focus property to
get notified of focus changes:

def on_focus(instance, value):
 if value:
 print('User focused', instance)
 else:
 print('User defocused', instance)

textinput = TextInput()
textinput.bind(focus=on_focus)

See FocusBehavior, from which the
TextInput inherits, for more details.

Selection

The selection is automatically updated when the cursor position changes.
You can get the currently selected text from the
TextInput.selection_text property.

Filtering

You can control which text can be added to the TextInput by
overwriting TextInput.insert_text(). Every string that is typed, pasted
or inserted by any other means into the TextInput is passed through
this function. By overwriting it you can reject or change unwanted characters.

For example, to write only in capitalized characters:

class CapitalInput(TextInput):

 def insert_text(self, substring, from_undo=False):
 s = substring.upper()
 return super().insert_text(s, from_undo=from_undo)

Or to only allow floats (0 - 9 and a single period):

class FloatInput(TextInput):

 pat = re.compile('[^0-9]')
 def insert_text(self, substring, from_undo=False):
 pat = self.pat
 if '.' in self.text:
 s = re.sub(pat, '', substring)
 else:
 s = '.'.join(
 re.sub(pat, '', s)
 for s in substring.split('.', 1)
)
 return super().insert_text(s, from_undo=from_undo)

Default shortcuts

	Shortcuts

	Description

	Left

	Move cursor to left

	Right

	Move cursor to right

	Up

	Move cursor to up

	Down

	Move cursor to down

	Home

	Move cursor at the beginning of the line

	End

	Move cursor at the end of the line

	PageUp

	Move cursor to 3 lines before

	PageDown

	Move cursor to 3 lines after

	Backspace

	Delete the selection or character before the cursor

	Del

	Delete the selection of character after the cursor

	Shift + <dir>

	Start a text selection. Dir can be Up, Down, Left or
Right

	Control + c

	Copy selection

	Control + x

	Cut selection

	Control + v

	Paste clipboard content

	Control + a

	Select all the content

	Control + z

	undo

	Control + r

	redo

Note

To enable Emacs-style keyboard shortcuts, you can use
EmacsBehavior.

	
class kivy.uix.textinput.TextInput(**kwargs)

	Bases: kivy.uix.behaviors.focus.FocusBehavior, kivy.uix.widget.Widget

TextInput class. See module documentation for more information.

	Events:

	
	on_text_validate
	Fired only in multiline=False mode when the user hits ‘enter’.
This will also unfocus the textinput.

	on_double_tap
	Fired when a double tap happens in the text input. The default
behavior selects the text around the cursor position. More info at
on_double_tap().

	on_triple_tap
	Fired when a triple tap happens in the text input. The default
behavior selects the line around the cursor position. More info at
on_triple_tap().

	on_quad_touch
	Fired when four fingers are touching the text input. The default
behavior selects the whole text. More info at
on_quad_touch().

Warning

When changing a TextInput property that requires re-drawing,
e.g. modifying the text, the updates occur on the next
clock cycle and not instantly. This might cause any changes to the
TextInput that occur between the modification and the next
cycle to be ignored, or to use previous values. For example, after
a update to the text, changing the cursor in the same clock
frame will move it using the previous text and will likely end up in an
incorrect position. The solution is to schedule any updates to occur
on the next clock cycle using
schedule_once().

Note

Selection is cancelled when TextInput is focused. If you need to
show selection when TextInput is focused, you should delay
(use Clock.schedule) the call to the functions for selecting
text (select_all, select_text).

Changed in version 1.10.0: background_disabled_active has been removed.

Changed in version 1.9.0: TextInput now inherits from
FocusBehavior.
keyboard_mode,
show_keyboard(),
hide_keyboard(),
focus(),
and input_type
have been removed since they are now inherited
from FocusBehavior.

Changed in version 1.7.0: on_double_tap, on_triple_tap and on_quad_touch events added.

Changed in version 2.1.0: keyboard_suggestions
is now inherited from FocusBehavior.

	
allow_copy

	Decides whether to allow copying the text.

New in version 1.8.0.

allow_copy is a BooleanProperty and
defaults to True.

	
auto_indent

	Automatically indent multiline text.

New in version 1.7.0.

auto_indent is a BooleanProperty and
defaults to False.

	
background_active

	Background image of the TextInput when it’s in focus.

New in version 1.4.1.

background_active is a
StringProperty and
defaults to ‘atlas://data/images/defaulttheme/textinput_active’.

	
background_color

	Current color of the background, in (r, g, b, a) format.

New in version 1.2.0.

background_color is a ColorProperty
and defaults to [1, 1, 1, 1] (white).

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
background_disabled_normal

	Background image of the TextInput when disabled.

New in version 1.8.0.

background_disabled_normal is a
StringProperty and
defaults to ‘atlas://data/images/defaulttheme/textinput_disabled’.

	
background_normal

	Background image of the TextInput when it’s not in focus.

New in version 1.4.1.

background_normal is a StringProperty and
defaults to ‘atlas://data/images/defaulttheme/textinput’.

	
base_direction

	Base direction of text, this impacts horizontal alignment when
halign is auto (the default). Available options are: None,
“ltr” (left to right), “rtl” (right to left) plus “weak_ltr” and
“weak_rtl”.

Note

This feature requires the Pango text provider.

Note

Weak modes are currently not implemented in Kivy text layout, and
have the same effect as setting strong mode.

New in version 1.10.1.

base_direction is an OptionProperty and
defaults to None (autodetect RTL if possible, otherwise LTR).

	
border

	Border used for BorderImage
graphics instruction. Used with background_normal and
background_active. Can be used for a custom background.

New in version 1.4.1.

It must be a list of four values: (bottom, right, top, left). Read the
BorderImage instruction for more information about how to use it.

border is a ListProperty and defaults
to (4, 4, 4, 4).

	
cancel_selection()

	Cancel current selection (if any).

	
copy(data='')

	Copy the value provided in argument data into current clipboard.
If data is not of type string it will be converted to string.
If no data is provided then current selection if present is copied.

New in version 1.8.0.

	
cursor

	Tuple of (col, row) values indicating the current cursor position.
You can set a new (col, row) if you want to move the cursor. The scrolling
area will be automatically updated to ensure that the cursor is
visible inside the viewport.

cursor is an AliasProperty.

	
cursor_blink

	This property is used to set whether the graphic cursor should blink
or not.

Changed in version 1.10.1: cursor_blink has been refactored to enable switching the blinking
on/off and the previous behavior has been moved to a private
_cursor_blink property. The previous default value False has been
changed to True.

cursor_blink is a BooleanProperty and
defaults to True.

	
cursor_col

	Current column of the cursor.

cursor_col is an AliasProperty to
cursor[0], read-only.

	
cursor_color

	Current color of the cursor, in (r, g, b, a) format.

New in version 1.9.0.

cursor_color is a ColorProperty and
defaults to [1, 0, 0, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
cursor_index(cursor=None)

	Return the cursor index in the text/value.

	
cursor_offset()

	Get the cursor x offset on the current line.

	
cursor_pos

	Current position of the cursor, in (x, y).

cursor_pos is an AliasProperty,
read-only.

	
cursor_row

	Current row of the cursor.

cursor_row is an AliasProperty to
cursor[1], read-only.

	
cursor_width

	Current width of the cursor.

New in version 1.10.0.

cursor_width is a NumericProperty and
defaults to ‘1sp’.

	
cut()

	Copy current selection to clipboard then delete it from TextInput.

New in version 1.8.0.

	
delete_selection(from_undo=False)

	Delete the current text selection (if any).

	
disabled_foreground_color

	Current color of the foreground when disabled, in (r, g, b, a) format.

New in version 1.8.0.

disabled_foreground_color is a
ColorProperty and
defaults to [0, 0, 0, 5] (50% transparent black).

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
do_backspace(from_undo=False, mode='bkspc')

	Do backspace operation from the current cursor position.
This action might do several things:

	removing the current selection if available.

	removing the previous char and move the cursor back.

	do nothing, if we are at the start.

	
do_cursor_movement(action, control=False, alt=False)

	Move the cursor relative to its current position.
Action can be one of :

	cursor_left: move the cursor to the left

	cursor_right: move the cursor to the right

	cursor_up: move the cursor on the previous line

	cursor_down: move the cursor on the next line

	cursor_home: move the cursor at the start of the current line

	cursor_end: move the cursor at the end of current line

	cursor_pgup: move one “page” before

	cursor_pgdown: move one “page” after

In addition, the behavior of certain actions can be modified:

	control + cursor_left: move the cursor one word to the left

	control + cursor_right: move the cursor one word to the right

	control + cursor_up: scroll up one line

	control + cursor_down: scroll down one line

	control + cursor_home: go to beginning of text

	control + cursor_end: go to end of text

	alt + cursor_up: shift line(s) up

	alt + cursor_down: shift line(s) down

Changed in version 1.9.1.

	
do_redo()

	Do redo operation.

New in version 1.3.0.

This action re-does any command that has been un-done by
do_undo/ctrl+z. This function is automatically called when
ctrl+r keys are pressed.

	
do_undo()

	Do undo operation.

New in version 1.3.0.

This action un-does any edits that have been made since the last
call to reset_undo().
This function is automatically called when ctrl+z keys are pressed.

	
do_wrap

	If True, and the text is multiline, then lines larger than the width of
the widget will wrap around to the next line, avoiding the need for
horizontal scrolling. Disabling this option ensure one line is always
displayed as one line.

do_wrap is a BooleanProperty and defaults
to True.

versionadded:: 2.1.0

	
font_context

	Font context. None means the font is used in isolation, so you are
guaranteed to be drawing with the TTF file resolved by font_name.
Specifying a value here will load the font file into a named context,
enabling fallback between all fonts in the same context. If a font
context is set, you are not guaranteed that rendering will actually use
the specified TTF file for all glyphs (Pango will pick the one it
thinks is best).

If Kivy is linked against a system-wide installation of FontConfig,
you can load the system fonts by specifying a font context starting
with the special string system://. This will load the system
fontconfig configuration, and add your application-specific fonts on
top of it (this imposes a significant risk of family name collision,
Pango may not use your custom font file, but pick one from the system)

Note

This feature requires the Pango text provider.

New in version 1.10.1.

font_context is a StringProperty and
defaults to None.

	
font_family

	Font family, this is only applicable when using font_context
option. The specified font family will be requested, but note that it may
not be available, or there could be multiple fonts registered with the
same family. The value can be a family name (string) available in the
font context (for example a system font in a system:// context, or a
custom font file added using kivy.core.text.FontContextManager).
If set to None, font selection is controlled by the font_name
setting.

Note

If using font_name to reference a custom font file, you
should leave this as None. The family name is managed automatically
in this case.

Note

This feature requires the Pango text provider.

New in version 1.10.1.

font_family is a StringProperty and
defaults to None.

	
font_name

	Filename of the font to use. The path can be absolute or relative.
Relative paths are resolved by the resource_find()
function.

Warning

Depending on your text provider, the font file may be ignored. However,
you can mostly use this without problems.

If the font used lacks the glyphs for the particular language/symbols
you are using, you will see ‘[]’ blank box characters instead of the
actual glyphs. The solution is to use a font that has the glyphs you
need to display. For example, to display [image: unicodechar], use a font like
freesans.ttf that has the glyph.

font_name is a StringProperty and
defaults to ‘Roboto’. This value is taken
from Config.

	
font_size

	Font size of the text in pixels.

font_size is a NumericProperty and
defaults to 15 sp.

	
foreground_color

	Current color of the foreground, in (r, g, b, a) format.

New in version 1.2.0.

foreground_color is a ColorProperty
and defaults to [0, 0, 0, 1] (black).

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
get_cursor_from_index(index)

	Return the (col, row) of the cursor from text index.

	
get_cursor_from_xy(x, y)

	Return the (col, row) of the cursor from an (x, y) position.

	
halign

	Horizontal alignment of the text.

halign is an OptionProperty and
defaults to ‘auto’. Available options are : auto, left, center and right.
Auto will attempt to autodetect horizontal alignment for RTL text (Pango
only), otherwise it behaves like left.

New in version 1.10.1.

	
handle_image_left

	Image used to display the Left handle on the TextInput for selection.

New in version 1.8.0.

handle_image_left is a StringProperty and
defaults to ‘atlas://data/images/defaulttheme/selector_left’.

	
handle_image_middle

	Image used to display the middle handle on the TextInput for cursor
positioning.

New in version 1.8.0.

handle_image_middle is a StringProperty
and defaults to ‘atlas://data/images/defaulttheme/selector_middle’.

	
handle_image_right

	Image used to display the Right handle on the TextInput for selection.

New in version 1.8.0.

handle_image_right is a
StringProperty and defaults to
‘atlas://data/images/defaulttheme/selector_right’.

	
hint_text

	Hint text of the widget, shown if text is ‘’.

New in version 1.6.0.

Changed in version 1.10.0: The property is now an AliasProperty and byte values are decoded to
strings. The hint text will stay visible when the widget is focused.

hint_text a AliasProperty and defaults
to ‘’.

	
hint_text_color

	Current color of the hint_text text, in (r, g, b, a) format.

New in version 1.6.0.

hint_text_color is a ColorProperty and
defaults to [0.5, 0.5, 0.5, 1.0] (grey).

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
input_filter

	Filters the input according to the specified mode, if not None. If
None, no filtering is applied.

New in version 1.9.0.

input_filter is an ObjectProperty and
defaults to None. Can be one of None, ‘int’ (string), or ‘float’
(string), or a callable. If it is ‘int’, it will only accept numbers.
If it is ‘float’ it will also accept a single period. Finally, if it is
a callable it will be called with two parameters; the string to be added
and a bool indicating whether the string is a result of undo (True). The
callable should return a new substring that will be used instead.

	
insert_text(substring, from_undo=False)

	Insert new text at the current cursor position. Override this
function in order to pre-process text for input validation.

	
keyboard_on_key_down(window, keycode, text, modifiers)

	The method bound to the keyboard when the instance has focus.

When the instance becomes focused, this method is bound to the
keyboard and will be called for every input press. The parameters are
the same as kivy.core.window.WindowBase.on_key_down().

When overwriting the method in the derived widget, super should be
called to enable tab cycling. If the derived widget wishes to use tab
for its own purposes, it can call super after it has processed the
character (if it does not wish to consume the tab).

Similar to other keyboard functions, it should return True if the
key was consumed.

	
keyboard_on_key_up(window, keycode)

	The method bound to the keyboard when the instance has focus.

When the instance becomes focused, this method is bound to the
keyboard and will be called for every input release. The parameters are
the same as kivy.core.window.WindowBase.on_key_up().

When overwriting the method in the derived widget, super should be
called to enable de-focusing on escape. If the derived widget wishes
to use escape for its own purposes, it can call super after it has
processed the character (if it does not wish to consume the escape).

See keyboard_on_key_down()

	
line_height

	Height of a line. This property is automatically computed from the
font_name, font_size. Changing the line_height will have
no impact.

Note

line_height is the height of a single line of text.
Use minimum_height, which also includes padding, to
get the height required to display the text properly.

line_height is a NumericProperty,
read-only.

	
line_spacing

	Space taken up between the lines.

New in version 1.8.0.

line_spacing is a NumericProperty and
defaults to 0.

	
lines_to_scroll

	Set how many lines will be scrolled at once when using the mouse scroll
wheel.

New in version 2.2.0.

lines_to_scroll is a
:class:`~kivy.properties.BoundedNumericProperty and defaults to 3, the
minimum is 1.

	
minimum_height

	Minimum height of the content inside the TextInput.

New in version 1.8.0.

minimum_height is a readonly
AliasProperty.

Warning

minimum_width is calculated based on width therefore
code like this will lead to an infinite loop:

<FancyTextInput>:
 height: self.minimum_height
 width: self.height

	
multiline

	If True, the widget will be able show multiple lines of text. If False,
the “enter” keypress will defocus the textinput instead of adding a new
line.

multiline is a BooleanProperty and
defaults to True.

	
on_cursor(instance, value)

	When the cursor is moved, reset cursor blinking to keep it showing,
and update all the graphics.

	
on_cursor_blink(instance, value)

	trigger blink event reset to switch blinking while focused

	
on_double_tap()

	This event is dispatched when a double tap happens
inside TextInput. The default behavior is to select the
word around the current cursor position. Override this to provide
different behavior. Alternatively, you can bind to this
event to provide additional functionality.

	
on_quad_touch()

	This event is dispatched when four fingers are touching
inside TextInput. The default behavior is to select all text.
Override this to provide different behavior. Alternatively,
you can bind to this event to provide additional functionality.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_move(touch)

	Receive a touch move event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_triple_tap()

	This event is dispatched when a triple tap happens
inside TextInput. The default behavior is to select the
line around current cursor position. Override this to provide
different behavior. Alternatively, you can bind to this
event to provide additional functionality.

	
padding

	Padding of the text: [padding_left, padding_top, padding_right,
padding_bottom].

padding also accepts a two argument form [padding_horizontal,
padding_vertical] and a one argument form [padding].

Changed in version 1.7.0: Replaced AliasProperty with VariableListProperty.

padding is a VariableListProperty and
defaults to [6, 6, 6, 6].

	
padding_x

	Horizontal padding of the text: [padding_left, padding_right].

padding_x also accepts a one argument form [padding_horizontal].

padding_x is a VariableListProperty and
defaults to [0, 0]. This might be changed by the current theme.

Deprecated since version 1.7.0: Use padding instead.

	
padding_y

	Vertical padding of the text: [padding_top, padding_bottom].

padding_y also accepts a one argument form [padding_vertical].

padding_y is a VariableListProperty and
defaults to [0, 0]. This might be changed by the current theme.

Deprecated since version 1.7.0: Use padding instead.

	
password

	If True, the widget will display its characters as the character
set in password_mask.

New in version 1.2.0.

password is a BooleanProperty and
defaults to False.

	
password_mask

	Sets the character used to mask the text when password is True.

New in version 1.10.0.

password_mask is a StringProperty and
defaults to ‘*’.

	
paste()

	Insert text from system Clipboard
into the TextInput at current cursor
position.

New in version 1.8.0.

	
property pgmove_speed

	how much vertical distance hitting pg_up or pg_down will move

	
readonly

	If True, the user will not be able to change the content of a textinput.

New in version 1.3.0.

readonly is a BooleanProperty and
defaults to False.

	
replace_crlf

	Automatically replace CRLF with LF.

New in version 1.9.1.

replace_crlf is a BooleanProperty and
defaults to True.

	
reset_undo()

	Reset undo and redo lists from memory.

New in version 1.3.0.

	
scroll_distance

	Minimum distance to move before change from scroll to selection mode, in
pixels.
It is advisable that you base this value on the dpi of your target device’s
screen.

New in version 2.1.0.

scroll_distance is a NumericProperty and defaults to 20 pixels.

	
scroll_from_swipe

	Allow to scroll the text using swipe gesture according to
scroll_timeout and scroll_distance.

New in version 2.1.0.

scroll_from_swipe is a BooleanProperty and defaults to True on
mobile OS’s, False on desktop OS’s.

	
scroll_timeout

	Timeout allowed to trigger the scroll_distance, in milliseconds.
If the user has not moved scroll_distance within the timeout, the
scrolling will be disabled, and the selection mode will start.

New in version 2.1.0.

scroll_timeout is a NumericProperty and defaults to 250
milliseconds.

	
scroll_x

	X scrolling value of the viewport. The scrolling is automatically
updated when the cursor is moved or text changed. If there is no
user input, the scroll_x and scroll_y properties may be changed.

scroll_x is a NumericProperty and
defaults to 0.

	
scroll_y

	Y scrolling value of the viewport. See scroll_x for more
information.

scroll_y is a NumericProperty and
defaults to 0.

	
select_all()

	Select all of the text displayed in this TextInput.

New in version 1.4.0.

	
select_text(start, end)

	Select a portion of text displayed in this TextInput.

New in version 1.4.0.

	Parameters:

	
	start
	Index of textinput.text from where to start selection

	end
	Index of textinput.text till which the selection should be
displayed

	
selection_color

	Current color of the selection, in (r, g, b, a) format.

Warning

The color should always have an “alpha” component less than 1
since the selection is drawn after the text.

selection_color is a ColorProperty and
defaults to [0.1843, 0.6549, 0.8313, .5].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
selection_from

	If a selection is in progress or complete, this property will represent
the cursor index where the selection started.

Changed in version 1.4.0: selection_from is an AliasProperty
and defaults to None, readonly.

	
selection_text

	Current content selection.

selection_text is a StringProperty
and defaults to ‘’, readonly.

	
selection_to

	If a selection is in progress or complete, this property will represent
the cursor index where the selection started.

Changed in version 1.4.0: selection_to is an AliasProperty and
defaults to None, readonly.

	
tab_width

	By default, each tab will be replaced by four spaces on the text
input widget. You can set a lower or higher value.

tab_width is a NumericProperty and
defaults to 4.

	
text

	Text of the widget.

Creation of a simple hello world:

widget = TextInput(text='Hello world')

If you want to create the widget with an unicode string, use:

widget = TextInput(text=u'My unicode string')

text is an AliasProperty.

	
text_language

	Language of the text, if None Pango will determine it from locale.
This is an RFC-3066 format language tag (as a string), for example
“en_US”, “zh_CN”, “fr” or “ja”. This can impact font selection, metrics
and rendering. For example, the same bytes of text can look different
for ur and ar languages, though both use Arabic script.

Note

This feature requires the Pango text provider.

New in version 1.10.1.

text_language is a StringProperty and
defaults to None.

	
text_validate_unfocus

	If True, the TextInput.on_text_validate() event will unfocus the
widget, therefore make it stop listening to the keyboard. When disabled,
the TextInput.on_text_validate() event can be fired multiple times
as the result of TextInput keeping the focus enabled.

New in version 1.10.1.

text_validate_unfocus is
a BooleanProperty and defaults to True.

	
use_bubble

	Indicates whether the cut/copy/paste bubble is used.

New in version 1.7.0.

use_bubble is a BooleanProperty
and defaults to True on mobile OS’s, False on desktop OS’s.

	
use_handles

	Indicates whether the selection handles are displayed.

New in version 1.8.0.

use_handles is a BooleanProperty
and defaults to True on mobile OS’s, False on desktop OS’s.

	
write_tab

	Whether the tab key should move focus to the next widget or if it should
enter a tab in the TextInput. If True a tab will be written,
otherwise, focus will move to the next widget.

New in version 1.9.0.

write_tab is a BooleanProperty and
defaults to True.

Toggle button

[image: _images/togglebutton.jpg]
The ToggleButton widget acts like a checkbox. When you touch or click
it, the state toggles between ‘normal’ and ‘down’ (as opposed to a
Button that is only ‘down’ as long as it is pressed).

Toggle buttons can also be grouped to make radio buttons - only one button in
a group can be in a ‘down’ state. The group name can be a string or any other
hashable Python object:

btn1 = ToggleButton(text='Male', group='sex',)
btn2 = ToggleButton(text='Female', group='sex', state='down')
btn3 = ToggleButton(text='Mixed', group='sex')

Only one of the buttons can be ‘down’/checked at the same time.

To configure the ToggleButton, you can use the same properties that you can use
for a Button class.

	
class kivy.uix.togglebutton.ToggleButton(**kwargs)

	Bases: kivy.uix.behaviors.togglebutton.ToggleButtonBehavior, kivy.uix.button.Button

Toggle button class, see module documentation for more information.

Tree View

[image: _images/treeview.png]

New in version 1.0.4.

TreeView is a widget used to represent a tree structure. It is
currently very basic, supporting a minimal feature set.

Introduction

A TreeView is populated with TreeViewNode instances, but you
cannot use a TreeViewNode directly. You must combine it with another
widget, such as Label,
Button or even your own widget. The TreeView
always creates a default root node, based on TreeViewLabel.

TreeViewNode is a class object containing needed properties for
serving as a tree node. Extend TreeViewNode to create custom node
types for use with a TreeView.

For constructing your own subclass, follow the pattern of TreeViewLabel which
combines a Label and a TreeViewNode, producing a TreeViewLabel for
direct use in a TreeView instance.

To use the TreeViewLabel class, you could create two nodes directly attached
to root:

tv = TreeView()
tv.add_node(TreeViewLabel(text='My first item'))
tv.add_node(TreeViewLabel(text='My second item'))

Or, create two nodes attached to a first:

tv = TreeView()
n1 = tv.add_node(TreeViewLabel(text='Item 1'))
tv.add_node(TreeViewLabel(text='SubItem 1'), n1)
tv.add_node(TreeViewLabel(text='SubItem 2'), n1)

If you have a large tree structure, perhaps you would need a utility function
to populate the tree view:

def populate_tree_view(tree_view, parent, node):
 if parent is None:
 tree_node = tree_view.add_node(TreeViewLabel(text=node['node_id'],
 is_open=True))
 else:
 tree_node = tree_view.add_node(TreeViewLabel(text=node['node_id'],
 is_open=True), parent)

 for child_node in node['children']:
 populate_tree_view(tree_view, tree_node, child_node)

tree = {'node_id': '1',
 'children': [{'node_id': '1.1',
 'children': [{'node_id': '1.1.1',
 'children': [{'node_id': '1.1.1.1',
 'children': []}]},
 {'node_id': '1.1.2',
 'children': []},
 {'node_id': '1.1.3',
 'children': []}]},
 {'node_id': '1.2',
 'children': []}]}

class TreeWidget(FloatLayout):
 def __init__(self, **kwargs):
 super(TreeWidget, self).__init__(**kwargs)

 tv = TreeView(root_options=dict(text='Tree One'),
 hide_root=False,
 indent_level=4)

 populate_tree_view(tv, None, tree)

 self.add_widget(tv)

The root widget in the tree view is opened by default and has text set as
‘Root’. If you want to change that, you can use the
TreeView.root_options
property. This will pass options to the root widget:

tv = TreeView(root_options=dict(text='My root label'))

Creating Your Own Node Widget

For a button node type, combine a Button and a
TreeViewNode as follows:

class TreeViewButton(Button, TreeViewNode):
 pass

You must know that, for a given node, only the
size_hint_x will be honored. The allocated
width for the node will depend of the current width of the TreeView and the
level of the node. For example, if a node is at level 4, the width
allocated will be:

treeview.width - treeview.indent_start - treeview.indent_level * node.level

You might have some trouble with that. It is the developer’s responsibility to
correctly handle adapting the graphical representation nodes, if needed.

	
class kivy.uix.treeview.TreeView(**kwargs)

	Bases: kivy.uix.widget.Widget

TreeView class. See module documentation for more information.

	Events:

	
	on_node_expand: (node,)
	Fired when a node is being expanded

	on_node_collapse: (node,)
	Fired when a node is being collapsed

	
add_node(node, parent=None)

	Add a new node to the tree.

	Parameters:

	
	node: instance of a TreeViewNode
	Node to add into the tree

	parent: instance of a TreeViewNode, defaults to None
	Parent node to attach the new node. If None, it is added to
the root node.

	Returns:

	the node node.

	
deselect_node(*args)

	Deselect any selected node.

New in version 1.10.0.

	
get_node_at_pos(pos)

	Get the node at the position (x, y).

	
hide_root

	Use this property to show/hide the initial root node. If True, the root
node will be appear as a closed node.

hide_root is a BooleanProperty and
defaults to False.

	
indent_level

	Width used for the indentation of each level except the first level.

Computation of indent for each level of the tree is:

indent = indent_start + level * indent_level

indent_level is a NumericProperty and
defaults to 16.

	
indent_start

	Indentation width of the level 0 / root node. This is mostly the initial
size to accommodate a tree icon (collapsed / expanded). See
indent_level for more information about the computation of level
indentation.

indent_start is a NumericProperty and
defaults to 24.

	
iterate_all_nodes(node=None)

	Generator to iterate over all nodes from node and down whether
expanded or not. If node is None, the generator start with
root.

	
iterate_open_nodes(node=None)

	Generator to iterate over all the expended nodes starting from
node and down. If node is None, the generator start with
root.

To get all the open nodes:

treeview = TreeView()
... add nodes ...
for node in treeview.iterate_open_nodes():
 print(node)

	
load_func

	Callback to use for asynchronous loading. If set, asynchronous loading
will be automatically done. The callback must act as a Python generator
function, using yield to send data back to the treeview.

The callback should be in the format:

def callback(treeview, node):
 for name in ('Item 1', 'Item 2'):
 yield TreeViewLabel(text=name)

load_func is a ObjectProperty and
defaults to None.

	
minimum_height

	Minimum height needed to contain all children.

New in version 1.0.9.

minimum_height is a NumericProperty and
defaults to 0.

	
minimum_size

	Minimum size needed to contain all children.

New in version 1.0.9.

minimum_size is a ReferenceListProperty
of (minimum_width, minimum_height) properties.

	
minimum_width

	Minimum width needed to contain all children.

New in version 1.0.9.

minimum_width is a NumericProperty and
defaults to 0.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
remove_node(node)

	Removes a node from the tree.

New in version 1.0.7.

	Parameters:

	
	node: instance of a TreeViewNode
	Node to remove from the tree. If node is root, it is
not removed.

	
root

	Root node.

By default, the root node widget is a TreeViewLabel with text
‘Root’. If you want to change the default options passed to the widget
creation, use the root_options property:

treeview = TreeView(root_options={
 'text': 'Root directory',
 'font_size': 15})

root_options will change the properties of the
TreeViewLabel instance. However, you cannot change the class used
for root node yet.

root is an AliasProperty and defaults to
None. It is read-only. However, the content of the widget can be changed.

	
root_options

	Default root options to pass for root widget. See root property
for more information about the usage of root_options.

root_options is an ObjectProperty and
defaults to {}.

	
select_node(node)

	Select a node in the tree.

	
selected_node

	Node selected by TreeView.select_node() or by touch.

selected_node is a AliasProperty and
defaults to None. It is read-only.

	
toggle_node(node)

	Toggle the state of the node (open/collapsed).

	
exception kivy.uix.treeview.TreeViewException

	Bases: Exception

Exception for errors in the TreeView.

	
class kivy.uix.treeview.TreeViewLabel(**kwargs)

	Bases: kivy.uix.label.Label, kivy.uix.treeview.TreeViewNode

Combines a Label and a TreeViewNode to
create a TreeViewLabel that can be used as a text node in the
tree.

See module documentation for more information.

	
class kivy.uix.treeview.TreeViewNode(**kwargs)

	Bases: builtins.object

TreeViewNode class, used to build a node class for a TreeView object.

	
color_selected

	Background color of the node when the node is selected.

color_selected is a ColorProperty and
defaults to [.1, .1, .1, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
even_color

	Background color of even nodes when the node is not selected.

bg_color is a ColorProperty and defaults
to [.5, .5, .5, .1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
is_leaf

	Boolean to indicate whether this node is a leaf or not. Used to adjust
the graphical representation.

is_leaf is a BooleanProperty and defaults
to True. It is automatically set to False when child is added.

	
is_loaded

	Boolean to indicate whether this node is already loaded or not. This
property is used only if the TreeView uses asynchronous loading.

is_loaded is a BooleanProperty and
defaults to False.

	
is_open

	Boolean to indicate whether this node is opened or not, in case there
are child nodes. This is used to adjust the graphical representation.

Warning

This property is automatically set by the TreeView. You can
read but not write it.

is_open is a BooleanProperty and defaults
to False.

	
is_selected

	Boolean to indicate whether this node is selected or not. This is used
adjust the graphical representation.

Warning

This property is automatically set by the TreeView. You can
read but not write it.

is_selected is a BooleanProperty and
defaults to False.

	
level

	Level of the node.

level is a NumericProperty and defaults
to -1.

	
no_selection

	
	Boolean used to indicate whether selection of the node is allowed or
	not.

no_selection is a BooleanProperty and
defaults to False.

	
nodes

	List of nodes. The nodes list is different than the children list. A
node in the nodes list represents a node on the tree. An item in the
children list represents the widget associated with the node.

Warning

This property is automatically set by the TreeView. You can
read but not write it.

nodes is a ListProperty and defaults to
[].

	
odd

	This property is set by the TreeView widget automatically and is read-only.

odd is a BooleanProperty and defaults to
False.

	
odd_color

	Background color of odd nodes when the node is not selected.

odd_color is a ColorProperty and defaults
to [1., 1., 1., 0.].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
parent_node

	Parent node. This attribute is needed because the parent can be
None when the node is not displayed.

New in version 1.0.7.

parent_node is an ObjectProperty and
defaults to None.

Video

The Video widget is used to display video files and streams.
Depending on your Video core provider, platform, and plugins, you will
be able to play different formats. For example, the pygame video
provider only supports MPEG1 on Linux and OSX. GStreamer is more
versatile, and can read many video containers and codecs such as MKV,
OGV, AVI, MOV, FLV (if the correct gstreamer plugins are installed). Our
VideoBase implementation is used under the
hood.

Video loading is asynchronous - many properties are not available until
the video is loaded (when the texture is created):

def on_position_change(instance, value):
 print('The position in the video is', value)

def on_duration_change(instance, value):
 print('The duration of the video is', value)

video = Video(source='PandaSneezes.avi')
video.bind(
 position=on_position_change,
 duration=on_duration_change
)

One can define a preview image which gets displayed until the video is
started/loaded by passing preview to the constructor:

video = Video(
 source='PandaSneezes.avi',
 preview='PandaSneezes_preview.png'
)

One can display the placeholder image when the video stops by reacting on eos:

def on_eos_change(self, inst, val):
 if val and self.preview:
 self.set_texture_from_resource(self.preview)

video.bind(eos=on_eos_change)

	
class kivy.uix.video.Video(**kwargs)

	Bases: kivy.uix.image.Image

Video class. See module documentation for more information.

	
duration

	Duration of the video. The duration defaults to -1, and is set to a real
duration when the video is loaded.

duration is a NumericProperty and
defaults to -1.

	
eos

	Boolean, indicates whether the video has finished playing or not
(reached the end of the stream).

eos is a BooleanProperty and defaults to
False.

	
loaded

	Boolean, indicates whether the video is loaded and ready for playback
or not.

New in version 1.6.0.

loaded is a BooleanProperty and defaults
to False.

	
options

	Options to pass at Video core object creation.

New in version 1.0.4.

options is an kivy.properties.ObjectProperty and defaults
to {}.

	
play

	
Deprecated since version 1.4.0: Use state instead.

Boolean, indicates whether the video is playing or not.
You can start/stop the video by setting this property:

start playing the video at creation
video = Video(source='movie.mkv', play=True)

create the video, and start later
video = Video(source='movie.mkv')
and later
video.play = True

play is a BooleanProperty and defaults to
False.

Deprecated since version 1.4.0: Use state instead.

	
position

	Position of the video between 0 and duration. The position
defaults to -1 and is set to a real position when the video is loaded.

position is a NumericProperty and
defaults to -1.

	
preview

	Filename / source of a preview image displayed before video starts.

preview is a StringProperty and
defaults to None.

If set, it gets displayed until the video is loaded/started.

New in version 2.1.0.

	
seek(percent, precise=True)

	
	Change the position to a percentage (strictly, a proportion)
	of duration.

	Parameters:

	
	percent: float or int
	Position to seek as a proportion of the total duration,
must be between 0-1.

	precise: bool, defaults to True
	Precise seeking is slower, but seeks to exact requested
percent.

Warning

Calling seek() before the video is loaded has no effect.

New in version 1.2.0.

Changed in version 1.10.1: The precise keyword argument has been added.

	
state

	String, indicates whether to play, pause, or stop the video:

start playing the video at creation
video = Video(source='movie.mkv', state='play')

create the video, and start later
video = Video(source='movie.mkv')
and later
video.state = 'play'

state is an OptionProperty and defaults
to ‘stop’.

	
unload()

	Unload the video. The playback will be stopped.

New in version 1.8.0.

	
volume

	Volume of the video, in the range 0-1. 1 means full volume, 0
means mute.

volume is a NumericProperty and defaults
to 1.

Video player

New in version 1.2.0.

The video player widget can be used to play video and let the user control the
play/pausing, volume and position. The widget cannot be customized much because
of the complex assembly of numerous base widgets.

[image: _images/videoplayer.jpg]

Annotations

If you want to display text at a specific time and for a certain duration,
consider annotations. An annotation file has a “.jsa” extension. The player
will automatically load the associated annotation file if it exists.

An annotation file is JSON-based, providing a list of label dictionary items.
The key and value must match one of the VideoPlayerAnnotation items.
For example, here is a short version of a jsa file that you can find in
examples/widgets/cityCC0.jsa:

[
 {"start": 0, "duration": 2,
 "text": "This is an example of annotation"},
 {"start": 2, "duration": 2,
 "bgcolor": [0.5, 0.2, 0.4, 0.5],
 "text": "You can change the background color"}
]

For our cityCC0.mpg example, the result will be:

[image: _images/videoplayer-annotation.jpg]
If you want to experiment with annotation files, test with:

python -m kivy.uix.videoplayer examples/widgets/cityCC0.mpg

Fullscreen

The video player can play the video in fullscreen, if
VideoPlayer.allow_fullscreen is activated by a double-tap on
the video. By default, if the video is smaller than the Window, it will be not
stretched.

You can allow stretching by passing custom options to a
VideoPlayer instance:

player = VideoPlayer(source='myvideo.avi', state='play',
 options={'fit_mode': 'contain'})

End-of-stream behavior

You can specify what happens when the video has finished playing by passing an
eos (end of stream) directive to the underlying
VideoBase class. eos can be one of ‘stop’, ‘pause’
or ‘loop’ and defaults to ‘stop’. For example, in order to loop the video:

player = VideoPlayer(source='myvideo.avi', state='play',
 options={'eos': 'loop'})

Note

The eos property of the VideoBase class is a string specifying the
end-of-stream behavior. This property differs from the eos
properties of the VideoPlayer and
Video classes, whose eos
property is simply a boolean indicating that the end of the file has
been reached.

	
class kivy.uix.videoplayer.VideoPlayer(**kwargs)

	Bases: kivy.uix.gridlayout.GridLayout

VideoPlayer class. See module documentation for more information.

	
allow_fullscreen

	By default, you can double-tap on the video to make it fullscreen. Set
this property to False to prevent this behavior.

allow_fullscreen is a BooleanProperty
defaults to True.

	
annotations

	If set, it will be used for reading annotations box.

annotations is a StringProperty
and defaults to ‘’.

	
duration

	Duration of the video. The duration defaults to -1 and is set to the
real duration when the video is loaded.

duration is a NumericProperty and
defaults to -1.

	
fullscreen

	Switch to fullscreen view. This should be used with care. When
activated, the widget will remove itself from its parent, remove all
children from the window and will add itself to it. When fullscreen is
unset, all the previous children are restored and the widget is restored to
its previous parent.

Warning

The re-add operation doesn’t care about the index position of its
children within the parent.

fullscreen is a BooleanProperty
and defaults to False.

	
image_loading

	Image filename used when the video is loading.

image_loading is a StringProperty and
defaults to ‘data/images/image-loading.zip’.

	
image_overlay_play

	Image filename used to show a “play” overlay when the video has not yet
started.

image_overlay_play is a
StringProperty and
defaults to ‘atlas://data/images/defaulttheme/player-play-overlay’.

	
image_pause

	Image filename used for the “Pause” button.

image_pause is a StringProperty and
defaults to ‘atlas://data/images/defaulttheme/media-playback-pause’.

	
image_play

	Image filename used for the “Play” button.

image_play is a StringProperty and
defaults to ‘atlas://data/images/defaulttheme/media-playback-start’.

	
image_stop

	Image filename used for the “Stop” button.

image_stop is a StringProperty and
defaults to ‘atlas://data/images/defaulttheme/media-playback-stop’.

	
image_volumehigh

	Image filename used for the volume icon when the volume is high.

image_volumehigh is a StringProperty and
defaults to ‘atlas://data/images/defaulttheme/audio-volume-high’.

	
image_volumelow

	Image filename used for the volume icon when the volume is low.

image_volumelow is a StringProperty
and defaults to ‘atlas://data/images/defaulttheme/audio-volume-low’.

	
image_volumemedium

	Image filename used for the volume icon when the volume is medium.

image_volumemedium is a StringProperty
and defaults to ‘atlas://data/images/defaulttheme/audio-volume-medium’.

	
image_volumemuted

	Image filename used for the volume icon when the volume is muted.

image_volumemuted is a StringProperty
and defaults to ‘atlas://data/images/defaulttheme/audio-volume-muted’.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
options

	Optional parameters can be passed to a Video
instance with this property.

options a DictProperty and
defaults to {}.

	
play

	
Deprecated since version 1.4.0: Use state instead.

Boolean, indicates whether the video is playing or not. You can start/stop
the video by setting this property:

start playing the video at creation
video = VideoPlayer(source='movie.mkv', play=True)

create the video, and start later
video = VideoPlayer(source='movie.mkv')
and later
video.play = True

play is a BooleanProperty and defaults
to False.

	
position

	Position of the video between 0 and duration. The position
defaults to -1 and is set to the real position when the video is loaded.

position is a NumericProperty and
defaults to -1.

	
seek(percent, precise=True)

	
	Change the position to a percentage (strictly, a proportion)
	of duration.

	Parameters:

	
	percent: float or int
	Position to seek as a proportion of total duration, must
be between 0-1.

	precise: bool, defaults to True
	Precise seeking is slower, but seeks to exact requested
percent.

Warning

Calling seek() before the video is loaded has no effect.

New in version 1.2.0.

Changed in version 1.10.1: The precise keyword argument has been added.

	
source

	Source of the video to read.

source is a StringProperty and
defaults to ‘’.

Changed in version 1.4.0.

	
state

	String, indicates whether to play, pause, or stop the video:

start playing the video at creation
video = VideoPlayer(source='movie.mkv', state='play')

create the video, and start later
video = VideoPlayer(source='movie.mkv')
and later
video.state = 'play'

state is an OptionProperty and defaults
to ‘stop’.

	
thumbnail

	Thumbnail of the video to show. If None, VideoPlayer will try to find
the thumbnail from the source + ‘.png’.

thumbnail a StringProperty and defaults
to ‘’.

Changed in version 1.4.0.

	
volume

	Volume of the video in the range 0-1. 1 means full volume and 0 means
mute.

volume is a NumericProperty and defaults
to 1.

	
class kivy.uix.videoplayer.VideoPlayerAnnotation(**kwargs)

	Bases: kivy.uix.label.Label

Annotation class used for creating annotation labels.

Additional keys are available:

	bgcolor: [r, g, b, a] - background color of the text box

	bgsource: ‘filename’ - background image used for the background text box

	border: (n, e, s, w) - border used for the background image

	
duration

	Duration of the annotation.

duration is a NumericProperty and
defaults to 1.

	
start

	Start time of the annotation.

start is a NumericProperty and defaults
to 0.

VKeyboard

[image: _images/vkeyboard.jpg]

New in version 1.0.8.

VKeyboard is an onscreen keyboard for Kivy. Its operation is intended to be
transparent to the user. Using the widget directly is NOT recommended. Read the
section Request keyboard first.

Modes

This virtual keyboard has a docked and free mode:

	docked mode (VKeyboard.docked = True)
Generally used when only one person is using the computer, like a tablet or
personal computer etc.

	free mode: (VKeyboard.docked = False)
Mostly for multitouch surfaces. This mode allows multiple virtual
keyboards to be used on the screen.

If the docked mode changes, you need to manually call
VKeyboard.setup_mode() otherwise the change will have no impact.
During that call, the VKeyboard, implemented on top of a
Scatter, will change the
behavior of the scatter and position the keyboard near the target (if target
and docked mode is set).

Layouts

The virtual keyboard is able to load a custom layout. If you create a new
layout and put the JSON in <kivy_data_dir>/keyboards/<layoutid>.json,
you can load it by setting VKeyboard.layout to your layoutid.

The JSON must be structured like this:

{
 "title": "Title of your layout",
 "description": "Description of your layout",
 "cols": 15,
 "rows": 5,

 ...
}

Then, you need to describe the keys in each row, for either a “normal”,
“shift” or a “special” (added in version 1.9.0) mode. Keys for this row
data must be named normal_<row>, shift_<row> and special_<row>.
Replace row with the row number.
Inside each row, you will describe the key. A key is a 4 element list in
the format:

[<text displayed on the keyboard>, <text to put when the key is pressed>,
 <text that represents the keycode>, <size of cols>]

Here are example keys:

f key
["f", "f", "f", 1]
capslock
["↹", " ", "tab", 1.5]

Finally, complete the JSON:

{
 ...
 "normal_1": [
 ["`", "`", "`", 1], ["1", "1", "1", 1], ["2", "2", "2", 1],
 ["3", "3", "3", 1], ["4", "4", "4", 1], ["5", "5", "5", 1],
 ["6", "6", "6", 1], ["7", "7", "7", 1], ["8", "8", "8", 1],
 ["9", "9", "9", 1], ["0", "0", "0", 1], ["+", "+", "+", 1],
 ["=", "=", "=", 1], ["⌫", null, "backspace", 2]
],

 "shift_1": [...],
 "normal_2": [...],
 "special_2": [...],
 ...
}

Request Keyboard

The instantiation of the virtual keyboard is controlled by the configuration.
Check keyboard_mode and keyboard_layout in the Configuration object.

If you intend to create a widget that requires a keyboard, do not use the
virtual keyboard directly, but prefer to use the best method available on
the platform. Check the request_keyboard()
method in the Window.

If you want a specific layout when you request the keyboard, you should write
something like this (from 1.8.0, numeric.json can be in the same directory as
your main.py):

keyboard = Window.request_keyboard(
 self._keyboard_close, self)
if keyboard.widget:
 vkeyboard = self._keyboard.widget
 vkeyboard.layout = 'numeric.json'

	
class kivy.uix.vkeyboard.VKeyboard(**kwargs)

	Bases: kivy.uix.scatter.Scatter

VKeyboard is an onscreen keyboard with multitouch support.
Its layout is entirely customizable and you can switch between available
layouts using a button in the bottom right of the widget.

	Events:

	
	on_key_down: keycode, internal, modifiers
	Fired when the keyboard received a key down event (key press).

	on_key_up: keycode, internal, modifiers
	Fired when the keyboard received a key up event (key release).

	
available_layouts

	Dictionary of all available layouts. Keys are the layout ID, and the
value is the JSON (translated into a Python object).

available_layouts is a DictProperty and
defaults to {}.

	
background

	Filename of the background image.

background is a StringProperty and
defaults to atlas://data/images/defaulttheme/vkeyboard_background.

	
background_border

	Background image border. Used for controlling the
border property of
the background.

background_border is a ListProperty and
defaults to [16, 16, 16, 16]

	
background_color

	Background color, in the format (r, g, b, a). If a background is
set, the color will be combined with the background texture.

background_color is a ColorProperty and
defaults to [1, 1, 1, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
background_disabled

	Filename of the background image when the vkeyboard is disabled.

New in version 1.8.0.

background_disabled is a
StringProperty and defaults to
atlas://data/images/defaulttheme/vkeyboard__disabled_background.

	
callback

	Callback can be set to a function that will be called if the
VKeyboard is closed by the user.

target is an ObjectProperty instance and
defaults to None.

	
collide_margin(x, y)

	Do a collision test, and return True if the (x, y) is inside the
vkeyboard margin.

	
docked

	Indicate whether the VKeyboard is docked on the screen or not. If you
change it, you must manually call setup_mode() otherwise it will have
no impact. If the VKeyboard is created by the Window, the docked mode will
be automatically set by the configuration, using the keyboard_mode token
in [kivy] section.

docked is a BooleanProperty and defaults
to False.

	
font_size

	font_size, specifies the size of the text on the virtual keyboard keys.
It should be kept within limits to ensure the text does not extend beyond
the bounds of the key or become too small to read.

New in version 1.10.0.

font_size is a NumericProperty and
defaults to 20.

	
key_background_color

	Key background color, in the format (r, g, b, a). If a key background is
set, the color will be combined with the key background texture.

key_background_color is a ColorProperty
and defaults to [1, 1, 1, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
key_background_down

	Filename of the key background image for use when a touch is active
on the widget.

key_background_down is a StringProperty
and defaults to
atlas://data/images/defaulttheme/vkeyboard_key_down.

	
key_background_normal

	Filename of the key background image for use when no touches are active
on the widget.

key_background_normal is a StringProperty
and defaults to
atlas://data/images/defaulttheme/vkeyboard_key_normal.

	
key_border

	Key image border. Used for controlling the
border property of
the key.

key_border is a ListProperty and
defaults to [16, 16, 16, 16]

	
key_disabled_background_normal

	Filename of the key background image for use when no touches are active
on the widget and vkeyboard is disabled.

New in version 1.8.0.

key_disabled_background_normal is a
StringProperty and defaults to
atlas://data/images/defaulttheme/vkeyboard_disabled_key_normal.

	
key_margin

	Key margin, used to create space between keys. The margin is composed of
four values, in pixels:

key_margin = [top, right, bottom, left]

key_margin is a ListProperty and defaults
to [2, 2, 2, 2]

	
layout

	Layout to use for the VKeyboard. By default, it will be the
layout set in the configuration, according to the keyboard_layout
in [kivy] section.

Changed in version 1.8.0: If layout is a .json filename, it will loaded and added to the
available_layouts.

layout is a StringProperty and defaults
to None.

	
layout_path

	Path from which layouts are read.

layout is a StringProperty and
defaults to <kivy_data_dir>/keyboards/

	
margin_hint

	Margin hint, used as spacing between keyboard background and keys
content. The margin is composed of four values, between 0 and 1:

margin_hint = [top, right, bottom, left]

The margin hints will be multiplied by width and height, according to their
position.

margin_hint is a ListProperty and
defaults to [.05, .06, .05, .06]

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
refresh(force=False)

	(internal) Recreate the entire widget and graphics according to the
selected layout.

	
setup_mode(*largs)

	Call this method when you want to readjust the keyboard according to
options: docked or not, with attached target or not:

	If docked is True, it will call setup_mode_dock()

	If docked is False, it will call setup_mode_free()

Feel free to overload these methods to create new
positioning behavior.

	
setup_mode_dock(*largs)

	Setup the keyboard in docked mode.

Dock mode will reset the rotation, disable translation, rotation and
scale. Scale and position will be automatically adjusted to attach the
keyboard to the bottom of the screen.

Note

Don’t call this method directly, use setup_mode() instead.

	
setup_mode_free()

	Setup the keyboard in free mode.

Free mode is designed to let the user control the position and
orientation of the keyboard. The only real usage is for a multiuser
environment, but you might found other ways to use it.
If a target is set, it will place the vkeyboard under the
target.

Note

Don’t call this method directly, use setup_mode() instead.

	
target

	Target widget associated with the VKeyboard. If set, it will be used to
send keyboard events. If the VKeyboard mode is “free”, it will also be used
to set the initial position.

target is an ObjectProperty instance and
defaults to None.

Widget class

The Widget class is the base class required for creating Widgets.
This widget class was designed with a couple of principles in mind:

	Event Driven

Widget interaction is built on top of events that occur. If a property
changes, the widget can respond to the change in the ‘on_<propname>’
callback. If nothing changes, nothing will be done. That’s the main
goal of the Property class.

	Separation Of Concerns (the widget and its graphical representation)

Widgets don’t have a draw() method. This is done on purpose: The idea
is to allow you to create your own graphical representation outside the
widget class.
Obviously you can still use all the available properties to do that, so
that your representation properly reflects the widget’s current state.
Every widget has its own Canvas that you
can use to draw. This separation allows Kivy to run your
application in a very efficient manner.

	Bounding Box / Collision

Often you want to know if a certain point is within the bounds of your
widget. An example would be a button widget where you only want to
trigger an action when the button itself is actually touched.
For this, you can use the collide_point() method, which
will return True if the point you pass to it is inside the axis-aligned
bounding box defined by the widget’s position and size.
If a simple AABB is not sufficient, you can override the method to
perform the collision checks with more complex shapes, e.g. a polygon.
You can also check if a widget collides with another widget with
collide_widget().

We also have some default values and behaviors that you should be aware of:

	A Widget is not a Layout: it will not
change the position or the size of its children. If you want control over
positioning or sizing, use a Layout.

	The default size of a widget is (100, 100). This is only changed if the
parent is a Layout.
For example, if you add a Label inside a
Button, the label will not inherit the button’s size or position
because the button is not a Layout: it’s just another Widget.

	The default size_hint is (1, 1). If the parent is a Layout, then the
widget size will be the parent layout’s size.

	on_touch_down(), on_touch_move(),
on_touch_up() don’t do any sort of collisions. If you want to
know if the touch is inside your widget, use collide_point().

Using Properties

When you read the documentation, all properties are described in the format:

<name> is a <property class> and defaults to <default value>.

e.g.

text is a
StringProperty and defaults to ‘’.

If you want to be notified when the pos attribute changes, i.e. when the
widget moves, you can bind your own callback function like this:

def callback_pos(instance, value):
 print('The widget', instance, 'moved to', value)

wid = Widget()
wid.bind(pos=callback_pos)

Read more about Properties.

Basic drawing

Widgets support a range of drawing instructions that you can use to customize
the look of your widgets and layouts. For example, to draw a background image
for your widget, you can do the following:

def redraw(self, args):
 self.bg_rect.size = self.size
 self.bg_rect.pos = self.pos

widget = Widget()
with widget.canvas:
 widget.bg_rect = Rectangle(source="cover.jpg", pos=self.pos, size=self.size)
widget.bind(pos=redraw, size=redraw)

To draw a background in kv:

Widget:
 canvas:
 Rectangle:
 source: "cover.jpg"
 size: self.size
 pos: self.pos

These examples only scratch the surface. Please see the kivy.graphics
documentation for more information.

Widget touch event bubbling

When you catch touch events between multiple widgets, you often
need to be aware of the order in which these events are propagated. In Kivy,
events bubble up from the first child upwards through the other children.
If a widget has children, the event is passed through its children before
being passed on to the widget after it.

As the add_widget() method inserts widgets at
index 0 by default, this means the event goes from the most recently added
widget back to the first one added. Consider the following:

box = BoxLayout()
box.add_widget(Label(text="a"))
box.add_widget(Label(text="b"))
box.add_widget(Label(text="c"))

The label with text “c” gets the event first, “b” second and “a” last. You can
reverse this order by manually specifying the index:

box = BoxLayout()
box.add_widget(Label(text="a"), index=0)
box.add_widget(Label(text="b"), index=1)
box.add_widget(Label(text="c"), index=2)

Now the order would be “a”, “b” then “c”. One thing to keep in mind when using
kv is that declaring a widget uses the
add_widget() method for insertion. Hence, using

BoxLayout:
 MyLabel:
 text: "a"
 MyLabel:
 text: "b"
 MyLabel:
 text: "c"

would result in the event order “c”, “b” then “a” as “c” was actually the last
added widget. It thus has index 0, “b” index 1 and “a” index 2. Effectively,
the child order is the reverse of its listed order.

This ordering is the same for the on_touch_move()
and on_touch_up() events.

In order to stop this event bubbling, a method can return True. This tells
Kivy the event has been handled and the event propagation stops. For example:

class MyWidget(Widget):
 def on_touch_down(self, touch):
 If <some_condition>:
 # Do stuff here and kill the event
 return True
 else:
 return super(MyWidget, self).on_touch_down(touch)

This approach gives you good control over exactly how events are dispatched
and managed. Sometimes, however, you may wish to let the event be completely
propagated before taking action. You can use the
Clock to help you here:

class MyWidget(Label):
 def on_touch_down(self, touch, after=False):
 if after:
 print "Fired after the event has been dispatched!"
 else:
 Clock.schedule_once(lambda dt: self.on_touch_down(touch, True))
 return super(MyWidget, self).on_touch_down(touch)

Usage of Widget.center, Widget.right, and Widget.top

A common mistake when using one of the computed properties such as
Widget.right is to use it to make a widget follow its parent with a
KV rule such as right: self.parent.right. Consider, for example:

FloatLayout:
 id: layout
 width: 100
 Widget:
 id: wid
 right: layout.right

The (mistaken) expectation is that this rule ensures that wid’s right will
always be whatever layout’s right is - that is wid.right and layout.right will
always be identical. In actual fact, this rule only says that “whenever
layout’s right changes, wid’s right will be set to that value”. The
difference being that as long as layout.right doesn’t change, wid.right
could be anything, even a value that will make them different.

Specifically, for the KV code above, consider the following example:

>>> print(layout.right, wid.right)
(100, 100)
>>> wid.x = 200
>>> print(layout.right, wid.right)
(100, 300)

As can be seen, initially they are in sync, however, when we change wid.x
they go out of sync because layout.right is not changed and the rule is not
triggered.

The proper way to make the widget follow its parent’s right is to use
Widget.pos_hint. If instead of right: layout.right we did
pos_hint: {‘right’: 1}, then the widgets right will always be set to be
at the parent’s right at each layout update.

	
class kivy.uix.widget.Widget(**kwargs)

	Bases: kivy.uix.widget.WidgetBase

Widget class. See module documentation for more information.

	Events:

	
	on_touch_down: (touch,)
	Fired when a new touch event occurs. touch is the touch object.

	on_touch_move: (touch,)
	Fired when an existing touch moves. touch is the touch object.

	on_touch_up: (touch,)
	Fired when an existing touch disappears. touch is the touch
object.

	on_kv_post: (base_widget,)
	Fired after all the kv rules associated with the widget
and all other widgets that are in any of those rules have had
all their kv rules applied. base_widget is the base-most widget
whose instantiation triggered the kv rules (i.e. the widget
instantiated from Python, e.g. MyWidget()).

Changed in version 1.11.0.

Warning

Adding a __del__ method to a class derived from Widget with Python
prior to 3.4 will disable automatic garbage collection for instances
of that class. This is because the Widget class creates reference
cycles, thereby preventing garbage collection [https://docs.python.org/2/library/gc.html#gc.garbage].

Changed in version 1.0.9: Everything related to event properties has been moved to the
EventDispatcher. Event properties can now be used
when constructing a simple class without subclassing Widget.

Changed in version 1.5.0: The constructor now accepts on_* arguments to automatically bind
callbacks to properties or events, as in the Kv language.

	
add_widget(widget, index=0, canvas=None)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
apply_class_lang_rules(root=None, ignored_consts={}, rule_children=None)

	Method that is called by kivy to apply the kv rules of this widget’s
class.

	Parameters:

	
	root: Widget
	The root widget that instantiated this widget in kv, if the
widget was instantiated in kv, otherwise None.

	ignored_consts: set
	(internal) See apply().

	rule_children: list
	(internal) See apply().

This is useful to be able to execute code before/after the class kv
rules are applied to the widget. E.g. if the kv code requires some
properties to be initialized before it is used in a binding rule.
If overwriting remember to call super, otherwise the kv rules will
not be applied.

In the following example,

class MyWidget(Widget):
 pass

class OtherWidget(MyWidget):
 pass

	<MyWidget>:
	my_prop: some_value

	<OtherWidget>:
	other_prop: some_value

When OtherWidget is instantiated with OtherWidget(), the
widget’s apply_class_lang_rules() is called and it applies the
kv rules of this class - <MyWidget> and <OtherWidget>.

Similarly, when the widget is instantiated from kv, e.g.

<MyBox@BoxLayout>:
 height: 55
 OtherWidget:
 width: 124

OtherWidget’s apply_class_lang_rules() is called and it
applies the kv rules of this class - <MyWidget> and
<OtherWidget>.

Note

It applies only the class rules not the instance rules. I.e. in the
above kv example in the MyBox rule when OtherWidget is
instantiated, its apply_class_lang_rules() applies the
<MyWidget> and <OtherWidget> rules to it - it does not
apply the width: 124 rule. The width: 124 rule is part of
the MyBox rule and is applied by the MyBox’s instance’s
apply_class_lang_rules().

Changed in version 1.11.0.

	
canvas = None

	Canvas of the widget.

The canvas is a graphics object that contains all the drawing instructions
for the graphical representation of the widget.

There are no general properties for the Widget class, such as background
color, to keep the design simple and lean. Some derived classes, such as
Button, do add such convenience properties but generally the developer is
responsible for implementing the graphics representation for a custom
widget from the ground up. See the derived widget classes for patterns to
follow and extend.

See Canvas for more information about the usage.

	
center

	Center position of the widget.

center is a ReferenceListProperty of
(center_x, center_y) properties.

	
center_x

	X center position of the widget.

center_x is an AliasProperty of
(x + width / 2.).

	
center_y

	Y center position of the widget.

center_y is an AliasProperty of
(y + height / 2.).

	
children

	List of children of this widget.

children is a ListProperty and
defaults to an empty list.

Use add_widget() and remove_widget() for manipulating the
children list. Don’t manipulate the children list directly unless you know
what you are doing.

	
clear_widgets(children=None)

	Remove all (or the specified) children of this widget.
If the ‘children’ argument is specified, it should be a list (or
filtered list) of children of the current widget.

Changed in version 1.8.0: The children argument can be used to specify the children you
want to remove.

Changed in version 2.1.0: Specifying an empty children list leaves the widgets unchanged.
Previously it was treated like None and all children were
removed.

	
cls

	Class of the widget, used for styling.

	
collide_point(x, y)

	Check if a point (x, y) is inside the widget’s axis aligned bounding
box.

	Parameters:

	
	x: numeric
	x position of the point (in parent coordinates)

	y: numeric
	y position of the point (in parent coordinates)

	Returns:

	A bool. True if the point is inside the bounding box, False
otherwise.

>>> Widget(pos=(10, 10), size=(50, 50)).collide_point(40, 40)
True

	
collide_widget(wid)

	Check if another widget collides with this widget. This function
performs an axis-aligned bounding box intersection test by default.

	Parameters:

	
	wid: Widget class
	Widget to test collision with.

	Returns:

	bool. True if the other widget collides with this widget, False
otherwise.

>>> wid = Widget(size=(50, 50))
>>> wid2 = Widget(size=(50, 50), pos=(25, 25))
>>> wid.collide_widget(wid2)
True
>>> wid2.pos = (55, 55)
>>> wid.collide_widget(wid2)
False

	
disabled

	Indicates whether this widget can interact with input or not.

disabled is an AliasProperty and
defaults to False.

Note

	Child Widgets, when added to a disabled widget, will be disabled
automatically.

	Disabling/enabling a parent disables/enables all
of its children.

New in version 1.8.0.

Changed in version 1.10.1: disabled was changed from a
BooleanProperty to an
AliasProperty to allow access to its
previous state when a parent’s disabled state is changed.

	
export_as_image(*args, **kwargs)

	Return an core Image of the actual
widget.

New in version 1.11.0.

	
export_to_png(filename, *args, **kwargs)

	Saves an image of the widget and its children in png format at the
specified filename. Works by removing the widget canvas from its
parent, rendering to an Fbo, and calling
save().

Note

The image includes only this widget and its children. If you want
to include widgets elsewhere in the tree, you must call
export_to_png() from their common parent, or use
screenshot() to capture the
whole window.

Note

The image will be saved in png format, you should include the
extension in your filename.

New in version 1.9.0.

	Parameters:

	
	filename: str
	The filename with which to save the png.

	scale: float
	The amount by which to scale the saved image, defaults to 1.

New in version 1.11.0.

	
get_parent_window()

	Return the parent window.

	Returns:

	Instance of the parent window. Can be a
WindowBase or
Widget.

	
get_root_window()

	Return the root window.

	Returns:

	Instance of the root window. Can be a
WindowBase or
Widget.

	
get_window_matrix(x=0, y=0)

	Calculate the transformation matrix to convert between window and
widget coordinates.

	Parameters:

	
	x: float, defaults to 0
	Translates the matrix on the x axis.

	y: float, defaults to 0
	Translates the matrix on the y axis.

	
height

	Height of the widget.

height is a NumericProperty and defaults
to 100.

Warning

Keep in mind that the height property is subject to layout logic and
that this has not yet happened at the time of the widget’s __init__
method.

Warning

A negative height is not supported.

	
ids

	This is a dictionary of ids defined in your kv language. This will only
be populated if you use ids in your kv language code.

New in version 1.7.0.

ids is a DictProperty and defaults to an
empty dict {}.

The ids are populated for each root level widget definition. For
example:

in kv
<MyWidget@Widget>:
 id: my_widget
 Label:
 id: label_widget
 Widget:
 id: inner_widget
 Label:
 id: inner_label
 TextInput:
 id: text_input
 OtherWidget:
 id: other_widget

<OtherWidget@Widget>
 id: other_widget
 Label:
 id: other_label
 TextInput:
 id: other_textinput

Then, in python:

>>> widget = MyWidget()
>>> print(widget.ids)
{'other_widget': <weakproxy at 041CFED0 to OtherWidget at 041BEC38>,
'inner_widget': <weakproxy at 04137EA0 to Widget at 04138228>,
'inner_label': <weakproxy at 04143540 to Label at 04138260>,
'label_widget': <weakproxy at 04137B70 to Label at 040F97A0>,
'text_input': <weakproxy at 041BB5D0 to TextInput at 041BEC00>}
>>> print(widget.ids['other_widget'].ids)
{'other_textinput': <weakproxy at 041DBB40 to TextInput at 041BEF48>,
'other_label': <weakproxy at 041DB570 to Label at 041BEEA0>}
>>> print(widget.ids['label_widget'].ids)
{}

	
motion_filter

	Holds a dict of type_id to list of child widgets registered to
receive motion events of type_id.

Don’t change the property directly but use
register_for_motion_event() and unregister_for_motion_event()
to register and unregister for motion events. If self is registered it
will always be the first element in the list.

New in version 2.1.0.

Warning

This is an experimental property and it remains so while this warning
is present.

	
on_motion(etype, me)

	Called when a motion event is received.

	Parameters:

	
	etype: str
	Event type, one of “begin”, “update” or “end”

	me: MotionEvent
	Received motion event

	Returns:

	bool
True to stop event dispatching

New in version 2.1.0.

Warning

This is an experimental method and it remains so while this warning
is present.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_move(touch)

	Receive a touch move event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
opacity

	Opacity of the widget and all its children.

New in version 1.4.1.

The opacity attribute controls the opacity of the widget and its children.
Be careful, it’s a cumulative attribute: the value is multiplied by the
current global opacity and the result is applied to the current context
color.

For example, if the parent has an opacity of 0.5 and a child has an
opacity of 0.2, the real opacity of the child will be 0.5 * 0.2 = 0.1.

Then, the opacity is applied by the shader as:

frag_color = color * vec4(1.0, 1.0, 1.0, opacity);

opacity is a NumericProperty and defaults
to 1.0.

	
parent

	Parent of this widget. The parent of a widget is set when the widget
is added to another widget and unset when the widget is removed from its
parent.

parent is an ObjectProperty and
defaults to None.

	
pos

	Position of the widget.

pos is a ReferenceListProperty of
(x, y) properties.

	
pos_hint

	Position hint. This property allows you to set the position of
the widget inside its parent layout (similar to
size_hint).

For example, if you want to set the top of the widget to be at 90%
height of its parent layout, you can write:

widget = Widget(pos_hint={'top': 0.9})

The keys ‘x’, ‘right’ and ‘center_x’ will use the parent width.
The keys ‘y’, ‘top’ and ‘center_y’ will use the parent height.

See Float Layout for further reference.

Note

pos_hint is not used by all layouts. Check the documentation
of the layout in question to see if it supports pos_hint.

pos_hint is an ObjectProperty
containing a dict.

	
property proxy_ref

	Return a proxy reference to the widget, i.e. without creating a
reference to the widget. See weakref.proxy [http://docs.python.org/2/library/weakref.html?highlight=proxy#weakref.proxy] for more information.

New in version 1.7.2.

	
register_for_motion_event(type_id, widget=None)

	Register to receive motion events of type_id.

Override on_motion() or bind to on_motion event to handle
the incoming motion events.

	Parameters:

	
	type_id: str
	Motion event type id (eg. “touch”, “hover”, etc.)

	widget: Widget
	Child widget or self if omitted

New in version 2.1.0.

Note

Method can be called multiple times with the same arguments.

Warning

This is an experimental method and it remains so while this warning
is present.

	
remove_widget(widget)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
right

	Right position of the widget.

right is an AliasProperty of
(x + width).

	
size

	Size of the widget.

size is a ReferenceListProperty of
(width, height) properties.

	
size_hint

	Size hint.

size_hint is a ReferenceListProperty of
(size_hint_x, size_hint_y) properties.

See size_hint_x for more information.

	
size_hint_max

	Maximum size when using size_hint.

size_hint_max is a ReferenceListProperty
of (size_hint_max_x, size_hint_max_y) properties.

New in version 1.10.0.

	
size_hint_max_x

	When not None, the x-direction maximum size (in pixels,
like width) when size_hint_x is also not None.

Similar to size_hint_min_x, except that it sets the maximum width.

size_hint_max_x is a NumericProperty and
defaults to None.

New in version 1.10.0.

	
size_hint_max_y

	When not None, the y-direction maximum size (in pixels,
like height) when size_hint_y is also not None.

Similar to size_hint_min_y, except that it sets the maximum height.

size_hint_max_y is a NumericProperty and
defaults to None.

New in version 1.10.0.

	
size_hint_min

	Minimum size when using size_hint.

size_hint_min is a ReferenceListProperty
of (size_hint_min_x, size_hint_min_y) properties.

New in version 1.10.0.

	
size_hint_min_x

	When not None, the x-direction minimum size (in pixels,
like width) when size_hint_x is also not None.

When size_hint_x is not None, it is the minimum width that the
widget will be set due to the size_hint_x. I.e. when a smaller size
would be set, size_hint_min_x is the value used instead for the
widget width. When None, or when size_hint_x is None,
size_hint_min_x doesn’t do anything.

Only the Layout and
Window classes make use of the hint.

size_hint_min_x is a NumericProperty and
defaults to None.

New in version 1.10.0.

	
size_hint_min_y

	When not None, the y-direction minimum size (in pixels,
like height) when size_hint_y is also not None.

When size_hint_y is not None, it is the minimum height that the
widget will be set due to the size_hint_y. I.e. when a smaller size
would be set, size_hint_min_y is the value used instead for the
widget height. When None, or when size_hint_y is None,
size_hint_min_y doesn’t do anything.

Only the Layout and
Window classes make use of the hint.

size_hint_min_y is a NumericProperty and
defaults to None.

New in version 1.10.0.

	
size_hint_x

	x size hint. Represents how much space the widget should use in the
direction of the x axis relative to its parent’s width.
Only the Layout and
Window classes make use of the hint.

The size_hint is used by layouts for two purposes:

	When the layout considers widgets on their own rather than in
relation to its other children, the size_hint_x is a direct proportion
of the parent width, normally between 0.0 and 1.0. For instance, a
widget with size_hint_x=0.5 in
a vertical BoxLayout will take up half the BoxLayout’s width, or
a widget in a FloatLayout with size_hint_x=0.2 will take up 20%
of the FloatLayout width. If the size_hint is greater than 1, the
widget will be wider than the parent.

	When multiple widgets can share a row of a layout, such as in a
horizontal BoxLayout, their widths will be their size_hint_x as a
fraction of the sum of widget size_hints. For instance, if the
size_hint_xs are (0.5, 1.0, 0.5), the first widget will have a
width of 25% of the parent width.

size_hint_x is a NumericProperty and
defaults to 1.

	
size_hint_y

	y size hint.

size_hint_y is a NumericProperty and
defaults to 1.

See size_hint_x for more information, but with widths and heights
swapped.

	
to_local(x, y, relative=False)

	Transform parent coordinates to local (current widget) coordinates.

See relativelayout for details on the coordinate
systems.

	Parameters:

	
	relative: bool, defaults to False
	Change to True if you want to translate coordinates to
relative widget coordinates.

	
to_parent(x, y, relative=False)

	Transform local (current widget) coordinates to parent coordinates.

See relativelayout for details on the coordinate
systems.

	Parameters:

	
	relative: bool, defaults to False
	Change to True if you want to translate relative positions from
a widget to its parent coordinates.

	
to_widget(x, y, relative=False)

	Convert the coordinate from window to local (current widget)
coordinates.

See relativelayout for details on the coordinate
systems.

	
to_window(x, y, initial=True, relative=False)

	If initial is True, the default, it transforms parent
coordinates to window coordinates. Otherwise, it transforms local
(current widget) coordinates to window coordinates.

See relativelayout for details on the coordinate
systems.

	
top

	Top position of the widget.

top is an AliasProperty of
(y + height).

	
unregister_for_motion_event(type_id, widget=None)

	Unregister to receive motion events of type_id.

	Parameters:

	
	type_id: str
	Motion event type id (eg. “touch”, “hover”, etc.)

	widget: Widget
	Child widget or self if omitted

New in version 2.1.0.

Note

Method can be called multiple times with the same arguments.

Warning

This is an experimental method and it remains so while this warning
is present.

	
walk(restrict=False, loopback=False)

	Iterator that walks the widget tree starting with this widget and
goes forward returning widgets in the order in which layouts display
them.

	Parameters:

	
	restrict: bool, defaults to False
	If True, it will only iterate through the widget and its
children (or children of its children etc.). Defaults to False.

	loopback: bool, defaults to False
	If True, when the last widget in the tree is reached,
it’ll loop back to the uppermost root and start walking until
we hit this widget again. Naturally, it can only loop back when
restrict is False. Defaults to False.

	Returns:

	A generator that walks the tree, returning widgets in the
forward layout order.

For example, given a tree with the following structure:

GridLayout:
 Button
 BoxLayout:
 id: box
 Widget
 Button
 Widget

walking this tree:

>>> # Call walk on box with loopback True, and restrict False
>>> [type(widget) for widget in box.walk(loopback=True)]
[<class 'BoxLayout'>, <class 'Widget'>, <class 'Button'>,
 <class 'Widget'>, <class 'GridLayout'>, <class 'Button'>]
>>> # Now with loopback False, and restrict False
>>> [type(widget) for widget in box.walk()]
[<class 'BoxLayout'>, <class 'Widget'>, <class 'Button'>,
 <class 'Widget'>]
>>> # Now with restrict True
>>> [type(widget) for widget in box.walk(restrict=True)]
[<class 'BoxLayout'>, <class 'Widget'>, <class 'Button'>]

New in version 1.9.0.

	
walk_reverse(loopback=False)

	Iterator that walks the widget tree backwards starting with the
widget before this, and going backwards returning widgets in the
reverse order in which layouts display them.

This walks in the opposite direction of walk(), so a list of the
tree generated with walk() will be in reverse order compared
to the list generated with this, provided loopback is True.

	Parameters:

	
	loopback: bool, defaults to False
	If True, when the uppermost root in the tree is
reached, it’ll loop back to the last widget and start walking
back until after we hit widget again. Defaults to False.

	Returns:

	A generator that walks the tree, returning widgets in the
reverse layout order.

For example, given a tree with the following structure:

GridLayout:
 Button
 BoxLayout:
 id: box
 Widget
 Button
 Widget

walking this tree:

>>> # Call walk on box with loopback True
>>> [type(widget) for widget in box.walk_reverse(loopback=True)]
[<class 'Button'>, <class 'GridLayout'>, <class 'Widget'>,
 <class 'Button'>, <class 'Widget'>, <class 'BoxLayout'>]
>>> # Now with loopback False
>>> [type(widget) for widget in box.walk_reverse()]
[<class 'Button'>, <class 'GridLayout'>]
>>> forward = [w for w in box.walk(loopback=True)]
>>> backward = [w for w in box.walk_reverse(loopback=True)]
>>> forward == backward[::-1]
True

New in version 1.9.0.

	
width

	Width of the widget.

width is a NumericProperty and defaults
to 100.

Warning

Keep in mind that the width property is subject to layout logic and
that this has not yet happened at the time of the widget’s __init__
method.

Warning

A negative width is not supported.

	
x

	X position of the widget.

x is a NumericProperty and defaults to 0.

	
y

	Y position of the widget.

y is a NumericProperty and defaults to 0.

	
exception kivy.uix.widget.WidgetException

	Bases: Exception

Fired when the widget gets an exception.

Accordion

New in version 1.0.8.

[image: _images/accordion.jpg]
The Accordion widget is a form of menu where the options are stacked either
vertically or horizontally and the item in focus (when touched) opens up to
display its content.

The Accordion should contain one or many AccordionItem
instances, each of which should contain one root content widget. You’ll end up
with a Tree something like this:

	Accordion

	AccordionItem

	YourContent

	AccordionItem

	BoxLayout

	Another user content 1

	Another user content 2

	AccordionItem

	Another user content

The current implementation divides the AccordionItem into two parts:

	One container for the title bar

	One container for the content

The title bar is made from a Kv template. We’ll see how to create a new
template to customize the design of the title bar.

Warning

If you see message like:

[WARNING] [Accordion] not have enough space for displaying all children
[WARNING] [Accordion] need 440px, got 100px
[WARNING] [Accordion] layout aborted.

That means you have too many children and there is no more space to
display the content. This is “normal” and nothing will be done. Try to
increase the space for the accordion or reduce the number of children. You
can also reduce the Accordion.min_space.

Simple example

from kivy.uix.accordion import Accordion, AccordionItem
from kivy.uix.label import Label
from kivy.app import App

class AccordionApp(App):
 def build(self):
 root = Accordion()
 for x in range(5):
 item = AccordionItem(title='Title %d' % x)
 item.add_widget(Label(text='Very big content\n' * 10))
 root.add_widget(item)
 return root

if __name__ == '__main__':
 AccordionApp().run()

Customize the accordion

You can increase the default size of the title bar:

root = Accordion(min_space=60)

Or change the orientation to vertical:

root = Accordion(orientation='vertical')

The AccordionItem is more configurable and you can set your own title
background when the item is collapsed or opened:

item = AccordionItem(background_normal='image_when_collapsed.png',
 background_selected='image_when_selected.png')

	
class kivy.uix.accordion.Accordion(**kwargs)

	Bases: kivy.uix.widget.Widget

Accordion class. See module documentation for more information.

	
add_widget(widget, *args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
anim_duration

	Duration of the animation in seconds when a new accordion item is
selected.

anim_duration is a NumericProperty and
defaults to .25 (250ms).

	
anim_func

	Easing function to use for the animation. Check
kivy.animation.AnimationTransition for more information about
available animation functions.

anim_func is an ObjectProperty and
defaults to ‘out_expo’. You can set a string or a function to use as an
easing function.

	
min_space

	Minimum space to use for the title of each item. This value is
automatically set for each child every time the layout event occurs.

min_space is a NumericProperty and
defaults to 44 (px).

	
orientation

	Orientation of the layout.

orientation is an OptionProperty
and defaults to ‘horizontal’. Can take a value of ‘vertical’ or
‘horizontal’.

	
exception kivy.uix.accordion.AccordionException

	Bases: Exception

AccordionException class.

	
class kivy.uix.accordion.AccordionItem(**kwargs)

	Bases: kivy.uix.floatlayout.FloatLayout

AccordionItem class that must be used in conjunction with the
Accordion class. See the module documentation for more
information.

	
accordion

	Instance of the Accordion that the item belongs to.

accordion is an ObjectProperty and
defaults to None.

	
add_widget(*args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
background_disabled_normal

	Background image of the accordion item used for the default graphical
representation when the item is collapsed and disabled.

New in version 1.8.0.

background__disabled_normal is a
StringProperty and defaults to
‘atlas://data/images/defaulttheme/button_disabled’.

	
background_disabled_selected

	Background image of the accordion item used for the default graphical
representation when the item is selected (not collapsed) and disabled.

New in version 1.8.0.

background_disabled_selected is a
StringProperty and defaults to
‘atlas://data/images/defaulttheme/button_disabled_pressed’.

	
background_normal

	Background image of the accordion item used for the default graphical
representation when the item is collapsed.

background_normal is a StringProperty and
defaults to ‘atlas://data/images/defaulttheme/button’.

	
background_selected

	Background image of the accordion item used for the default graphical
representation when the item is selected (not collapsed).

background_normal is a StringProperty and
defaults to ‘atlas://data/images/defaulttheme/button_pressed’.

	
collapse

	Boolean to indicate if the current item is collapsed or not.

collapse is a BooleanProperty and
defaults to True.

	
collapse_alpha

	Value between 0 and 1 to indicate how much the item is collapsed (1) or
whether it is selected (0). It’s mostly used for animation.

collapse_alpha is a NumericProperty and
defaults to 1.

	
container

	(internal) Property that will be set to the container of children inside
the AccordionItem representation.

	
container_title

	(internal) Property that will be set to the container of title inside
the AccordionItem representation.

	
content_size

	(internal) Set by the Accordion to the size allocated for the
content.

	
min_space

	Link to the Accordion.min_space property.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
orientation

	Link to the Accordion.orientation property.

	
remove_widget(*args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
title

	Title string of the item. The title might be used in conjunction with the
AccordionItemTitle template. If you are using a custom template, you can
use that property as a text entry, or not. By default, it’s used for the
title text. See title_template and the example below.

title is a StringProperty and defaults
to ‘’.

	
title_args

	Default arguments that will be passed to the
kivy.lang.Builder.template() method.

title_args is a DictProperty and defaults
to {}.

	
title_template

	Template to use for creating the title part of the accordion item. The
default template is a simple Label, not customizable (except the text) that
supports vertical and horizontal orientation and different backgrounds for
collapse and selected mode.

It’s better to create and use your own template if the default template
does not suffice.

title is a StringProperty and defaults to
‘AccordionItemTitle’. The current default template lives in the
kivy/data/style.kv file.

Here is the code if you want to build your own template:

[AccordionItemTitle@Label]:
 text: ctx.title
 canvas.before:
 Color:
 rgb: 1, 1, 1
 BorderImage:
 source:
 ctx.item.background_normal if ctx.item.collapse else ctx.item.background_selected
 pos: self.pos
 size: self.size
 PushMatrix
 Translate:
 xy: self.center_x, self.center_y
 Rotate:
 angle: 90 if ctx.item.orientation == 'horizontal' else 0
 axis: 0, 0, 1
 Translate:
 xy: -self.center_x, -self.center_y
 canvas.after:
 PopMatrix

Action Bar

New in version 1.8.0.

[image: _images/actionbar.png]
The ActionBar widget is like Android’s ActionBar [http://developer.android.com/guide/topics/ui/actionbar.html], where items
are stacked horizontally. When the area becomes to small, widgets are moved
into the ActionOverflow area.

An ActionBar contains an ActionView with various
ContextualActionViews.
An ActionView will contain an ActionPrevious having title,
app_icon and previous_icon properties. An ActionView will contain
subclasses of ActionItems. Some predefined ones include
an ActionButton, an ActionToggleButton, an
ActionCheck, an ActionSeparator and an ActionGroup.

An ActionGroup is used to display ActionItems
in a group. An ActionView will always display an ActionGroup
after other ActionItems. An ActionView contains
an ActionOverflow, but this is only made visible when required i.e.
the available area is too small to fit all the widgets. A
ContextualActionView is a subclass of an:class:ActionView.

Changed in version 1.10.1: ActionGroup core rewritten from Spinner to pure
DropDown

	
class kivy.uix.actionbar.ActionBar(**kwargs)

	Bases: kivy.uix.boxlayout.BoxLayout

ActionBar class, which acts as the main container for an
ActionView instance. The ActionBar determines the overall
styling aspects of the bar. ActionItems are not added to
this class directly, but to the contained ActionView instance.

	Events:

	
	on_previous
	Fired when action_previous of action_view is pressed.

Please see the module documentation for more information.

	
action_view

	action_view of the ActionBar.

action_view is an ObjectProperty and
defaults to None or the last ActionView instance added to the ActionBar.

	
add_widget(widget, *args, **kwargs)

	
Changed in version 2.1.0: Renamed argument view to widget.

	
background_color

	Background color, in the format (r, g, b, a).

background_color is a ColorProperty and
defaults to [1, 1, 1, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
background_image

	Background image of the ActionBars default graphical representation.

background_image is a StringProperty
and defaults to ‘atlas://data/images/defaulttheme/action_bar’.

	
border

	The border to be applied to the background_image.

border is a ListProperty and defaults to
[2, 2, 2, 2]

	
exception kivy.uix.actionbar.ActionBarException

	Bases: Exception

ActionBarException class

	
class kivy.uix.actionbar.ActionButton(**kwargs)

	Bases: kivy.uix.button.Button, kivy.uix.actionbar.ActionItem

ActionButton class, see module documentation for more information.

The text color, width and size_hint_x are set manually via the Kv language
file. It covers a lot of cases: with/without an icon, with/without a group
and takes care of the padding between elements.

You don’t have much control over these properties, so if you want to
customize its appearance, we suggest you create you own button
representation. You can do this by creating a class that subclasses an
existing widget and an ActionItem:

class MyOwnActionButton(Button, ActionItem):
 pass

You can then create your own style using the Kv language.

	
icon

	Source image to use when the Button is part of the ActionBar. If the
Button is in a group, the text will be preferred.

icon is a StringProperty and defaults
to None.

	
class kivy.uix.actionbar.ActionCheck(**kwargs)

	Bases: kivy.uix.actionbar.ActionItem, kivy.uix.checkbox.CheckBox

ActionCheck class, see module documentation for more information.

	
class kivy.uix.actionbar.ActionDropDown(**kwargs)

	Bases: kivy.uix.dropdown.DropDown

ActionDropDown class, see module documentation for more information.

	
class kivy.uix.actionbar.ActionGroup(**kwargs)

	Bases: kivy.uix.actionbar.ActionItem, kivy.uix.button.Button

ActionGroup class, see module documentation for more information.

	
add_widget(widget, *args, **kwargs)

	
Changed in version 2.1.0: Renamed argument item to widget.

	
clear_widgets(*args, **kwargs)

	Remove all (or the specified) children of this widget.
If the ‘children’ argument is specified, it should be a list (or
filtered list) of children of the current widget.

Changed in version 1.8.0: The children argument can be used to specify the children you
want to remove.

Changed in version 2.1.0: Specifying an empty children list leaves the widgets unchanged.
Previously it was treated like None and all children were
removed.

	
dropdown_width

	If non zero, provides the width for the associated DropDown. This is
useful when some items in the ActionGroup’s DropDown are wider than usual
and you don’t want to make the ActionGroup widget itself wider.

dropdown_width is a NumericProperty
and defaults to 0.

New in version 1.10.0.

	
is_open

	By default, the DropDown is not open. Set to True to open it.

is_open is a BooleanProperty and
defaults to False.

	
mode

	Sets the current mode of an ActionGroup. If mode is ‘normal’, the
ActionGroups children will be displayed normally if there is enough
space, otherwise they will be displayed in a spinner. If mode is
‘spinner’, then the children will always be displayed in a spinner.

mode is an OptionProperty and defaults
to ‘normal’.

	
separator_image

	Background Image for an ActionSeparator in an ActionView.

separator_image is a StringProperty
and defaults to ‘atlas://data/images/defaulttheme/separator’.

	
separator_width

	Width of the ActionSeparator in an ActionView.

separator_width is a NumericProperty
and defaults to 0.

	
use_separator

	Specifies whether to use a separator after/before this group or not.

use_separator is a BooleanProperty and
defaults to False.

	
class kivy.uix.actionbar.ActionItem

	Bases: builtins.object

ActionItem class, an abstract class for all ActionBar widgets. To create a
custom widget for an ActionBar, inherit from this class. See module
documentation for more information.

	
background_down

	Background image of the ActionItem used for the default graphical
representation when an ActionItem is pressed.

background_down is a StringProperty
and defaults to ‘atlas://data/images/defaulttheme/action_item_down’.

	
background_normal

	Background image of the ActionItem used for the default graphical
representation when the ActionItem is not pressed.

background_normal is a StringProperty
and defaults to ‘atlas://data/images/defaulttheme/action_item’.

	
important

	Determines if an ActionItem is important or not. If an item is important
and space is limited, this item will be displayed in preference to others.

important is a BooleanProperty and
defaults to False.

	
inside_group

	(internal) Determines if an ActionItem is displayed inside an
ActionGroup or not.

inside_group is a BooleanProperty and
defaults to False.

	
minimum_width

	Minimum Width required by an ActionItem.

minimum_width is a NumericProperty and
defaults to ’90sp’.

	
mipmap

	Defines whether the image/icon dispayed on top of the button uses a
mipmap or not.

mipmap is a BooleanProperty and
defaults to True.

	
pack_width

	(read-only) The actual width to use when packing the items. Equal to the
greater of minimum_width and width.

pack_width is an AliasProperty.

	
class kivy.uix.actionbar.ActionOverflow(**kwargs)

	Bases: kivy.uix.actionbar.ActionGroup

ActionOverflow class, see module documentation for more information.

	
add_widget(widget, index=0, *args, **kwargs)

	
Changed in version 2.1.0: Renamed argument action_item to widget.

	
overflow_image

	Image to be used as an Overflow Image.

overflow_image is a StringProperty
and defaults to ‘atlas://data/images/defaulttheme/overflow’.

	
class kivy.uix.actionbar.ActionPrevious(**kwargs)

	Bases: kivy.uix.boxlayout.BoxLayout, kivy.uix.actionbar.ActionItem

ActionPrevious class, see module documentation for more information.

	
app_icon

	Application icon for the ActionView.

app_icon is a StringProperty
and defaults to the window icon if set, otherwise
‘data/logo/kivy-icon-32.png’.

	
app_icon_height

	Height of app_icon image.

app_icon_height is a NumericProperty
and defaults to 0.

	
app_icon_width

	Width of app_icon image.

app_icon_width is a NumericProperty and
defaults to 0.

	
color

	Text color, in the format (r, g, b, a)

color is a ColorProperty and defaults
to [1, 1, 1, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
markup

	If True, the text will be rendered using the
MarkupLabel: you can change the style of
the text using tags. Check the Text Markup
documentation for more information.

markup is a BooleanProperty and
defaults to False.

	
previous_image

	Image for the ‘previous’ ActionButtons default graphical representation.

previous_image is a StringProperty and
defaults to ‘atlas://data/images/defaulttheme/previous_normal’.

	
previous_image_height

	Height of previous_image image.

app_icon_width is a NumericProperty and
defaults to 0.

	
previous_image_width

	Width of previous_image image.

width is a NumericProperty and
defaults to 0.

	
title

	Title for ActionView.

title is a StringProperty and
defaults to ‘’.

	
with_previous

	Specifies whether the previous_icon will be shown or not. Note that it is
up to the user to implement the desired behavior using the on_press or
similar events.

with_previous is a BooleanProperty and
defaults to True.

	
class kivy.uix.actionbar.ActionSeparator(**kwargs)

	Bases: kivy.uix.actionbar.ActionItem, kivy.uix.widget.Widget

ActionSeparator class, see module documentation for more information.

	
background_image

	Background image for the separators default graphical representation.

background_image is a StringProperty
and defaults to ‘atlas://data/images/defaulttheme/separator’.

	
class kivy.uix.actionbar.ActionToggleButton(**kwargs)

	Bases: kivy.uix.actionbar.ActionItem, kivy.uix.togglebutton.ToggleButton

ActionToggleButton class, see module documentation for more information.

	
icon

	Source image to use when the Button is part of the ActionBar. If the
Button is in a group, the text will be preferred.

	
class kivy.uix.actionbar.ActionView(**kwargs)

	Bases: kivy.uix.boxlayout.BoxLayout

ActionView class, see module documentation for more information.

	
action_previous

	Previous button for an ActionView.

action_previous is an ObjectProperty
and defaults to None.

	
add_widget(widget, index=0, *args, **kwargs)

	
Changed in version 2.1.0: Renamed argument action_item to widget.

	
background_color

	Background color in the format (r, g, b, a).

background_color is a ColorProperty and
defaults to [1, 1, 1, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
background_image

	Background image of an ActionViews default graphical representation.

background_image is a StringProperty
and defaults to ‘atlas://data/images/defaulttheme/action_view’.

	
overflow_group

	Widget to be used for the overflow.

overflow_group is an ObjectProperty and
defaults to an instance of ActionOverflow.

	
remove_widget(widget, *args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
use_separator

	Specify whether to use a separator before every ActionGroup or not.

use_separator is a BooleanProperty and
defaults to False.

	
class kivy.uix.actionbar.ContextualActionView(**kwargs)

	Bases: kivy.uix.actionbar.ActionView

ContextualActionView class, see the module documentation for more
information.

Anchor Layout

[image: _images/anchorlayout.gif]
The AnchorLayout aligns its children to a border (top, bottom,
left, right) or center.

To draw a button in the lower-right corner:

layout = AnchorLayout(
 anchor_x='right', anchor_y='bottom')
btn = Button(text='Hello World')
layout.add_widget(btn)

	
class kivy.uix.anchorlayout.AnchorLayout(**kwargs)

	Bases: kivy.uix.layout.Layout

Anchor layout class. See the module documentation for more information.

	
anchor_x

	Horizontal anchor.

anchor_x is an OptionProperty and
defaults to ‘center’. It accepts values of ‘left’, ‘center’ or
‘right’.

	
anchor_y

	Vertical anchor.

anchor_y is an OptionProperty and
defaults to ‘center’. It accepts values of ‘top’, ‘center’ or
‘bottom’.

	
do_layout(*largs)

	This function is called when a layout is called by a trigger.
If you are writing a new Layout subclass, don’t call this function
directly but use _trigger_layout() instead.

The function is by default called before the next frame, therefore
the layout isn’t updated immediately. Anything depending on the
positions of e.g. children should be scheduled for the next frame.

New in version 1.0.8.

	
padding

	Padding between the widget box and its children, in pixels:
[padding_left, padding_top, padding_right, padding_bottom].

padding also accepts a two argument form [padding_horizontal,
padding_vertical] and a one argument form [padding].

padding is a VariableListProperty and
defaults to [0, 0, 0, 0].

Behaviors

New in version 1.8.0.

Behavior mixin classes

This module implements behaviors that can be
mixed in [https://en.wikipedia.org/wiki/Mixin]
with existing base widgets. The idea behind these classes is to encapsulate
properties and events associated with certain types of widgets.

Isolating these properties and events in a mixin class allows you to define
your own implementation for standard kivy widgets that can act as drop-in
replacements. This means you can re-style and re-define widgets as desired
without breaking compatibility: as long as they implement the behaviors
correctly, they can simply replace the standard widgets.

Adding behaviors

Say you want to add Button capabilities to an
Image, you could do:

class IconButton(ButtonBehavior, Image):
 pass

This would give you an Image with the events and
properties inherited from ButtonBehavior. For example, the on_press
and on_release events would be fired when appropriate:

class IconButton(ButtonBehavior, Image):
 def on_press(self):
 print("on_press")

Or in kv:

IconButton:
 on_press: print('on_press')

Naturally, you could also bind to any property changes the behavior class
offers:

def state_changed(*args):
 print('state changed')

button = IconButton()
button.bind(state=state_changed)

Note

The behavior class must always be _before_ the widget class. If you don’t
specify the inheritance in this order, the behavior will not work because
the behavior methods are overwritten by the class method listed first.

Similarly, if you combine a behavior class with a class which
requires the use of the methods also defined by the behavior class, the
resulting class may not function properly. For example, when combining the
ButtonBehavior with a Slider, both of
which use the on_touch_up() method,
the resulting class may not work properly.

Changed in version 1.9.1: The individual behavior classes, previously in one big behaviors.py
file, has been split into a single file for each class under the
behaviors module. All the behaviors are still imported
in the behaviors module so they are accessible as before
(e.g. both from kivy.uix.behaviors import ButtonBehavior and
from kivy.uix.behaviors.button import ButtonBehavior work).

	
class kivy.uix.behaviors.ButtonBehavior(**kwargs)

	Bases: builtins.object

This mixin [https://en.wikipedia.org/wiki/Mixin] class provides
Button behavior. Please see the
button behaviors module documentation
for more information.

	Events:

	
	on_press
	Fired when the button is pressed.

	on_release
	Fired when the button is released (i.e. the touch/click that
pressed the button goes away).

	
always_release

	This determines whether or not the widget fires an on_release event if
the touch_up is outside the widget.

New in version 1.9.0.

Changed in version 1.10.0: The default value is now False.

always_release is a BooleanProperty and
defaults to False.

	
last_touch

	Contains the last relevant touch received by the Button. This can
be used in on_press or on_release in order to know which touch
dispatched the event.

New in version 1.8.0.

last_touch is a ObjectProperty and
defaults to None.

	
min_state_time

	The minimum period of time which the widget must remain in the
‘down’ state.

New in version 1.9.1.

min_state_time is a float and defaults to 0.035. This value is
taken from Config.

	
state

	The state of the button, must be one of ‘normal’ or ‘down’.
The state is ‘down’ only when the button is currently touched/clicked,
otherwise its ‘normal’.

state is an OptionProperty and defaults
to ‘normal’.

	
trigger_action(duration=0.1)

	Trigger whatever action(s) have been bound to the button by calling
both the on_press and on_release callbacks.

This is similar to a quick button press without using any touch events,
but note that like most kivy code, this is not guaranteed to be safe to
call from external threads. If needed use
Clock to safely schedule this function and
the resulting callbacks to be called from the main thread.

Duration is the length of the press in seconds. Pass 0 if you want
the action to happen instantly.

New in version 1.8.0.

	
class kivy.uix.behaviors.CodeNavigationBehavior

	Bases: kivy.event.EventDispatcher

Code navigation behavior. Modifies the navigation behavior in TextInput
to work like an IDE instead of a word processor. Please see the
code navigation behaviors module
documentation for more information.

New in version 1.9.1.

	
class kivy.uix.behaviors.CompoundSelectionBehavior(**kwargs)

	Bases: builtins.object

The Selection behavior mixin [https://en.wikipedia.org/wiki/Mixin]
implements the logic behind keyboard and touch
selection of selectable widgets managed by the derived widget. Please see
the compound selection behaviors module documentation
for more information.

New in version 1.9.0.

	
clear_selection()

	Deselects all the currently selected nodes.

	
deselect_node(node)

	Deselects a possibly selected node.

It is called by the controller when it deselects a node and can also
be called from the outside to deselect a node directly. The derived
widget should overwrite this method and change the node to its
unselected state when this is called

	Parameters:

	
	node
	The node to be deselected.

Warning

This method must be called by the derived widget using super if it
is overwritten.

	
get_index_of_node(node, selectable_nodes)

	(internal) Returns the index of the node within the
selectable_nodes returned by get_selectable_nodes().

	
get_selectable_nodes()

	(internal) Returns a list of the nodes that can be selected. It can
be overwritten by the derived widget to return the correct list.

This list is used to determine which nodes to select with group
selection. E.g. the last element in the list will be selected when
home is pressed, pagedown will move (or add to, if shift is held) the
selection from the current position by negative page_count
nodes starting from the position of the currently selected node in
this list and so on. Still, nodes can be selected even if they are not
in this list.

Note

It is safe to dynamically change this list including removing,
adding, or re-arranging its elements. Nodes can be selected even
if they are not on this list. And selected nodes removed from the
list will remain selected until deselect_node() is called.

Warning

Layouts display their children in the reverse order. That is, the
contents of children is displayed
form right to left, bottom to top. Therefore, internally, the
indices of the elements returned by this function are reversed to
make it work by default for most layouts so that the final result
is consistent e.g. home, although it will select the last element
in this list visually, will select the first element when
counting from top to bottom and left to right. If this behavior is
not desired, a reversed list should be returned instead.

Defaults to returning children.

	
goto_node(key, last_node, last_node_idx)

	(internal) Used by the controller to get the node at the position
indicated by key. The key can be keyboard inputs, e.g. pageup,
or scroll inputs from the mouse scroll wheel, e.g. scrollup.
‘last_node’ is the last node selected and is used to find the resulting
node. For example, if the key is up, the returned node is one node
up from the last node.

It can be overwritten by the derived widget.

	Parameters:

	
	key
	str, the string used to find the desired node. It can be any
of the keyboard keys, as well as the mouse scrollup,
scrolldown, scrollright, and scrollleft strings. If letters
are typed in quick succession, the letters will be combined
before it’s passed in as key and can be used to find nodes that
have an associated string that starts with those letters.

	last_node
	The last node that was selected.

	last_node_idx
	The cached index of the last node selected in the
get_selectable_nodes() list. If the list hasn’t changed
it saves having to look up the index of last_node in that
list.

	Returns:

	tuple, the node targeted by key and its index in the
get_selectable_nodes() list. Returning
(last_node, last_node_idx) indicates a node wasn’t found.

	
keyboard_select

	Determines whether the keyboard can be used for selection. If False,
keyboard inputs will be ignored.

keyboard_select is a BooleanProperty
and defaults to True.

	
multiselect

	Determines whether multiple nodes can be selected. If enabled, keyboard
shift and ctrl selection, optionally combined with touch, for example, will
be able to select multiple widgets in the normally expected manner.
This dominates touch_multiselect when False.

multiselect is a BooleanProperty and
defaults to False.

	
nodes_order_reversed

	(Internal) Indicates whether the order of the nodes as displayed top-
down is reversed compared to their order in get_selectable_nodes()
(e.g. how the children property is reversed compared to how
it’s displayed).

	
page_count

	Determines by how much the selected node is moved up or down, relative
to the position of the last selected node, when pageup (or pagedown) is
pressed.

page_count is a NumericProperty and
defaults to 10.

	
right_count

	Determines by how much the selected node is moved up or down, relative
to the position of the last selected node, when the right (or left) arrow
on the keyboard is pressed.

right_count is a NumericProperty and
defaults to 1.

	
scroll_count

	Determines by how much the selected node is moved up or down, relative
to the position of the last selected node, when the mouse scroll wheel is
scrolled.

right_count is a NumericProperty and
defaults to 0.

	
select_node(node)

	Selects a node.

It is called by the controller when it selects a node and can be
called from the outside to select a node directly. The derived widget
should overwrite this method and change the node state to selected
when called.

	Parameters:

	
	node
	The node to be selected.

	Returns:

	bool, True if the node was selected, False otherwise.

Warning

This method must be called by the derived widget using super if it
is overwritten.

	
select_with_key_down(keyboard, scancode, codepoint, modifiers, **kwargs)

	Processes a key press. This is called when a key press is to be used
for selection. Depending on the keyboard keys pressed and the
configuration, it could select or deselect nodes or node ranges
from the selectable nodes list, get_selectable_nodes().

The parameters are such that it could be bound directly to the
on_key_down event of a keyboard. Therefore, it is safe to be called
repeatedly when the key is held down as is done by the keyboard.

	Returns:

	bool, True if the keypress was used, False otherwise.

	
select_with_key_up(keyboard, scancode, **kwargs)

	(internal) Processes a key release. This must be called by the
derived widget when a key that select_with_key_down() returned
True is released.

The parameters are such that it could be bound directly to the
on_key_up event of a keyboard.

	Returns:

	bool, True if the key release was used, False otherwise.

	
select_with_touch(node, touch=None)

	(internal) Processes a touch on the node. This should be called by
the derived widget when a node is touched and is to be used for
selection. Depending on the keyboard keys pressed and the
configuration, it could select or deslect this and other nodes in the
selectable nodes list, get_selectable_nodes().

	Parameters:

	
	node
	The node that received the touch. Can be None for a scroll
type touch.

	touch
	Optionally, the touch. Defaults to None.

	Returns:

	bool, True if the touch was used, False otherwise.

	
selected_nodes

	The list of selected nodes.

Note

Multiple nodes can be selected right after one another e.g. using the
keyboard. When listening to selected_nodes, one should be
aware of this.

selected_nodes is a ListProperty and
defaults to the empty list, []. It is read-only and should not be modified.

	
text_entry_timeout

	When typing characters in rapid succession (i.e. the time difference
since the last character is less than text_entry_timeout), the
keys get concatenated and the combined text is passed as the key argument
of goto_node().

New in version 1.10.0.

	
touch_deselect_last

	Determines whether the last selected node can be deselected when
multiselect or touch_multiselect is False.

New in version 1.10.0.

touch_deselect_last is a BooleanProperty
and defaults to True on mobile, False on desktop platforms.

	
touch_multiselect

	A special touch mode which determines whether touch events, as
processed by select_with_touch(), will add the currently touched
node to the selection, or if it will clear the selection before adding the
node. This allows the selection of multiple nodes by simply touching them.

This is different from multiselect because when it is True,
simply touching an unselected node will select it, even if ctrl is not
pressed. If it is False, however, ctrl must be pressed in order to
add to the selection when multiselect is True.

Note

multiselect, when False, will disable
touch_multiselect.

touch_multiselect is a BooleanProperty
and defaults to False.

	
up_count

	Determines by how much the selected node is moved up or down, relative
to the position of the last selected node, when the up (or down) arrow on
the keyboard is pressed.

up_count is a NumericProperty and
defaults to 1.

	
class kivy.uix.behaviors.CoverBehavior(**kwargs)

	Bases: builtins.object

The CoverBehavior mixin [https://en.wikipedia.org/wiki/Mixin]
provides rendering a texture covering full widget size keeping aspect ratio
of the original texture.

New in version 1.10.0.

	
cover_pos

	Position of the aspect ratio aware texture. Gets calculated in
CoverBehavior.calculate_cover.

cover_pos is a ListProperty and
defaults to [0, 0].

	
cover_size

	Size of the aspect ratio aware texture. Gets calculated in
CoverBehavior.calculate_cover.

cover_size is a ListProperty and
defaults to [0, 0].

	
reference_size

	Reference size used for aspect ratio approximation calculation.

reference_size is a ListProperty and
defaults to [].

	
class kivy.uix.behaviors.DragBehavior(**kwargs)

	Bases: builtins.object

The DragBehavior mixin [https://en.wikipedia.org/wiki/Mixin] provides
Drag behavior. When combined with a widget, dragging in the rectangle
defined by drag_rectangle will drag the widget. Please see
the drag behaviors module documentation
for more information.

New in version 1.8.0.

	
drag_distance

	Distance to move before dragging the DragBehavior, in pixels.
As soon as the distance has been traveled, the DragBehavior will
start to drag, and no touch event will be dispatched to the children.
It is advisable that you base this value on the dpi of your target device’s
screen.

drag_distance is a NumericProperty and
defaults to the scroll_distance as defined in the user
Config (20 pixels by default).

	
drag_rect_height

	Height of the axis aligned bounding rectangle where dragging is allowed.

drag_rect_height is a NumericProperty and
defaults to 100.

	
drag_rect_width

	Width of the axis aligned bounding rectangle where dragging is allowed.

drag_rect_width is a NumericProperty and
defaults to 100.

	
drag_rect_x

	X position of the axis aligned bounding rectangle where dragging
is allowed (in window coordinates).

drag_rect_x is a NumericProperty and
defaults to 0.

	
drag_rect_y

	Y position of the axis aligned bounding rectangle where dragging
is allowed (in window coordinates).

drag_rect_Y is a NumericProperty and
defaults to 0.

	
drag_rectangle

	Position and size of the axis aligned bounding rectangle where dragging
is allowed.

drag_rectangle is a ReferenceListProperty
of (drag_rect_x, drag_rect_y, drag_rect_width,
drag_rect_height) properties.

	
drag_timeout

	Timeout allowed to trigger the drag_distance, in milliseconds.
If the user has not moved drag_distance within the timeout,
dragging will be disabled, and the touch event will be dispatched to the
children.

drag_timeout is a NumericProperty and
defaults to the scroll_timeout as defined in the user
Config (55 milliseconds by default).

	
class kivy.uix.behaviors.EmacsBehavior(**kwargs)

	Bases: builtins.object

A mixin [https://en.wikipedia.org/wiki/Mixin] that enables Emacs-style
keyboard shortcuts for the TextInput widget.
Please see the Emacs behaviors module
documentation for more information.

New in version 1.9.1.

	
delete_word_left()

	Delete text left of the cursor to the beginning of word

	
delete_word_right()

	Delete text right of the cursor to the end of the word

	
key_bindings

	String name which determines the type of key bindings to use with the
TextInput. This allows Emacs key bindings to
be enabled/disabled programmatically for widgets that inherit from
EmacsBehavior. If the value is not 'emacs', Emacs bindings
will be disabled. Use 'default' for switching to the default key
bindings of TextInput.

key_bindings is a StringProperty
and defaults to 'emacs'.

New in version 1.10.0.

	
class kivy.uix.behaviors.FocusBehavior(**kwargs)

	Bases: builtins.object

Provides keyboard focus behavior. When combined with other
FocusBehavior widgets it allows one to cycle focus among them by pressing
tab. Please see the
focus behavior module documentation
for more information.

New in version 1.9.0.

	
focus

	Whether the instance currently has focus.

Setting it to True will bind to and/or request the keyboard, and input
will be forwarded to the instance. Setting it to False will unbind
and/or release the keyboard. For a given keyboard, only one widget can
have its focus, so focusing one will automatically unfocus the other
instance holding its focus.

When using a software keyboard, please refer to the
softinput_mode property to determine
how the keyboard display is handled.

focus is a BooleanProperty and defaults
to False.

	
focus_next

	The FocusBehavior instance to acquire focus when
tab is pressed and this instance has focus, if not None or
StopIteration.

When tab is pressed, focus cycles through all the FocusBehavior
widgets that are linked through focus_next and are focusable. If
focus_next is None, it instead walks the children lists to find
the next focusable widget. Finally, if focus_next is
the StopIteration class, focus won’t move forward, but end here.

focus_next is an ObjectProperty and
defaults to None.

	
focus_previous

	The FocusBehavior instance to acquire focus when
shift+tab is pressed on this instance, if not None or StopIteration.

When shift+tab is pressed, focus cycles through all the
FocusBehavior widgets that are linked through
focus_previous and are focusable. If focus_previous is
None, it instead walks the children tree to find the
previous focusable widget. Finally, if focus_previous is the
StopIteration class, focus won’t move backward, but end here.

focus_previous is an ObjectProperty and
defaults to None.

	
focused

	An alias of focus.

focused is a BooleanProperty and defaults
to False.

Warning

focused is an alias of focus and will be removed in
2.0.0.

	
get_focus_next()

	Returns the next focusable widget using either focus_next
or the children similar to the order when tabbing forwards
with the tab key.

	
get_focus_previous()

	Returns the previous focusable widget using either
focus_previous or the children similar to the
order when the tab + shift keys are triggered together.

	
hide_keyboard()

	Convenience function to hide the keyboard in managed mode.

	
ignored_touch = []

	A list of touches that should not be used to defocus. After on_touch_up,
every touch that is not in ignored_touch will defocus all the
focused widgets if the config keyboard mode is not multi. Touches on
focusable widgets that were used to focus are automatically added here.

Example usage:

class Unfocusable(Widget):

 def on_touch_down(self, touch):
 if self.collide_point(*touch.pos):
 FocusBehavior.ignored_touch.append(touch)

Notice that you need to access this as a class, not an instance variable.

	
input_type

	The kind of input keyboard to request.

New in version 1.8.0.

Changed in version 2.1.0: Changed default value from text to null. Added null to options.

Warning

As the default value has been changed, you may need to adjust
input_type in your code.

input_type is an OptionsProperty and
defaults to ‘null’. Can be one of ‘null’, ‘text’, ‘number’, ‘url’, ‘mail’,
‘datetime’, ‘tel’ or ‘address’.

	
is_focusable

	Whether the instance can become focused. If focused, it’ll lose focus
when set to False.

is_focusable is a BooleanProperty and
defaults to True on a desktop (i.e. desktop is True in
config), False otherwise.

	
keyboard

	The keyboard to bind to (or bound to the widget) when focused.

When None, a keyboard is requested and released whenever the widget comes
into and out of focus. If not None, it must be a keyboard, which gets
bound and unbound from the widget whenever it’s in or out of focus. It is
useful only when more than one keyboard is available, so it is recommended
to be set to None when only one keyboard is available.

If more than one keyboard is available, whenever an instance gets focused
a new keyboard will be requested if None. Unless the other instances lose
focus (e.g. if tab was used), a new keyboard will appear. When this is
undesired, the keyboard property can be used. For example, if there are
two users with two keyboards, then each keyboard can be assigned to
different groups of instances of FocusBehavior, ensuring that within
each group, only one FocusBehavior will have focus, and will receive input
from the correct keyboard. See keyboard_mode in config for
more information on the keyboard modes.

Keyboard and focus behavior

When using the keyboard, there are some important default behaviors you
should keep in mind.

	When Config’s keyboard_mode is multi, each new touch is considered
a touch by a different user and will set the focus (if clicked on a
focusable) with a new keyboard. Already focused elements will not lose
their focus (even if an unfocusable widget is touched).

	If the keyboard property is set, that keyboard will be used when the
instance gets focused. If widgets with different keyboards are linked
through focus_next and focus_previous, then as they are
tabbed through, different keyboards will become active. Therefore,
typically it’s undesirable to link instances which are assigned
different keyboards.

	When a widget has focus, setting its keyboard to None will remove its
keyboard, but the widget will then immediately try to get
another keyboard. In order to remove its keyboard, rather set its
focus to False.

	When using a software keyboard, typical on mobile and touch devices, the
keyboard display behavior is determined by the
softinput_mode property. You can use
this property to ensure the focused widget is not covered or obscured.

keyboard is an AliasProperty and defaults
to None.

	
keyboard_mode

	Determines how the keyboard visibility should be managed. ‘auto’ will
result in the standard behaviour of showing/hiding on focus. ‘managed’
requires setting the keyboard visibility manually, or calling the helper
functions show_keyboard() and hide_keyboard().

keyboard_mode is an OptionsProperty and
defaults to ‘auto’. Can be one of ‘auto’ or ‘managed’.

	
keyboard_on_key_down(window, keycode, text, modifiers)

	The method bound to the keyboard when the instance has focus.

When the instance becomes focused, this method is bound to the
keyboard and will be called for every input press. The parameters are
the same as kivy.core.window.WindowBase.on_key_down().

When overwriting the method in the derived widget, super should be
called to enable tab cycling. If the derived widget wishes to use tab
for its own purposes, it can call super after it has processed the
character (if it does not wish to consume the tab).

Similar to other keyboard functions, it should return True if the
key was consumed.

	
keyboard_on_key_up(window, keycode)

	The method bound to the keyboard when the instance has focus.

When the instance becomes focused, this method is bound to the
keyboard and will be called for every input release. The parameters are
the same as kivy.core.window.WindowBase.on_key_up().

When overwriting the method in the derived widget, super should be
called to enable de-focusing on escape. If the derived widget wishes
to use escape for its own purposes, it can call super after it has
processed the character (if it does not wish to consume the escape).

See keyboard_on_key_down()

	
keyboard_suggestions

	If True provides auto suggestions on top of keyboard.
This will only work if input_type is set to text, url, mail or
address.

Warning

On Android, keyboard_suggestions relies on
InputType.TYPE_TEXT_FLAG_NO_SUGGESTIONS to work, but some keyboards
just ignore this flag. If you want to disable suggestions at all on
Android, you can set input_type to null, which will request the
input method to run in a limited “generate key events” mode.

New in version 2.1.0.

keyboard_suggestions is a BooleanProperty
and defaults to True

	
show_keyboard()

	Convenience function to show the keyboard in managed mode.

	
unfocus_on_touch

	Whether a instance should lose focus when clicked outside the instance.

When a user clicks on a widget that is focus aware and shares the same
keyboard as this widget (which in the case with only one keyboard),
then as the other widgets gain focus, this widget loses focus. In addition
to that, if this property is True, clicking on any widget other than this
widget, will remove focus from this widget.

unfocus_on_touch is a BooleanProperty and
defaults to False if the keyboard_mode in Config
is ‘multi’ or ‘systemandmulti’, otherwise it defaults to True.

	
class kivy.uix.behaviors.ToggleButtonBehavior(**kwargs)

	Bases: kivy.uix.behaviors.button.ButtonBehavior

This mixin [https://en.wikipedia.org/wiki/Mixin] class provides
togglebutton behavior. Please see the
togglebutton behaviors module
documentation for more information.

New in version 1.8.0.

	
allow_no_selection

	This specifies whether the widgets in a group allow no selection i.e.
everything to be deselected.

New in version 1.9.0.

allow_no_selection is a BooleanProperty and defaults to
True

	
static get_widgets(groupname)

	Return a list of the widgets contained in a specific group. If the
group doesn’t exist, an empty list will be returned.

Note

Always release the result of this method! Holding a reference to
any of these widgets can prevent them from being garbage collected.
If in doubt, do:

l = ToggleButtonBehavior.get_widgets('mygroup')
do your job
del l

Warning

It’s possible that some widgets that you have previously
deleted are still in the list. The garbage collector might need
to release other objects before flushing them.

	
group

	Group of the button. If None, no group will be used (the button will be
independent). If specified, group must be a hashable object, like
a string. Only one button in a group can be in a ‘down’ state.

group is a ObjectProperty and defaults to
None.

	
class kivy.uix.behaviors.TouchRippleBehavior(**kwargs)

	Bases: builtins.object

Touch ripple behavior.

Supposed to be used as mixin on widget classes.

Ripple behavior does not trigger automatically, concrete implementation
needs to call ripple_show() respective ripple_fade() manually.

Example

Here we create a Label which renders the touch ripple animation on
interaction:

class RippleLabel(TouchRippleBehavior, Label):

 def __init__(self, **kwargs):
 super(RippleLabel, self).__init__(**kwargs)

 def on_touch_down(self, touch):
 collide_point = self.collide_point(touch.x, touch.y)
 if collide_point:
 touch.grab(self)
 self.ripple_show(touch)
 return True
 return False

 def on_touch_up(self, touch):
 if touch.grab_current is self:
 touch.ungrab(self)
 self.ripple_fade()
 return True
 return False

	
ripple_duration_in

	Animation duration taken to show the overlay.

ripple_duration_in is a NumericProperty
and defaults to 0.5.

	
ripple_duration_out

	Animation duration taken to fade the overlay.

ripple_duration_out is a NumericProperty
and defaults to 0.2.

	
ripple_fade()

	Finish ripple animation on current widget.

	
ripple_fade_from_alpha

	Alpha channel for ripple color the animation starts with.

ripple_fade_from_alpha is a
NumericProperty and defaults to 0.5.

	
ripple_fade_to_alpha

	Alpha channel for ripple color the animation targets to.

ripple_fade_to_alpha is a NumericProperty
and defaults to 0.8.

	
ripple_func_in

	Animation callback for showing the overlay.

ripple_func_in is a StringProperty
and defaults to in_cubic.

	
ripple_func_out

	Animation callback for hiding the overlay.

ripple_func_out is a StringProperty
and defaults to out_quad.

	
ripple_rad_default

	Default radius the animation starts from.

ripple_rad_default is a NumericProperty
and defaults to 10.

	
ripple_scale

	Max scale of the animation overlay calculated from max(width/height) of
the decorated widget.

ripple_scale is a NumericProperty
and defaults to 2.0.

	
ripple_show(touch)

	Begin ripple animation on current widget.

Expects touch event as argument.

	
class kivy.uix.behaviors.TouchRippleButtonBehavior(**kwargs)

	Bases: kivy.uix.behaviors.touchripple.TouchRippleBehavior

This mixin [https://en.wikipedia.org/wiki/Mixin] class provides
a similar behavior to ButtonBehavior
but provides touch ripple animation instead of button pressed/released as
visual effect.

	Events:

	
	on_press
	Fired when the button is pressed.

	on_release
	Fired when the button is released (i.e. the touch/click that
pressed the button goes away).

	
always_release

	This determines whether or not the widget fires an on_release event if
the touch_up is outside the widget.

always_release is a BooleanProperty and
defaults to False.

	
last_touch

	Contains the last relevant touch received by the Button. This can
be used in on_press or on_release in order to know which touch
dispatched the event.

last_touch is a ObjectProperty and
defaults to None.

	Button Behavior
	Example

	ButtonBehavior
	ButtonBehavior.always_release

	ButtonBehavior.last_touch

	ButtonBehavior.min_state_time

	ButtonBehavior.state

	ButtonBehavior.trigger_action()

	Code Navigation Behavior
	CodeNavigationBehavior

	Compound Selection Behavior
	Compound selection concepts

	Selection mechanics

	Example

	CompoundSelectionBehavior
	CompoundSelectionBehavior.clear_selection()

	CompoundSelectionBehavior.deselect_node()

	CompoundSelectionBehavior.get_index_of_node()

	CompoundSelectionBehavior.get_selectable_nodes()

	CompoundSelectionBehavior.goto_node()

	CompoundSelectionBehavior.keyboard_select

	CompoundSelectionBehavior.multiselect

	CompoundSelectionBehavior.nodes_order_reversed

	CompoundSelectionBehavior.page_count

	CompoundSelectionBehavior.right_count

	CompoundSelectionBehavior.scroll_count

	CompoundSelectionBehavior.select_node()

	CompoundSelectionBehavior.select_with_key_down()

	CompoundSelectionBehavior.select_with_key_up()

	CompoundSelectionBehavior.select_with_touch()

	CompoundSelectionBehavior.selected_nodes

	CompoundSelectionBehavior.text_entry_timeout

	CompoundSelectionBehavior.touch_deselect_last

	CompoundSelectionBehavior.touch_multiselect

	CompoundSelectionBehavior.up_count

	Cover Behavior
	Example

	CoverBehavior
	CoverBehavior.cover_pos

	CoverBehavior.cover_size

	CoverBehavior.reference_size

	Drag Behavior
	Example

	DragBehavior
	DragBehavior.drag_distance

	DragBehavior.drag_rect_height

	DragBehavior.drag_rect_width

	DragBehavior.drag_rect_x

	DragBehavior.drag_rect_y

	DragBehavior.drag_rectangle

	DragBehavior.drag_timeout

	Emacs Behavior
	Emacs shortcuts

	EmacsBehavior
	EmacsBehavior.delete_word_left()

	EmacsBehavior.delete_word_right()

	EmacsBehavior.key_bindings

	Focus Behavior
	Managing focus

	Initializing focus

	FocusBehavior
	FocusBehavior.focus

	FocusBehavior.focus_next

	FocusBehavior.focus_previous

	FocusBehavior.focused

	FocusBehavior.get_focus_next()

	FocusBehavior.get_focus_previous()

	FocusBehavior.hide_keyboard()

	FocusBehavior.ignored_touch

	FocusBehavior.input_type

	FocusBehavior.is_focusable

	FocusBehavior.keyboard

	FocusBehavior.keyboard_mode

	FocusBehavior.keyboard_on_key_down()

	FocusBehavior.keyboard_on_key_up()

	FocusBehavior.keyboard_suggestions

	FocusBehavior.show_keyboard()

	FocusBehavior.unfocus_on_touch

	Kivy Namespaces
	Basic examples

	Setting the namespace

	Inheriting the namespace

	Accessing the namespace

	Forking a namespace

	KNSpace
	KNSpace.fork()

	KNSpace.keep_ref

	KNSpace.parent

	KNSpace.property()

	KNSpaceBehavior
	KNSpaceBehavior.knsname

	KNSpaceBehavior.knspace

	KNSpaceBehavior.knspace_key

	knspace

	ToggleButton Behavior
	Example

	ToggleButtonBehavior
	ToggleButtonBehavior.allow_no_selection

	ToggleButtonBehavior.get_widgets()

	ToggleButtonBehavior.group

	Touch Ripple
	TouchRippleBehavior
	TouchRippleBehavior.ripple_duration_in

	TouchRippleBehavior.ripple_duration_out

	TouchRippleBehavior.ripple_fade()

	TouchRippleBehavior.ripple_fade_from_alpha

	TouchRippleBehavior.ripple_fade_to_alpha

	TouchRippleBehavior.ripple_func_in

	TouchRippleBehavior.ripple_func_out

	TouchRippleBehavior.ripple_rad_default

	TouchRippleBehavior.ripple_scale

	TouchRippleBehavior.ripple_show()

	TouchRippleButtonBehavior
	TouchRippleButtonBehavior.always_release

	TouchRippleButtonBehavior.last_touch

Button Behavior

The ButtonBehavior
mixin [https://en.wikipedia.org/wiki/Mixin] class provides
Button behavior. You can combine this class with
other widgets, such as an Image, to provide
alternative buttons that preserve Kivy button behavior.

For an overview of behaviors, please refer to the behaviors
documentation.

Example

The following example adds button behavior to an image to make a checkbox that
behaves like a button:

from kivy.app import App
from kivy.uix.image import Image
from kivy.uix.behaviors import ButtonBehavior

class MyButton(ButtonBehavior, Image):
 def __init__(self, **kwargs):
 super(MyButton, self).__init__(**kwargs)
 self.source = 'atlas://data/images/defaulttheme/checkbox_off'

 def on_press(self):
 self.source = 'atlas://data/images/defaulttheme/checkbox_on'

 def on_release(self):
 self.source = 'atlas://data/images/defaulttheme/checkbox_off'

class SampleApp(App):
 def build(self):
 return MyButton()

SampleApp().run()

See ButtonBehavior for details.

	
class kivy.uix.behaviors.button.ButtonBehavior(**kwargs)

	Bases: builtins.object

This mixin [https://en.wikipedia.org/wiki/Mixin] class provides
Button behavior. Please see the
button behaviors module documentation
for more information.

	Events:

	
	on_press
	Fired when the button is pressed.

	on_release
	Fired when the button is released (i.e. the touch/click that
pressed the button goes away).

	
always_release

	This determines whether or not the widget fires an on_release event if
the touch_up is outside the widget.

New in version 1.9.0.

Changed in version 1.10.0: The default value is now False.

always_release is a BooleanProperty and
defaults to False.

	
last_touch

	Contains the last relevant touch received by the Button. This can
be used in on_press or on_release in order to know which touch
dispatched the event.

New in version 1.8.0.

last_touch is a ObjectProperty and
defaults to None.

	
min_state_time

	The minimum period of time which the widget must remain in the
‘down’ state.

New in version 1.9.1.

min_state_time is a float and defaults to 0.035. This value is
taken from Config.

	
state

	The state of the button, must be one of ‘normal’ or ‘down’.
The state is ‘down’ only when the button is currently touched/clicked,
otherwise its ‘normal’.

state is an OptionProperty and defaults
to ‘normal’.

	
trigger_action(duration=0.1)

	Trigger whatever action(s) have been bound to the button by calling
both the on_press and on_release callbacks.

This is similar to a quick button press without using any touch events,
but note that like most kivy code, this is not guaranteed to be safe to
call from external threads. If needed use
Clock to safely schedule this function and
the resulting callbacks to be called from the main thread.

Duration is the length of the press in seconds. Pass 0 if you want
the action to happen instantly.

New in version 1.8.0.

Code Navigation Behavior

The CodeNavigationBehavior modifies navigation
behavior in the TextInput, making it work like an
IDE instead of a word processor.

Using this mixin gives the TextInput the ability to recognize whitespace,
punctuation and case variations (e.g. CamelCase) when moving over text. It
is currently used by the CodeInput widget.

	
class kivy.uix.behaviors.codenavigation.CodeNavigationBehavior

	Bases: kivy.event.EventDispatcher

Code navigation behavior. Modifies the navigation behavior in TextInput
to work like an IDE instead of a word processor. Please see the
code navigation behaviors module
documentation for more information.

New in version 1.9.1.

Compound Selection Behavior

The CompoundSelectionBehavior
mixin [https://en.wikipedia.org/wiki/Mixin] class implements the logic
behind keyboard and touch selection of selectable widgets managed by the
derived widget. For example, it can be combined with a
GridLayout to add selection to the layout.

Compound selection concepts

At its core, it keeps a dynamic list of widgets that can be selected.
Then, as the touches and keyboard input are passed in, it selects one or
more of the widgets based on these inputs. For example, it uses the mouse
scroll and keyboard up/down buttons to scroll through the list of widgets.
Multiselection can also be achieved using the keyboard shift and ctrl keys.

Finally, in addition to the up/down type keyboard inputs, compound selection
can also accept letters from the keyboard to be used to select nodes with
associated strings that start with those letters, similar to how files
are selected by a file browser.

Selection mechanics

When the controller needs to select a node, it calls select_node() and
deselect_node(). Therefore, they must be overwritten in order alter
node selection. By default, the class doesn’t listen for keyboard or
touch events, so the derived widget must call
select_with_touch(), select_with_key_down(), and
select_with_key_up() on events that it wants to pass on for selection
purposes.

Example

To add selection to a grid layout which will contain
Button widgets. For each button added to the layout, you
need to bind the on_touch_down of the button
to select_with_touch() to pass on the touch events:

from kivy.uix.behaviors.compoundselection import CompoundSelectionBehavior
from kivy.uix.button import Button
from kivy.uix.gridlayout import GridLayout
from kivy.uix.behaviors import FocusBehavior
from kivy.core.window import Window
from kivy.app import App

class SelectableGrid(FocusBehavior, CompoundSelectionBehavior, GridLayout):

 def keyboard_on_key_down(self, window, keycode, text, modifiers):
 """Based on FocusBehavior that provides automatic keyboard
 access, key presses will be used to select children.
 """
 if super(SelectableGrid, self).keyboard_on_key_down(
 window, keycode, text, modifiers):
 return True
 if self.select_with_key_down(window, keycode, text, modifiers):
 return True
 return False

 def keyboard_on_key_up(self, window, keycode):
 """Based on FocusBehavior that provides automatic keyboard
 access, key release will be used to select children.
 """
 if super(SelectableGrid, self).keyboard_on_key_up(window, keycode):
 return True
 if self.select_with_key_up(window, keycode):
 return True
 return False

 def add_widget(self, widget, *args, **kwargs):
 """ Override the adding of widgets so we can bind and catch their
 on_touch_down events. """
 widget.bind(on_touch_down=self.button_touch_down,
 on_touch_up=self.button_touch_up)
 return super(SelectableGrid, self) .add_widget(widget, *args, **kwargs)

 def button_touch_down(self, button, touch):
 """ Use collision detection to select buttons when the touch occurs
 within their area. """
 if button.collide_point(*touch.pos):
 self.select_with_touch(button, touch)

 def button_touch_up(self, button, touch):
 """ Use collision detection to de-select buttons when the touch
 occurs outside their area and *touch_multiselect* is not True. """
 if not (button.collide_point(*touch.pos) or
 self.touch_multiselect):
 self.deselect_node(button)

 def select_node(self, node):
 node.background_color = (1, 0, 0, 1)
 return super(SelectableGrid, self).select_node(node)

 def deselect_node(self, node):
 node.background_color = (1, 1, 1, 1)
 super(SelectableGrid, self).deselect_node(node)

 def on_selected_nodes(self, grid, nodes):
 print("Selected nodes = {0}".format(nodes))

class TestApp(App):
 def build(self):
 grid = SelectableGrid(cols=3, rows=2, touch_multiselect=True,
 multiselect=True)
 for i in range(0, 6):
 grid.add_widget(Button(text="Button {0}".format(i)))
 return grid

TestApp().run()

Warning

This code is still experimental, and its API is subject to change in a
future version.

	
class kivy.uix.behaviors.compoundselection.CompoundSelectionBehavior(**kwargs)

	Bases: builtins.object

The Selection behavior mixin [https://en.wikipedia.org/wiki/Mixin]
implements the logic behind keyboard and touch
selection of selectable widgets managed by the derived widget. Please see
the compound selection behaviors module documentation
for more information.

New in version 1.9.0.

	
clear_selection()

	Deselects all the currently selected nodes.

	
deselect_node(node)

	Deselects a possibly selected node.

It is called by the controller when it deselects a node and can also
be called from the outside to deselect a node directly. The derived
widget should overwrite this method and change the node to its
unselected state when this is called

	Parameters:

	
	node
	The node to be deselected.

Warning

This method must be called by the derived widget using super if it
is overwritten.

	
get_index_of_node(node, selectable_nodes)

	(internal) Returns the index of the node within the
selectable_nodes returned by get_selectable_nodes().

	
get_selectable_nodes()

	(internal) Returns a list of the nodes that can be selected. It can
be overwritten by the derived widget to return the correct list.

This list is used to determine which nodes to select with group
selection. E.g. the last element in the list will be selected when
home is pressed, pagedown will move (or add to, if shift is held) the
selection from the current position by negative page_count
nodes starting from the position of the currently selected node in
this list and so on. Still, nodes can be selected even if they are not
in this list.

Note

It is safe to dynamically change this list including removing,
adding, or re-arranging its elements. Nodes can be selected even
if they are not on this list. And selected nodes removed from the
list will remain selected until deselect_node() is called.

Warning

Layouts display their children in the reverse order. That is, the
contents of children is displayed
form right to left, bottom to top. Therefore, internally, the
indices of the elements returned by this function are reversed to
make it work by default for most layouts so that the final result
is consistent e.g. home, although it will select the last element
in this list visually, will select the first element when
counting from top to bottom and left to right. If this behavior is
not desired, a reversed list should be returned instead.

Defaults to returning children.

	
goto_node(key, last_node, last_node_idx)

	(internal) Used by the controller to get the node at the position
indicated by key. The key can be keyboard inputs, e.g. pageup,
or scroll inputs from the mouse scroll wheel, e.g. scrollup.
‘last_node’ is the last node selected and is used to find the resulting
node. For example, if the key is up, the returned node is one node
up from the last node.

It can be overwritten by the derived widget.

	Parameters:

	
	key
	str, the string used to find the desired node. It can be any
of the keyboard keys, as well as the mouse scrollup,
scrolldown, scrollright, and scrollleft strings. If letters
are typed in quick succession, the letters will be combined
before it’s passed in as key and can be used to find nodes that
have an associated string that starts with those letters.

	last_node
	The last node that was selected.

	last_node_idx
	The cached index of the last node selected in the
get_selectable_nodes() list. If the list hasn’t changed
it saves having to look up the index of last_node in that
list.

	Returns:

	tuple, the node targeted by key and its index in the
get_selectable_nodes() list. Returning
(last_node, last_node_idx) indicates a node wasn’t found.

	
keyboard_select

	Determines whether the keyboard can be used for selection. If False,
keyboard inputs will be ignored.

keyboard_select is a BooleanProperty
and defaults to True.

	
multiselect

	Determines whether multiple nodes can be selected. If enabled, keyboard
shift and ctrl selection, optionally combined with touch, for example, will
be able to select multiple widgets in the normally expected manner.
This dominates touch_multiselect when False.

multiselect is a BooleanProperty and
defaults to False.

	
nodes_order_reversed

	(Internal) Indicates whether the order of the nodes as displayed top-
down is reversed compared to their order in get_selectable_nodes()
(e.g. how the children property is reversed compared to how
it’s displayed).

	
page_count

	Determines by how much the selected node is moved up or down, relative
to the position of the last selected node, when pageup (or pagedown) is
pressed.

page_count is a NumericProperty and
defaults to 10.

	
right_count

	Determines by how much the selected node is moved up or down, relative
to the position of the last selected node, when the right (or left) arrow
on the keyboard is pressed.

right_count is a NumericProperty and
defaults to 1.

	
scroll_count

	Determines by how much the selected node is moved up or down, relative
to the position of the last selected node, when the mouse scroll wheel is
scrolled.

right_count is a NumericProperty and
defaults to 0.

	
select_node(node)

	Selects a node.

It is called by the controller when it selects a node and can be
called from the outside to select a node directly. The derived widget
should overwrite this method and change the node state to selected
when called.

	Parameters:

	
	node
	The node to be selected.

	Returns:

	bool, True if the node was selected, False otherwise.

Warning

This method must be called by the derived widget using super if it
is overwritten.

	
select_with_key_down(keyboard, scancode, codepoint, modifiers, **kwargs)

	Processes a key press. This is called when a key press is to be used
for selection. Depending on the keyboard keys pressed and the
configuration, it could select or deselect nodes or node ranges
from the selectable nodes list, get_selectable_nodes().

The parameters are such that it could be bound directly to the
on_key_down event of a keyboard. Therefore, it is safe to be called
repeatedly when the key is held down as is done by the keyboard.

	Returns:

	bool, True if the keypress was used, False otherwise.

	
select_with_key_up(keyboard, scancode, **kwargs)

	(internal) Processes a key release. This must be called by the
derived widget when a key that select_with_key_down() returned
True is released.

The parameters are such that it could be bound directly to the
on_key_up event of a keyboard.

	Returns:

	bool, True if the key release was used, False otherwise.

	
select_with_touch(node, touch=None)

	(internal) Processes a touch on the node. This should be called by
the derived widget when a node is touched and is to be used for
selection. Depending on the keyboard keys pressed and the
configuration, it could select or deslect this and other nodes in the
selectable nodes list, get_selectable_nodes().

	Parameters:

	
	node
	The node that received the touch. Can be None for a scroll
type touch.

	touch
	Optionally, the touch. Defaults to None.

	Returns:

	bool, True if the touch was used, False otherwise.

	
selected_nodes

	The list of selected nodes.

Note

Multiple nodes can be selected right after one another e.g. using the
keyboard. When listening to selected_nodes, one should be
aware of this.

selected_nodes is a ListProperty and
defaults to the empty list, []. It is read-only and should not be modified.

	
text_entry_timeout

	When typing characters in rapid succession (i.e. the time difference
since the last character is less than text_entry_timeout), the
keys get concatenated and the combined text is passed as the key argument
of goto_node().

New in version 1.10.0.

	
touch_deselect_last

	Determines whether the last selected node can be deselected when
multiselect or touch_multiselect is False.

New in version 1.10.0.

touch_deselect_last is a BooleanProperty
and defaults to True on mobile, False on desktop platforms.

	
touch_multiselect

	A special touch mode which determines whether touch events, as
processed by select_with_touch(), will add the currently touched
node to the selection, or if it will clear the selection before adding the
node. This allows the selection of multiple nodes by simply touching them.

This is different from multiselect because when it is True,
simply touching an unselected node will select it, even if ctrl is not
pressed. If it is False, however, ctrl must be pressed in order to
add to the selection when multiselect is True.

Note

multiselect, when False, will disable
touch_multiselect.

touch_multiselect is a BooleanProperty
and defaults to False.

	
up_count

	Determines by how much the selected node is moved up or down, relative
to the position of the last selected node, when the up (or down) arrow on
the keyboard is pressed.

up_count is a NumericProperty and
defaults to 1.

Cover Behavior

The CoverBehavior
mixin [https://en.wikipedia.org/wiki/Mixin] is intended for rendering
textures to full widget size keeping the aspect ratio of the original texture.

Use cases are i.e. rendering full size background images or video content in
a dynamic layout.

For an overview of behaviors, please refer to the behaviors
documentation.

Example

The following examples add cover behavior to an image:

In python:

from kivy.app import App
from kivy.uix.behaviors import CoverBehavior
from kivy.uix.image import Image

class CoverImage(CoverBehavior, Image):

 def __init__(self, **kwargs):
 super(CoverImage, self).__init__(**kwargs)
 texture = self._coreimage.texture
 self.reference_size = texture.size
 self.texture = texture

class MainApp(App):

 def build(self):
 return CoverImage(source='image.jpg')

MainApp().run()

In Kivy Language:

CoverImage:
 source: 'image.png'

<CoverImage@CoverBehavior+Image>:
 reference_size: self.texture_size

See CoverBehavior for details.

	
class kivy.uix.behaviors.cover.CoverBehavior(**kwargs)

	Bases: builtins.object

The CoverBehavior mixin [https://en.wikipedia.org/wiki/Mixin]
provides rendering a texture covering full widget size keeping aspect ratio
of the original texture.

New in version 1.10.0.

	
cover_pos

	Position of the aspect ratio aware texture. Gets calculated in
CoverBehavior.calculate_cover.

cover_pos is a ListProperty and
defaults to [0, 0].

	
cover_size

	Size of the aspect ratio aware texture. Gets calculated in
CoverBehavior.calculate_cover.

cover_size is a ListProperty and
defaults to [0, 0].

	
reference_size

	Reference size used for aspect ratio approximation calculation.

reference_size is a ListProperty and
defaults to [].

Drag Behavior

The DragBehavior
mixin [https://en.wikipedia.org/wiki/Mixin] class provides Drag behavior.
When combined with a widget, dragging in the rectangle defined by the
drag_rectangle will drag the
widget.

Example

The following example creates a draggable label:

from kivy.uix.label import Label
from kivy.app import App
from kivy.uix.behaviors import DragBehavior
from kivy.lang import Builder

You could also put the following in your kv file...
kv = '''
<DragLabel>:
 # Define the properties for the DragLabel
 drag_rectangle: self.x, self.y, self.width, self.height
 drag_timeout: 10000000
 drag_distance: 0

FloatLayout:
 # Define the root widget
 DragLabel:
 size_hint: 0.25, 0.2
 text: 'Drag me'
'''

class DragLabel(DragBehavior, Label):
 pass

class TestApp(App):
 def build(self):
 return Builder.load_string(kv)

TestApp().run()

	
class kivy.uix.behaviors.drag.DragBehavior(**kwargs)

	Bases: builtins.object

The DragBehavior mixin [https://en.wikipedia.org/wiki/Mixin] provides
Drag behavior. When combined with a widget, dragging in the rectangle
defined by drag_rectangle will drag the widget. Please see
the drag behaviors module documentation
for more information.

New in version 1.8.0.

	
drag_distance

	Distance to move before dragging the DragBehavior, in pixels.
As soon as the distance has been traveled, the DragBehavior will
start to drag, and no touch event will be dispatched to the children.
It is advisable that you base this value on the dpi of your target device’s
screen.

drag_distance is a NumericProperty and
defaults to the scroll_distance as defined in the user
Config (20 pixels by default).

	
drag_rect_height

	Height of the axis aligned bounding rectangle where dragging is allowed.

drag_rect_height is a NumericProperty and
defaults to 100.

	
drag_rect_width

	Width of the axis aligned bounding rectangle where dragging is allowed.

drag_rect_width is a NumericProperty and
defaults to 100.

	
drag_rect_x

	X position of the axis aligned bounding rectangle where dragging
is allowed (in window coordinates).

drag_rect_x is a NumericProperty and
defaults to 0.

	
drag_rect_y

	Y position of the axis aligned bounding rectangle where dragging
is allowed (in window coordinates).

drag_rect_Y is a NumericProperty and
defaults to 0.

	
drag_rectangle

	Position and size of the axis aligned bounding rectangle where dragging
is allowed.

drag_rectangle is a ReferenceListProperty
of (drag_rect_x, drag_rect_y, drag_rect_width,
drag_rect_height) properties.

	
drag_timeout

	Timeout allowed to trigger the drag_distance, in milliseconds.
If the user has not moved drag_distance within the timeout,
dragging will be disabled, and the touch event will be dispatched to the
children.

drag_timeout is a NumericProperty and
defaults to the scroll_timeout as defined in the user
Config (55 milliseconds by default).

Emacs Behavior

The EmacsBehavior
mixin [https://en.wikipedia.org/wiki/Mixin] allows you to add
Emacs [https://www.gnu.org/software/emacs/] keyboard shortcuts for basic
movement and editing to the TextInput widget.
The shortcuts currently available are listed below:

Emacs shortcuts

	Shortcut

	Description

	Control + a

	Move cursor to the beginning of the line

	Control + e

	Move cursor to the end of the line

	Control + f

	Move cursor one character to the right

	Control + b

	Move cursor one character to the left

	Alt + f

	Move cursor to the end of the word to the right

	Alt + b

	Move cursor to the start of the word to the left

	Alt + Backspace

	Delete text left of the cursor to the beginning of word

	Alt + d

	Delete text right of the cursor to the end of the word

	Alt + w

	Copy selection

	Control + w

	Cut selection

	Control + y

	Paste selection

Warning

If you have the inspector module enabled, the
shortcut for opening the inspector (Control + e) conflicts with the
Emacs shortcut to move to the end of the line (it will still move the
cursor to the end of the line, but the inspector will open as well).

	
class kivy.uix.behaviors.emacs.EmacsBehavior(**kwargs)

	Bases: builtins.object

A mixin [https://en.wikipedia.org/wiki/Mixin] that enables Emacs-style
keyboard shortcuts for the TextInput widget.
Please see the Emacs behaviors module
documentation for more information.

New in version 1.9.1.

	
delete_word_left()

	Delete text left of the cursor to the beginning of word

	
delete_word_right()

	Delete text right of the cursor to the end of the word

	
key_bindings

	String name which determines the type of key bindings to use with the
TextInput. This allows Emacs key bindings to
be enabled/disabled programmatically for widgets that inherit from
EmacsBehavior. If the value is not 'emacs', Emacs bindings
will be disabled. Use 'default' for switching to the default key
bindings of TextInput.

key_bindings is a StringProperty
and defaults to 'emacs'.

New in version 1.10.0.

Focus Behavior

The FocusBehavior
mixin [https://en.wikipedia.org/wiki/Mixin] class provides
keyboard focus behavior. When combined with other
FocusBehavior widgets it allows one to cycle focus among them by pressing
tab. In addition, upon gaining focus, the instance will automatically
receive keyboard input.

Focus, very different from selection, is intimately tied with the keyboard;
each keyboard can focus on zero or one widgets, and each widget can only
have the focus of one keyboard. However, multiple keyboards can focus
simultaneously on different widgets. When escape is hit, the widget having
the focus of that keyboard will de-focus.

Managing focus

In essence, focus is implemented as a doubly linked list, where each
node holds a (weak) reference to the instance before it and after it,
as visualized when cycling through the nodes using tab (forward) or
shift+tab (backward). If a previous or next widget is not specified,
focus_next and focus_previous defaults to None. This
means that the children list and
parents are
walked to find the next focusable widget, unless focus_next or
focus_previous is set to the StopIteration class, in which case
focus stops there.

For example, to cycle focus between Button
elements of a GridLayout:

class FocusButton(FocusBehavior, Button):
 pass

grid = GridLayout(cols=4)
for i in range(40):
 grid.add_widget(FocusButton(text=str(i)))
clicking on a widget will activate focus, and tab can now be used
to cycle through

When using a software keyboard, typical on mobile and touch devices, the
keyboard display behavior is determined by the
softinput_mode property. You can use
this property to ensure the focused widget is not covered or obscured by the
keyboard.

Initializing focus

Widgets needs to be visible before they can receive the focus. This means that
setting their focus property to True before they are visible will have no
effect. To initialize focus, you can use the ‘on_parent’ event:

from kivy.app import App
from kivy.uix.textinput import TextInput

class MyTextInput(TextInput):
 def on_parent(self, widget, parent):
 self.focus = True

class SampleApp(App):
 def build(self):
 return MyTextInput()

SampleApp().run()

If you are using a popup, you can use the ‘on_open’ event.

For an overview of behaviors, please refer to the behaviors
documentation.

Warning

This code is still experimental, and its API is subject to change in a
future version.

	
class kivy.uix.behaviors.focus.FocusBehavior(**kwargs)

	Bases: builtins.object

Provides keyboard focus behavior. When combined with other
FocusBehavior widgets it allows one to cycle focus among them by pressing
tab. Please see the
focus behavior module documentation
for more information.

New in version 1.9.0.

	
focus

	Whether the instance currently has focus.

Setting it to True will bind to and/or request the keyboard, and input
will be forwarded to the instance. Setting it to False will unbind
and/or release the keyboard. For a given keyboard, only one widget can
have its focus, so focusing one will automatically unfocus the other
instance holding its focus.

When using a software keyboard, please refer to the
softinput_mode property to determine
how the keyboard display is handled.

focus is a BooleanProperty and defaults
to False.

	
focus_next

	The FocusBehavior instance to acquire focus when
tab is pressed and this instance has focus, if not None or
StopIteration.

When tab is pressed, focus cycles through all the FocusBehavior
widgets that are linked through focus_next and are focusable. If
focus_next is None, it instead walks the children lists to find
the next focusable widget. Finally, if focus_next is
the StopIteration class, focus won’t move forward, but end here.

focus_next is an ObjectProperty and
defaults to None.

	
focus_previous

	The FocusBehavior instance to acquire focus when
shift+tab is pressed on this instance, if not None or StopIteration.

When shift+tab is pressed, focus cycles through all the
FocusBehavior widgets that are linked through
focus_previous and are focusable. If focus_previous is
None, it instead walks the children tree to find the
previous focusable widget. Finally, if focus_previous is the
StopIteration class, focus won’t move backward, but end here.

focus_previous is an ObjectProperty and
defaults to None.

	
focused

	An alias of focus.

focused is a BooleanProperty and defaults
to False.

Warning

focused is an alias of focus and will be removed in
2.0.0.

	
get_focus_next()

	Returns the next focusable widget using either focus_next
or the children similar to the order when tabbing forwards
with the tab key.

	
get_focus_previous()

	Returns the previous focusable widget using either
focus_previous or the children similar to the
order when the tab + shift keys are triggered together.

	
hide_keyboard()

	Convenience function to hide the keyboard in managed mode.

	
ignored_touch = []

	A list of touches that should not be used to defocus. After on_touch_up,
every touch that is not in ignored_touch will defocus all the
focused widgets if the config keyboard mode is not multi. Touches on
focusable widgets that were used to focus are automatically added here.

Example usage:

class Unfocusable(Widget):

 def on_touch_down(self, touch):
 if self.collide_point(*touch.pos):
 FocusBehavior.ignored_touch.append(touch)

Notice that you need to access this as a class, not an instance variable.

	
input_type

	The kind of input keyboard to request.

New in version 1.8.0.

Changed in version 2.1.0: Changed default value from text to null. Added null to options.

Warning

As the default value has been changed, you may need to adjust
input_type in your code.

input_type is an OptionsProperty and
defaults to ‘null’. Can be one of ‘null’, ‘text’, ‘number’, ‘url’, ‘mail’,
‘datetime’, ‘tel’ or ‘address’.

	
is_focusable

	Whether the instance can become focused. If focused, it’ll lose focus
when set to False.

is_focusable is a BooleanProperty and
defaults to True on a desktop (i.e. desktop is True in
config), False otherwise.

	
keyboard

	The keyboard to bind to (or bound to the widget) when focused.

When None, a keyboard is requested and released whenever the widget comes
into and out of focus. If not None, it must be a keyboard, which gets
bound and unbound from the widget whenever it’s in or out of focus. It is
useful only when more than one keyboard is available, so it is recommended
to be set to None when only one keyboard is available.

If more than one keyboard is available, whenever an instance gets focused
a new keyboard will be requested if None. Unless the other instances lose
focus (e.g. if tab was used), a new keyboard will appear. When this is
undesired, the keyboard property can be used. For example, if there are
two users with two keyboards, then each keyboard can be assigned to
different groups of instances of FocusBehavior, ensuring that within
each group, only one FocusBehavior will have focus, and will receive input
from the correct keyboard. See keyboard_mode in config for
more information on the keyboard modes.

Keyboard and focus behavior

When using the keyboard, there are some important default behaviors you
should keep in mind.

	When Config’s keyboard_mode is multi, each new touch is considered
a touch by a different user and will set the focus (if clicked on a
focusable) with a new keyboard. Already focused elements will not lose
their focus (even if an unfocusable widget is touched).

	If the keyboard property is set, that keyboard will be used when the
instance gets focused. If widgets with different keyboards are linked
through focus_next and focus_previous, then as they are
tabbed through, different keyboards will become active. Therefore,
typically it’s undesirable to link instances which are assigned
different keyboards.

	When a widget has focus, setting its keyboard to None will remove its
keyboard, but the widget will then immediately try to get
another keyboard. In order to remove its keyboard, rather set its
focus to False.

	When using a software keyboard, typical on mobile and touch devices, the
keyboard display behavior is determined by the
softinput_mode property. You can use
this property to ensure the focused widget is not covered or obscured.

keyboard is an AliasProperty and defaults
to None.

	
keyboard_mode

	Determines how the keyboard visibility should be managed. ‘auto’ will
result in the standard behaviour of showing/hiding on focus. ‘managed’
requires setting the keyboard visibility manually, or calling the helper
functions show_keyboard() and hide_keyboard().

keyboard_mode is an OptionsProperty and
defaults to ‘auto’. Can be one of ‘auto’ or ‘managed’.

	
keyboard_on_key_down(window, keycode, text, modifiers)

	The method bound to the keyboard when the instance has focus.

When the instance becomes focused, this method is bound to the
keyboard and will be called for every input press. The parameters are
the same as kivy.core.window.WindowBase.on_key_down().

When overwriting the method in the derived widget, super should be
called to enable tab cycling. If the derived widget wishes to use tab
for its own purposes, it can call super after it has processed the
character (if it does not wish to consume the tab).

Similar to other keyboard functions, it should return True if the
key was consumed.

	
keyboard_on_key_up(window, keycode)

	The method bound to the keyboard when the instance has focus.

When the instance becomes focused, this method is bound to the
keyboard and will be called for every input release. The parameters are
the same as kivy.core.window.WindowBase.on_key_up().

When overwriting the method in the derived widget, super should be
called to enable de-focusing on escape. If the derived widget wishes
to use escape for its own purposes, it can call super after it has
processed the character (if it does not wish to consume the escape).

See keyboard_on_key_down()

	
keyboard_suggestions

	If True provides auto suggestions on top of keyboard.
This will only work if input_type is set to text, url, mail or
address.

Warning

On Android, keyboard_suggestions relies on
InputType.TYPE_TEXT_FLAG_NO_SUGGESTIONS to work, but some keyboards
just ignore this flag. If you want to disable suggestions at all on
Android, you can set input_type to null, which will request the
input method to run in a limited “generate key events” mode.

New in version 2.1.0.

keyboard_suggestions is a BooleanProperty
and defaults to True

	
show_keyboard()

	Convenience function to show the keyboard in managed mode.

	
unfocus_on_touch

	Whether a instance should lose focus when clicked outside the instance.

When a user clicks on a widget that is focus aware and shares the same
keyboard as this widget (which in the case with only one keyboard),
then as the other widgets gain focus, this widget loses focus. In addition
to that, if this property is True, clicking on any widget other than this
widget, will remove focus from this widget.

unfocus_on_touch is a BooleanProperty and
defaults to False if the keyboard_mode in Config
is ‘multi’ or ‘systemandmulti’, otherwise it defaults to True.

Kivy Namespaces

New in version 1.9.1.

Warning

This code is still experimental, and its API is subject to change in a
future version.

The KNSpaceBehavior mixin [https://en.wikipedia.org/wiki/Mixin]
class provides namespace functionality for Kivy objects. It allows kivy objects
to be named and then accessed using namespaces.

KNSpace instances are the namespaces that store the named objects
in Kivy ObjectProperty instances.
In addition, when inheriting from KNSpaceBehavior, if the derived
object is named, the name will automatically be added to the associated
namespace and will point to a proxy_ref of the
derived object.

Basic examples

By default, there’s only a single namespace: the knspace namespace. The
simplest example is adding a widget to the namespace:

from kivy.uix.behaviors.knspace import knspace
widget = Widget()
knspace.my_widget = widget

This adds a kivy ObjectProperty with rebind=True
and allownone=True to the knspace namespace with a property name
my_widget. And the property now also points to this widget.

This can be done automatically with:

class MyWidget(KNSpaceBehavior, Widget):
 pass

widget = MyWidget(knsname='my_widget')

Or in kv:

<MyWidget@KNSpaceBehavior+Widget>

MyWidget:
 knsname: 'my_widget'

Now, knspace.my_widget will point to that widget.

When one creates a second widget with the same name, the namespace will
also change to point to the new widget. E.g.:

widget = MyWidget(knsname='my_widget')
knspace.my_widget now points to widget
widget2 = MyWidget(knsname='my_widget')
knspace.my_widget now points to widget2

Setting the namespace

One can also create ones own namespace rather than using the default
knspace by directly setting KNSpaceBehavior.knspace:

class MyWidget(KNSpaceBehavior, Widget):
 pass

widget = MyWidget(knsname='my_widget')
my_new_namespace = KNSpace()
widget.knspace = my_new_namespace

Initially, my_widget is added to the default namespace, but when the widget’s
namespace is changed to my_new_namespace, the reference to my_widget is
moved to that namespace. We could have also of course first set the namespace
to my_new_namespace and then have named the widget my_widget, thereby
avoiding the initial assignment to the default namespace.

Similarly, in kv:

<MyWidget@KNSpaceBehavior+Widget>

MyWidget:
 knspace: KNSpace()
 knsname: 'my_widget'

Inheriting the namespace

In the previous example, we directly set the namespace we wished to use.
In the following example, we inherit it from the parent, so we only have to set
it once:

<MyWidget@KNSpaceBehavior+Widget>
<MyLabel@KNSpaceBehavior+Label>

<MyComplexWidget@MyWidget>:
 knsname: 'my_complex'
 MyLabel:
 knsname: 'label1'
 MyLabel:
 knsname: 'label2'

Then, we do:

widget = MyComplexWidget()
new_knspace = KNSpace()
widget.knspace = new_knspace

The rule is that if no knspace has been assigned to a widget, it looks for a
namespace in its parent and parent’s parent and so on until it find one to
use. If none are found, it uses the default knspace.

When MyComplexWidget is created, it still used the default namespace.
However, when we assigned the root widget its new namespace, all its
children switched to using that new namespace as well. So new_knspace now
contains label1 and label2 as well as my_complex.

If we had first done:

widget = MyComplexWidget()
new_knspace = KNSpace()
knspace.label1.knspace = knspace
widget.knspace = new_knspace

Then label1 would remain stored in the default knspace since it was
directly set, but label2 and my_complex would still be added to the new
namespace.

One can customize the attribute used to search the parent tree by changing
KNSpaceBehavior.knspace_key. If the desired knspace is not reachable
through a widgets parent tree, e.g. in a popup that is not a widget’s child,
KNSpaceBehavior.knspace_key can be used to establish a different
search order.

Accessing the namespace

As seen in the previous example, if not directly assigned, the namespace is
found by searching the parent tree. Consequently, if a namespace was assigned
further up the parent tree, all its children and below could access that
namespace through their KNSpaceBehavior.knspace property.

This allows the creation of multiple widgets with identically given names
if each root widget instance is assigned a new namespace. For example:

<MyComplexWidget@KNSpaceBehavior+Widget>:
 Label:
 text: root.knspace.pretty.text if root.knspace.pretty else ''

<MyPrettyWidget@KNSpaceBehavior+TextInput>:
 knsname: 'pretty'
 text: 'Hello'

<MyCompositeWidget@KNSpaceBehavior+BoxLayout>:
 MyComplexWidget
 MyPrettyWidget

Now, when we do:

knspace1, knspace2 = KNSpace(), KNSpace()
composite1 = MyCompositeWidget()
composite1.knspace = knspace1

composite2 = MyCompositeWidget()
composite2.knspace = knspace2

knspace1.pretty = "Here's the ladder, now fix the roof!"
knspace2.pretty = "Get that raccoon off me!"

Because each of the MyCompositeWidget instances have a different namespace
their children also use different namespaces. Consequently, the
pretty and complex widgets of each instance will have different text.

Further, because both the namespace ObjectProperty
references, and KNSpaceBehavior.knspace have rebind=True, the
text of the MyComplexWidget label is rebound to match the text of
MyPrettyWidget when either the root’s namespace changes or when the
root.knspace.pretty property changes, as expected.

Forking a namespace

Forking a namespace provides the opportunity to create a new namespace
from a parent namespace so that the forked namespace will contain everything
in the origin namespace, but the origin namespace will not have access to
anything added to the forked namespace.

For example:

child = knspace.fork()
grandchild = child.fork()

child.label = Label()
grandchild.button = Button()

Now label is accessible by both child and grandchild, but not by knspace. And
button is only accessible by the grandchild but not by the child or by knspace.
Finally, doing grandchild.label = Label() will leave grandchild.label
and child.label pointing to different labels.

A motivating example is the example from above:

<MyComplexWidget@KNSpaceBehavior+Widget>:
 Label:
 text: root.knspace.pretty.text if root.knspace.pretty else ''

<MyPrettyWidget@KNSpaceBehavior+TextInput>:
 knsname: 'pretty'
 text: 'Hello'

<MyCompositeWidget@KNSpaceBehavior+BoxLayout>:
 knspace: 'fork'
 MyComplexWidget
 MyPrettyWidget

Notice the addition of knspace: ‘fork’. This is identical to doing
knspace: self.knspace.fork(). However, doing that would lead to infinite
recursion as that kv rule would be executed recursively because self.knspace
will keep on changing. However, allowing knspace: ‘fork’ cirumvents that.
See KNSpaceBehavior.knspace.

Now, having forked, we just need to do:

composite1 = MyCompositeWidget()
composite2 = MyCompositeWidget()

composite1.knspace.pretty = "Here's the ladder, now fix the roof!"
composite2.knspace.pretty = "Get that raccoon off me!"

Since by forking we automatically created a unique namespace for each
MyCompositeWidget instance.

	
class kivy.uix.behaviors.knspace.KNSpace(parent=None, keep_ref=False, **kwargs)

	Bases: kivy.event.EventDispatcher

Each KNSpace instance is a namespace that stores the named Kivy
objects associated with this namespace. Each named object is
stored as the value of a Kivy ObjectProperty of
this instance whose property name is the object’s given name. Both rebind
and allownone are set to True for the property.

See KNSpaceBehavior.knspace for details on how a namespace is
associated with a named object.

When storing an object in the namespace, the object’s proxy_ref is
stored if the object has such an attribute.

	Parameters:

	
	parent: (internal) A KNSpace instance or None.
	If specified, it’s a parent namespace, in which case, the current
namespace will have in its namespace all its named objects
as well as the named objects of its parent and parent’s parent
etc. See fork() for more details.

	
fork()

	Returns a new KNSpace instance which will have access to
all the named objects in the current namespace but will also have a
namespace of its own that is unique to it.

For example:

forked_knspace1 = knspace.fork()
forked_knspace2 = knspace.fork()

Now, any names added to knspace will be accessible by the
forked_knspace1 and forked_knspace2 namespaces by the normal means.
However, any names added to forked_knspace1 will not be accessible
from knspace or forked_knspace2. Similar for forked_knspace2.

	
keep_ref = False

	Whether a direct reference should be kept to the stored objects.
If True, we use the direct object, otherwise we use
proxy_ref when present.

Defaults to False.

	
parent = None

	(internal) The parent namespace instance, KNSpace, or None. See
fork().

	
property(self, name, quiet=False)

	Get a property instance from the property name. If quiet is True,
None is returned instead of raising an exception when name is not a
property. Defaults to False.

New in version 1.0.9.

	Returns:

	A Property derived instance
corresponding to the name.

Changed in version 1.9.0: quiet was added.

	
class kivy.uix.behaviors.knspace.KNSpaceBehavior(knspace=None, **kwargs)

	Bases: builtins.object

Inheriting from this class allows naming of the inherited objects, which
are then added to the associated namespace knspace and accessible
through it.

Please see the knspace behaviors module
documentation for more information.

	
knsname

	The name given to this instance. If named, the name will be added to the
associated knspace namespace, which will then point to the
proxy_ref of this instance.

When named, one can access this object by e.g. self.knspace.name, where
name is the given name of this instance. See knspace and the
module description for more details.

	
knspace

	The namespace instance, KNSpace, associated with this widget.
The knspace namespace stores this widget when naming this widget
with knsname.

If the namespace has been set with a KNSpace instance, e.g. with
self.knspace = KNSpace(), then that instance is returned (setting with
None doesn’t count). Otherwise, if knspace_key is not None, we
look for a namespace to use in the object that is stored in the property
named knspace_key, of this instance. I.e.
object = getattr(self, self.knspace_key).

If that object has a knspace property, then we return its value. Otherwise,
we go further up, e.g. with getattr(object, self.knspace_key) and look
for its knspace property.

Finally, if we reach a value of None, or knspace_key was None,
the default knspace namespace is
returned.

If knspace is set to the string ‘fork’, the current namespace
in knspace will be forked with KNSpace.fork() and the
resulting namespace will be assigned to this instance’s knspace.
See the module examples for a motivating example.

Both rebind and allownone are True.

	
knspace_key

	The name of the property of this instance, to use to search upwards for
a namespace to use by this instance. Defaults to ‘parent’ so that we’ll
search the parent tree. See knspace.

When None, we won’t search the parent tree for the namespace.
allownone is True.

	
kivy.uix.behaviors.knspace.knspace = <kivy.uix.behaviors.knspace.KNSpace object>

	The default KNSpace namespace. See KNSpaceBehavior.knspace
for more details.

ToggleButton Behavior

The ToggleButtonBehavior
mixin [https://en.wikipedia.org/wiki/Mixin] class provides
ToggleButton behavior. You can combine this
class with other widgets, such as an Image, to provide
alternative togglebuttons that preserve Kivy togglebutton behavior.

For an overview of behaviors, please refer to the behaviors
documentation.

Example

The following example adds togglebutton behavior to an image to make a checkbox
that behaves like a togglebutton:

from kivy.app import App
from kivy.uix.image import Image
from kivy.uix.behaviors import ToggleButtonBehavior

class MyButton(ToggleButtonBehavior, Image):
 def __init__(self, **kwargs):
 super(MyButton, self).__init__(**kwargs)
 self.source = 'atlas://data/images/defaulttheme/checkbox_off'

 def on_state(self, widget, value):
 if value == 'down':
 self.source = 'atlas://data/images/defaulttheme/checkbox_on'
 else:
 self.source = 'atlas://data/images/defaulttheme/checkbox_off'

class SampleApp(App):
 def build(self):
 return MyButton()

SampleApp().run()

	
class kivy.uix.behaviors.togglebutton.ToggleButtonBehavior(**kwargs)

	Bases: kivy.uix.behaviors.button.ButtonBehavior

This mixin [https://en.wikipedia.org/wiki/Mixin] class provides
togglebutton behavior. Please see the
togglebutton behaviors module
documentation for more information.

New in version 1.8.0.

	
allow_no_selection

	This specifies whether the widgets in a group allow no selection i.e.
everything to be deselected.

New in version 1.9.0.

allow_no_selection is a BooleanProperty and defaults to
True

	
static get_widgets(groupname)

	Return a list of the widgets contained in a specific group. If the
group doesn’t exist, an empty list will be returned.

Note

Always release the result of this method! Holding a reference to
any of these widgets can prevent them from being garbage collected.
If in doubt, do:

l = ToggleButtonBehavior.get_widgets('mygroup')
do your job
del l

Warning

It’s possible that some widgets that you have previously
deleted are still in the list. The garbage collector might need
to release other objects before flushing them.

	
group

	Group of the button. If None, no group will be used (the button will be
independent). If specified, group must be a hashable object, like
a string. Only one button in a group can be in a ‘down’ state.

group is a ObjectProperty and defaults to
None.

Touch Ripple

New in version 1.10.1.

Warning

This code is still experimental, and its API is subject to change in a
future version.

This module contains mixin [https://en.wikipedia.org/wiki/Mixin] classes
to add a touch ripple visual effect known from Google Material Design
<https://en.wikipedia.org/wiki/Material_Design>_ to widgets.

For an overview of behaviors, please refer to the behaviors
documentation.

The class TouchRippleBehavior provides
rendering the ripple animation.

The class TouchRippleButtonBehavior
basically provides the same functionality as
ButtonBehavior but rendering the ripple
animation instead of default press/release visualization.

	
class kivy.uix.behaviors.touchripple.TouchRippleBehavior(**kwargs)

	Bases: builtins.object

Touch ripple behavior.

Supposed to be used as mixin on widget classes.

Ripple behavior does not trigger automatically, concrete implementation
needs to call ripple_show() respective ripple_fade() manually.

Example

Here we create a Label which renders the touch ripple animation on
interaction:

class RippleLabel(TouchRippleBehavior, Label):

 def __init__(self, **kwargs):
 super(RippleLabel, self).__init__(**kwargs)

 def on_touch_down(self, touch):
 collide_point = self.collide_point(touch.x, touch.y)
 if collide_point:
 touch.grab(self)
 self.ripple_show(touch)
 return True
 return False

 def on_touch_up(self, touch):
 if touch.grab_current is self:
 touch.ungrab(self)
 self.ripple_fade()
 return True
 return False

	
ripple_duration_in

	Animation duration taken to show the overlay.

ripple_duration_in is a NumericProperty
and defaults to 0.5.

	
ripple_duration_out

	Animation duration taken to fade the overlay.

ripple_duration_out is a NumericProperty
and defaults to 0.2.

	
ripple_fade()

	Finish ripple animation on current widget.

	
ripple_fade_from_alpha

	Alpha channel for ripple color the animation starts with.

ripple_fade_from_alpha is a
NumericProperty and defaults to 0.5.

	
ripple_fade_to_alpha

	Alpha channel for ripple color the animation targets to.

ripple_fade_to_alpha is a NumericProperty
and defaults to 0.8.

	
ripple_func_in

	Animation callback for showing the overlay.

ripple_func_in is a StringProperty
and defaults to in_cubic.

	
ripple_func_out

	Animation callback for hiding the overlay.

ripple_func_out is a StringProperty
and defaults to out_quad.

	
ripple_rad_default

	Default radius the animation starts from.

ripple_rad_default is a NumericProperty
and defaults to 10.

	
ripple_scale

	Max scale of the animation overlay calculated from max(width/height) of
the decorated widget.

ripple_scale is a NumericProperty
and defaults to 2.0.

	
ripple_show(touch)

	Begin ripple animation on current widget.

Expects touch event as argument.

	
class kivy.uix.behaviors.touchripple.TouchRippleButtonBehavior(**kwargs)

	Bases: kivy.uix.behaviors.touchripple.TouchRippleBehavior

This mixin [https://en.wikipedia.org/wiki/Mixin] class provides
a similar behavior to ButtonBehavior
but provides touch ripple animation instead of button pressed/released as
visual effect.

	Events:

	
	on_press
	Fired when the button is pressed.

	on_release
	Fired when the button is released (i.e. the touch/click that
pressed the button goes away).

	
always_release

	This determines whether or not the widget fires an on_release event if
the touch_up is outside the widget.

always_release is a BooleanProperty and
defaults to False.

	
last_touch

	Contains the last relevant touch received by the Button. This can
be used in on_press or on_release in order to know which touch
dispatched the event.

last_touch is a ObjectProperty and
defaults to None.

Button Behavior

The ButtonBehavior
mixin [https://en.wikipedia.org/wiki/Mixin] class provides
Button behavior. You can combine this class with
other widgets, such as an Image, to provide
alternative buttons that preserve Kivy button behavior.

For an overview of behaviors, please refer to the behaviors
documentation.

Example

The following example adds button behavior to an image to make a checkbox that
behaves like a button:

from kivy.app import App
from kivy.uix.image import Image
from kivy.uix.behaviors import ButtonBehavior

class MyButton(ButtonBehavior, Image):
 def __init__(self, **kwargs):
 super(MyButton, self).__init__(**kwargs)
 self.source = 'atlas://data/images/defaulttheme/checkbox_off'

 def on_press(self):
 self.source = 'atlas://data/images/defaulttheme/checkbox_on'

 def on_release(self):
 self.source = 'atlas://data/images/defaulttheme/checkbox_off'

class SampleApp(App):
 def build(self):
 return MyButton()

SampleApp().run()

See ButtonBehavior for details.

	
class kivy.uix.behaviors.button.ButtonBehavior(**kwargs)

	Bases: builtins.object

This mixin [https://en.wikipedia.org/wiki/Mixin] class provides
Button behavior. Please see the
button behaviors module documentation
for more information.

	Events:

	
	on_press
	Fired when the button is pressed.

	on_release
	Fired when the button is released (i.e. the touch/click that
pressed the button goes away).

	
always_release

	This determines whether or not the widget fires an on_release event if
the touch_up is outside the widget.

New in version 1.9.0.

Changed in version 1.10.0: The default value is now False.

always_release is a BooleanProperty and
defaults to False.

	
last_touch

	Contains the last relevant touch received by the Button. This can
be used in on_press or on_release in order to know which touch
dispatched the event.

New in version 1.8.0.

last_touch is a ObjectProperty and
defaults to None.

	
min_state_time

	The minimum period of time which the widget must remain in the
‘down’ state.

New in version 1.9.1.

min_state_time is a float and defaults to 0.035. This value is
taken from Config.

	
state

	The state of the button, must be one of ‘normal’ or ‘down’.
The state is ‘down’ only when the button is currently touched/clicked,
otherwise its ‘normal’.

state is an OptionProperty and defaults
to ‘normal’.

	
trigger_action(duration=0.1)

	Trigger whatever action(s) have been bound to the button by calling
both the on_press and on_release callbacks.

This is similar to a quick button press without using any touch events,
but note that like most kivy code, this is not guaranteed to be safe to
call from external threads. If needed use
Clock to safely schedule this function and
the resulting callbacks to be called from the main thread.

Duration is the length of the press in seconds. Pass 0 if you want
the action to happen instantly.

New in version 1.8.0.

Code Navigation Behavior

The CodeNavigationBehavior modifies navigation
behavior in the TextInput, making it work like an
IDE instead of a word processor.

Using this mixin gives the TextInput the ability to recognize whitespace,
punctuation and case variations (e.g. CamelCase) when moving over text. It
is currently used by the CodeInput widget.

	
class kivy.uix.behaviors.codenavigation.CodeNavigationBehavior

	Bases: kivy.event.EventDispatcher

Code navigation behavior. Modifies the navigation behavior in TextInput
to work like an IDE instead of a word processor. Please see the
code navigation behaviors module
documentation for more information.

New in version 1.9.1.

Compound Selection Behavior

The CompoundSelectionBehavior
mixin [https://en.wikipedia.org/wiki/Mixin] class implements the logic
behind keyboard and touch selection of selectable widgets managed by the
derived widget. For example, it can be combined with a
GridLayout to add selection to the layout.

Compound selection concepts

At its core, it keeps a dynamic list of widgets that can be selected.
Then, as the touches and keyboard input are passed in, it selects one or
more of the widgets based on these inputs. For example, it uses the mouse
scroll and keyboard up/down buttons to scroll through the list of widgets.
Multiselection can also be achieved using the keyboard shift and ctrl keys.

Finally, in addition to the up/down type keyboard inputs, compound selection
can also accept letters from the keyboard to be used to select nodes with
associated strings that start with those letters, similar to how files
are selected by a file browser.

Selection mechanics

When the controller needs to select a node, it calls select_node() and
deselect_node(). Therefore, they must be overwritten in order alter
node selection. By default, the class doesn’t listen for keyboard or
touch events, so the derived widget must call
select_with_touch(), select_with_key_down(), and
select_with_key_up() on events that it wants to pass on for selection
purposes.

Example

To add selection to a grid layout which will contain
Button widgets. For each button added to the layout, you
need to bind the on_touch_down of the button
to select_with_touch() to pass on the touch events:

from kivy.uix.behaviors.compoundselection import CompoundSelectionBehavior
from kivy.uix.button import Button
from kivy.uix.gridlayout import GridLayout
from kivy.uix.behaviors import FocusBehavior
from kivy.core.window import Window
from kivy.app import App

class SelectableGrid(FocusBehavior, CompoundSelectionBehavior, GridLayout):

 def keyboard_on_key_down(self, window, keycode, text, modifiers):
 """Based on FocusBehavior that provides automatic keyboard
 access, key presses will be used to select children.
 """
 if super(SelectableGrid, self).keyboard_on_key_down(
 window, keycode, text, modifiers):
 return True
 if self.select_with_key_down(window, keycode, text, modifiers):
 return True
 return False

 def keyboard_on_key_up(self, window, keycode):
 """Based on FocusBehavior that provides automatic keyboard
 access, key release will be used to select children.
 """
 if super(SelectableGrid, self).keyboard_on_key_up(window, keycode):
 return True
 if self.select_with_key_up(window, keycode):
 return True
 return False

 def add_widget(self, widget, *args, **kwargs):
 """ Override the adding of widgets so we can bind and catch their
 on_touch_down events. """
 widget.bind(on_touch_down=self.button_touch_down,
 on_touch_up=self.button_touch_up)
 return super(SelectableGrid, self) .add_widget(widget, *args, **kwargs)

 def button_touch_down(self, button, touch):
 """ Use collision detection to select buttons when the touch occurs
 within their area. """
 if button.collide_point(*touch.pos):
 self.select_with_touch(button, touch)

 def button_touch_up(self, button, touch):
 """ Use collision detection to de-select buttons when the touch
 occurs outside their area and *touch_multiselect* is not True. """
 if not (button.collide_point(*touch.pos) or
 self.touch_multiselect):
 self.deselect_node(button)

 def select_node(self, node):
 node.background_color = (1, 0, 0, 1)
 return super(SelectableGrid, self).select_node(node)

 def deselect_node(self, node):
 node.background_color = (1, 1, 1, 1)
 super(SelectableGrid, self).deselect_node(node)

 def on_selected_nodes(self, grid, nodes):
 print("Selected nodes = {0}".format(nodes))

class TestApp(App):
 def build(self):
 grid = SelectableGrid(cols=3, rows=2, touch_multiselect=True,
 multiselect=True)
 for i in range(0, 6):
 grid.add_widget(Button(text="Button {0}".format(i)))
 return grid

TestApp().run()

Warning

This code is still experimental, and its API is subject to change in a
future version.

	
class kivy.uix.behaviors.compoundselection.CompoundSelectionBehavior(**kwargs)

	Bases: builtins.object

The Selection behavior mixin [https://en.wikipedia.org/wiki/Mixin]
implements the logic behind keyboard and touch
selection of selectable widgets managed by the derived widget. Please see
the compound selection behaviors module documentation
for more information.

New in version 1.9.0.

	
clear_selection()

	Deselects all the currently selected nodes.

	
deselect_node(node)

	Deselects a possibly selected node.

It is called by the controller when it deselects a node and can also
be called from the outside to deselect a node directly. The derived
widget should overwrite this method and change the node to its
unselected state when this is called

	Parameters:

	
	node
	The node to be deselected.

Warning

This method must be called by the derived widget using super if it
is overwritten.

	
get_index_of_node(node, selectable_nodes)

	(internal) Returns the index of the node within the
selectable_nodes returned by get_selectable_nodes().

	
get_selectable_nodes()

	(internal) Returns a list of the nodes that can be selected. It can
be overwritten by the derived widget to return the correct list.

This list is used to determine which nodes to select with group
selection. E.g. the last element in the list will be selected when
home is pressed, pagedown will move (or add to, if shift is held) the
selection from the current position by negative page_count
nodes starting from the position of the currently selected node in
this list and so on. Still, nodes can be selected even if they are not
in this list.

Note

It is safe to dynamically change this list including removing,
adding, or re-arranging its elements. Nodes can be selected even
if they are not on this list. And selected nodes removed from the
list will remain selected until deselect_node() is called.

Warning

Layouts display their children in the reverse order. That is, the
contents of children is displayed
form right to left, bottom to top. Therefore, internally, the
indices of the elements returned by this function are reversed to
make it work by default for most layouts so that the final result
is consistent e.g. home, although it will select the last element
in this list visually, will select the first element when
counting from top to bottom and left to right. If this behavior is
not desired, a reversed list should be returned instead.

Defaults to returning children.

	
goto_node(key, last_node, last_node_idx)

	(internal) Used by the controller to get the node at the position
indicated by key. The key can be keyboard inputs, e.g. pageup,
or scroll inputs from the mouse scroll wheel, e.g. scrollup.
‘last_node’ is the last node selected and is used to find the resulting
node. For example, if the key is up, the returned node is one node
up from the last node.

It can be overwritten by the derived widget.

	Parameters:

	
	key
	str, the string used to find the desired node. It can be any
of the keyboard keys, as well as the mouse scrollup,
scrolldown, scrollright, and scrollleft strings. If letters
are typed in quick succession, the letters will be combined
before it’s passed in as key and can be used to find nodes that
have an associated string that starts with those letters.

	last_node
	The last node that was selected.

	last_node_idx
	The cached index of the last node selected in the
get_selectable_nodes() list. If the list hasn’t changed
it saves having to look up the index of last_node in that
list.

	Returns:

	tuple, the node targeted by key and its index in the
get_selectable_nodes() list. Returning
(last_node, last_node_idx) indicates a node wasn’t found.

	
keyboard_select

	Determines whether the keyboard can be used for selection. If False,
keyboard inputs will be ignored.

keyboard_select is a BooleanProperty
and defaults to True.

	
multiselect

	Determines whether multiple nodes can be selected. If enabled, keyboard
shift and ctrl selection, optionally combined with touch, for example, will
be able to select multiple widgets in the normally expected manner.
This dominates touch_multiselect when False.

multiselect is a BooleanProperty and
defaults to False.

	
nodes_order_reversed

	(Internal) Indicates whether the order of the nodes as displayed top-
down is reversed compared to their order in get_selectable_nodes()
(e.g. how the children property is reversed compared to how
it’s displayed).

	
page_count

	Determines by how much the selected node is moved up or down, relative
to the position of the last selected node, when pageup (or pagedown) is
pressed.

page_count is a NumericProperty and
defaults to 10.

	
right_count

	Determines by how much the selected node is moved up or down, relative
to the position of the last selected node, when the right (or left) arrow
on the keyboard is pressed.

right_count is a NumericProperty and
defaults to 1.

	
scroll_count

	Determines by how much the selected node is moved up or down, relative
to the position of the last selected node, when the mouse scroll wheel is
scrolled.

right_count is a NumericProperty and
defaults to 0.

	
select_node(node)

	Selects a node.

It is called by the controller when it selects a node and can be
called from the outside to select a node directly. The derived widget
should overwrite this method and change the node state to selected
when called.

	Parameters:

	
	node
	The node to be selected.

	Returns:

	bool, True if the node was selected, False otherwise.

Warning

This method must be called by the derived widget using super if it
is overwritten.

	
select_with_key_down(keyboard, scancode, codepoint, modifiers, **kwargs)

	Processes a key press. This is called when a key press is to be used
for selection. Depending on the keyboard keys pressed and the
configuration, it could select or deselect nodes or node ranges
from the selectable nodes list, get_selectable_nodes().

The parameters are such that it could be bound directly to the
on_key_down event of a keyboard. Therefore, it is safe to be called
repeatedly when the key is held down as is done by the keyboard.

	Returns:

	bool, True if the keypress was used, False otherwise.

	
select_with_key_up(keyboard, scancode, **kwargs)

	(internal) Processes a key release. This must be called by the
derived widget when a key that select_with_key_down() returned
True is released.

The parameters are such that it could be bound directly to the
on_key_up event of a keyboard.

	Returns:

	bool, True if the key release was used, False otherwise.

	
select_with_touch(node, touch=None)

	(internal) Processes a touch on the node. This should be called by
the derived widget when a node is touched and is to be used for
selection. Depending on the keyboard keys pressed and the
configuration, it could select or deslect this and other nodes in the
selectable nodes list, get_selectable_nodes().

	Parameters:

	
	node
	The node that received the touch. Can be None for a scroll
type touch.

	touch
	Optionally, the touch. Defaults to None.

	Returns:

	bool, True if the touch was used, False otherwise.

	
selected_nodes

	The list of selected nodes.

Note

Multiple nodes can be selected right after one another e.g. using the
keyboard. When listening to selected_nodes, one should be
aware of this.

selected_nodes is a ListProperty and
defaults to the empty list, []. It is read-only and should not be modified.

	
text_entry_timeout

	When typing characters in rapid succession (i.e. the time difference
since the last character is less than text_entry_timeout), the
keys get concatenated and the combined text is passed as the key argument
of goto_node().

New in version 1.10.0.

	
touch_deselect_last

	Determines whether the last selected node can be deselected when
multiselect or touch_multiselect is False.

New in version 1.10.0.

touch_deselect_last is a BooleanProperty
and defaults to True on mobile, False on desktop platforms.

	
touch_multiselect

	A special touch mode which determines whether touch events, as
processed by select_with_touch(), will add the currently touched
node to the selection, or if it will clear the selection before adding the
node. This allows the selection of multiple nodes by simply touching them.

This is different from multiselect because when it is True,
simply touching an unselected node will select it, even if ctrl is not
pressed. If it is False, however, ctrl must be pressed in order to
add to the selection when multiselect is True.

Note

multiselect, when False, will disable
touch_multiselect.

touch_multiselect is a BooleanProperty
and defaults to False.

	
up_count

	Determines by how much the selected node is moved up or down, relative
to the position of the last selected node, when the up (or down) arrow on
the keyboard is pressed.

up_count is a NumericProperty and
defaults to 1.

Cover Behavior

The CoverBehavior
mixin [https://en.wikipedia.org/wiki/Mixin] is intended for rendering
textures to full widget size keeping the aspect ratio of the original texture.

Use cases are i.e. rendering full size background images or video content in
a dynamic layout.

For an overview of behaviors, please refer to the behaviors
documentation.

Example

The following examples add cover behavior to an image:

In python:

from kivy.app import App
from kivy.uix.behaviors import CoverBehavior
from kivy.uix.image import Image

class CoverImage(CoverBehavior, Image):

 def __init__(self, **kwargs):
 super(CoverImage, self).__init__(**kwargs)
 texture = self._coreimage.texture
 self.reference_size = texture.size
 self.texture = texture

class MainApp(App):

 def build(self):
 return CoverImage(source='image.jpg')

MainApp().run()

In Kivy Language:

CoverImage:
 source: 'image.png'

<CoverImage@CoverBehavior+Image>:
 reference_size: self.texture_size

See CoverBehavior for details.

	
class kivy.uix.behaviors.cover.CoverBehavior(**kwargs)

	Bases: builtins.object

The CoverBehavior mixin [https://en.wikipedia.org/wiki/Mixin]
provides rendering a texture covering full widget size keeping aspect ratio
of the original texture.

New in version 1.10.0.

	
cover_pos

	Position of the aspect ratio aware texture. Gets calculated in
CoverBehavior.calculate_cover.

cover_pos is a ListProperty and
defaults to [0, 0].

	
cover_size

	Size of the aspect ratio aware texture. Gets calculated in
CoverBehavior.calculate_cover.

cover_size is a ListProperty and
defaults to [0, 0].

	
reference_size

	Reference size used for aspect ratio approximation calculation.

reference_size is a ListProperty and
defaults to [].

Drag Behavior

The DragBehavior
mixin [https://en.wikipedia.org/wiki/Mixin] class provides Drag behavior.
When combined with a widget, dragging in the rectangle defined by the
drag_rectangle will drag the
widget.

Example

The following example creates a draggable label:

from kivy.uix.label import Label
from kivy.app import App
from kivy.uix.behaviors import DragBehavior
from kivy.lang import Builder

You could also put the following in your kv file...
kv = '''
<DragLabel>:
 # Define the properties for the DragLabel
 drag_rectangle: self.x, self.y, self.width, self.height
 drag_timeout: 10000000
 drag_distance: 0

FloatLayout:
 # Define the root widget
 DragLabel:
 size_hint: 0.25, 0.2
 text: 'Drag me'
'''

class DragLabel(DragBehavior, Label):
 pass

class TestApp(App):
 def build(self):
 return Builder.load_string(kv)

TestApp().run()

	
class kivy.uix.behaviors.drag.DragBehavior(**kwargs)

	Bases: builtins.object

The DragBehavior mixin [https://en.wikipedia.org/wiki/Mixin] provides
Drag behavior. When combined with a widget, dragging in the rectangle
defined by drag_rectangle will drag the widget. Please see
the drag behaviors module documentation
for more information.

New in version 1.8.0.

	
drag_distance

	Distance to move before dragging the DragBehavior, in pixels.
As soon as the distance has been traveled, the DragBehavior will
start to drag, and no touch event will be dispatched to the children.
It is advisable that you base this value on the dpi of your target device’s
screen.

drag_distance is a NumericProperty and
defaults to the scroll_distance as defined in the user
Config (20 pixels by default).

	
drag_rect_height

	Height of the axis aligned bounding rectangle where dragging is allowed.

drag_rect_height is a NumericProperty and
defaults to 100.

	
drag_rect_width

	Width of the axis aligned bounding rectangle where dragging is allowed.

drag_rect_width is a NumericProperty and
defaults to 100.

	
drag_rect_x

	X position of the axis aligned bounding rectangle where dragging
is allowed (in window coordinates).

drag_rect_x is a NumericProperty and
defaults to 0.

	
drag_rect_y

	Y position of the axis aligned bounding rectangle where dragging
is allowed (in window coordinates).

drag_rect_Y is a NumericProperty and
defaults to 0.

	
drag_rectangle

	Position and size of the axis aligned bounding rectangle where dragging
is allowed.

drag_rectangle is a ReferenceListProperty
of (drag_rect_x, drag_rect_y, drag_rect_width,
drag_rect_height) properties.

	
drag_timeout

	Timeout allowed to trigger the drag_distance, in milliseconds.
If the user has not moved drag_distance within the timeout,
dragging will be disabled, and the touch event will be dispatched to the
children.

drag_timeout is a NumericProperty and
defaults to the scroll_timeout as defined in the user
Config (55 milliseconds by default).

Emacs Behavior

The EmacsBehavior
mixin [https://en.wikipedia.org/wiki/Mixin] allows you to add
Emacs [https://www.gnu.org/software/emacs/] keyboard shortcuts for basic
movement and editing to the TextInput widget.
The shortcuts currently available are listed below:

Emacs shortcuts

	Shortcut

	Description

	Control + a

	Move cursor to the beginning of the line

	Control + e

	Move cursor to the end of the line

	Control + f

	Move cursor one character to the right

	Control + b

	Move cursor one character to the left

	Alt + f

	Move cursor to the end of the word to the right

	Alt + b

	Move cursor to the start of the word to the left

	Alt + Backspace

	Delete text left of the cursor to the beginning of word

	Alt + d

	Delete text right of the cursor to the end of the word

	Alt + w

	Copy selection

	Control + w

	Cut selection

	Control + y

	Paste selection

Warning

If you have the inspector module enabled, the
shortcut for opening the inspector (Control + e) conflicts with the
Emacs shortcut to move to the end of the line (it will still move the
cursor to the end of the line, but the inspector will open as well).

	
class kivy.uix.behaviors.emacs.EmacsBehavior(**kwargs)

	Bases: builtins.object

A mixin [https://en.wikipedia.org/wiki/Mixin] that enables Emacs-style
keyboard shortcuts for the TextInput widget.
Please see the Emacs behaviors module
documentation for more information.

New in version 1.9.1.

	
delete_word_left()

	Delete text left of the cursor to the beginning of word

	
delete_word_right()

	Delete text right of the cursor to the end of the word

	
key_bindings

	String name which determines the type of key bindings to use with the
TextInput. This allows Emacs key bindings to
be enabled/disabled programmatically for widgets that inherit from
EmacsBehavior. If the value is not 'emacs', Emacs bindings
will be disabled. Use 'default' for switching to the default key
bindings of TextInput.

key_bindings is a StringProperty
and defaults to 'emacs'.

New in version 1.10.0.

Focus Behavior

The FocusBehavior
mixin [https://en.wikipedia.org/wiki/Mixin] class provides
keyboard focus behavior. When combined with other
FocusBehavior widgets it allows one to cycle focus among them by pressing
tab. In addition, upon gaining focus, the instance will automatically
receive keyboard input.

Focus, very different from selection, is intimately tied with the keyboard;
each keyboard can focus on zero or one widgets, and each widget can only
have the focus of one keyboard. However, multiple keyboards can focus
simultaneously on different widgets. When escape is hit, the widget having
the focus of that keyboard will de-focus.

Managing focus

In essence, focus is implemented as a doubly linked list, where each
node holds a (weak) reference to the instance before it and after it,
as visualized when cycling through the nodes using tab (forward) or
shift+tab (backward). If a previous or next widget is not specified,
focus_next and focus_previous defaults to None. This
means that the children list and
parents are
walked to find the next focusable widget, unless focus_next or
focus_previous is set to the StopIteration class, in which case
focus stops there.

For example, to cycle focus between Button
elements of a GridLayout:

class FocusButton(FocusBehavior, Button):
 pass

grid = GridLayout(cols=4)
for i in range(40):
 grid.add_widget(FocusButton(text=str(i)))
clicking on a widget will activate focus, and tab can now be used
to cycle through

When using a software keyboard, typical on mobile and touch devices, the
keyboard display behavior is determined by the
softinput_mode property. You can use
this property to ensure the focused widget is not covered or obscured by the
keyboard.

Initializing focus

Widgets needs to be visible before they can receive the focus. This means that
setting their focus property to True before they are visible will have no
effect. To initialize focus, you can use the ‘on_parent’ event:

from kivy.app import App
from kivy.uix.textinput import TextInput

class MyTextInput(TextInput):
 def on_parent(self, widget, parent):
 self.focus = True

class SampleApp(App):
 def build(self):
 return MyTextInput()

SampleApp().run()

If you are using a popup, you can use the ‘on_open’ event.

For an overview of behaviors, please refer to the behaviors
documentation.

Warning

This code is still experimental, and its API is subject to change in a
future version.

	
class kivy.uix.behaviors.focus.FocusBehavior(**kwargs)

	Bases: builtins.object

Provides keyboard focus behavior. When combined with other
FocusBehavior widgets it allows one to cycle focus among them by pressing
tab. Please see the
focus behavior module documentation
for more information.

New in version 1.9.0.

	
focus

	Whether the instance currently has focus.

Setting it to True will bind to and/or request the keyboard, and input
will be forwarded to the instance. Setting it to False will unbind
and/or release the keyboard. For a given keyboard, only one widget can
have its focus, so focusing one will automatically unfocus the other
instance holding its focus.

When using a software keyboard, please refer to the
softinput_mode property to determine
how the keyboard display is handled.

focus is a BooleanProperty and defaults
to False.

	
focus_next

	The FocusBehavior instance to acquire focus when
tab is pressed and this instance has focus, if not None or
StopIteration.

When tab is pressed, focus cycles through all the FocusBehavior
widgets that are linked through focus_next and are focusable. If
focus_next is None, it instead walks the children lists to find
the next focusable widget. Finally, if focus_next is
the StopIteration class, focus won’t move forward, but end here.

focus_next is an ObjectProperty and
defaults to None.

	
focus_previous

	The FocusBehavior instance to acquire focus when
shift+tab is pressed on this instance, if not None or StopIteration.

When shift+tab is pressed, focus cycles through all the
FocusBehavior widgets that are linked through
focus_previous and are focusable. If focus_previous is
None, it instead walks the children tree to find the
previous focusable widget. Finally, if focus_previous is the
StopIteration class, focus won’t move backward, but end here.

focus_previous is an ObjectProperty and
defaults to None.

	
focused

	An alias of focus.

focused is a BooleanProperty and defaults
to False.

Warning

focused is an alias of focus and will be removed in
2.0.0.

	
get_focus_next()

	Returns the next focusable widget using either focus_next
or the children similar to the order when tabbing forwards
with the tab key.

	
get_focus_previous()

	Returns the previous focusable widget using either
focus_previous or the children similar to the
order when the tab + shift keys are triggered together.

	
hide_keyboard()

	Convenience function to hide the keyboard in managed mode.

	
ignored_touch = []

	A list of touches that should not be used to defocus. After on_touch_up,
every touch that is not in ignored_touch will defocus all the
focused widgets if the config keyboard mode is not multi. Touches on
focusable widgets that were used to focus are automatically added here.

Example usage:

class Unfocusable(Widget):

 def on_touch_down(self, touch):
 if self.collide_point(*touch.pos):
 FocusBehavior.ignored_touch.append(touch)

Notice that you need to access this as a class, not an instance variable.

	
input_type

	The kind of input keyboard to request.

New in version 1.8.0.

Changed in version 2.1.0: Changed default value from text to null. Added null to options.

Warning

As the default value has been changed, you may need to adjust
input_type in your code.

input_type is an OptionsProperty and
defaults to ‘null’. Can be one of ‘null’, ‘text’, ‘number’, ‘url’, ‘mail’,
‘datetime’, ‘tel’ or ‘address’.

	
is_focusable

	Whether the instance can become focused. If focused, it’ll lose focus
when set to False.

is_focusable is a BooleanProperty and
defaults to True on a desktop (i.e. desktop is True in
config), False otherwise.

	
keyboard

	The keyboard to bind to (or bound to the widget) when focused.

When None, a keyboard is requested and released whenever the widget comes
into and out of focus. If not None, it must be a keyboard, which gets
bound and unbound from the widget whenever it’s in or out of focus. It is
useful only when more than one keyboard is available, so it is recommended
to be set to None when only one keyboard is available.

If more than one keyboard is available, whenever an instance gets focused
a new keyboard will be requested if None. Unless the other instances lose
focus (e.g. if tab was used), a new keyboard will appear. When this is
undesired, the keyboard property can be used. For example, if there are
two users with two keyboards, then each keyboard can be assigned to
different groups of instances of FocusBehavior, ensuring that within
each group, only one FocusBehavior will have focus, and will receive input
from the correct keyboard. See keyboard_mode in config for
more information on the keyboard modes.

Keyboard and focus behavior

When using the keyboard, there are some important default behaviors you
should keep in mind.

	When Config’s keyboard_mode is multi, each new touch is considered
a touch by a different user and will set the focus (if clicked on a
focusable) with a new keyboard. Already focused elements will not lose
their focus (even if an unfocusable widget is touched).

	If the keyboard property is set, that keyboard will be used when the
instance gets focused. If widgets with different keyboards are linked
through focus_next and focus_previous, then as they are
tabbed through, different keyboards will become active. Therefore,
typically it’s undesirable to link instances which are assigned
different keyboards.

	When a widget has focus, setting its keyboard to None will remove its
keyboard, but the widget will then immediately try to get
another keyboard. In order to remove its keyboard, rather set its
focus to False.

	When using a software keyboard, typical on mobile and touch devices, the
keyboard display behavior is determined by the
softinput_mode property. You can use
this property to ensure the focused widget is not covered or obscured.

keyboard is an AliasProperty and defaults
to None.

	
keyboard_mode

	Determines how the keyboard visibility should be managed. ‘auto’ will
result in the standard behaviour of showing/hiding on focus. ‘managed’
requires setting the keyboard visibility manually, or calling the helper
functions show_keyboard() and hide_keyboard().

keyboard_mode is an OptionsProperty and
defaults to ‘auto’. Can be one of ‘auto’ or ‘managed’.

	
keyboard_on_key_down(window, keycode, text, modifiers)

	The method bound to the keyboard when the instance has focus.

When the instance becomes focused, this method is bound to the
keyboard and will be called for every input press. The parameters are
the same as kivy.core.window.WindowBase.on_key_down().

When overwriting the method in the derived widget, super should be
called to enable tab cycling. If the derived widget wishes to use tab
for its own purposes, it can call super after it has processed the
character (if it does not wish to consume the tab).

Similar to other keyboard functions, it should return True if the
key was consumed.

	
keyboard_on_key_up(window, keycode)

	The method bound to the keyboard when the instance has focus.

When the instance becomes focused, this method is bound to the
keyboard and will be called for every input release. The parameters are
the same as kivy.core.window.WindowBase.on_key_up().

When overwriting the method in the derived widget, super should be
called to enable de-focusing on escape. If the derived widget wishes
to use escape for its own purposes, it can call super after it has
processed the character (if it does not wish to consume the escape).

See keyboard_on_key_down()

	
keyboard_suggestions

	If True provides auto suggestions on top of keyboard.
This will only work if input_type is set to text, url, mail or
address.

Warning

On Android, keyboard_suggestions relies on
InputType.TYPE_TEXT_FLAG_NO_SUGGESTIONS to work, but some keyboards
just ignore this flag. If you want to disable suggestions at all on
Android, you can set input_type to null, which will request the
input method to run in a limited “generate key events” mode.

New in version 2.1.0.

keyboard_suggestions is a BooleanProperty
and defaults to True

	
show_keyboard()

	Convenience function to show the keyboard in managed mode.

	
unfocus_on_touch

	Whether a instance should lose focus when clicked outside the instance.

When a user clicks on a widget that is focus aware and shares the same
keyboard as this widget (which in the case with only one keyboard),
then as the other widgets gain focus, this widget loses focus. In addition
to that, if this property is True, clicking on any widget other than this
widget, will remove focus from this widget.

unfocus_on_touch is a BooleanProperty and
defaults to False if the keyboard_mode in Config
is ‘multi’ or ‘systemandmulti’, otherwise it defaults to True.

Kivy Namespaces

New in version 1.9.1.

Warning

This code is still experimental, and its API is subject to change in a
future version.

The KNSpaceBehavior mixin [https://en.wikipedia.org/wiki/Mixin]
class provides namespace functionality for Kivy objects. It allows kivy objects
to be named and then accessed using namespaces.

KNSpace instances are the namespaces that store the named objects
in Kivy ObjectProperty instances.
In addition, when inheriting from KNSpaceBehavior, if the derived
object is named, the name will automatically be added to the associated
namespace and will point to a proxy_ref of the
derived object.

Basic examples

By default, there’s only a single namespace: the knspace namespace. The
simplest example is adding a widget to the namespace:

from kivy.uix.behaviors.knspace import knspace
widget = Widget()
knspace.my_widget = widget

This adds a kivy ObjectProperty with rebind=True
and allownone=True to the knspace namespace with a property name
my_widget. And the property now also points to this widget.

This can be done automatically with:

class MyWidget(KNSpaceBehavior, Widget):
 pass

widget = MyWidget(knsname='my_widget')

Or in kv:

<MyWidget@KNSpaceBehavior+Widget>

MyWidget:
 knsname: 'my_widget'

Now, knspace.my_widget will point to that widget.

When one creates a second widget with the same name, the namespace will
also change to point to the new widget. E.g.:

widget = MyWidget(knsname='my_widget')
knspace.my_widget now points to widget
widget2 = MyWidget(knsname='my_widget')
knspace.my_widget now points to widget2

Setting the namespace

One can also create ones own namespace rather than using the default
knspace by directly setting KNSpaceBehavior.knspace:

class MyWidget(KNSpaceBehavior, Widget):
 pass

widget = MyWidget(knsname='my_widget')
my_new_namespace = KNSpace()
widget.knspace = my_new_namespace

Initially, my_widget is added to the default namespace, but when the widget’s
namespace is changed to my_new_namespace, the reference to my_widget is
moved to that namespace. We could have also of course first set the namespace
to my_new_namespace and then have named the widget my_widget, thereby
avoiding the initial assignment to the default namespace.

Similarly, in kv:

<MyWidget@KNSpaceBehavior+Widget>

MyWidget:
 knspace: KNSpace()
 knsname: 'my_widget'

Inheriting the namespace

In the previous example, we directly set the namespace we wished to use.
In the following example, we inherit it from the parent, so we only have to set
it once:

<MyWidget@KNSpaceBehavior+Widget>
<MyLabel@KNSpaceBehavior+Label>

<MyComplexWidget@MyWidget>:
 knsname: 'my_complex'
 MyLabel:
 knsname: 'label1'
 MyLabel:
 knsname: 'label2'

Then, we do:

widget = MyComplexWidget()
new_knspace = KNSpace()
widget.knspace = new_knspace

The rule is that if no knspace has been assigned to a widget, it looks for a
namespace in its parent and parent’s parent and so on until it find one to
use. If none are found, it uses the default knspace.

When MyComplexWidget is created, it still used the default namespace.
However, when we assigned the root widget its new namespace, all its
children switched to using that new namespace as well. So new_knspace now
contains label1 and label2 as well as my_complex.

If we had first done:

widget = MyComplexWidget()
new_knspace = KNSpace()
knspace.label1.knspace = knspace
widget.knspace = new_knspace

Then label1 would remain stored in the default knspace since it was
directly set, but label2 and my_complex would still be added to the new
namespace.

One can customize the attribute used to search the parent tree by changing
KNSpaceBehavior.knspace_key. If the desired knspace is not reachable
through a widgets parent tree, e.g. in a popup that is not a widget’s child,
KNSpaceBehavior.knspace_key can be used to establish a different
search order.

Accessing the namespace

As seen in the previous example, if not directly assigned, the namespace is
found by searching the parent tree. Consequently, if a namespace was assigned
further up the parent tree, all its children and below could access that
namespace through their KNSpaceBehavior.knspace property.

This allows the creation of multiple widgets with identically given names
if each root widget instance is assigned a new namespace. For example:

<MyComplexWidget@KNSpaceBehavior+Widget>:
 Label:
 text: root.knspace.pretty.text if root.knspace.pretty else ''

<MyPrettyWidget@KNSpaceBehavior+TextInput>:
 knsname: 'pretty'
 text: 'Hello'

<MyCompositeWidget@KNSpaceBehavior+BoxLayout>:
 MyComplexWidget
 MyPrettyWidget

Now, when we do:

knspace1, knspace2 = KNSpace(), KNSpace()
composite1 = MyCompositeWidget()
composite1.knspace = knspace1

composite2 = MyCompositeWidget()
composite2.knspace = knspace2

knspace1.pretty = "Here's the ladder, now fix the roof!"
knspace2.pretty = "Get that raccoon off me!"

Because each of the MyCompositeWidget instances have a different namespace
their children also use different namespaces. Consequently, the
pretty and complex widgets of each instance will have different text.

Further, because both the namespace ObjectProperty
references, and KNSpaceBehavior.knspace have rebind=True, the
text of the MyComplexWidget label is rebound to match the text of
MyPrettyWidget when either the root’s namespace changes or when the
root.knspace.pretty property changes, as expected.

Forking a namespace

Forking a namespace provides the opportunity to create a new namespace
from a parent namespace so that the forked namespace will contain everything
in the origin namespace, but the origin namespace will not have access to
anything added to the forked namespace.

For example:

child = knspace.fork()
grandchild = child.fork()

child.label = Label()
grandchild.button = Button()

Now label is accessible by both child and grandchild, but not by knspace. And
button is only accessible by the grandchild but not by the child or by knspace.
Finally, doing grandchild.label = Label() will leave grandchild.label
and child.label pointing to different labels.

A motivating example is the example from above:

<MyComplexWidget@KNSpaceBehavior+Widget>:
 Label:
 text: root.knspace.pretty.text if root.knspace.pretty else ''

<MyPrettyWidget@KNSpaceBehavior+TextInput>:
 knsname: 'pretty'
 text: 'Hello'

<MyCompositeWidget@KNSpaceBehavior+BoxLayout>:
 knspace: 'fork'
 MyComplexWidget
 MyPrettyWidget

Notice the addition of knspace: ‘fork’. This is identical to doing
knspace: self.knspace.fork(). However, doing that would lead to infinite
recursion as that kv rule would be executed recursively because self.knspace
will keep on changing. However, allowing knspace: ‘fork’ cirumvents that.
See KNSpaceBehavior.knspace.

Now, having forked, we just need to do:

composite1 = MyCompositeWidget()
composite2 = MyCompositeWidget()

composite1.knspace.pretty = "Here's the ladder, now fix the roof!"
composite2.knspace.pretty = "Get that raccoon off me!"

Since by forking we automatically created a unique namespace for each
MyCompositeWidget instance.

	
class kivy.uix.behaviors.knspace.KNSpace(parent=None, keep_ref=False, **kwargs)

	Bases: kivy.event.EventDispatcher

Each KNSpace instance is a namespace that stores the named Kivy
objects associated with this namespace. Each named object is
stored as the value of a Kivy ObjectProperty of
this instance whose property name is the object’s given name. Both rebind
and allownone are set to True for the property.

See KNSpaceBehavior.knspace for details on how a namespace is
associated with a named object.

When storing an object in the namespace, the object’s proxy_ref is
stored if the object has such an attribute.

	Parameters:

	
	parent: (internal) A KNSpace instance or None.
	If specified, it’s a parent namespace, in which case, the current
namespace will have in its namespace all its named objects
as well as the named objects of its parent and parent’s parent
etc. See fork() for more details.

	
fork()

	Returns a new KNSpace instance which will have access to
all the named objects in the current namespace but will also have a
namespace of its own that is unique to it.

For example:

forked_knspace1 = knspace.fork()
forked_knspace2 = knspace.fork()

Now, any names added to knspace will be accessible by the
forked_knspace1 and forked_knspace2 namespaces by the normal means.
However, any names added to forked_knspace1 will not be accessible
from knspace or forked_knspace2. Similar for forked_knspace2.

	
keep_ref = False

	Whether a direct reference should be kept to the stored objects.
If True, we use the direct object, otherwise we use
proxy_ref when present.

Defaults to False.

	
parent = None

	(internal) The parent namespace instance, KNSpace, or None. See
fork().

	
property(self, name, quiet=False)

	Get a property instance from the property name. If quiet is True,
None is returned instead of raising an exception when name is not a
property. Defaults to False.

New in version 1.0.9.

	Returns:

	A Property derived instance
corresponding to the name.

Changed in version 1.9.0: quiet was added.

	
class kivy.uix.behaviors.knspace.KNSpaceBehavior(knspace=None, **kwargs)

	Bases: builtins.object

Inheriting from this class allows naming of the inherited objects, which
are then added to the associated namespace knspace and accessible
through it.

Please see the knspace behaviors module
documentation for more information.

	
knsname

	The name given to this instance. If named, the name will be added to the
associated knspace namespace, which will then point to the
proxy_ref of this instance.

When named, one can access this object by e.g. self.knspace.name, where
name is the given name of this instance. See knspace and the
module description for more details.

	
knspace

	The namespace instance, KNSpace, associated with this widget.
The knspace namespace stores this widget when naming this widget
with knsname.

If the namespace has been set with a KNSpace instance, e.g. with
self.knspace = KNSpace(), then that instance is returned (setting with
None doesn’t count). Otherwise, if knspace_key is not None, we
look for a namespace to use in the object that is stored in the property
named knspace_key, of this instance. I.e.
object = getattr(self, self.knspace_key).

If that object has a knspace property, then we return its value. Otherwise,
we go further up, e.g. with getattr(object, self.knspace_key) and look
for its knspace property.

Finally, if we reach a value of None, or knspace_key was None,
the default knspace namespace is
returned.

If knspace is set to the string ‘fork’, the current namespace
in knspace will be forked with KNSpace.fork() and the
resulting namespace will be assigned to this instance’s knspace.
See the module examples for a motivating example.

Both rebind and allownone are True.

	
knspace_key

	The name of the property of this instance, to use to search upwards for
a namespace to use by this instance. Defaults to ‘parent’ so that we’ll
search the parent tree. See knspace.

When None, we won’t search the parent tree for the namespace.
allownone is True.

	
kivy.uix.behaviors.knspace.knspace = <kivy.uix.behaviors.knspace.KNSpace object>

	The default KNSpace namespace. See KNSpaceBehavior.knspace
for more details.

ToggleButton Behavior

The ToggleButtonBehavior
mixin [https://en.wikipedia.org/wiki/Mixin] class provides
ToggleButton behavior. You can combine this
class with other widgets, such as an Image, to provide
alternative togglebuttons that preserve Kivy togglebutton behavior.

For an overview of behaviors, please refer to the behaviors
documentation.

Example

The following example adds togglebutton behavior to an image to make a checkbox
that behaves like a togglebutton:

from kivy.app import App
from kivy.uix.image import Image
from kivy.uix.behaviors import ToggleButtonBehavior

class MyButton(ToggleButtonBehavior, Image):
 def __init__(self, **kwargs):
 super(MyButton, self).__init__(**kwargs)
 self.source = 'atlas://data/images/defaulttheme/checkbox_off'

 def on_state(self, widget, value):
 if value == 'down':
 self.source = 'atlas://data/images/defaulttheme/checkbox_on'
 else:
 self.source = 'atlas://data/images/defaulttheme/checkbox_off'

class SampleApp(App):
 def build(self):
 return MyButton()

SampleApp().run()

	
class kivy.uix.behaviors.togglebutton.ToggleButtonBehavior(**kwargs)

	Bases: kivy.uix.behaviors.button.ButtonBehavior

This mixin [https://en.wikipedia.org/wiki/Mixin] class provides
togglebutton behavior. Please see the
togglebutton behaviors module
documentation for more information.

New in version 1.8.0.

	
allow_no_selection

	This specifies whether the widgets in a group allow no selection i.e.
everything to be deselected.

New in version 1.9.0.

allow_no_selection is a BooleanProperty and defaults to
True

	
static get_widgets(groupname)

	Return a list of the widgets contained in a specific group. If the
group doesn’t exist, an empty list will be returned.

Note

Always release the result of this method! Holding a reference to
any of these widgets can prevent them from being garbage collected.
If in doubt, do:

l = ToggleButtonBehavior.get_widgets('mygroup')
do your job
del l

Warning

It’s possible that some widgets that you have previously
deleted are still in the list. The garbage collector might need
to release other objects before flushing them.

	
group

	Group of the button. If None, no group will be used (the button will be
independent). If specified, group must be a hashable object, like
a string. Only one button in a group can be in a ‘down’ state.

group is a ObjectProperty and defaults to
None.

Touch Ripple

New in version 1.10.1.

Warning

This code is still experimental, and its API is subject to change in a
future version.

This module contains mixin [https://en.wikipedia.org/wiki/Mixin] classes
to add a touch ripple visual effect known from Google Material Design
<https://en.wikipedia.org/wiki/Material_Design>_ to widgets.

For an overview of behaviors, please refer to the behaviors
documentation.

The class TouchRippleBehavior provides
rendering the ripple animation.

The class TouchRippleButtonBehavior
basically provides the same functionality as
ButtonBehavior but rendering the ripple
animation instead of default press/release visualization.

	
class kivy.uix.behaviors.touchripple.TouchRippleBehavior(**kwargs)

	Bases: builtins.object

Touch ripple behavior.

Supposed to be used as mixin on widget classes.

Ripple behavior does not trigger automatically, concrete implementation
needs to call ripple_show() respective ripple_fade() manually.

Example

Here we create a Label which renders the touch ripple animation on
interaction:

class RippleLabel(TouchRippleBehavior, Label):

 def __init__(self, **kwargs):
 super(RippleLabel, self).__init__(**kwargs)

 def on_touch_down(self, touch):
 collide_point = self.collide_point(touch.x, touch.y)
 if collide_point:
 touch.grab(self)
 self.ripple_show(touch)
 return True
 return False

 def on_touch_up(self, touch):
 if touch.grab_current is self:
 touch.ungrab(self)
 self.ripple_fade()
 return True
 return False

	
ripple_duration_in

	Animation duration taken to show the overlay.

ripple_duration_in is a NumericProperty
and defaults to 0.5.

	
ripple_duration_out

	Animation duration taken to fade the overlay.

ripple_duration_out is a NumericProperty
and defaults to 0.2.

	
ripple_fade()

	Finish ripple animation on current widget.

	
ripple_fade_from_alpha

	Alpha channel for ripple color the animation starts with.

ripple_fade_from_alpha is a
NumericProperty and defaults to 0.5.

	
ripple_fade_to_alpha

	Alpha channel for ripple color the animation targets to.

ripple_fade_to_alpha is a NumericProperty
and defaults to 0.8.

	
ripple_func_in

	Animation callback for showing the overlay.

ripple_func_in is a StringProperty
and defaults to in_cubic.

	
ripple_func_out

	Animation callback for hiding the overlay.

ripple_func_out is a StringProperty
and defaults to out_quad.

	
ripple_rad_default

	Default radius the animation starts from.

ripple_rad_default is a NumericProperty
and defaults to 10.

	
ripple_scale

	Max scale of the animation overlay calculated from max(width/height) of
the decorated widget.

ripple_scale is a NumericProperty
and defaults to 2.0.

	
ripple_show(touch)

	Begin ripple animation on current widget.

Expects touch event as argument.

	
class kivy.uix.behaviors.touchripple.TouchRippleButtonBehavior(**kwargs)

	Bases: kivy.uix.behaviors.touchripple.TouchRippleBehavior

This mixin [https://en.wikipedia.org/wiki/Mixin] class provides
a similar behavior to ButtonBehavior
but provides touch ripple animation instead of button pressed/released as
visual effect.

	Events:

	
	on_press
	Fired when the button is pressed.

	on_release
	Fired when the button is released (i.e. the touch/click that
pressed the button goes away).

	
always_release

	This determines whether or not the widget fires an on_release event if
the touch_up is outside the widget.

always_release is a BooleanProperty and
defaults to False.

	
last_touch

	Contains the last relevant touch received by the Button. This can
be used in on_press or on_release in order to know which touch
dispatched the event.

last_touch is a ObjectProperty and
defaults to None.

Box Layout

[image: _images/boxlayout.gif]
BoxLayout arranges children in a vertical or horizontal box.

To position widgets above/below each other, use a vertical BoxLayout:

layout = BoxLayout(orientation='vertical')
btn1 = Button(text='Hello')
btn2 = Button(text='World')
layout.add_widget(btn1)
layout.add_widget(btn2)

To position widgets next to each other, use a horizontal BoxLayout. In this
example, we use 10 pixel spacing between children; the first button covers
70% of the horizontal space, the second covers 30%:

layout = BoxLayout(spacing=10)
btn1 = Button(text='Hello', size_hint=(.7, 1))
btn2 = Button(text='World', size_hint=(.3, 1))
layout.add_widget(btn1)
layout.add_widget(btn2)

Position hints are partially working, depending on the orientation:

	If the orientation is vertical: x, right and center_x will be used.

	If the orientation is horizontal: y, top and center_y will be used.

Kv Example:

BoxLayout:
 orientation: 'vertical'
 Label:
 text: 'this on top'
 Label:
 text: 'this right aligned'
 size_hint_x: None
 size: self.texture_size
 pos_hint: {'right': 1}
 Label:
 text: 'this on bottom'

You can check the examples/widgets/boxlayout_poshint.py for a live example.

Note

The size_hint uses the available space after subtracting all the
fixed-size widgets. For example, if you have a layout that is 800px
wide, and add three buttons like this:

btn1 = Button(text='Hello', size=(200, 100), size_hint=(None, None))
btn2 = Button(text='Kivy', size_hint=(.5, 1))
btn3 = Button(text='World', size_hint=(.5, 1))

The first button will be 200px wide as specified, the second and third
will be 300px each, e.g. (800-200) * 0.5

Changed in version 1.4.1: Added support for pos_hint.

	
class kivy.uix.boxlayout.BoxLayout(**kwargs)

	Bases: kivy.uix.layout.Layout

Box layout class. See module documentation for more information.

	
add_widget(widget, *args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
do_layout(*largs)

	This function is called when a layout is called by a trigger.
If you are writing a new Layout subclass, don’t call this function
directly but use _trigger_layout() instead.

The function is by default called before the next frame, therefore
the layout isn’t updated immediately. Anything depending on the
positions of e.g. children should be scheduled for the next frame.

New in version 1.0.8.

	
minimum_height

	Automatically computed minimum height needed to contain all children.

New in version 1.10.0.

minimum_height is a NumericProperty and
defaults to 0. It is read only.

	
minimum_size

	Automatically computed minimum size needed to contain all children.

New in version 1.10.0.

minimum_size is a
ReferenceListProperty of
(minimum_width, minimum_height) properties. It is read
only.

	
minimum_width

	Automatically computed minimum width needed to contain all children.

New in version 1.10.0.

minimum_width is a NumericProperty and
defaults to 0. It is read only.

	
orientation

	Orientation of the layout.

orientation is an OptionProperty and
defaults to ‘horizontal’. Can be ‘vertical’ or ‘horizontal’.

	
padding

	Padding between layout box and children: [padding_left, padding_top,
padding_right, padding_bottom].

padding also accepts a two argument form [padding_horizontal,
padding_vertical] and a one argument form [padding].

Changed in version 1.7.0: Replaced NumericProperty with VariableListProperty.

padding is a VariableListProperty and
defaults to [0, 0, 0, 0].

	
remove_widget(widget, *args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
spacing

	Spacing between children, in pixels.

spacing is a NumericProperty and defaults
to 0.

Bubble

New in version 1.1.0.

[image: _images/bubble.jpg]
The Bubble widget is a form of menu or a small popup with an arrow
arranged on one side of it’s content.

The Bubble contains an arrow attached to the content
(e.g., BubbleContent) pointing in the direction you choose. It can
be placed either at a predefined location or flexibly by specifying a relative
position on the border of the widget.

The BubbleContent is a styled BoxLayout and is thought to be added to
the Bubble as a child widget. The Bubble will then arrange
an arrow around the content as desired. Instead of the class:BubbleContent,
you can theoretically use any other Widget as well as long as it
supports the ‘bind’ and ‘unbind’ function of the EventDispatcher and
is compatible with Kivy to be placed inside a BoxLayout.

The BubbleButton`is a styled Button. It suits to the style of
:class:`Bubble and BubbleContent. Feel free to place other Widgets
inside the ‘content’ of the Bubble.

Changed in version 2.2.0.

The properties background_image, background_color,
border and border_auto_scale were removed from Bubble.
These properties had only been used by the content widget that now uses it’s
own properties instead. The color of the arrow is now changed with
arrow_color instead of background_color.
These changes makes the Bubble transparent to use with other layouts
as content without any side-effects due to property inheritance.

The property flex_arrow_pos has been added to allow further
customization of the arrow positioning.

The properties arrow_margin, arrow_margin_x,
arrow_margin_y, content_size, content_width and
content_height have been added to ease proper sizing of a
Bubble e.g., based on it’s content size.

BubbleContent

The BubbleContent is a styled BoxLayout that can be used to
add e.g., BubbleButtons as menu items.

Changed in version 2.2.0.

The properties background_image, background_color,
border and border_auto_scale were added to the
BubbleContent. The BubbleContent does no longer rely on these
properties being present in the parent class.

BubbleButton

The BubbleButton is a styled Button that can be used to be
added to the BubbleContent.

Simple example

'''
Bubble
======

Test of the widget Bubble.
'''

from kivy.app import App
from kivy.uix.floatlayout import FloatLayout
from kivy.uix.button import Button
from kivy.lang import Builder
from kivy.uix.bubble import Bubble

Builder.load_string('''
<cut_copy_paste>
 size_hint: (None, None)
 size: (160, 120)
 pos_hint: {'center_x': .5, 'y': .6}
 BubbleContent:
 BubbleButton:
 text: 'Cut'
 size_hint_y: 1
 BubbleButton:
 text: 'Copy'
 size_hint_y: 1
 BubbleButton:
 text: 'Paste'
 size_hint_y: 1
''')

class cut_copy_paste(Bubble):
 pass

class BubbleShowcase(FloatLayout):

 def __init__(self, **kwargs):
 super(BubbleShowcase, self).__init__(**kwargs)
 self.but_bubble = Button(text='Press to show bubble')
 self.but_bubble.bind(on_release=self.show_bubble)
 self.add_widget(self.but_bubble)

 def show_bubble(self, *l):
 if not hasattr(self, 'bubb'):
 self.bubb = bubb = cut_copy_paste()
 self.add_widget(bubb)
 else:
 values = ('left_top', 'left_mid', 'left_bottom', 'top_left',
 'top_mid', 'top_right', 'right_top', 'right_mid',
 'right_bottom', 'bottom_left', 'bottom_mid', 'bottom_right')
 index = values.index(self.bubb.arrow_pos)
 self.bubb.arrow_pos = values[(index + 1) % len(values)]

class TestBubbleApp(App):

 def build(self):
 return BubbleShowcase()

if __name__ == '__main__':
 TestBubbleApp().run()

Customize the Bubble

You can choose the direction in which the arrow points:

Bubble(arrow_pos='top_mid')
or
Bubble(size=(200, 40), flex_arrow_pos=(175, 40))

Similarly, the corresponding properties in the '.kv' language can be used
as well.

You can change the appearance of the bubble:

Bubble(
 arrow_image='/path/to/arrow/image',
 arrow_color=(1, 0, 0, .5)),
)
BubbleContent(
 background_image='/path/to/background/image',
 background_color=(1, 0, 0, .5), # 50% translucent red
 border=(0,0,0,0),
)

Similarly, the corresponding properties in the '.kv' language can be used
as well.

	
class kivy.uix.bubble.Bubble(**kwargs)

	Bases: kivy.uix.boxlayout.BoxLayout

Bubble class. See module documentation for more information.

	
add_widget(widget, *args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
arrow_color

	Arrow color, in the format (r, g, b, a). To use it you have to set
arrow_image first.

New in version 2.2.0.

arrow_color is a ColorProperty and
defaults to [1, 1, 1, 1].

	
arrow_image

	Image of the arrow pointing to the bubble.

arrow_image is a StringProperty and
defaults to ‘atlas://data/images/defaulttheme/bubble_arrow’.

	
arrow_margin

	Automatically computed margin that the arrow widget occupies in
x and y direction in pixel.

Check the description of arrow_margin_x and arrow_margin_y.

New in version 2.2.0.

arrow_margin is a ReferenceListProperty
of (arrow_margin_x, arrow_margin_y) properties.
It is read only.

	
arrow_margin_x

	Automatically computed margin in x direction that the arrow widget
occupies in pixel.

In combination with the content_width, this property can be used
to determine the correct width of the Bubble to exactly enclose the
arrow + content by adding content_width and arrow_margin_x

New in version 2.2.0.

arrow_margin_x is a NumericProperty and
represents the added margin in x direction due to the arrow widget.
It defaults to 0 and is read only.

	
arrow_margin_y

	Automatically computed margin in y direction that the arrow widget
occupies in pixel.

In combination with the content_height, this property can be used
to determine the correct height of the Bubble to exactly enclose the
arrow + content by adding content_height and arrow_margin_y

New in version 2.2.0.

arrow_margin_y is a NumericProperty and
represents the added margin in y direction due to the arrow widget.
It defaults to 0 and is read only.

	
arrow_pos

	Specifies the position of the arrow as predefined relative position to
the bubble.
Can be one of: left_top, left_mid, left_bottom top_left, top_mid, top_right
right_top, right_mid, right_bottom bottom_left, bottom_mid, bottom_right.

arrow_pos is a OptionProperty and
defaults to ‘bottom_mid’.

	
content

	This is the object where the main content of the bubble is held.

The content of the Bubble set by ‘add_widget’ and removed with
‘remove_widget’ similarly to the ActionView which is placed into
a class:ActionBar

content is a ObjectProperty and defaults
to None.

	
content_height

	The height of the content Widget.

New in version 2.2.0.

content_height is a NumericProperty and
is the same as self.content.height if content is not None, else it defaults
to 0. It is read only.

	
content_size

	The size of the content Widget.

New in version 2.2.0.

content_size is a ReferenceListProperty
of (content_width, content_height) properties.
It is read only.

	
content_width

	The width of the content Widget.

New in version 2.2.0.

content_width is a NumericProperty and
is the same as self.content.width if content is not None, else it defaults
to 0. It is read only.

	
flex_arrow_pos

	Specifies the position of the arrow as flex coordinate around the
border of the Bubble Widget.
If this property is set to a proper position (relative pixel coordinates
within the Bubble widget, it overwrites the setting
arrow_pos.

New in version 2.2.0.

flex_arrow_pos is a ListProperty and
defaults to None.

	
limit_to

	Specifies the widget to which the bubbles position is restricted.

New in version 1.6.0.

limit_to is a ObjectProperty and defaults
to ‘None’.

	
remove_widget(widget, *args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
show_arrow

	Indicates whether to show arrow.

New in version 1.8.0.

show_arrow is a BooleanProperty and
defaults to True.

	
class kivy.uix.bubble.BubbleButton(**kwargs)

	Bases: kivy.uix.button.Button

A button intended for use in a BubbleContent widget.
You can use a “normal” button class, but it will not look good unless the
background is changed.

Rather use this BubbleButton widget that is already defined and provides a
suitable background for you.

	
class kivy.uix.bubble.BubbleContent(**kwargs)

	Bases: kivy.uix.boxlayout.BoxLayout

A styled BoxLayout that can be used as the content widget of a Bubble.

Changed in version 2.2.0.

The graphical appearance of BubbleContent is now based on it’s
own properties background_image, background_color,
border and border_auto_scale. The parent widget properties
are no longer considered. This makes the BubbleContent a standalone themed
BoxLayout.

	
background_color

	Background color, in the format (r, g, b, a). To use it you have to set
background_image first.

New in version 2.2.0.

background_color is a ColorProperty and
defaults to [1, 1, 1, 1].

	
background_image

	Background image of the bubble.

New in version 2.2.0.

background_image is a StringProperty and
defaults to ‘atlas://data/images/defaulttheme/bubble’.

	
border

	Border used for BorderImage
graphics instruction. Used with the background_image.
It should be used when using custom backgrounds.

It must be a list of 4 values: (bottom, right, top, left). Read the
BorderImage instructions for more information about how to use it.

New in version 2.2.0.

border is a ListProperty and defaults to
(16, 16, 16, 16)

	
border_auto_scale

	Specifies the kivy.graphics.BorderImage.auto_scale
value on the background BorderImage.

New in version 2.2.0.

border_auto_scale is a
OptionProperty and defaults to
‘both_lower’.

Button

[image: _images/button.jpg]
The Button is a Label with associated actions
that are triggered when the button is pressed (or released after a
click/touch). To configure the button, the same properties (padding,
font_size, etc) and
sizing system
are used as for the Label class:

button = Button(text='Hello world', font_size=14)

To attach a callback when the button is pressed (clicked/touched), use
bind:

def callback(instance):
 print('The button <%s> is being pressed' % instance.text)

btn1 = Button(text='Hello world 1')
btn1.bind(on_press=callback)
btn2 = Button(text='Hello world 2')
btn2.bind(on_press=callback)

If you want to be notified every time the button state changes, you can bind
to the Button.state property:

def callback(instance, value):
 print('My button <%s> state is <%s>' % (instance, value))
btn1 = Button(text='Hello world 1')
btn1.bind(state=callback)

Kv Example:

Button:
 text: 'press me'
 on_press: print("ouch! More gently please")
 on_release: print("ahhh")
 on_state:
 print("my current state is {}".format(self.state))

	
class kivy.uix.button.Button(**kwargs)

	Bases: kivy.uix.behaviors.button.ButtonBehavior, kivy.uix.label.Label

Button class, see module documentation for more information.

Changed in version 1.8.0: The behavior / logic of the button has been moved to
ButtonBehaviors.

	
background_color

	Background color, in the format (r, g, b, a).

This acts as a multiplier to the texture colour. The default
texture is grey, so just setting the background color will give
a darker result. To set a plain color, set the
background_normal to ''.

New in version 1.0.8.

The background_color is a
ColorProperty and defaults to [1, 1, 1, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
background_disabled_down

	Background image of the button used for the default graphical
representation when the button is disabled and pressed.

New in version 1.8.0.

background_disabled_down is a
StringProperty and defaults to
‘atlas://data/images/defaulttheme/button_disabled_pressed’.

	
background_disabled_normal

	Background image of the button used for the default graphical
representation when the button is disabled and not pressed.

New in version 1.8.0.

background_disabled_normal is a
StringProperty and defaults to
‘atlas://data/images/defaulttheme/button_disabled’.

	
background_down

	Background image of the button used for the default graphical
representation when the button is pressed.

New in version 1.0.4.

background_down is a StringProperty and
defaults to ‘atlas://data/images/defaulttheme/button_pressed’.

	
background_normal

	Background image of the button used for the default graphical
representation when the button is not pressed.

New in version 1.0.4.

background_normal is a StringProperty
and defaults to ‘atlas://data/images/defaulttheme/button’.

	
border

	Border used for BorderImage
graphics instruction. Used with background_normal and
background_down. Can be used for custom backgrounds.

It must be a list of four values: (bottom, right, top, left). Read the
BorderImage instruction for more information about how to use it.

border is a ListProperty and defaults to
(16, 16, 16, 16)

Camera

The Camera widget is used to capture and display video from a camera.
Once the widget is created, the texture inside the widget will be automatically
updated. Our CameraBase implementation is used under
the hood:

cam = Camera()

By default, the first camera found on your system is used. To use a different
camera, set the index property:

cam = Camera(index=1)

You can also select the camera resolution:

cam = Camera(resolution=(320, 240))

Warning

The camera texture is not updated as soon as you have created the object.
The camera initialization is asynchronous, so there may be a delay before
the requested texture is created.

	
class kivy.uix.camera.Camera(**kwargs)

	Bases: kivy.uix.image.Image

Camera class. See module documentation for more information.

	
index

	Index of the used camera, starting from 0.

index is a NumericProperty and defaults
to -1 to allow auto selection.

	
play

	Boolean indicating whether the camera is playing or not.
You can start/stop the camera by setting this property:

start the camera playing at creation
cam = Camera(play=True)

create the camera, and start later (default)
cam = Camera(play=False)
and later
cam.play = True

play is a BooleanProperty and defaults to
False.

	
resolution

	Preferred resolution to use when invoking the camera. If you are using
[-1, -1], the resolution will be the default one:

create a camera object with the best image available
cam = Camera()

create a camera object with an image of 320x240 if possible
cam = Camera(resolution=(320, 240))

Warning

Depending on the implementation, the camera may not respect this
property.

resolution is a ListProperty and defaults
to [-1, -1].

Carousel

[image: _images/carousel.gif]

New in version 1.4.0.

The Carousel widget provides the classic mobile-friendly carousel view
where you can swipe between slides.
You can add any content to the carousel and have it move horizontally or
vertically. The carousel can display pages in a sequence or a loop.

Example:

from kivy.app import App
from kivy.uix.carousel import Carousel
from kivy.uix.image import AsyncImage

class CarouselApp(App):
 def build(self):
 carousel = Carousel(direction='right')
 for i in range(10):
 src = "http://placehold.it/480x270.png&text=slide-%d&.png" % i
 image = AsyncImage(source=src, fit_mode="contain")
 carousel.add_widget(image)
 return carousel

CarouselApp().run()

Kv Example:

Carousel:
 direction: 'right'
 AsyncImage:
 source: 'http://placehold.it/480x270.png&text=slide-1.png'
 AsyncImage:
 source: 'http://placehold.it/480x270.png&text=slide-2.png'
 AsyncImage:
 source: 'http://placehold.it/480x270.png&text=slide-3.png'
 AsyncImage:
 source: 'http://placehold.it/480x270.png&text=slide-4.png'

Changed in version 1.5.0: The carousel now supports active children, like the
ScrollView. It will detect a swipe gesture
according to the Carousel.scroll_timeout and
Carousel.scroll_distance properties.

In addition, the slide container is no longer exposed by the API.
The impacted properties are
Carousel.slides, Carousel.current_slide,
Carousel.previous_slide and Carousel.next_slide.

	
class kivy.uix.carousel.Carousel(**kwargs)

	Bases: kivy.uix.stencilview.StencilView

Carousel class. See module documentation for more information.

	
add_widget(widget, index=0, *args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
anim_cancel_duration

	Defines the duration of the animation when a swipe movement is not
accepted. This is generally when the user does not make a large enough
swipe. See min_move.

anim_cancel_duration is a NumericProperty
and defaults to 0.3.

	
anim_move_duration

	Defines the duration of the Carousel animation between pages.

anim_move_duration is a NumericProperty
and defaults to 0.5.

	
anim_type

	Type of animation to use while animating to the next/previous slide.
This should be the name of an
AnimationTransition function.

anim_type is a StringProperty and
defaults to ‘out_quad’.

New in version 1.8.0.

	
clear_widgets(children=None, *args, **kwargs)

	Remove all (or the specified) children of this widget.
If the ‘children’ argument is specified, it should be a list (or
filtered list) of children of the current widget.

Changed in version 1.8.0: The children argument can be used to specify the children you
want to remove.

Changed in version 2.1.0: Specifying an empty children list leaves the widgets unchanged.
Previously it was treated like None and all children were
removed.

	
current_slide

	The currently shown slide.

current_slide is an AliasProperty.

Changed in version 1.5.0: The property no longer exposes the slides container. It returns
the widget you have added.

	
direction

	Specifies the direction in which the slides are ordered. This
corresponds to the direction from which the user swipes to go from one
slide to the next. It
can be right, left, top, or bottom. For example, with
the default value of right, the second slide is to the right
of the first and the user would swipe from the right towards the
left to get to the second slide.

direction is an OptionProperty and
defaults to ‘right’.

	
ignore_perpendicular_swipes

	Ignore swipes on axis perpendicular to direction.

ignore_perpendicular_swipes is a
BooleanProperty and defaults to False.

New in version 1.10.0.

	
index

	Get/Set the current slide based on the index.

index is an AliasProperty and defaults
to 0 (the first item).

	
load_next(mode='next')

	Animate to the next slide.

New in version 1.7.0.

	
load_previous()

	Animate to the previous slide.

New in version 1.7.0.

	
load_slide(slide)

	Animate to the slide that is passed as the argument.

Changed in version 1.8.0.

	
loop

	Allow the Carousel to loop infinitely. If True, when the user tries to
swipe beyond last page, it will return to the first. If False, it will
remain on the last page.

loop is a BooleanProperty and
defaults to False.

	
min_move

	Defines the minimum distance to be covered before the touch is
considered a swipe gesture and the Carousel content changed.
This is a expressed as a fraction of the Carousel’s width.
If the movement doesn’t reach this minimum value, the movement is
cancelled and the content is restored to its original position.

min_move is a NumericProperty and
defaults to 0.2.

	
next_slide

	The next slide in the Carousel. It is None if the current slide is
the last slide in the Carousel. This ordering reflects the order in which
the slides are added: their presentation varies according to the
direction property.

next_slide is an AliasProperty.

Changed in version 1.5.0: The property no longer exposes the slides container.
It returns the widget you have added.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_move(touch)

	Receive a touch move event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
previous_slide

	The previous slide in the Carousel. It is None if the current slide is
the first slide in the Carousel. This ordering reflects the order in which
the slides are added: their presentation varies according to the
direction property.

previous_slide is an AliasProperty.

Changed in version 1.5.0: This property no longer exposes the slides container. It returns
the widget you have added.

	
remove_widget(widget, *args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
scroll_distance

	Distance to move before scrolling the Carousel in pixels. As
soon as the distance has been traveled, the Carousel will start
to scroll, and no touch event will go to children.
It is advisable that you base this value on the dpi of your target device’s
screen.

scroll_distance is a NumericProperty and
defaults to 20dp.

New in version 1.5.0.

	
scroll_timeout

	Timeout allowed to trigger the scroll_distance, in milliseconds.
If the user has not moved scroll_distance within the timeout,
no scrolling will occur and the touch event will go to the children.

scroll_timeout is a NumericProperty and
defaults to 200 (milliseconds)

New in version 1.5.0.

	
slides

	List of slides inside the Carousel. The slides are the
widgets added to the Carousel using the add_widget method.

slides is a ListProperty and is
read-only.

CheckBox

New in version 1.4.0.

[image: _images/checkbox.png]
CheckBox is a specific two-state button that can be either checked or
unchecked. If the CheckBox is in a Group, it becomes a Radio button.
As with the ToggleButton, only one Radio button
at a time can be selected when the CheckBox.group is set.

An example usage:

from kivy.uix.checkbox import CheckBox

...

def on_checkbox_active(checkbox, value):
 if value:
 print('The checkbox', checkbox, 'is active')
 else:
 print('The checkbox', checkbox, 'is inactive')

checkbox = CheckBox()
checkbox.bind(active=on_checkbox_active)

	
class kivy.uix.checkbox.CheckBox(**kwargs)

	Bases: kivy.uix.behaviors.togglebutton.ToggleButtonBehavior, kivy.uix.widget.Widget

CheckBox class, see module documentation for more information.

	
active

	Indicates if the switch is active or inactive.

active is a boolean and reflects and sets whether the underlying
state is ‘down’ (True) or ‘normal’ (False).
It is a AliasProperty, which accepts boolean
values and defaults to False.

Changed in version 1.11.0: It changed from a BooleanProperty to a AliasProperty.

	
background_checkbox_disabled_down

	Background image of the checkbox used for the default graphical
representation when the checkbox is disabled and active.

New in version 1.9.0.

background_checkbox_disabled_down is a
StringProperty and defaults to
‘atlas://data/images/defaulttheme/checkbox_disabled_on’.

	
background_checkbox_disabled_normal

	Background image of the checkbox used for the default graphical
representation when the checkbox is disabled and not active.

New in version 1.9.0.

background_checkbox_disabled_normal is a
StringProperty and defaults to
‘atlas://data/images/defaulttheme/checkbox_disabled_off’.

	
background_checkbox_down

	Background image of the checkbox used for the default graphical
representation when the checkbox is active.

New in version 1.9.0.

background_checkbox_down is a
StringProperty and defaults to
‘atlas://data/images/defaulttheme/checkbox_on’.

	
background_checkbox_normal

	Background image of the checkbox used for the default graphical
representation when the checkbox is not active.

New in version 1.9.0.

background_checkbox_normal is a
StringProperty and defaults to
‘atlas://data/images/defaulttheme/checkbox_off’.

	
background_radio_disabled_down

	Background image of the radio button used for the default graphical
representation when the radio button is disabled and active.

New in version 1.9.0.

background_radio_disabled_down is a
StringProperty and defaults to
‘atlas://data/images/defaulttheme/checkbox_radio_disabled_on’.

	
background_radio_disabled_normal

	Background image of the radio button used for the default graphical
representation when the radio button is disabled and not active.

New in version 1.9.0.

background_radio_disabled_normal is a
StringProperty and defaults to
‘atlas://data/images/defaulttheme/checkbox_radio_disabled_off’.

	
background_radio_down

	Background image of the radio button used for the default graphical
representation when the radio button is active.

New in version 1.9.0.

background_radio_down is a
StringProperty and defaults to
‘atlas://data/images/defaulttheme/checkbox_radio_on’.

	
background_radio_normal

	Background image of the radio button used for the default graphical
representation when the radio button is not active.

New in version 1.9.0.

background_radio_normal is a
StringProperty and defaults to
‘atlas://data/images/defaulttheme/checkbox_radio_off’.

	
color

	Color is used for tinting the default graphical representation
of checkbox and radio button (images).

Color is in the format (r, g, b, a).

New in version 1.10.0.

color is a
ColorProperty and defaults to
‘[1, 1, 1, 1]’.

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

Code Input

New in version 1.5.0.

[image: _images/codeinput.jpg]

Note

This widget requires pygments package to run. Install it with pip.

The CodeInput provides a box of editable highlighted text like the one
shown in the image.

It supports all the features provided by the textinput as
well as code highlighting for languages supported by pygments [http://pygments.org/docs/lexers/] along with KivyLexer for
kivy.lang highlighting.

Usage example

To create a CodeInput with highlighting for KV language:

from kivy.uix.codeinput import CodeInput
from kivy.extras.highlight import KivyLexer
codeinput = CodeInput(lexer=KivyLexer())

To create a CodeInput with highlighting for Cython:

from kivy.uix.codeinput import CodeInput
from pygments.lexers import CythonLexer
codeinput = CodeInput(lexer=CythonLexer())

	
class kivy.uix.codeinput.CodeInput(**kwargs)

	Bases: kivy.uix.behaviors.codenavigation.CodeNavigationBehavior, kivy.uix.textinput.TextInput

CodeInput class, used for displaying highlighted code.

	
lexer

	This holds the selected Lexer used by pygments to highlight the code.

lexer is an ObjectProperty and
defaults to PythonLexer.

	
style

	The pygments style object to use for formatting.

When style_name is set, this will be changed to the
corresponding style object.

style is a ObjectProperty and
defaults to None

	
style_name

	Name of the pygments style to use for formatting.

style_name is an OptionProperty
and defaults to 'default'.

Color Picker

New in version 1.7.0.

Warning

This widget is experimental. Its use and API can change at any time until
this warning is removed.

[image: _images/colorpicker.png]
The ColorPicker widget allows a user to select a color from a chromatic
wheel where pinch and zoom can be used to change the wheel’s saturation.
Sliders and TextInputs are also provided for entering the RGBA/HSV/HEX values
directly.

Usage:

clr_picker = ColorPicker()
parent.add_widget(clr_picker)

To monitor changes, we can bind to color property changes
def on_color(instance, value):
 print("RGBA = ", str(value)) # or instance.color
 print("HSV = ", str(instance.hsv))
 print("HEX = ", str(instance.hex_color))

clr_picker.bind(color=on_color)

	
class kivy.uix.colorpicker.ColorPicker(**kwargs)

	Bases: kivy.uix.relativelayout.RelativeLayout

See module documentation.

	
color

	The color holds the color currently selected in rgba format.

color is a ListProperty and defaults to
(1, 1, 1, 1).

	
font_name

	Specifies the font used on the ColorPicker.

font_name is a StringProperty and
defaults to ‘data/fonts/RobotoMono-Regular.ttf’.

	
hex_color

	The hex_color holds the currently selected color in hex.

hex_color is an AliasProperty and
defaults to #ffffffff.

	
hsv

	The hsv holds the color currently selected in hsv format.

hsv is a ListProperty and defaults to
(1, 1, 1).

	
wheel

	The wheel holds the color wheel.

wheel is an ObjectProperty and
defaults to None.

	
class kivy.uix.colorpicker.ColorWheel(**kwargs)

	Bases: kivy.uix.widget.Widget

Chromatic wheel for the ColorPicker.

Changed in version 1.7.1: font_size, font_name and foreground_color have been removed. The
sizing is now the same as others widget, based on ‘sp’. Orientation is
also automatically determined according to the width/height ratio.

	
a

	The Alpha value of the color currently selected.

a is a BoundedNumericProperty and
can be a value from 0 to 1.

	
b

	The Blue value of the color currently selected.

b is a BoundedNumericProperty and
can be a value from 0 to 1.

	
color

	The holds the color currently selected.

color is a ReferenceListProperty and
contains a list of r, g, b, a values.

	
g

	The Green value of the color currently selected.

g is a BoundedNumericProperty
and can be a value from 0 to 1.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_move(touch)

	Receive a touch move event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
r

	The Red value of the color currently selected.

r is a BoundedNumericProperty and
can be a value from 0 to 1. It defaults to 0.

Drop-Down List

[image: _images/dropdown.gif]

New in version 1.4.0.

A versatile drop-down list that can be used with custom widgets. It allows you
to display a list of widgets under a displayed widget. Unlike other toolkits,
the list of widgets can contain any type of widget: simple buttons,
images etc.

The positioning of the drop-down list is fully automatic: we will always try to
place the dropdown list in a way that the user can select an item in the list.

Basic example

A button with a dropdown list of 10 possible values. All the buttons within the
dropdown list will trigger the dropdown DropDown.select() method. After
being called, the main button text will display the selection of the
dropdown.

from kivy.uix.dropdown import DropDown
from kivy.uix.button import Button
from kivy.base import runTouchApp

create a dropdown with 10 buttons
dropdown = DropDown()
for index in range(10):
 # When adding widgets, we need to specify the height manually
 # (disabling the size_hint_y) so the dropdown can calculate
 # the area it needs.

 btn = Button(text='Value %d' % index, size_hint_y=None, height=44)

 # for each button, attach a callback that will call the select() method
 # on the dropdown. We'll pass the text of the button as the data of the
 # selection.
 btn.bind(on_release=lambda btn: dropdown.select(btn.text))

 # then add the button inside the dropdown
 dropdown.add_widget(btn)

create a big main button
mainbutton = Button(text='Hello', size_hint=(None, None))

show the dropdown menu when the main button is released
note: all the bind() calls pass the instance of the caller (here, the
mainbutton instance) as the first argument of the callback (here,
dropdown.open.).
mainbutton.bind(on_release=dropdown.open)

one last thing, listen for the selection in the dropdown list and
assign the data to the button text.
dropdown.bind(on_select=lambda instance, x: setattr(mainbutton, 'text', x))

runTouchApp(mainbutton)

Extending dropdown in Kv

You could create a dropdown directly from your kv:

#:kivy 1.4.0
<CustomDropDown>:
 Button:
 text: 'My first Item'
 size_hint_y: None
 height: 44
 on_release: root.select('item1')
 Label:
 text: 'Unselectable item'
 size_hint_y: None
 height: 44
 Button:
 text: 'My second Item'
 size_hint_y: None
 height: 44
 on_release: root.select('item2')

And then, create the associated python class and use it:

class CustomDropDown(DropDown):
 pass

dropdown = CustomDropDown()
mainbutton = Button(text='Hello', size_hint=(None, None))
mainbutton.bind(on_release=dropdown.open)
dropdown.bind(on_select=lambda instance, x: setattr(mainbutton, 'text', x))

	
class kivy.uix.dropdown.DropDown(**kwargs)

	Bases: kivy.uix.scrollview.ScrollView

DropDown class. See module documentation for more information.

	Events:

	
	on_select: data
	Fired when a selection is done. The data of the selection is passed
in as the first argument and is what you pass in the select()
method as the first argument.

	on_dismiss:
	
New in version 1.8.0.

Fired when the DropDown is dismissed, either on selection or on
touching outside the widget.

	
add_widget(*args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
attach_to

	(internal) Property that will be set to the widget to which the
drop down list is attached.

The open() method will automatically set this property whilst
dismiss() will set it back to None.

	
auto_dismiss

	By default, the dropdown will be automatically dismissed when a
touch happens outside of it, this option allows to disable this
feature

auto_dismiss is a BooleanProperty
and defaults to True.

New in version 1.8.0.

	
auto_width

	By default, the width of the dropdown will be the same as the width of
the attached widget. Set to False if you want to provide your own width.

auto_width is a BooleanProperty
and defaults to True.

	
clear_widgets(*args, **kwargs)

	Remove all (or the specified) children of this widget.
If the ‘children’ argument is specified, it should be a list (or
filtered list) of children of the current widget.

Changed in version 1.8.0: The children argument can be used to specify the children you
want to remove.

Changed in version 2.1.0: Specifying an empty children list leaves the widgets unchanged.
Previously it was treated like None and all children were
removed.

	
container

	(internal) Property that will be set to the container of the dropdown
list. It is a GridLayout by default.

	
dismiss(*largs)

	Remove the dropdown widget from the window and detach it from
the attached widget.

	
dismiss_on_select

	By default, the dropdown will be automatically dismissed when a
selection has been done. Set to False to prevent the dismiss.

dismiss_on_select is a BooleanProperty
and defaults to True.

	
max_height

	Indicate the maximum height that the dropdown can take. If None, it will
take the maximum height available until the top or bottom of the screen
is reached.

max_height is a NumericProperty and
defaults to None.

	
min_state_time

	Minimum time before the DropDown is dismissed.
This is used to allow for the widget inside the dropdown to display
a down state or for the DropDown itself to
display a animation for closing.

min_state_time is a NumericProperty
and defaults to the Config value min_state_time.

New in version 1.10.0.

	
on_motion(etype, me)

	Called when a motion event is received.

	Parameters:

	
	etype: str
	Event type, one of “begin”, “update” or “end”

	me: MotionEvent
	Received motion event

	Returns:

	bool
True to stop event dispatching

New in version 2.1.0.

Warning

This is an experimental method and it remains so while this warning
is present.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_move(touch)

	Receive a touch move event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
open(widget)

	Open the dropdown list and attach it to a specific widget.
Depending on the position of the widget within the window and
the height of the dropdown, the dropdown might be above or below
that widget.

	
remove_widget(*args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
select(data)

	Call this method to trigger the on_select event with the data
selection. The data can be anything you want.

EffectWidget

New in version 1.9.0.

The EffectWidget is able to apply a variety of fancy
graphical effects to
its children. It works by rendering to a series of
Fbo instances with custom opengl fragment shaders.
As such, effects can freely do almost anything, from inverting the
colors of the widget, to anti-aliasing, to emulating the appearance of a
crt monitor!

Warning

This code is still experimental, and its API is subject to change in a
future version.

The basic usage is as follows:

w = EffectWidget()
w.add_widget(Button(text='Hello!')
w.effects = [InvertEffect(), HorizontalBlurEffect(size=2.0)]

The equivalent in kv would be:

#: import ew kivy.uix.effectwidget
EffectWidget:
 effects: ew.InvertEffect(), ew.HorizontalBlurEffect(size=2.0)
 Button:
 text: 'Hello!'

The effects can be a list of effects of any length, and they will be
applied sequentially.

The module comes with a range of prebuilt effects, but the interface
is designed to make it easy to create your own. Instead of writing a
full glsl shader, you provide a single function that takes
some inputs based on the screen (current pixel color, current widget
texture etc.). See the sections below for more information.

Usage Guidelines

It is not efficient to resize an EffectWidget, as
the Fbo is recreated on each resize event.
If you need to resize frequently, consider doing things a different
way.

Although some effects have adjustable parameters, it is
not efficient to animate these, as the entire
shader is reconstructed every time. You should use glsl
uniform variables instead. The AdvancedEffectBase
may make this easier.

Note

The EffectWidget cannot draw outside its own
widget area (pos -> pos + size). Any child widgets
overlapping the boundary will be cut off at this point.

Provided Effects

The module comes with several pre-written effects. Some have
adjustable properties (e.g. blur radius). Please see the individual
effect documentation for more details.

	MonochromeEffect - makes the widget grayscale.

	InvertEffect - inverts the widget colors.

	ChannelMixEffect - swaps color channels.

	ScanlinesEffect - displays flickering scanlines.

	PixelateEffect - pixelates the image.

	HorizontalBlurEffect - Gaussuan blurs horizontally.

	VerticalBlurEffect - Gaussuan blurs vertically.

	FXAAEffect - applies a very basic anti-aliasing.

Creating Effects

Effects are designed to make it easy to create and use your own
transformations. You do this by creating and using an instance of
EffectBase with your own custom EffectBase.glsl
property.

The glsl property is a string representing part of a glsl fragment
shader. You can include as many functions as you like (the string
is simply spliced into the whole shader), but it
must implement a function effect as below:

vec4 effect(vec4 color, sampler2D texture, vec2 tex_coords, vec2 coords)
{
 // ... your code here
 return something; // must be a vec4 representing the new color
}

The full shader will calculate the normal pixel color at each point,
then call your effect function to transform it. The
parameters are:

	color: The normal color of the current pixel (i.e. texture
sampled at tex_coords).

	texture: The texture containing the widget’s normal background.

	tex_coords: The normal texture_coords used to access texture.

	coords: The pixel indices of the current pixel.

The shader code also has access to two useful uniform variables,
time containing the time (in seconds) since the program start,
and resolution containing the shape (x pixels, y pixels) of
the widget.

For instance, the following simple string (taken from the InvertEffect)
would invert the input color but set alpha to 1.0:

vec4 effect(vec4 color, sampler2D texture, vec2 tex_coords, vec2 coords)
{
 return vec4(1.0 - color.xyz, 1.0);
}

You can also set the glsl by automatically loading the string from a
file, simply set the EffectBase.source property of an effect.

	
class kivy.uix.effectwidget.AdvancedEffectBase(*args, **kwargs)

	Bases: kivy.uix.effectwidget.EffectBase

An EffectBase with additional behavior to easily
set and update uniform variables in your shader.

This class is provided for convenience when implementing your own
effects: it is not used by any of those provided with Kivy.

In addition to your base glsl string that must be provided as
normal, the AdvancedEffectBase has an extra property
uniforms, a dictionary of name-value pairs. Whenever
a value is changed, the new value for the uniform variable is
uploaded to the shader.

You must still manually declare your uniform variables at the top
of your glsl string.

	
set_fbo_shader(*args)

	Sets the Fbo’s shader by splicing
the glsl string into a full fragment shader.

The full shader is made up of shader_header +
shader_uniforms + self.glsl + shader_footer_effect.

	
uniforms

	A dictionary of uniform variable names and their values. These
are automatically uploaded to the fbo shader if appropriate.

uniforms is a DictProperty and
defaults to {}.

	
class kivy.uix.effectwidget.ChannelMixEffect(*args, **kwargs)

	Bases: kivy.uix.effectwidget.EffectBase

Mixes the color channels of the input according to the order
property. Channels may be arbitrarily rearranged or repeated.

	
order

	The new sorted order of the rgb channels.

order is a ListProperty and defaults to
[1, 2, 0], corresponding to (g, b, r).

	
class kivy.uix.effectwidget.EffectBase(*args, **kwargs)

	Bases: kivy.event.EventDispatcher

The base class for GLSL effects. It simply returns its input.

See the module documentation for more details.

	
fbo

	The fbo currently using this effect. The EffectBase
automatically handles this.

fbo is an ObjectProperty and
defaults to None.

	
glsl

	The glsl string defining your effect function. See the
module documentation for more details.

glsl is a StringProperty and
defaults to
a trivial effect that returns its input.

	
set_fbo_shader(*args)

	Sets the Fbo’s shader by splicing
the glsl string into a full fragment shader.

The full shader is made up of shader_header +
shader_uniforms + self.glsl + shader_footer_effect.

	
source

	The (optional) filename from which to load the glsl
string.

source is a StringProperty and
defaults to ‘’.

	
class kivy.uix.effectwidget.EffectWidget(**kwargs)

	Bases: kivy.uix.relativelayout.RelativeLayout

Widget with the ability to apply a series of graphical effects to
its children. See the module documentation for more information on
setting effects and creating your own.

	
add_widget(*args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
background_color

	This defines the background color to be used for the fbo in the
EffectWidget.

background_color is a ListProperty defaults to
(0, 0, 0, 0)

	
clear_widgets(*args, **kwargs)

	Remove all (or the specified) children of this widget.
If the ‘children’ argument is specified, it should be a list (or
filtered list) of children of the current widget.

Changed in version 1.8.0: The children argument can be used to specify the children you
want to remove.

Changed in version 2.1.0: Specifying an empty children list leaves the widgets unchanged.
Previously it was treated like None and all children were
removed.

	
effects

	List of all the effects to be applied. These should all be
instances or subclasses of EffectBase.

effects is a ListProperty and defaults to [].

	
fbo_list

	(internal) List of all the fbos that are being used to apply
the effects.

fbo_list is a ListProperty and defaults to [].

	
refresh_fbo_setup(*args)

	(internal) Creates and assigns one Fbo
per effect, and makes sure all sizes etc. are correct and
consistent.

	
remove_widget(*args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
texture

	The output texture of the final Fbo after
all effects have been applied.

texture is an ObjectProperty and defaults
to None.

	
class kivy.uix.effectwidget.FXAAEffect(*args, **kwargs)

	Bases: kivy.uix.effectwidget.EffectBase

Applies very simple anti-aliasing via fxaa.

	
class kivy.uix.effectwidget.HorizontalBlurEffect(*args, **kwargs)

	Bases: kivy.uix.effectwidget.EffectBase

Blurs the input horizontally, with the width given by
size.

	
size

	The blur width in pixels.

size is a NumericProperty and defaults to
4.0.

	
class kivy.uix.effectwidget.InvertEffect(*args, **kwargs)

	Bases: kivy.uix.effectwidget.EffectBase

Inverts the colors in the input.

	
class kivy.uix.effectwidget.MonochromeEffect(*args, **kwargs)

	Bases: kivy.uix.effectwidget.EffectBase

Returns its input colors in monochrome.

	
class kivy.uix.effectwidget.PixelateEffect(*args, **kwargs)

	Bases: kivy.uix.effectwidget.EffectBase

Pixelates the input according to its
pixel_size

	
pixel_size

	Sets the size of a new ‘pixel’ in the effect, in terms of number of
‘real’ pixels.

pixel_size is a NumericProperty and
defaults to 10.

	
class kivy.uix.effectwidget.ScanlinesEffect(*args, **kwargs)

	Bases: kivy.uix.effectwidget.EffectBase

Adds scanlines to the input.

	
class kivy.uix.effectwidget.VerticalBlurEffect(*args, **kwargs)

	Bases: kivy.uix.effectwidget.EffectBase

Blurs the input vertically, with the width given by
size.

	
size

	The blur width in pixels.

size is a NumericProperty and defaults to
4.0.

FileChooser

The FileChooser module provides various classes for describing, displaying and
browsing file systems.

Simple widgets

There are two ready-to-use widgets that provide views of the file system. Each
of these present the files and folders in a different style.

The FileChooserListView displays file entries as text items in a
vertical list, where folders can be collapsed and expanded.

[image: _images/filechooser_list.png]
The FileChooserIconView presents icons and text from left to right,
wrapping them as required.

[image: _images/filechooser_icon.png]
They both provide for scrolling, selection and basic user interaction.
Please refer to the FileChooserController for details on supported
events and properties.

Widget composition

FileChooser classes adopt a
MVC [https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller]
design. They are exposed so that you to extend and customize your file chooser
according to your needs.

The FileChooser classes can be categorized as follows:

	Models are represented by concrete implementations of the
FileSystemAbstract class, such as the FileSystemLocal.

	Views are represented by the FileChooserListLayout and
FileChooserIconLayout classes. These are used by the
FileChooserListView and FileChooserIconView widgets
respectively.

	Controllers are represented by concrete implementations of the
FileChooserController, namely the FileChooser,
FileChooserIconView and FileChooserListView classes.

This means you can define your own views or provide FileSystemAbstract
implementations for alternative file systems for use with these widgets.
The FileChooser can be used as a controller for handling multiple,
synchronized views of the same path. By combining these elements, you can add
your own views and file systems and have them easily interact with the existing
components.

Usage example

main.py

from kivy.app import App
from kivy.uix.floatlayout import FloatLayout
from kivy.factory import Factory
from kivy.properties import ObjectProperty
from kivy.uix.popup import Popup

import os

class LoadDialog(FloatLayout):
 load = ObjectProperty(None)
 cancel = ObjectProperty(None)

class SaveDialog(FloatLayout):
 save = ObjectProperty(None)
 text_input = ObjectProperty(None)
 cancel = ObjectProperty(None)

class Root(FloatLayout):
 loadfile = ObjectProperty(None)
 savefile = ObjectProperty(None)
 text_input = ObjectProperty(None)

 def dismiss_popup(self):
 self._popup.dismiss()

 def show_load(self):
 content = LoadDialog(load=self.load, cancel=self.dismiss_popup)
 self._popup = Popup(title="Load file", content=content,
 size_hint=(0.9, 0.9))
 self._popup.open()

 def show_save(self):
 content = SaveDialog(save=self.save, cancel=self.dismiss_popup)
 self._popup = Popup(title="Save file", content=content,
 size_hint=(0.9, 0.9))
 self._popup.open()

 def load(self, path, filename):
 with open(os.path.join(path, filename[0])) as stream:
 self.text_input.text = stream.read()

 self.dismiss_popup()

 def save(self, path, filename):
 with open(os.path.join(path, filename), 'w') as stream:
 stream.write(self.text_input.text)

 self.dismiss_popup()

class Editor(App):
 pass

Factory.register('Root', cls=Root)
Factory.register('LoadDialog', cls=LoadDialog)
Factory.register('SaveDialog', cls=SaveDialog)

if __name__ == '__main__':
 Editor().run()

editor.kv

#:kivy 1.1.0

Root:
 text_input: text_input

 BoxLayout:
 orientation: 'vertical'
 BoxLayout:
 size_hint_y: None
 height: 30
 Button:
 text: 'Load'
 on_release: root.show_load()
 Button:
 text: 'Save'
 on_release: root.show_save()

 BoxLayout:
 TextInput:
 id: text_input
 text: ''

 RstDocument:
 text: text_input.text
 show_errors: True

<LoadDialog>:
 BoxLayout:
 size: root.size
 pos: root.pos
 orientation: "vertical"
 FileChooserListView:
 id: filechooser

 BoxLayout:
 size_hint_y: None
 height: 30
 Button:
 text: "Cancel"
 on_release: root.cancel()

 Button:
 text: "Load"
 on_release: root.load(filechooser.path, filechooser.selection)

<SaveDialog>:
 text_input: text_input
 BoxLayout:
 size: root.size
 pos: root.pos
 orientation: "vertical"
 FileChooserListView:
 id: filechooser
 on_selection: text_input.text = self.selection and self.selection[0] or ''

 TextInput:
 id: text_input
 size_hint_y: None
 height: 30
 multiline: False

 BoxLayout:
 size_hint_y: None
 height: 30
 Button:
 text: "Cancel"
 on_release: root.cancel()

 Button:
 text: "Save"
 on_release: root.save(filechooser.path, text_input.text)

New in version 1.0.5.

Changed in version 1.2.0: In the chooser template, the controller is no longer a direct reference
but a weak-reference. If you are upgrading, you should change the notation
root.controller.xxx to root.controller().xxx.

	
class kivy.uix.filechooser.FileChooser(**kwargs)

	Bases: kivy.uix.filechooser.FileChooserController

Implementation of a FileChooserController which supports
switching between multiple, synced layout views.

The FileChooser can be used as follows:

BoxLayout:
 orientation: 'vertical'

 BoxLayout:
 size_hint_y: None
 height: sp(52)

 Button:
 text: 'Icon View'
 on_press: fc.view_mode = 'icon'
 Button:
 text: 'List View'
 on_press: fc.view_mode = 'list'

 FileChooser:
 id: fc
 FileChooserIconLayout
 FileChooserListLayout

New in version 1.9.0.

	
add_widget(widget, *args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
manager

	Reference to the ScreenManager instance.

manager is an ObjectProperty.

	
view_list

	List of views added to this FileChooser.

view_list is an AliasProperty of type
list.

	
view_mode

	Current layout view mode.

view_mode is an AliasProperty of type
str.

	
class kivy.uix.filechooser.FileChooserController(**kwargs)

	Bases: kivy.uix.relativelayout.RelativeLayout

Base for implementing a FileChooser. Don’t use this class directly, but
prefer using an implementation such as the FileChooser,
FileChooserListView or FileChooserIconView.

	Events:

	
	on_entry_added: entry, parent
	Fired when a root-level entry is added to the file list. If you
return True from this event, the entry is not added to FileChooser.

	on_entries_cleared
	Fired when the the entries list is cleared, usually when the
root is refreshed.

	on_subentry_to_entry: entry, parent
	Fired when a sub-entry is added to an existing entry or
when entries are removed from an entry e.g. when
a node is closed.

	on_submit: selection, touch
	Fired when a file has been selected with a double-tap.

	
cancel(*largs)

	Cancel any background action started by filechooser, such as loading
a new directory.

New in version 1.2.0.

	
dirselect

	Determines whether directories are valid selections or not.

dirselect is a BooleanProperty and defaults to
False.

New in version 1.1.0.

	
entry_released(entry, touch)

	(internal) This method must be called by the template when an entry
is touched by the user.

New in version 1.1.0.

	
entry_touched(entry, touch)

	(internal) This method must be called by the template when an entry
is touched by the user.

	
file_encodings

	Possible encodings for decoding a filename to unicode. In the case that
the user has a non-ascii filename, undecodable without knowing its
initial encoding, we have no other choice than to guess it.

Please note that if you encounter an issue because of a missing encoding
here, we’ll be glad to add it to this list.

file_encodings is a ListProperty and defaults to
[‘utf-8’, ‘latin1’, ‘cp1252’].

New in version 1.3.0.

Deprecated since version 1.8.0: This property is no longer used as the filechooser no longer decodes
the file names.

	
file_system

	The file system object used to access the file system. This should be a
subclass of FileSystemAbstract.

file_system is an ObjectProperty and defaults to
FileSystemLocal()

New in version 1.8.0.

	
files

	The list of files in the directory specified by path after applying the
filters.

files is a read-only ListProperty.

	
filter_dirs

	Indicates whether filters should also apply to directories.
filter_dirs is a BooleanProperty and defaults to
False.

	
filters

	filters specifies the filters to be applied to the files in the directory.
filters is a ListProperty and defaults to [].
This is equivalent to ‘*’ i.e. nothing is filtered.

The filters are not reset when the path changes. You need to do that
yourself if desired.

There are two kinds of filters: patterns and callbacks.

	Patterns

e.g. [’*.png’].
You can use the following patterns:

	Pattern

	Meaning

	*

	matches everything

	?

	matches any single character

	[seq]

	matches any character in seq

	[!seq]

	matches any character not in seq

	Callbacks

You can specify a function that will be called for each file. The
callback will be passed the folder and file name as the first
and second parameters respectively. It should return True to
indicate a match and False otherwise.

Changed in version 1.4.0: Added the option to specify the filter as a callback.

	
font_name

	Filename of the font to use in UI components. The path can be
absolute or relative. Relative paths are resolved by the
resource_find() function.

font_name is a StringProperty and
defaults to ‘Roboto’. This value is taken
from Config.

	
get_nice_size(fn)

	Pass the filepath. Returns the size in the best human readable
format or ‘’ if it is a directory (Don’t recursively calculate size).

	
layout

	Reference to the layout widget instance.

layout is an ObjectProperty.

New in version 1.9.0.

	
multiselect

	Determines whether the user is able to select multiple files or not.

multiselect is a BooleanProperty and defaults to
False.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
path

	path is a StringProperty and defaults to the
current working directory as a unicode string. It specifies the path on the
filesystem that this controller should refer to.

Warning

If a unicode path is specified, all the files returned will be in
unicode, allowing the display of unicode files and paths. If a bytes
path is specified, only files and paths with ascii names will be
displayed properly: non-ascii filenames will be displayed and listed
with questions marks (?) instead of their unicode characters.

	
progress_cls

	Class to use for displaying a progress indicator for filechooser
loading.

progress_cls is an ObjectProperty and defaults to
FileChooserProgress.

New in version 1.2.0.

Changed in version 1.8.0: If set to a string, the Factory will be used to
resolve the class name.

	
rootpath

	Root path to use instead of the system root path. If set, it will not show
a “..” directory to go up to the root path. For example, if you set
rootpath to /users/foo, the user will be unable to go to /users or to any
other directory not starting with /users/foo.

rootpath is a StringProperty and defaults
to None.

New in version 1.2.0.

Note

Similarly to path, whether rootpath is specified as
bytes or a unicode string determines the type of the filenames and
paths read.

	
selection

	Contains the list of files that are currently selected.

selection is a read-only ListProperty and
defaults to [].

	
show_hidden

	Determines whether hidden files and folders should be shown.

show_hidden is a BooleanProperty and defaults to
False.

	
sort_func

	Provides a function to be called with a list of filenames as the first
argument and the filesystem implementation as the second argument. It
returns a list of filenames sorted for display in the view.

sort_func is an ObjectProperty and defaults to a
function returning alphanumerically named folders first.

Changed in version 1.8.0: The signature needs now 2 arguments: first the list of files,
second the filesystem class to use.

	
class kivy.uix.filechooser.FileChooserIconLayout(**kwargs)

	Bases: kivy.uix.filechooser.FileChooserLayout

File chooser layout using an icon view.

New in version 1.9.0.

	
class kivy.uix.filechooser.FileChooserIconView(**kwargs)

	Bases: kivy.uix.filechooser.FileChooserController

Implementation of a FileChooserController using an icon view.

New in version 1.9.0.

	
class kivy.uix.filechooser.FileChooserListLayout(**kwargs)

	Bases: kivy.uix.filechooser.FileChooserLayout

File chooser layout using a list view.

New in version 1.9.0.

	
class kivy.uix.filechooser.FileChooserListView(**kwargs)

	Bases: kivy.uix.filechooser.FileChooserController

Implementation of a FileChooserController using a list view.

New in version 1.9.0.

	
class kivy.uix.filechooser.FileChooserProgressBase(**kwargs)

	Bases: kivy.uix.floatlayout.FloatLayout

Base for implementing a progress view. This view is used when too many
entries need to be created and are delayed over multiple frames.

New in version 1.2.0.

	
cancel(*largs)

	Cancel any action from the FileChooserController.

	
index

	Current index of total entries to be loaded.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_move(touch)

	Receive a touch move event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
path

	Current path of the FileChooser, read-only.

	
total

	Total number of entries to load.

	
class kivy.uix.filechooser.FileSystemAbstract

	Bases: builtins.object

Class for implementing a File System view that can be used with the
FileChooser.

New in version 1.8.0.

	
getsize(fn)

	Return the size in bytes of a file

	
is_dir(fn)

	Return True if the argument passed to this method is a directory

	
is_hidden(fn)

	Return True if the file is hidden

	
listdir(fn)

	Return the list of files in the directory fn

	
class kivy.uix.filechooser.FileSystemLocal

	Bases: kivy.uix.filechooser.FileSystemAbstract

Implementation of FileSystemAbstract for local files.

New in version 1.8.0.

	
getsize(fn)

	Return the size in bytes of a file

	
is_dir(fn)

	Return True if the argument passed to this method is a directory

	
is_hidden(fn)

	Return True if the file is hidden

	
listdir(fn)

	Return the list of files in the directory fn

Float Layout

FloatLayout honors the pos_hint
and the size_hint properties of its children.

[image: _images/floatlayout.gif]
For example, a FloatLayout with a size of (300, 300) is created:

layout = FloatLayout(size=(300, 300))

By default, all widgets have their size_hint=(1, 1), so this button will adopt
the same size as the layout:

button = Button(text='Hello world')
layout.add_widget(button)

To create a button 50% of the width and 25% of the height of the layout and
positioned at (20, 20), you can do:

button = Button(
 text='Hello world',
 size_hint=(.5, .25),
 pos=(20, 20))

If you want to create a button that will always be the size of layout minus
20% on each side:

button = Button(text='Hello world', size_hint=(.6, .6),
 pos_hint={'x':.2, 'y':.2})

Note

This layout can be used for an application. Most of the time, you will
use the size of Window.

Warning

If you are not using pos_hint, you must handle the positioning of the
children: if the float layout is moving, you must handle moving the
children too.

	
class kivy.uix.floatlayout.FloatLayout(**kwargs)

	Bases: kivy.uix.layout.Layout

Float layout class. See module documentation for more information.

	
add_widget(widget, *args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
do_layout(*largs, **kwargs)

	This function is called when a layout is called by a trigger.
If you are writing a new Layout subclass, don’t call this function
directly but use _trigger_layout() instead.

The function is by default called before the next frame, therefore
the layout isn’t updated immediately. Anything depending on the
positions of e.g. children should be scheduled for the next frame.

New in version 1.0.8.

	
remove_widget(widget, *args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

Gesture Surface

New in version 1.9.0.

Warning

This is experimental and subject to change as long as this warning notice
is present.

See kivy/examples/demo/multistroke/main.py for a complete application
example.

	
class kivy.uix.gesturesurface.GestureContainer(touch, **kwargs)

	Bases: kivy.event.EventDispatcher

Container object that stores information about a gesture. It has
various properties that are updated by GestureSurface as drawing
progresses.

	Arguments:

	
	touch
	Touch object (as received by on_touch_down) used to initialize
the gesture container. Required.

	Properties:

	
	active
	Set to False once the gesture is complete (meets
max_stroke setting or GestureSurface.temporal_window)

active is a
BooleanProperty

	active_strokes
	Number of strokes currently active in the gesture, ie
concurrent touches associated with this gesture.

active_strokes is a
NumericProperty

	max_strokes
	Max number of strokes allowed in the gesture. This
is set by GestureSurface.max_strokes but can
be overridden for example from on_gesture_start.

max_strokes is a
NumericProperty

	was_merged
	Indicates that this gesture has been merged with another
gesture and should be considered discarded.

was_merged is a
BooleanProperty

	bbox
	Dictionary with keys minx, miny, maxx, maxy. Represents the size
of the gesture bounding box.

bbox is a
DictProperty

	width
	Represents the width of the gesture.

width is a
NumericProperty

	height
	Represents the height of the gesture.

height is a
NumericProperty

	
accept_stroke(count=1)

	Returns True if this container can accept count new strokes

	
add_stroke(touch, line)

	Associate a list of points with a touch.uid; the line itself is
created by the caller, but subsequent move/up events look it
up via us. This is done to avoid problems during merge.

	
complete_stroke()

	Called on touch up events to keep track of how many strokes
are active in the gesture (we only want to dispatch event when
the last stroke in the gesture is released)

	
get_vectors(**kwargs)

	Return strokes in a format that is acceptable for
kivy.multistroke.Recognizer as a gesture candidate or template. The
result is cached automatically; the cache is invalidated at the start
and end of a stroke and if update_bbox is called. If you are going
to analyze a gesture mid-stroke, you may need to set the no_cache
argument to True.

	
handles(touch)

	Returns True if this container handles the given touch

	
single_points_test()

	Returns True if the gesture consists only of single-point strokes,
we must discard it in this case, or an exception will be raised

	
update_bbox(touch)

	Update gesture bbox from a touch coordinate

	
class kivy.uix.gesturesurface.GestureSurface(**kwargs)

	Bases: kivy.uix.floatlayout.FloatLayout

Simple gesture surface to track/draw touch movements. Typically used
to gather user input suitable for kivy.multistroke.Recognizer.

	Properties:

	
	temporal_window
	Time to wait from the last touch_up event before attempting
to recognize the gesture. If you set this to 0, the
on_gesture_complete event is not fired unless the
max_strokes condition is met.

temporal_window is a
NumericProperty and defaults to 2.0

	max_strokes
	Max number of strokes in a single gesture; if this is reached,
recognition will start immediately on the final touch_up event.
If this is set to 0, the on_gesture_complete event is not
fired unless the temporal_window expires.

max_strokes is a
NumericProperty and defaults to 2.0

	bbox_margin
	Bounding box margin for detecting gesture collisions, in
pixels.

bbox_margin is a
NumericProperty and defaults to 30

	draw_timeout
	Number of seconds to keep lines/bbox on canvas after the
on_gesture_complete event is fired. If this is set to 0,
gestures are immediately removed from the surface when
complete.

draw_timeout is a
NumericProperty and defaults to 3.0

	color
	Color used to draw the gesture, in RGB. This option does not
have an effect if use_random_color is True.

color is a
ColorProperty and defaults to
[1, 1, 1, 1] (white)

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	use_random_color
	Set to True to pick a random color for each gesture, if you do
this then color is ignored. Defaults to False.

use_random_color is a
BooleanProperty and defaults to False

	line_width
	Line width used for tracing touches on the surface. Set to 0
if you only want to detect gestures without drawing anything.
If you use 1.0, OpenGL GL_LINE is used for drawing; values > 1
will use an internal drawing method based on triangles (less
efficient), see kivy.graphics.

line_width is a
NumericProperty and defaults to 2

	draw_bbox
	Set to True if you want to draw bounding box behind gestures.
This only works if line_width >= 1. Default is False.

draw_bbox is a
BooleanProperty and defaults to True

	bbox_alpha
	Opacity for bounding box if draw_bbox is True. Default 0.1

bbox_alpha is a
NumericProperty and defaults to 0.1

	Events:

	
	on_gesture_start GestureContainer
	Fired when a new gesture is initiated on the surface, i.e. the
first on_touch_down that does not collide with an existing
gesture on the surface.

	on_gesture_extend GestureContainer
	Fired when a touch_down event occurs within an existing gesture.

	on_gesture_merge GestureContainer, GestureContainer
	Fired when two gestures collide and get merged to one gesture.
The first argument is the gesture that has been merged (no longer
valid); the second is the combined (resulting) gesture.

	on_gesture_complete GestureContainer
	Fired when a set of strokes is considered a complete gesture,
this happens when temporal_window expires or max_strokes
is reached. Typically you will bind to this event and use
the provided GestureContainer get_vectors() method to
match against your gesture database.

	on_gesture_cleanup GestureContainer
	Fired draw_timeout seconds after on_gesture_complete,
The gesture will be removed from the canvas (if line_width > 0 or
draw_bbox is True) and the internal gesture list before this.

	on_gesture_discard GestureContainer
	Fired when a gesture does not meet the minimum size requirements
for recognition (width/height < 5, or consists only of single-
point strokes).

	
find_colliding_gesture(touch)

	Checks if a touch x/y collides with the bounding box of an existing
gesture. If so, return it (otherwise returns None)

	
get_gesture(touch)

	Returns GestureContainer associated with given touch

	
init_gesture(touch)

	Create a new gesture from touch, i.e. it’s the first on
surface, or was not close enough to any existing gesture (yet)

	
merge_gestures(g, other)

	Merges two gestures together, the oldest one is retained and the
newer one gets the GestureContainer.was_merged flag raised.

	
on_touch_down(touch)

	When a new touch is registered, the first thing we do is to test if
it collides with the bounding box of another known gesture. If so, it
is assumed to be part of that gesture.

	
on_touch_move(touch)

	When a touch moves, we add a point to the line on the canvas so the
path is updated. We must also check if the new point collides with the
bounding box of another gesture - if so, they should be merged.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

Grid Layout

[image: _images/gridlayout.gif]

New in version 1.0.4.

The GridLayout arranges children in a matrix. It takes the available
space and divides it into columns and rows, then adds widgets to the resulting
“cells”.

Changed in version 1.0.7: The implementation has changed to use the widget size_hint for calculating
column/row sizes. uniform_width and uniform_height have been removed
and other properties have added to give you more control.

Background

Unlike many other toolkits, you cannot explicitly place a widget in a specific
column/row. Each child is automatically assigned a position determined by the
layout configuration and the child’s index in the children list.

A GridLayout must always have at least one input constraint:
GridLayout.cols or GridLayout.rows. If you do not specify cols
or rows, the Layout will throw an exception.

Column Width and Row Height

The column width/row height are determined in 3 steps:

	The initial size is given by the col_default_width and
row_default_height properties. To customize the size of a single
column or row, use cols_minimum or rows_minimum.

	The size_hint_x/size_hint_y of the children are taken into account.
If no widgets have a size hint, the maximum size is used for all
children.

	You can force the default size by setting the col_force_default
or row_force_default property. This will force the layout to
ignore the width and size_hint properties of children and use the
default size.

Using a GridLayout

In the example below, all widgets will have an equal size. By default, the
size_hint is (1, 1), so a Widget will take the full size of the parent:

layout = GridLayout(cols=2)
layout.add_widget(Button(text='Hello 1'))
layout.add_widget(Button(text='World 1'))
layout.add_widget(Button(text='Hello 2'))
layout.add_widget(Button(text='World 2'))

[image: _images/gridlayout_1.jpg]
Now, let’s fix the size of Hello buttons to 100px instead of using
size_hint_x=1:

layout = GridLayout(cols=2)
layout.add_widget(Button(text='Hello 1', size_hint_x=None, width=100))
layout.add_widget(Button(text='World 1'))
layout.add_widget(Button(text='Hello 2', size_hint_x=None, width=100))
layout.add_widget(Button(text='World 2'))

[image: _images/gridlayout_2.jpg]
Next, let’s fix the row height to a specific size:

layout = GridLayout(cols=2, row_force_default=True, row_default_height=40)
layout.add_widget(Button(text='Hello 1', size_hint_x=None, width=100))
layout.add_widget(Button(text='World 1'))
layout.add_widget(Button(text='Hello 2', size_hint_x=None, width=100))
layout.add_widget(Button(text='World 2'))

[image: _images/gridlayout_3.jpg]

	
class kivy.uix.gridlayout.GridLayout(**kwargs)

	Bases: kivy.uix.layout.Layout

Grid layout class. See module documentation for more information.

	
col_default_width

	Default minimum size to use for a column.

New in version 1.0.7.

col_default_width is a NumericProperty
and defaults to 0.

	
col_force_default

	If True, ignore the width and size_hint_x of the child and use the
default column width.

New in version 1.0.7.

col_force_default is a BooleanProperty
and defaults to False.

	
cols

	Number of columns in the grid.

Changed in version 1.0.8: Changed from a NumericProperty to BoundedNumericProperty. You can no
longer set this to a negative value.

cols is a NumericProperty and defaults to
None.

	
cols_minimum

	Dict of minimum width for each column. The dictionary keys are the
column numbers, e.g. 0, 1, 2…

New in version 1.0.7.

cols_minimum is a DictProperty and
defaults to {}.

	
do_layout(*largs)

	This function is called when a layout is called by a trigger.
If you are writing a new Layout subclass, don’t call this function
directly but use _trigger_layout() instead.

The function is by default called before the next frame, therefore
the layout isn’t updated immediately. Anything depending on the
positions of e.g. children should be scheduled for the next frame.

New in version 1.0.8.

	
minimum_height

	Automatically computed minimum height needed to contain all children.

New in version 1.0.8.

minimum_height is a NumericProperty and
defaults to 0. It is read only.

	
minimum_size

	Automatically computed minimum size needed to contain all children.

New in version 1.0.8.

minimum_size is a
ReferenceListProperty of
(minimum_width, minimum_height) properties. It is read
only.

	
minimum_width

	Automatically computed minimum width needed to contain all children.

New in version 1.0.8.

minimum_width is a NumericProperty and
defaults to 0. It is read only.

	
orientation

	Orientation of the layout.

orientation is an OptionProperty and
defaults to ‘lr-tb’.

Valid orientations are ‘lr-tb’, ‘tb-lr’, ‘rl-tb’, ‘tb-rl’, ‘lr-bt’,
‘bt-lr’, ‘rl-bt’ and ‘bt-rl’.

New in version 2.0.0.

Note

‘lr’ means Left to Right.
‘rl’ means Right to Left.
‘tb’ means Top to Bottom.
‘bt’ means Bottom to Top.

	
padding

	Padding between the layout box and its children: [padding_left,
padding_top, padding_right, padding_bottom].

padding also accepts a two argument form [padding_horizontal,
padding_vertical] and a one argument form [padding].

Changed in version 1.7.0: Replaced NumericProperty with VariableListProperty.

padding is a VariableListProperty and
defaults to [0, 0, 0, 0].

	
row_default_height

	Default minimum size to use for row.

New in version 1.0.7.

row_default_height is a NumericProperty
and defaults to 0.

	
row_force_default

	If True, ignore the height and size_hint_y of the child and use the
default row height.

New in version 1.0.7.

row_force_default is a BooleanProperty
and defaults to False.

	
rows

	Number of rows in the grid.

Changed in version 1.0.8: Changed from a NumericProperty to a BoundedNumericProperty. You can no
longer set this to a negative value.

rows is a NumericProperty and defaults to
None.

	
rows_minimum

	Dict of minimum height for each row. The dictionary keys are the
row numbers, e.g. 0, 1, 2…

New in version 1.0.7.

rows_minimum is a DictProperty and
defaults to {}.

	
spacing

	Spacing between children: [spacing_horizontal, spacing_vertical].

spacing also accepts a one argument form [spacing].

spacing is a
VariableListProperty and defaults to [0, 0].

	
exception kivy.uix.gridlayout.GridLayoutException

	Bases: Exception

Exception for errors if the grid layout manipulation fails.

Image

The Image widget is used to display an image:

Example in python:

wimg = Image(source='mylogo.png')

Kv Example:

Image:
 source: 'mylogo.png'
 size: self.texture_size

Asynchronous Loading

To load an image asynchronously (for example from an external webserver), use
the AsyncImage subclass:

aimg = AsyncImage(source='http://mywebsite.com/logo.png')

This can be useful as it prevents your application from waiting until the image
is loaded. If you want to display large images or retrieve them from URL’s,
using AsyncImage will allow these resources to be retrieved on a
background thread without blocking your application.

Alignment

By default, the image is centered inside the widget bounding box.

Adjustment

To control how the image should be adjusted to fit inside the widget box, you
should use the fit_mode property. Available
options include:

	"scale-down": maintains aspect ratio without stretching.

	"fill": stretches to fill widget, may cause distortion.

	"contain": maintains aspect ratio and resizes to fit inside widget.

	"cover": maintains aspect ratio and stretches to fill widget, may clip

image.

For more details, refer to the fit_mode.

You can also inherit from Image and create your own style. For example, if you
want your image to be greater than the size of your widget, you could do:

class FullImage(Image):
 pass

And in your kivy language file:

<-FullImage>:
 canvas:
 Color:
 rgb: (1, 1, 1)
 Rectangle:
 texture: self.texture
 size: self.width + 20, self.height + 20
 pos: self.x - 10, self.y - 10

	
class kivy.uix.image.AsyncImage(**kwargs)

	Bases: kivy.uix.image.Image

Asynchronous Image class. See the module documentation for more
information.

Note

The AsyncImage is a specialized form of the Image class. You may
want to refer to the loader documentation and in
particular, the ProxyImage for more detail
on how to handle events around asynchronous image loading.

Note

AsyncImage currently does not support properties
anim_loop and mipmap and setting those properties will
have no effect.

	
remove_from_cache()

	Remove image from cache.

New in version 2.0.0.

	
class kivy.uix.image.Image(**kwargs)

	Bases: kivy.uix.widget.Widget

Image class, see module documentation for more information.

	
allow_stretch

	If True, the normalized image size will be maximized to fit in the image
box. Otherwise, if the box is too tall, the image will not be
stretched more than 1:1 pixels.

New in version 1.0.7.

Deprecated since version 2.2.0: allow_stretch have been deprecated. Please use fit_mode
instead.

allow_stretch is a BooleanProperty and
defaults to False.

	
anim_delay

	Delay the animation if the image is sequenced (like an animated gif).
If anim_delay is set to -1, the animation will be stopped.

New in version 1.0.8.

anim_delay is a NumericProperty and
defaults to 0.25 (4 FPS).

	
anim_loop

	Number of loops to play then stop animating. 0 means keep animating.

New in version 1.9.0.

anim_loop is a NumericProperty and
defaults to 0.

	
color

	Image color, in the format (r, g, b, a). This attribute can be used to
‘tint’ an image. Be careful: if the source image is not gray/white, the
color will not really work as expected.

New in version 1.0.6.

color is a ColorProperty and defaults to
[1, 1, 1, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
fit_mode

	If the size of the image is different than the size of the widget,
determine how the image should be resized to fit inside the widget box.

Available options:

	"scale-down": the image will be scaled down to fit inside the widget

box, maintaining its aspect ratio and without stretching. If the size
of the image is smaller than the widget, it will be displayed at its
original size. If the image has a different aspect ratio than the widget,
there will be blank areas on the widget box.

	"fill": the image is stretched to fill the widget, **regardless of

its aspect ratio or dimensions**. If the image has a different aspect ratio
than the widget, this option can lead to distortion of the image.

	"contain": the image is resized to fit inside the widget box,

maintaining its aspect ratio. If the image size is larger than the
widget size, the behavior will be similar to "scale-down". However, if
the size of the image size is smaller than the widget size, unlike
"scale-down, the image will be resized to fit inside the widget.
If the image has a different aspect ratio than the widget, there will be
blank areas on the widget box.

	"cover": the image will be stretched horizontally or vertically to

fill the widget box, maintaining its aspect ratio. If the image has a
different aspect ratio than the widget, then the image will be clipped to
fit.

fit_mode is a OptionProperty and
defaults to "scale-down".

	
image_ratio

	Ratio of the image (width / float(height).

image_ratio is an AliasProperty and is
read-only.

	
keep_data

	If True, the underlying _coreimage will store the raw image data.
This is useful when performing pixel based collision detection.

New in version 1.3.0.

keep_data is a BooleanProperty and
defaults to False.

	
keep_ratio

	If False along with allow_stretch being True, the normalized image
size will be maximized to fit in the image box and ignores the aspect
ratio of the image.
Otherwise, if the box is too tall, the image will not be stretched more
than 1:1 pixels.

New in version 1.0.8.

Deprecated since version 2.2.0: keep_ratio have been deprecated. Please use fit_mode
instead.

keep_ratio is a BooleanProperty and
defaults to True.

	
mipmap

	Indicate if you want OpenGL mipmapping to be applied to the texture.
Read Mipmapping for more information.

New in version 1.0.7.

mipmap is a BooleanProperty and defaults
to False.

	
nocache

	If this property is set True, the image will not be added to the
internal cache. The cache will simply ignore any calls trying to
append the core image.

New in version 1.6.0.

nocache is a BooleanProperty and defaults
to False.

	
norm_image_size

	Normalized image size within the widget box.

This size will always fit the widget size and will preserve the image
ratio.

norm_image_size is an AliasProperty and
is read-only.

	
reload()

	Reload image from disk. This facilitates re-loading of
images from disk in case the image content changes.

New in version 1.3.0.

Usage:

im = Image(source = '1.jpg')
-- do something --
im.reload()
image will be re-loaded from disk

	
remove_from_cache()

	Remove image from cache.

New in version 2.0.0.

	
source

	Filename / source of your image.

source is a StringProperty and
defaults to None.

	
texture

	Texture object of the image. The texture represents the original, loaded
image texture. It is stretched and positioned during rendering according to
the fit_mode property.

Depending of the texture creation, the value will be a
Texture or a
TextureRegion object.

texture is an ObjectProperty and defaults
to None.

	
texture_size

	Texture size of the image. This represents the original, loaded image
texture size.

Warning

The texture size is set after the texture property. So if you listen to
the change on texture, the property texture_size will not be
up-to-date. Use self.texture.size instead.

Label

[image: _images/label.png]
The Label widget is for rendering text:

hello world text
l = Label(text='Hello world')

unicode text; can only display glyphs that are available in the font
l = Label(text='Hello world ' + chr(2764))

multiline text
l = Label(text='Multi\nLine')

size
l = Label(text='Hello world', font_size='20sp')

Sizing and text content

By default, the size of Label is not affected by text
content and the text is not affected by the size. In order to control
sizing, you must specify text_size to constrain the text
and/or bind size to texture_size to grow with
the text.

For example, this label’s size will be set to the text content
(plus padding):

Label:
 size: self.texture_size

This label’s text will wrap at the specified width and be clipped to the
height:

Label:
 text_size: cm(6), cm(4)

Note

The shorten and max_lines attributes
control how overflowing text behaves.

Combine these concepts to create a Label that can grow vertically but wraps the
text at a certain width:

Label:
 text_size: root.width, None
 size: self.texture_size

How to have a custom background color in the label:

Define your background color Template
<BackgroundColor@Widget>
 background_color: 1, 1, 1, 1
 canvas.before:
 Color:
 rgba: root.background_color
 Rectangle:
 size: self.size
 pos: self.pos
Now you can simply Mix the `BackgroundColor` class with almost
any other widget... to give it a background.
<BackgroundLabel@Label+BackgroundColor>
 background_color: 0, 0, 0, 0
 # Default the background color for this label
 # to r 0, g 0, b 0, a 0
Use the BackgroundLabel any where in your kv code like below
BackgroundLabel
 text: 'Hello'
 background_color: 1, 0, 0, 1

Text alignment and wrapping

The Label has halign and valign
properties to control the alignment of its text. However, by default the text
image (texture) is only just large enough to contain the
characters and is positioned in the center of the Label. The valign property
will have no effect and halign will only have an effect if your text has
newlines; a single line of text will appear to be centered even though halign
is set to left (by default).

In order for the alignment properties to take effect, set the
text_size, which specifies the size of the bounding box within
which text is aligned. For instance, the following code binds this size to the
size of the Label, so text will be aligned within the widget bounds. This
will also automatically wrap the text of the Label to remain within this area.

Label:
 text_size: self.size
 halign: 'right'
 valign: 'middle'

Markup text

New in version 1.1.0.

You can change the style of the text using Text Markup.
The syntax is similar to the bbcode syntax but only the inline styling is
allowed:

hello world with world in bold
l = Label(text='Hello [b]World[/b]', markup=True)

hello in red, world in blue
l = Label(text='[color=ff3333]Hello[/color][color=3333ff]World[/color]',
 markup = True)

If you need to escape the markup from the current text, use
kivy.utils.escape_markup():

text = 'This is an important message [1]'
l = Label(text='[b]' + escape_markup(text) + '[/b]', markup=True)

The following tags are available:

	[b][/b]
	Activate bold text

	[i][/i]
	Activate italic text

	[u][/u]
	Underlined text

	[s][/s]
	Strikethrough text

	[font=<str>][/font]
	Change the font (note: this refers to a TTF file or registered alias)

	[font_context=<str>][/font_context]
	Change context for the font, use string value “none” for isolated context
(this is equivalent to None; if you created a font context named
‘none’, it cannot be referred to using markup)

	[font_family=<str>][/font_family]
	Font family to request for drawing. This is only valid when using a
font context, see kivy.uix.label.Label for details.

	[font_features=<str>][/font_features]
	OpenType font features, in CSS format, this is passed straight
through to Pango. The effects of requesting a feature depends on loaded
fonts, library versions, etc. Pango only, requires v1.38 or later.

	[size=<integer>][/size]
	Change the font size

	[color=#<color>][/color]
	Change the text color

	[ref=<str>][/ref]
	Add an interactive zone. The reference + bounding box inside the
reference will be available in Label.refs

	[anchor=<str>]
	Put an anchor in the text. You can get the position of your anchor within
the text with Label.anchors

	[sub][/sub]
	Display the text at a subscript position relative to the text before it.

	[sup][/sup]
	Display the text at a superscript position relative to the text before it.

	[text_language=<str>][/text_language]
	Language of the text, this is an RFC-3066 format language tag (as string),
for example “en_US”, “zh_CN”, “fr” or “ja”. This can impact font selection
and metrics. Use the string “None” to revert to locale detection.
Pango only.

If you want to render the markup text with a [or] or & character, you need to
escape them. We created a simple syntax:

[-> &bl;
] -> &br;
& -> &

Then you can write:

"[size=24]Hello &bl;World&br;[/size]"

Interactive zone in text

New in version 1.1.0.

You can now have definable “links” using text markup. The idea is to be able
to detect when the user clicks on part of the text and to react.
The tag [ref=xxx] is used for that.

In this example, we are creating a reference on the word “World”. When
this word is clicked, the function print_it will be called with the
name of the reference:

def print_it(instance, value):
 print('User clicked on', value)
widget = Label(text='Hello [ref=world]World[/ref]', markup=True)
widget.bind(on_ref_press=print_it)

For prettier rendering, you could add a color for the reference. Replace the
text= in the previous example with:

'Hello [ref=world][color=0000ff]World[/color][/ref]'

Catering for Unicode languages

The font kivy uses does not contain all the characters required for displaying
all languages. When you use the built-in widgets, this results in a block being
drawn where you expect a character.

If you want to display such characters, you can chose a font that supports them
and deploy it universally via kv:

<Label>:
 font_name: '/<path>/<to>/'

Note that this needs to be done before your widgets are loaded as kv rules are
only applied at load time.

Usage example

The following example marks the anchors and references contained in a label:

from kivy.app import App
from kivy.uix.label import Label
from kivy.clock import Clock
from kivy.graphics import Color, Rectangle

class TestApp(App):

 @staticmethod
 def get_x(label, ref_x):
 """ Return the x value of the ref/anchor relative to the canvas """
 return label.center_x - label.texture_size[0] * 0.5 + ref_x

 @staticmethod
 def get_y(label, ref_y):
 """ Return the y value of the ref/anchor relative to the canvas """
 # Note the inversion of direction, as y values start at the top of
 # the texture and increase downwards
 return label.center_y + label.texture_size[1] * 0.5 - ref_y

 def show_marks(self, label):

 # Indicate the position of the anchors with a red top marker
 for name, anc in label.anchors.items():
 with label.canvas:
 Color(1, 0, 0)
 Rectangle(pos=(self.get_x(label, anc[0]),
 self.get_y(label, anc[1])),
 size=(3, 3))

 # Draw a green surround around the refs. Note the sizes y inversion
 for name, boxes in label.refs.items():
 for box in boxes:
 with label.canvas:
 Color(0, 1, 0, 0.25)
 Rectangle(pos=(self.get_x(label, box[0]),
 self.get_y(label, box[1])),
 size=(box[2] - box[0],
 box[1] - box[3]))

 def build(self):
 label = Label(
 text='[anchor=a]a\nChars [anchor=b]b\n[ref=myref]ref[/ref]',
 markup=True)
 Clock.schedule_once(lambda dt: self.show_marks(label), 1)
 return label

TestApp().run()

	
class kivy.uix.label.Label(**kwargs)

	Bases: kivy.uix.widget.Widget

Label class, see module documentation for more information.

	Events:

	
	on_ref_press
	Fired when the user clicks on a word referenced with a
[ref] tag in a text markup.

	
anchors

	
New in version 1.1.0.

Position of all the [anchor=xxx] markup in the text.
These coordinates are relative to the top left corner of the text, with
the y value increasing downwards. Anchors names should be unique and only
the first occurrence of any duplicate anchors will be recorded.

You can place anchors in your markup text as follows:

text = """
 [anchor=title1][size=24]This is my Big title.[/size]
 [anchor=content]Hello world
"""

Then, all the [anchor=] references will be removed and you’ll get all
the anchor positions in this property (only after rendering):

>>> widget = Label(text=text, markup=True)
>>> widget.texture_update()
>>> widget.anchors
{"content": (20, 32), "title1": (20, 16)}

Note

This works only with markup text. You need markup set to
True.

	
base_direction

	Base direction of text, this impacts horizontal alignment when
halign is auto (the default). Available options are: None,
“ltr” (left to right), “rtl” (right to left) plus “weak_ltr” and
“weak_rtl”.

Note

This feature requires the Pango text provider.

Note

Weak modes are currently not implemented in Kivy text layout, and
have the same effect as setting strong mode.

New in version 1.11.0.

base_direction is an OptionProperty and
defaults to None (autodetect RTL if possible, otherwise LTR).

	
bold

	Indicates use of the bold version of your font.

Note

Depending of your font, the bold attribute may have no impact on your
text rendering.

bold is a BooleanProperty and defaults to
False.

	
color

	Text color, in the format (r, g, b, a).

color is a ColorProperty and defaults to
[1, 1, 1, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
disabled_color

	The color of the text when the widget is disabled, in the (r, g, b, a)
format.

New in version 1.8.0.

disabled_color is a ColorProperty and
defaults to [1, 1, 1, .3].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
disabled_outline_color

	The color of the text outline when the widget is disabled, in the
(r, g, b) format.

Note

This feature requires the SDL2 text provider.

New in version 1.10.0.

disabled_outline_color is a ColorProperty
and defaults to [0, 0, 0].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty. Alpha component is ignored
and assigning value to it has no effect.

	
ellipsis_options

	Font options for the ellipsis string(’…’) used to split the text.

Accepts a dict as option name with the value. Only applied when
markup is true and text is shortened. All font options which work
for Label will work for ellipsis_options. Defaults for
the options not specified are taken from the surronding text.

Label:
 text: 'Some very long line which will be cut'
 markup: True
 shorten: True
 ellipsis_options: {'color':(1,0.5,0.5,1),'underline':True}

New in version 2.0.0.

ellipsis_options is a DictProperty and
defaults to {} (the empty dict).

	
font_blended

	Whether blended or solid font rendering should be used.

Note

This feature requires the SDL2 text provider.

New in version 1.10.0.

font_blended is a BooleanProperty and
defaults to True.

	
font_context

	Font context. None means the font is used in isolation, so you are
guaranteed to be drawing with the TTF file resolved by font_name.
Specifying a value here will load the font file into a named context,
enabling fallback between all fonts in the same context. If a font
context is set, you are not guaranteed that rendering will actually use
the specified TTF file for all glyphs (Pango will pick the one it
thinks is best).

If Kivy is linked against a system-wide installation of FontConfig,
you can load the system fonts by specifying a font context starting
with the special string system://. This will load the system
fontconfig configuration, and add your application-specific fonts on
top of it (this imposes a significant risk of family name collision,
Pango may not use your custom font file, but pick one from the system)

Note

This feature requires the Pango text provider.

New in version 1.11.0.

font_context is a StringProperty and
defaults to None.

	
font_direction

	Direction for the specific font, can be one of ltr, rtl, ttb,`btt`.

font_direction currently only works with SDL2 ttf providers.

New in version 2.2.0.

font_direction is a OptionProperty and
defults to ‘ltr’.

	
font_family

	Font family, this is only applicable when using font_context
option. The specified font family will be requested, but note that it may
not be available, or there could be multiple fonts registered with the
same family. The value can be a family name (string) available in the
font context (for example a system font in a system:// context, or a
custom font file added using kivy.core.text.FontContextManager).
If set to None, font selection is controlled by the font_name
setting.

Note

If using font_name to reference a custom font file, you
should leave this as None. The family name is managed automatically
in this case.

Note

This feature requires the Pango text provider.

New in version 1.11.0.

font_family is a StringProperty and
defaults to None.

	
font_features

	OpenType font features, in CSS format, this is passed straight
through to Pango. The effects of requesting a feature depends on loaded
fonts, library versions, etc. For a complete list of features, see:

https://en.wikipedia.org/wiki/List_of_typographic_features

Note

This feature requires the Pango text provider, and Pango library
v1.38 or later.

New in version 1.11.0.

font_features is a StringProperty and
defaults to an empty string.

	
font_hinting

	What hinting option to use for font rendering.
Can be one of ‘normal’, ‘light’, ‘mono’ or None.

Note

This feature requires SDL2 or Pango text provider.

New in version 1.10.0.

font_hinting is an OptionProperty and
defaults to ‘normal’.

	
font_kerning

	Whether kerning is enabled for font rendering. You should normally
only disable this if rendering is broken with a particular font file.

Note

This feature requires the SDL2 text provider.

New in version 1.10.0.

font_kerning is a BooleanProperty and
defaults to True.

	
font_name

	Filename of the font to use. The path can be absolute or relative.
Relative paths are resolved by the resource_find()
function.

Warning

Depending of your text provider, the font file can be ignored. However,
you can mostly use this without problems.

If the font used lacks the glyphs for the particular language/symbols
you are using, you will see ‘[]’ blank box characters instead of the
actual glyphs. The solution is to use a font that has the glyphs you
need to display. For example, to display [image: unicodechar], use a font such
as freesans.ttf that has the glyph.

font_name is a StringProperty and
defaults to ‘Roboto’. This value is taken
from Config.

	
font_script_name

	script_code from https://bit.ly/TypeScriptCodes .

New in version 2.2.0.

Warning

font_script_name is only currently supported in SDL2 ttf providers.

font_script_name is a OptionProperty and
defaults to ‘Latn’.

	
font_size

	Font size of the text, in pixels.

font_size is a NumericProperty and
defaults to 15sp.

	
halign

	Horizontal alignment of the text.

halign is an OptionProperty and
defaults to ‘auto’. Available options are : auto, left, center, right and
justify. Auto will attempt to autodetect horizontal alignment for RTL text
(Pango only), otherwise it behaves like left.

Warning

This doesn’t change the position of the text texture of the Label
(centered), only the position of the text in this texture. You probably
want to bind the size of the Label to the texture_size or set a
text_size.

Changed in version 1.10.1: Added auto option

Changed in version 1.6.0: A new option was added to halign, namely justify.

	
is_shortened

	This property indicates if text was rendered with or without
shortening when shorten is True.

New in version 1.10.0.

is_shortened is a BooleanProperty and
defaults to False.

	
italic

	Indicates use of the italic version of your font.

Note

Depending of your font, the italic attribute may have no impact on your
text rendering.

italic is a BooleanProperty and defaults
to False.

	
line_height

	Line Height for the text. e.g. line_height = 2 will cause the spacing
between lines to be twice the size.

line_height is a NumericProperty and
defaults to 1.0.

New in version 1.5.0.

	
markup

	
New in version 1.1.0.

If True, the text will be rendered using the
MarkupLabel: you can change the
style of the text using tags. Check the
Text Markup documentation for more information.

markup is a BooleanProperty and defaults
to False.

	
max_lines

	Maximum number of lines to use, defaults to 0, which means unlimited.
Please note that shorten take over this property. (with
shorten, the text is always one line.)

New in version 1.8.0.

max_lines is a NumericProperty and
defaults to 0.

	
mipmap

	Indicates whether OpenGL mipmapping is applied to the texture or not.
Read Mipmapping for more information.

New in version 1.0.7.

mipmap is a BooleanProperty and defaults
to False.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
outline_color

	The color of the text outline, in the (r, g, b) format.

Note

This feature requires the SDL2 text provider.

New in version 1.10.0.

outline_color is a ColorProperty and
defaults to [0, 0, 0, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty. Alpha component is ignored
and assigning value to it has no effect.

	
outline_width

	Width in pixels for the outline around the text. No outline will be
rendered if the value is None.

Note

This feature requires the SDL2 text provider.

New in version 1.10.0.

outline_width is a NumericProperty and
defaults to None.

	
padding

	Padding of the text in the format [padding_left, padding_top,
padding_right, padding_bottom]

padding also accepts a two argument form [padding_horizontal,
padding_vertical] and a one argument form [padding].

Changed in version 2.2.0: Replaced ReferenceListProperty with VariableListProperty.

padding is a VariableListProperty and
defaults to [0, 0, 0, 0].

	
padding_x

	Horizontal padding of the text inside the widget box.

padding_x is a NumericProperty and
defaults to 0.

Changed in version 1.9.0: padding_x has been fixed to work as expected.
In the past, the text was padded by the negative of its values.

Deprecated since version 2.2.0: Please use padding instead.

	
padding_y

	Vertical padding of the text inside the widget box.

padding_y is a NumericProperty and
defaults to 0.

Changed in version 1.9.0: padding_y has been fixed to work as expected.
In the past, the text was padded by the negative of its values.

Deprecated since version 2.2.0: Please use padding instead.

	
refs

	
New in version 1.1.0.

List of [ref=xxx] markup items in the text with the bounding box of
all the words contained in a ref, available only after rendering.

For example, if you wrote:

Check out my [ref=hello]link[/ref]

The refs will be set with:

{'hello': ((64, 0, 78, 16),)}

The references marked “hello” have a bounding box at (x1, y1, x2, y2).
These coordinates are relative to the top left corner of the text, with
the y value increasing downwards. You can define multiple refs with the
same name: each occurrence will be added as another (x1, y1, x2, y2) tuple
to this list.

The current Label implementation uses these references if they exist in
your markup text, automatically doing the collision with the touch and
dispatching an on_ref_press event.

You can bind a ref event like this:

def print_it(instance, value):
 print('User click on', value)
widget = Label(text='Hello [ref=world]World[/ref]', markup=True)
widget.bind(on_ref_press=print_it)

Note

This works only with markup text. You need markup set to
True.

	
shorten

	Indicates whether the label should attempt to shorten its textual contents
as much as possible if a text_size is given. Setting this to True
without an appropriately set text_size will lead to unexpected
results.

shorten_from and split_str control the direction from
which the text is split, as well as where in the text we
are allowed to split.

shorten is a BooleanProperty and defaults
to False.

	
shorten_from

	The side from which we should shorten the text from, can be left,
right, or center.

For example, if left, the ellipsis will appear towards the left side and we
will display as much text starting from the right as possible. Similar to
shorten, this option only applies when text_size [0] is
not None, In this case, the string is shortened to fit within the specified
width.

New in version 1.9.0.

shorten_from is a OptionProperty and
defaults to center.

	
split_str

	The string used to split the text while shortening the string
when shorten is True.

For example, if it’s a space, the string will be broken into words and as
many whole words that can fit into a single line will be displayed. If
split_str is the empty string, ‘’, we split on every character
fitting as much text as possible into the line.

New in version 1.9.0.

split_str is a StringProperty and
defaults to ‘’ (the empty string).

	
strikethrough

	Adds a strikethrough line to the text.

Note

This feature requires the SDL2 text provider.

New in version 1.10.0.

strikethrough is a BooleanProperty and
defaults to False.

	
strip

	Whether leading and trailing spaces and newlines should be stripped from
each displayed line. If True, every line will start at the right or left
edge, depending on halign. If halign is justify it is
implicitly True.

New in version 1.9.0.

strip is a BooleanProperty and
defaults to False.

	
text

	Text of the label.

Creation of a simple hello world:

widget = Label(text='Hello world')

text is a StringProperty and defaults to
‘’.

	
text_language

	Language of the text, if None Pango will determine it from locale.
This is an RFC-3066 format language tag (as a string), for example
“en_US”, “zh_CN”, “fr” or “ja”. This can impact font selection, metrics
and rendering. For example, the same bytes of text can look different
for ur and ar languages, though both use Arabic script.

Note

This feature requires the Pango text provider.

New in version 1.11.0.

text_language is a StringProperty and
defaults to None.

	
text_size

	By default, the label is not constrained to any bounding box.
You can set the size constraint of the label with this property.
The text will autoflow into the constraints. So although the font size
will not be reduced, the text will be arranged to fit into the box as best
as possible, with any text still outside the box clipped.

This sets and clips texture_size to text_size if not None.

New in version 1.0.4.

For example, whatever your current widget size is, if you want the label to
be created in a box with width=200 and unlimited height:

Label(text='Very big big line', text_size=(200, None))

Note

This text_size property is the same as the
usersize property in the
Label class. (It is named size= in the
constructor.)

text_size is a ListProperty and
defaults to (None, None), meaning no size restriction by default.

	
texture

	Texture object of the text.
The text is rendered automatically when a property changes. The OpenGL
texture created in this operation is stored in this property. You can use
this texture for any graphics elements.

Depending on the texture creation, the value will be a
Texture or
TextureRegion object.

Warning

The texture update is scheduled for the next frame. If you need
the texture immediately after changing a property, you have to call
the texture_update() method before accessing texture:

l = Label(text='Hello world')
l.texture is good
l.font_size = '50sp'
l.texture is not updated yet
l.texture_update()
l.texture is good now.

texture is an ObjectProperty and defaults
to None.

	
texture_size

	Texture size of the text. The size is determined by the font size and
text. If text_size is [None, None], the texture will be the size
required to fit the text, otherwise it’s clipped to fit text_size.

When text_size is [None, None], one can bind to texture_size
and rescale it proportionally to fit the size of the label in order to
make the text fit maximally in the label.

Warning

The texture_size is set after the texture
property. If you listen for changes to texture,
texture_size will not be up-to-date in your callback.
Bind to texture_size instead.

	
texture_update(*largs)

	Force texture recreation with the current Label properties.

After this function call, the texture and texture_size
will be updated in this order.

	
underline

	Adds an underline to the text.

Note

This feature requires the SDL2 text provider.

New in version 1.10.0.

underline is a BooleanProperty and
defaults to False.

	
unicode_errors

	How to handle unicode decode errors. Can be ‘strict’, ‘replace’ or
‘ignore’.

New in version 1.9.0.

unicode_errors is an OptionProperty and
defaults to ‘replace’.

	
valign

	Vertical alignment of the text.

valign is an OptionProperty and defaults
to ‘bottom’. Available options are : ‘bottom’,
‘middle’ (or ‘center’) and ‘top’.

Changed in version 1.10.0: The ‘center’ option has been added as an alias of ‘middle’.

Warning

This doesn’t change the position of the text texture of the Label
(centered), only the position of the text within this texture. You
probably want to bind the size of the Label to the texture_size
or set a text_size to change this behavior.

Layout

Layouts are used to calculate and assign widget positions.

The Layout class itself cannot be used directly.
You should use one of the following layout classes:

	Anchor layout: kivy.uix.anchorlayout.AnchorLayout

	Box layout: kivy.uix.boxlayout.BoxLayout

	Float layout: kivy.uix.floatlayout.FloatLayout

	Grid layout: kivy.uix.gridlayout.GridLayout

	Page Layout: kivy.uix.pagelayout.PageLayout

	Relative layout: kivy.uix.relativelayout.RelativeLayout

	Scatter layout: kivy.uix.scatterlayout.ScatterLayout

	Stack layout: kivy.uix.stacklayout.StackLayout

Understanding the size_hint Property in Widget

The size_hint is a tuple of values used by
layouts to manage the sizes of their children. It indicates the size
relative to the layout’s size instead of an absolute size (in
pixels/points/cm/etc). The format is:

widget.size_hint = (width_proportion, height_proportion)

The proportions are specified as floating point numbers in the range 0-1. For
example, 0.5 represents 50%, 1 represents 100%.

If you want a widget’s width to be half of the parent’s width and the
height to be identical to the parent’s height, you would do:

widget.size_hint = (0.5, 1.0)

If you don’t want to use a size_hint for either the width or height, set the
value to None. For example, to make a widget that is 250px wide and 30%
of the parent’s height, do:

widget.size_hint = (None, 0.3)
widget.width = 250

Being Kivy properties, these can also be set via
constructor arguments:

widget = Widget(size_hint=(None, 0.3), width=250)

Changed in version 1.4.1: The reposition_child internal method (made public by mistake) has
been removed.

	
class kivy.uix.layout.Layout(**kwargs)

	Bases: kivy.uix.widget.Widget

Layout interface class, used to implement every layout. See module
documentation for more information.

	
add_widget(widget, *args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
do_layout(*largs)

	This function is called when a layout is called by a trigger.
If you are writing a new Layout subclass, don’t call this function
directly but use _trigger_layout() instead.

The function is by default called before the next frame, therefore
the layout isn’t updated immediately. Anything depending on the
positions of e.g. children should be scheduled for the next frame.

New in version 1.0.8.

	
layout_hint_with_bounds(sh_sum, available_space, min_bounded_size, sh_min_vals, sh_max_vals, hint)

	(internal) Computes the appropriate (size) hint for all the
widgets given (potential) min or max bounds on the widgets’ size.
The hint list is updated with appropriate sizes.

It walks through the hints and for any widgets whose hint will result
in violating min or max constraints, it fixes the hint. Any remaining
or missing space after all the widgets are fixed get distributed
to the widgets making them smaller or larger according to their
size hint.

This algorithms knows nothing about the widgets other than what is
passed through the input params, so it’s fairly generic for laying
things out according to constraints using size hints.

	Parameters:

	
	sh_sum: float
	The sum of the size hints (basically sum(size_hint)).

	available_space: float
	The amount of pixels available for all the widgets
whose size hint is not None. Cannot be zero.

	min_bounded_size: float
	The minimum amount of space required according to the
size_hint_min of the widgets (basically
sum(size_hint_min)).

	sh_min_vals: list or iterable
	Items in the iterable are the size_hint_min for each widget.
Can be None. The length should be the same as hint

	sh_max_vals: list or iterable
	Items in the iterable are the size_hint_max for each widget.
Can be None. The length should be the same as hint

	hint: list
	A list whose size is the same as the length of sh_min_vals
and sh_min_vals whose each element is the corresponding
size hint value of that element. This list is updated in place
with correct size hints that ensure the constraints are not
violated.

	Returns:

	Nothing. hint is updated in place.

	
remove_widget(widget, *args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

ModalView

New in version 1.4.0.

The ModalView widget is used to create modal views. By default, the
view will cover the whole “main” window.

Remember that the default size of a Widget is size_hint=(1, 1). If you don’t
want your view to be fullscreen, either use size hints with values lower than
1 (for instance size_hint=(.8, .8)) or deactivate the size_hint and use fixed
size attributes.

Examples

Example of a simple 400x400 Hello world view:

view = ModalView(size_hint=(None, None), size=(400, 400))
view.add_widget(Label(text='Hello world'))

By default, any click outside the view will dismiss it. If you don’t
want that, you can set ModalView.auto_dismiss to False:

view = ModalView(auto_dismiss=False)
view.add_widget(Label(text='Hello world'))
view.open()

To manually dismiss/close the view, use the ModalView.dismiss() method of
the ModalView instance:

view.dismiss()

Both ModalView.open() and ModalView.dismiss() are bind-able. That
means you can directly bind the function to an action, e.g. to a button’s
on_press

create content and add it to the view
content = Button(text='Close me!')
view = ModalView(auto_dismiss=False)
view.add_widget(content)

bind the on_press event of the button to the dismiss function
content.bind(on_press=view.dismiss)

open the view
view.open()

ModalView Events

There are four events available: on_pre_open and on_open which are raised
when the view is opening; on_pre_dismiss and on_dismiss which are raised
when the view is closed.

For on_dismiss, you can prevent the view from closing by explicitly
returning True from your callback:

def my_callback(instance):
 print('ModalView', instance, 'is being dismissed, but is prevented!')
 return True
view = ModalView()
view.add_widget(Label(text='Hello world'))
view.bind(on_dismiss=my_callback)
view.open()

Changed in version 1.5.0: The ModalView can be closed by hitting the escape key on the
keyboard if the ModalView.auto_dismiss property is True (the
default).

	
class kivy.uix.modalview.ModalView(**kwargs)

	Bases: kivy.uix.anchorlayout.AnchorLayout

ModalView class. See module documentation for more information.

	Events:

	
	on_pre_open:
	Fired before the ModalView is opened. When this event is fired
ModalView is not yet added to window.

	on_open:
	Fired when the ModalView is opened.

	on_pre_dismiss:
	Fired before the ModalView is closed.

	on_dismiss:
	Fired when the ModalView is closed. If the callback returns True,
the dismiss will be canceled.

Changed in version 1.11.0: Added events on_pre_open and on_pre_dismiss.

Changed in version 2.0.0: Added property ‘overlay_color’.

Changed in version 2.1.0: Marked attach_to property as deprecated.

	
attach_to

	If a widget is set on attach_to, the view will attach to the nearest
parent window of the widget. If none is found, it will attach to the
main/global Window.

attach_to is an ObjectProperty and
defaults to None.

	
auto_dismiss

	This property determines if the view is automatically
dismissed when the user clicks outside it.

auto_dismiss is a BooleanProperty and
defaults to True.

	
background

	Background image of the view used for the view background.

background is a StringProperty and
defaults to ‘atlas://data/images/defaulttheme/modalview-background’.

	
background_color

	Background color, in the format (r, g, b, a).

This acts as a multiplier to the texture colour. The default
texture is grey, so just setting the background color will give
a darker result. To set a plain color, set the
background_normal to ''.

The background_color is a
ColorProperty and defaults to [1, 1, 1, 1].

Changed in version 2.0.0: Changed behavior to affect the background of the widget itself, not
the overlay dimming.
Changed from ListProperty to
ColorProperty.

	
border

	Border used for BorderImage
graphics instruction. Used for the background_normal and the
background_down properties. Can be used when using custom
backgrounds.

It must be a list of four values: (bottom, right, top, left). Read the
BorderImage instructions for more information about how to use it.

border is a ListProperty and defaults to
(16, 16, 16, 16).

	
dismiss(*_args, **kwargs)

	Close the view if it is open.

If you really want to close the view, whatever the on_dismiss
event returns, you can use the force keyword argument:

view = ModalView()
view.dismiss(force=True)

When the view is dismissed, it will be faded out before being
removed from the parent. If you don’t want this animation, use:

view.dismiss(animation=False)

	
on__anim_alpha(_instance, value)

	animation progress callback.

	
on_dismiss()

	default dismiss event handler.

	
on_motion(etype, me)

	Called when a motion event is received.

	Parameters:

	
	etype: str
	Event type, one of “begin”, “update” or “end”

	me: MotionEvent
	Received motion event

	Returns:

	bool
True to stop event dispatching

New in version 2.1.0.

Warning

This is an experimental method and it remains so while this warning
is present.

	
on_open()

	default open event handler.

	
on_pre_dismiss()

	default pre-dismiss event handler.

	
on_pre_open()

	default pre-open event handler.

	
on_touch_down(touch)

	touch down event handler.

	
on_touch_move(touch)

	touch moved event handler.

	
on_touch_up(touch)

	touch up event handler.

	
open(*_args, **kwargs)

	Display the modal in the Window.

When the view is opened, it will be faded in with an animation. If you
don’t want the animation, use:

view.open(animation=False)

	
overlay_color

	Overlay color in the format (r, g, b, a).
Used for dimming the window behind the modal view.

overlay_color is a ColorProperty and
defaults to [0, 0, 0, .7].

New in version 2.0.0.

PageLayout

[image: _images/pagelayout.gif]
The PageLayout class is used to create a simple multi-page
layout, in a way that allows easy flipping from one page to another using
borders.

PageLayout does not currently honor the
size_hint,
size_hint_min,
size_hint_max, or
pos_hint properties.

New in version 1.8.0.

Example:

PageLayout:
 Button:
 text: 'page1'
 Button:
 text: 'page2'
 Button:
 text: 'page3'

Transitions from one page to the next are made by swiping in from the border
areas on the right or left hand side. If you wish to display multiple widgets
in a page, we suggest you use a containing layout. Ideally, each page should
consist of a single layout widget that contains the remaining
widgets on that page.

	
class kivy.uix.pagelayout.PageLayout(**kwargs)

	Bases: kivy.uix.layout.Layout

PageLayout class. See module documentation for more information.

	
anim_kwargs

	The animation kwargs used to construct the animation

anim_kwargs is a DictProperty
and defaults to {‘d’: .5, ‘t’: ‘in_quad’}.

New in version 1.11.0.

	
border

	The width of the border around the current page used to display
the previous/next page swipe areas when needed.

border is a NumericProperty and
defaults to 50dp.

	
do_layout(*largs)

	This function is called when a layout is called by a trigger.
If you are writing a new Layout subclass, don’t call this function
directly but use _trigger_layout() instead.

The function is by default called before the next frame, therefore
the layout isn’t updated immediately. Anything depending on the
positions of e.g. children should be scheduled for the next frame.

New in version 1.0.8.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_move(touch)

	Receive a touch move event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
page

	The currently displayed page.

page is a NumericProperty and defaults
to 0.

	
swipe_threshold

	The threshold used to trigger swipes as ratio of the widget
size.

swipe_threshold is a NumericProperty
and defaults to .5.

Popup

New in version 1.0.7.

[image: _images/popup.jpg]
The Popup widget is used to create modal popups. By default, the popup
will cover the whole “parent” window. When you are creating a popup, you
must at least set a Popup.title and Popup.content.

Remember that the default size of a Widget is size_hint=(1, 1). If you don’t
want your popup to be fullscreen, either use size hints with values less than 1
(for instance size_hint=(.8, .8)) or deactivate the size_hint and use
fixed size attributes.

Changed in version 1.4.0: The Popup class now inherits from
ModalView. The Popup offers a default
layout with a title and a separation bar.

Examples

Example of a simple 400x400 Hello world popup:

popup = Popup(title='Test popup',
 content=Label(text='Hello world'),
 size_hint=(None, None), size=(400, 400))

By default, any click outside the popup will dismiss/close it. If you don’t
want that, you can set
auto_dismiss to False:

popup = Popup(title='Test popup', content=Label(text='Hello world'),
 auto_dismiss=False)
popup.open()

To manually dismiss/close the popup, use
dismiss:

popup.dismiss()

Both open() and
dismiss() are bindable. That means you
can directly bind the function to an action, e.g. to a button’s on_press:

create content and add to the popup
content = Button(text='Close me!')
popup = Popup(content=content, auto_dismiss=False)

bind the on_press event of the button to the dismiss function
content.bind(on_press=popup.dismiss)

open the popup
popup.open()

Same thing in KV language only with Factory:

#:import Factory kivy.factory.Factory
<MyPopup@Popup>:
 auto_dismiss: False
 Button:
 text: 'Close me!'
 on_release: root.dismiss()

Button:
 text: 'Open popup'
 on_release: Factory.MyPopup().open()

Note

Popup is a special widget. Don’t try to add it as a child to any other
widget. If you do, Popup will be handled like an ordinary widget and
won’t be created hidden in the background.

BoxLayout:
 MyPopup: # bad!

Popup Events

There are two events available: on_open which is raised when the popup is
opening, and on_dismiss which is raised when the popup is closed.
For on_dismiss, you can prevent the
popup from closing by explicitly returning True from your callback:

def my_callback(instance):
 print('Popup', instance, 'is being dismissed but is prevented!')
 return True
popup = Popup(content=Label(text='Hello world'))
popup.bind(on_dismiss=my_callback)
popup.open()

	
class kivy.uix.popup.Popup(**kwargs)

	Bases: kivy.uix.modalview.ModalView

Popup class. See module documentation for more information.

	Events:

	
	on_open:
	Fired when the Popup is opened.

	on_dismiss:
	Fired when the Popup is closed. If the callback returns True, the
dismiss will be canceled.

	
add_widget(widget, *args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
content

	Content of the popup that is displayed just under the title.

content is an ObjectProperty and defaults
to None.

	
on_touch_down(touch)

	touch down event handler.

	
separator_color

	Color used by the separator between title and content.

New in version 1.1.0.

separator_color is a ColorProperty and
defaults to [47 / 255., 167 / 255., 212 / 255., 1.].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
separator_height

	Height of the separator.

New in version 1.1.0.

separator_height is a NumericProperty and
defaults to 2dp.

	
title

	String that represents the title of the popup.

title is a StringProperty and defaults to
‘No title’.

	
title_align

	Horizontal alignment of the title.

New in version 1.9.0.

title_align is a OptionProperty and
defaults to ‘left’. Available options are left, center, right and justify.

	
title_color

	Color used by the Title.

New in version 1.8.0.

title_color is a ColorProperty and
defaults to [1, 1, 1, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
title_font

	Font used to render the title text.

New in version 1.9.0.

title_font is a StringProperty and
defaults to ‘Roboto’. This value is taken
from Config.

	
title_size

	Represents the font size of the popup title.

New in version 1.6.0.

title_size is a NumericProperty and
defaults to ’14sp’.

	
exception kivy.uix.popup.PopupException

	Bases: Exception

Popup exception, fired when multiple content widgets are added to the
popup.

New in version 1.4.0.

Progress Bar

New in version 1.0.8.

[image: _images/progressbar.jpg]
The ProgressBar widget is used to visualize the progress of some task.
Only the horizontal mode is currently supported: the vertical mode is not
yet available.

The progress bar has no interactive elements and is a display-only widget.

To use it, simply assign a value to indicate the current progress:

from kivy.uix.progressbar import ProgressBar
pb = ProgressBar(max=1000)

this will update the graphics automatically (75% done)
pb.value = 750

	
class kivy.uix.progressbar.ProgressBar(**kwargs)

	Bases: kivy.uix.widget.Widget

Class for creating a progress bar widget.

See module documentation for more details.

	
max

	Maximum value allowed for value.

max is a NumericProperty and defaults to
100.

	
value

	Current value used for the slider.

value is an AliasProperty that
returns the value of the progress bar. If the value is < 0 or >
max, it will be normalized to those boundaries.

Changed in version 1.6.0: The value is now limited to between 0 and max.

	
value_normalized

	Normalized value inside the range 0-1:

>>> pb = ProgressBar(value=50, max=100)
>>> pb.value
50
>>> pb.value_normalized
0.5

value_normalized is an AliasProperty.

RecycleBoxLayout

New in version 1.10.0.

Warning

This module is highly experimental, its API may change in the future and
the documentation is not complete at this time.

The RecycleBoxLayout is designed to provide a
BoxLayout type layout when used with the
RecycleView widget. Please refer to the
recycleview module documentation for more information.

	
class kivy.uix.recycleboxlayout.RecycleBoxLayout(**kwargs)

	Bases: kivy.uix.recyclelayout.RecycleLayout, kivy.uix.boxlayout.BoxLayout

	
compute_visible_views(data, viewport)

	viewport is in coordinates of the layout manager.

	
get_view_index_at(pos)

	Return the view index on which position, pos, falls.

pos is in coordinates of the layout manager.

RecycleGridLayout

New in version 1.10.0.

Warning

This module is highly experimental, its API may change in the future and
the documentation is not complete at this time.

The RecycleGridLayout is designed to provide a
GridLayout type layout when used with the
RecycleView widget. Please refer to the
recycleview module documentation for more information.

	
class kivy.uix.recyclegridlayout.RecycleGridLayout(**kwargs)

	Bases: kivy.uix.recyclelayout.RecycleLayout, kivy.uix.gridlayout.GridLayout

	
compute_visible_views(data, viewport)

	viewport is in coordinates of the layout manager.

	
get_view_index_at(pos)

	Return the view index on which position, pos, falls.

pos is in coordinates of the layout manager.

RecycleLayout

New in version 1.10.0.

Warning

This module is highly experimental, its API may change in the future and
the documentation is not complete at this time.

	
class kivy.uix.recyclelayout.RecycleLayout(**kwargs)

	Bases: kivy.uix.recycleview.layout.RecycleLayoutManagerBehavior, kivy.uix.layout.Layout

RecycleLayout provides the default layout for RecycleViews.

	
default_height

	Default height for items

default_height is a NumericProperty and
default to 100.

	
default_pos_hint

	Default pos_hint value for items

default_pos_hint is a DictProperty and
defaults to {}.

	
default_size

	size (width, height). Each value can be None.

default_size is an ReferenceListProperty
to [default_width, default_height].

	
default_size_hint

	size (width, height). Each value can be None.

default_size_hint is an
ReferenceListProperty to
[default_size_hint_x, default_size_hint_y].

	
default_size_hint_max

	Default value for size_hint_max of items

default_size_max is a
ReferenceListProperty to
[default_size_hint_x_max, default_size_hint_y_max].

	
default_size_hint_min

	Default value for size_hint_min of items

default_size_min is a
ReferenceListProperty to
[default_size_hint_x_min, default_size_hint_y_min].

	
default_size_hint_x

	Default size_hint_x for items

default_size_hint_x is a NumericProperty
and default to None.

	
default_size_hint_x_max

	Default value for size_hint_x_max of items

default_pos_hint_x_max is a
NumericProperty and defaults to None.

	
default_size_hint_x_min

	Default value for size_hint_x_min of items

default_pos_hint_x_min is a
NumericProperty and defaults to None.

	
default_size_hint_y

	Default size_hint_y for items

default_size_hint_y is a NumericProperty
and default to None.

	
default_size_hint_y_max

	Default value for size_hint_y_max of items

default_pos_hint_y_max is a
NumericProperty and defaults to None.

	
default_size_hint_y_min

	Default value for size_hint_y_min of items

default_pos_hint_y_min is a
NumericProperty and defaults to None.

	
default_width

	Default width for items

default_width is a NumericProperty and default to 100

	
do_layout(*largs)

	This function is called when a layout is called by a trigger.
If you are writing a new Layout subclass, don’t call this function
directly but use _trigger_layout() instead.

The function is by default called before the next frame, therefore
the layout isn’t updated immediately. Anything depending on the
positions of e.g. children should be scheduled for the next frame.

New in version 1.0.8.

	
initial_height

	Initial height for the items.

initial_height is a NumericProperty and
defaults to 100.

	
initial_size

	Initial size of items

initial_size is a ReferenceListProperty
to [initial_width, initial_height].

	
initial_width

	Initial width for the items.

initial_width is a NumericProperty and
defaults to 100.

	
key_pos_hint

	If set, which key in the dict should be used to set the pos_hint of
items.

key_pos_hint is a StringProperty and
defaults to None.

	
key_size

	If set, which key in the dict should be used to set the size property of
the item.

key_size is a StringProperty and defaults
to None.

	
key_size_hint

	If set, which key in the dict should be used to set the size_hint
property of the item.

key_size_hint is a StringProperty and
defaults to None.

	
key_size_hint_max

	If set, which key in the dict should be used to set the size_hint_max
property of the item.

key_size_hint_max is a StringProperty and
defaults to None.

	
key_size_hint_min

	If set, which key in the dict should be used to set the size_hint_min
property of the item.

key_size_hint_min is a StringProperty and
defaults to None.

	
refresh_view_layout(index, layout, view, viewport)

	See :meth:`~kivy.uix.recycleview.views.RecycleDataAdapter.refresh_view_layout.

	
set_visible_views(indices, data, viewport)

	viewport is in coordinates of the layout manager.

RecycleView

New in version 1.10.0.

The RecycleView provides a flexible model for viewing selected sections of
large data sets. It aims to prevent the performance degradation that can occur
when generating large numbers of widgets in order to display many data items.

Warning

Because RecycleView reuses widgets, any state change to a single
widget will stay with that widget as it’s reused, even if the
data assigned to it by the RecycleView
changes. Unless the complete state is tracked in data
(see below).

The view is generatad by processing the data, essentially
a list of dicts, and uses these dicts to generate instances of the
viewclass as required. Its design is based on the
MVC (Model-view-controller [https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller])
pattern.

	Model: The model is formed by data you pass in via a
list of dicts.

	View: The View is split across layout and views and implemented using
adapters.

	Controller: The controller determines the logical interaction and is
implemented by RecycleViewBehavior.

These are abstract classes and cannot be used directly. The default concrete
implementations are the
RecycleDataModel for the model, the
RecycleLayout for the view, and the
RecycleView for the controller.

When a RecycleView is instantiated, it automatically creates the views and data
classes. However, one must manually create the layout classes and add them to
the RecycleView.

A layout manager is automatically created as a
layout_manager when added as the child of the
RecycleView. Similarly when removed. A requirement is that the layout manager
must be contained as a child somewhere within the RecycleView’s widget tree so
the view port can be found.

A minimal example might look something like this:

from kivy.app import App
from kivy.lang import Builder
from kivy.uix.recycleview import RecycleView

Builder.load_string('''
<RV>:
 viewclass: 'Label'
 RecycleBoxLayout:
 default_size: None, dp(56)
 default_size_hint: 1, None
 size_hint_y: None
 height: self.minimum_height
 orientation: 'vertical'
''')

class RV(RecycleView):
 def __init__(self, **kwargs):
 super(RV, self).__init__(**kwargs)
 self.data = [{'text': str(x)} for x in range(100)]

class TestApp(App):
 def build(self):
 return RV()

if __name__ == '__main__':
 TestApp().run()

In order to support selection in the view, you can add the required behaviours
as follows:

from kivy.app import App
from kivy.lang import Builder
from kivy.uix.recycleview import RecycleView
from kivy.uix.recycleview.views import RecycleDataViewBehavior
from kivy.uix.label import Label
from kivy.properties import BooleanProperty
from kivy.uix.recycleboxlayout import RecycleBoxLayout
from kivy.uix.behaviors import FocusBehavior
from kivy.uix.recycleview.layout import LayoutSelectionBehavior

Builder.load_string('''
<SelectableLabel>:
 # Draw a background to indicate selection
 canvas.before:
 Color:
 rgba: (.0, 0.9, .1, .3) if self.selected else (0, 0, 0, 1)
 Rectangle:
 pos: self.pos
 size: self.size
<RV>:
 viewclass: 'SelectableLabel'
 SelectableRecycleBoxLayout:
 default_size: None, dp(56)
 default_size_hint: 1, None
 size_hint_y: None
 height: self.minimum_height
 orientation: 'vertical'
 multiselect: True
 touch_multiselect: True
''')

class SelectableRecycleBoxLayout(FocusBehavior, LayoutSelectionBehavior,
 RecycleBoxLayout):
 ''' Adds selection and focus behaviour to the view. '''

class SelectableLabel(RecycleDataViewBehavior, Label):
 ''' Add selection support to the Label '''
 index = None
 selected = BooleanProperty(False)
 selectable = BooleanProperty(True)

 def refresh_view_attrs(self, rv, index, data):
 ''' Catch and handle the view changes '''
 self.index = index
 return super(SelectableLabel, self).refresh_view_attrs(
 rv, index, data)

 def on_touch_down(self, touch):
 ''' Add selection on touch down '''
 if super(SelectableLabel, self).on_touch_down(touch):
 return True
 if self.collide_point(*touch.pos) and self.selectable:
 return self.parent.select_with_touch(self.index, touch)

 def apply_selection(self, rv, index, is_selected):
 ''' Respond to the selection of items in the view. '''
 self.selected = is_selected
 if is_selected:
 print("selection changed to {0}".format(rv.data[index]))
 else:
 print("selection removed for {0}".format(rv.data[index]))

class RV(RecycleView):
 def __init__(self, **kwargs):
 super(RV, self).__init__(**kwargs)
 self.data = [{'text': str(x)} for x in range(100)]

class TestApp(App):
 def build(self):
 return RV()

if __name__ == '__main__':
 TestApp().run()

Please see the examples/widgets/recycleview/basic_data.py file for a more
complete example.

Viewclass State

Because the viewclass widgets are reused or instantiated as needed by the
RecycleView, the order and content of the widgets are mutable. So any
state change to a single widget will stay with that widget, even when the data
assigned to it from the data dict changes, unless
data tracks those changes or they are manually refreshed
when re-used.

There are two methods for managing state changes in viewclass widgets:

	Store state in the RecycleView.data Model

	Generate state changes on-the-fly by catching data
updates and manually refreshing.

An example:

from kivy.app import App
from kivy.lang import Builder
from kivy.uix.boxlayout import BoxLayout
from kivy.uix.recycleview import RecycleView
from kivy.uix.recycleview.views import RecycleDataViewBehavior
from kivy.properties import BooleanProperty, StringProperty

Builder.load_string('''
<StatefulLabel>:
 active: stored_state.active
 CheckBox:
 id: stored_state
 active: root.active
 on_release: root.store_checkbox_state()
 Label:
 text: root.text
 Label:
 id: generate_state
 text: root.generated_state_text

<RV>:
 viewclass: 'StatefulLabel'
 RecycleBoxLayout:
 size_hint_y: None
 height: self.minimum_height
 orientation: 'vertical'
''')

class StatefulLabel(RecycleDataViewBehavior, BoxLayout):
 text = StringProperty()
 generated_state_text = StringProperty()
 active = BooleanProperty()
 index = 0

 '''
 To change a viewclass' state as the data assigned to it changes,
 overload the refresh_view_attrs function (inherited from
 RecycleDataViewBehavior)
 '''
 def refresh_view_attrs(self, rv, index, data):
 self.index = index
 if data['text'] == '0':
 self.generated_state_text = "is zero"
 elif int(data['text']) % 2 == 1:
 self.generated_state_text = "is odd"
 else:
 self.generated_state_text = "is even"
 super(StatefulLabel, self).refresh_view_attrs(rv, index, data)

 '''
 To keep state changes in the viewclass with associated data,
 they can be explicitly stored in the RecycleView's data object
 '''
 def store_checkbox_state(self):
 rv = App.get_running_app().rv
 rv.data[self.index]['active'] = self.active

class RV(RecycleView, App):
 def __init__(self, **kwargs):
 super(RV, self).__init__(**kwargs)
 self.data = [{'text': str(x), 'active': False} for x in range(10)]
 App.get_running_app().rv = self

 def build(self):
 return self

if __name__ == '__main__':
 RV().run()

	TODO:
	
	Method to clear cached class instances.

	Test when views cannot be found (e.g. viewclass is None).

	Fix selection goto.

Warning

When views are re-used they may not trigger if the data remains the same.

	
class kivy.uix.recycleview.RecycleView(**kwargs)

	Bases: kivy.uix.recycleview.RecycleViewBehavior, kivy.uix.scrollview.ScrollView

RecycleView is a flexible view for providing a limited window
into a large data set.

See the module documentation for more information.

	
add_widget(widget, *args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
data

	The data used by the current view adapter. This is a list of dicts whose
keys map to the corresponding property names of the
viewclass.

data is an AliasProperty that gets and sets the
data used to generate the views.

	
key_viewclass

	key_viewclass is an AliasProperty that gets and
sets the key viewclass for the current
layout_manager.

	
remove_widget(widget, *args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
viewclass

	The viewclass used by the current layout_manager.

viewclass is an AliasProperty that gets and sets
the class used to generate the individual items presented in the view.

	
class kivy.uix.recycleview.RecycleViewBehavior(**kwargs)

	Bases: builtins.object

RecycleViewBehavior provides a behavioral model upon which the
RecycleView is built. Together, they offer an extensible and
flexible way to produce views with limited windows over large data sets.

See the module documentation for more information.

	
data_model

	The Data model responsible for maintaining the data set.

data_model is an AliasProperty that gets and sets
the current data model.

	
layout_manager

	The Layout manager responsible for positioning views within the
RecycleView.

layout_manager is an AliasProperty that gets
and sets the layout_manger.

	
refresh_from_data(*largs, **kwargs)

	This should be called when data changes. Data changes typically
indicate that everything should be recomputed since the source data
changed.

This method is automatically bound to the
on_data_changed method of the
RecycleDataModelBehavior class and
therefore responds to and accepts the keyword arguments of that event.

It can be called manually to trigger an update.

	
refresh_from_layout(*largs, **kwargs)

	This should be called when the layout changes or needs to change. It is
typically called when a layout parameter has changed and therefore the
layout needs to be recomputed.

	
refresh_from_viewport(*largs)

	This should be called when the viewport changes and the displayed data
must be updated. Neither the data nor the layout will be recomputed.

	
view_adapter

	The adapter responsible for providing views that represent items in a data
set.

view_adapter is an AliasProperty that gets and
sets the current view adapter.

	RecycleView Data Model
	RecycleDataModel
	RecycleDataModel.attach_recycleview()

	RecycleDataModel.data

	RecycleDataModel.detach_recycleview()

	RecycleDataModel.observable_dict

	RecycleDataModelBehavior
	RecycleDataModelBehavior.attach_recycleview()

	RecycleDataModelBehavior.detach_recycleview()

	RecycleDataModelBehavior.recycleview

	RecycleView Layouts
	LayoutChangeException

	LayoutSelectionBehavior
	LayoutSelectionBehavior.apply_selection()

	LayoutSelectionBehavior.deselect_node()

	LayoutSelectionBehavior.get_index_of_node()

	LayoutSelectionBehavior.get_selectable_nodes()

	LayoutSelectionBehavior.goto_node()

	LayoutSelectionBehavior.key_selection

	LayoutSelectionBehavior.select_node()

	RecycleLayoutManagerBehavior
	RecycleLayoutManagerBehavior.compute_visible_views()

	RecycleLayoutManagerBehavior.get_view_index_at()

	RecycleLayoutManagerBehavior.goto_view()

	RecycleLayoutManagerBehavior.key_viewclass

	RecycleLayoutManagerBehavior.refresh_view_layout()

	RecycleLayoutManagerBehavior.set_visible_views()

	RecycleLayoutManagerBehavior.viewclass

	RecycleView Views
	RecycleDataAdapter
	RecycleDataAdapter.attach_recycleview()

	RecycleDataAdapter.create_view()

	RecycleDataAdapter.detach_recycleview()

	RecycleDataAdapter.get_view()

	RecycleDataAdapter.get_visible_view()

	RecycleDataAdapter.invalidate()

	RecycleDataAdapter.make_view_dirty()

	RecycleDataAdapter.make_views_dirty()

	RecycleDataAdapter.recycleview

	RecycleDataAdapter.refresh_view_attrs()

	RecycleDataAdapter.refresh_view_layout()

	RecycleDataAdapter.set_visible_views()

	RecycleDataViewBehavior
	RecycleDataViewBehavior.refresh_view_attrs()

	RecycleDataViewBehavior.refresh_view_layout()

	RecycleKVIDsDataViewBehavior
	RecycleKVIDsDataViewBehavior.refresh_view_attrs()

RecycleView Data Model

New in version 1.10.0.

The data model part of the RecycleView model-view-controller pattern.

It defines the models (classes) that store the data associated with a
RecycleViewBehavior. Each model (class)
determines how the data is stored and emits requests to the controller
(RecycleViewBehavior) when the data is
modified.

	
class kivy.uix.recycleview.datamodel.RecycleDataModel(**kwargs)

	Bases: kivy.uix.recycleview.datamodel.RecycleDataModelBehavior, kivy.event.EventDispatcher

An implementation of RecycleDataModelBehavior that keeps the
data in a indexable list. See data.

When data changes this class currently dispatches on_data_changed with
one of the following additional keyword arguments.

	none: no keyword argument
	With no additional argument it means a generic data change.

	removed: a slice or integer
	The value is a slice or integer indicating the indices removed.

	appended: a slice
	The slice in data indicating the first and last new items
(i.e. the slice pointing to the new items added at the end).

	inserted: a integer
	The index in data where a new data item was inserted.

	modified: a slice
	The slice with the indices where the data has been modified.
This currently does not allow changing of size etc.

	
attach_recycleview(rv)

	Associates a
RecycleViewBehavior with
this data model.

	
data

	Stores the model’s data using a list.

The data for a item at index i can also be accessed with
RecycleDataModel [i].

	
detach_recycleview()

	Removes the
RecycleViewBehavior
associated with this data model.

	
property observable_dict

	A dictionary instance, which when modified will trigger a data and
consequently an on_data_changed dispatch.

	
class kivy.uix.recycleview.datamodel.RecycleDataModelBehavior

	Bases: builtins.object

RecycleDataModelBehavior is the base class for the models
that describes and provides the data for the
RecycleViewBehavior.

	Events:

	
	on_data_changed:
	Fired when the data changes. The event may dispatch
keyword arguments specific to each implementation of the data
model.
When dispatched, the event and keyword arguments are forwarded to
refresh_from_data().

	
attach_recycleview(rv)

	Associates a
RecycleViewBehavior with
this data model.

	
detach_recycleview()

	Removes the
RecycleViewBehavior
associated with this data model.

	
recycleview

	The
RecycleViewBehavior instance
associated with this data model.

RecycleView Layouts

New in version 1.10.0.

The Layouts handle the presentation of views for the
RecycleView.

Warning

This module is highly experimental, its API may change in the future and
the documentation is not complete at this time.

	
exception kivy.uix.recycleview.layout.LayoutChangeException

	Bases: Exception

	
class kivy.uix.recycleview.layout.LayoutSelectionBehavior(**kwargs)

	Bases: kivy.uix.behaviors.compoundselection.CompoundSelectionBehavior

The LayoutSelectionBehavior can be combined with
RecycleLayoutManagerBehavior to allow its derived classes
selection behaviors similarly to how
CompoundSelectionBehavior
can be used to add selection behaviors to normal layout.

RecycleLayoutManagerBehavior manages its children
differently than normal layouts or widgets so this class adapts
CompoundSelectionBehavior
based selection to work with RecycleLayoutManagerBehavior as well.

Similarly to
CompoundSelectionBehavior,
one can select using the keyboard or touch, which calls select_node()
or deselect_node(), or one can call these methods directly. When a
item is selected or deselected apply_selection() is called. See
apply_selection().

	
apply_selection(index, view, is_selected)

	Applies the selection to the view. This is called internally when
a view is displayed and it needs to be shown as selected or as not
selected.

It is called when select_node() or deselect_node() is
called or when a view needs to be refreshed. Its function is purely to
update the view to reflect the selection state. So the function may be
called multiple times even if the selection state may not have changed.

If the view is a instance of
RecycleDataViewBehavior, its
apply_selection() method will be called every time the view needs to refresh
the selection state. Otherwise, the this method is responsible
for applying the selection.

	Parameters:

	
	index: int
	The index of the data item that is associated with the view.

	view: widget
	The widget that is the view of this data item.

	is_selected: bool
	Whether the item is selected.

	
deselect_node(node)

	Deselects a possibly selected node.

It is called by the controller when it deselects a node and can also
be called from the outside to deselect a node directly. The derived
widget should overwrite this method and change the node to its
unselected state when this is called

	Parameters:

	
	node
	The node to be deselected.

Warning

This method must be called by the derived widget using super if it
is overwritten.

	
get_index_of_node(node, selectable_nodes)

	(internal) Returns the index of the node within the
selectable_nodes returned by get_selectable_nodes().

	
get_selectable_nodes()

	(internal) Returns a list of the nodes that can be selected. It can
be overwritten by the derived widget to return the correct list.

This list is used to determine which nodes to select with group
selection. E.g. the last element in the list will be selected when
home is pressed, pagedown will move (or add to, if shift is held) the
selection from the current position by negative page_count
nodes starting from the position of the currently selected node in
this list and so on. Still, nodes can be selected even if they are not
in this list.

Note

It is safe to dynamically change this list including removing,
adding, or re-arranging its elements. Nodes can be selected even
if they are not on this list. And selected nodes removed from the
list will remain selected until deselect_node() is called.

Warning

Layouts display their children in the reverse order. That is, the
contents of children is displayed
form right to left, bottom to top. Therefore, internally, the
indices of the elements returned by this function are reversed to
make it work by default for most layouts so that the final result
is consistent e.g. home, although it will select the last element
in this list visually, will select the first element when
counting from top to bottom and left to right. If this behavior is
not desired, a reversed list should be returned instead.

Defaults to returning children.

	
goto_node(key, last_node, last_node_idx)

	(internal) Used by the controller to get the node at the position
indicated by key. The key can be keyboard inputs, e.g. pageup,
or scroll inputs from the mouse scroll wheel, e.g. scrollup.
‘last_node’ is the last node selected and is used to find the resulting
node. For example, if the key is up, the returned node is one node
up from the last node.

It can be overwritten by the derived widget.

	Parameters:

	
	key
	str, the string used to find the desired node. It can be any
of the keyboard keys, as well as the mouse scrollup,
scrolldown, scrollright, and scrollleft strings. If letters
are typed in quick succession, the letters will be combined
before it’s passed in as key and can be used to find nodes that
have an associated string that starts with those letters.

	last_node
	The last node that was selected.

	last_node_idx
	The cached index of the last node selected in the
get_selectable_nodes() list. If the list hasn’t changed
it saves having to look up the index of last_node in that
list.

	Returns:

	tuple, the node targeted by key and its index in the
get_selectable_nodes() list. Returning
(last_node, last_node_idx) indicates a node wasn’t found.

	
key_selection

	The key used to check whether a view of a data item can be selected
with touch or the keyboard.

key_selection is the key in data, which if present and True
will enable selection for this item from the keyboard or with a touch.
When None, the default, not item will be selectable.

key_selection is a StringProperty and defaults to None.

Note

All data items can be selected directly using select_node() or
deselect_node(), even if key_selection is False.

	
select_node(node)

	Selects a node.

It is called by the controller when it selects a node and can be
called from the outside to select a node directly. The derived widget
should overwrite this method and change the node state to selected
when called.

	Parameters:

	
	node
	The node to be selected.

	Returns:

	bool, True if the node was selected, False otherwise.

Warning

This method must be called by the derived widget using super if it
is overwritten.

	
class kivy.uix.recycleview.layout.RecycleLayoutManagerBehavior

	Bases: builtins.object

A RecycleLayoutManagerBehavior is responsible for positioning views into
the RecycleView.data within a RecycleView. It adds new
views into the data when it becomes visible to the user, and removes them
when they leave the visible area.

	
compute_visible_views(data, viewport)

	viewport is in coordinates of the layout manager.

	
get_view_index_at(pos)

	Return the view index on which position, pos, falls.

pos is in coordinates of the layout manager.

	
goto_view(index)

	Moves the views so that the view corresponding to index is
visible.

	
key_viewclass

	See RecyclerView.key_viewclass.

	
refresh_view_layout(index, layout, view, viewport)

	See :meth:`~kivy.uix.recycleview.views.RecycleDataAdapter.refresh_view_layout.

	
set_visible_views(indices, data, viewport)

	viewport is in coordinates of the layout manager.

	
viewclass

	See RecyclerView.viewclass.

RecycleView Views

New in version 1.10.0.

The adapter part of the RecycleView which together with the layout is the
view part of the model-view-controller pattern.

The view module handles converting the data to a view using the adapter class
which is then displayed by the layout. A view can be any Widget based class.
However, inheriting from RecycleDataViewBehavior adds methods for converting
the data to a view.

	TODO:
	
	Make view caches specific to each view class type.

	
class kivy.uix.recycleview.views.RecycleDataAdapter(**kwargs)

	Bases: kivy.event.EventDispatcher

The class that converts data to a view.

— Internal details —
A view can have 3 states.

	It can be completely in sync with the data, which
occurs when the view is displayed. These are stored in views.

	It can be dirty, which occurs when the view is in sync with the data,
except for the size/pos parameters which is controlled by the layout.
This occurs when the view is not currently displayed but the data has
not changed. These views are stored in dirty_views.

	Finally the view can be dead which occurs when the data changes and
the view was not updated or when a view is just created. Such views
are typically added to the internal cache.

Typically what happens is that the layout manager lays out the data
and then asks for views, using set_visible_views,() for some specific
data items that it displays.

These views are gotten from the current views, dirty or global cache. Then
depending on the view state refresh_view_attrs() is called to bring
the view up to date with the data (except for sizing parameters). Finally,
the layout manager gets these views, updates their size and displays them.

	
attach_recycleview(rv)

	Associates a RecycleViewBehavior
with this instance. It is stored in recycleview.

	
create_view(index, data_item, viewclass)

	(internal) Creates and initializes the view for the data at index.

The returned view is synced with the data, except for the pos/size
information.

	
detach_recycleview()

	Removes the RecycleViewBehavior
associated with this instance and clears recycleview.

	
get_view(index, data_item, viewclass)

	(internal) Returns a view instance for the data at index

It looks through the various caches and finally creates a view if it
doesn’t exist. The returned view is synced with the data, except for
the pos/size information.

If found in the cache it’s removed from the source
before returning. It doesn’t check the current views.

	
get_visible_view(index)

	Returns the currently visible view associated with index.

If no view is currently displayed for index it returns None.

	
invalidate()

	Moves all the current views into the global cache.

As opposed to making a view dirty where the view is in sync with the
data except for sizing information, this will completely disconnect the
view from the data, as it is assumed the data has gone out of sync with
the view.

This is typically called when the data changes.

	
make_view_dirty(view, index)

	(internal) Used to flag this view as dirty, ready to be used for
others. See make_views_dirty().

	
make_views_dirty()

	Makes all the current views dirty.

Dirty views are still in sync with the corresponding data. However, the
size information may go out of sync. Therefore a dirty view can be
reused by the same index by just updating the sizing information.

Once the underlying data of this index changes, the view should be
removed from the dirty views and moved to the global cache with
invalidate().

This is typically called when the layout manager needs to re-layout all
the data.

	
recycleview

	The RecycleViewBehavior associated
with this instance.

	
refresh_view_attrs(index, data_item, view)

	(internal) Syncs the view and brings it up to date with the data.

This method calls RecycleDataViewBehavior.refresh_view_attrs()
if the view inherits from RecycleDataViewBehavior. See that
method for more details.

Note

Any sizing and position info is skipped when syncing with the data.

	
refresh_view_layout(index, layout, view, viewport)

	Updates the sizing information of the view.

viewport is in coordinates of the layout manager.

This method calls RecycleDataViewBehavior.refresh_view_attrs()
if the view inherits from RecycleDataViewBehavior. See that
method for more details.

Note

Any sizing and position info is skipped when syncing with the data.

	
set_visible_views(indices, data, viewclasses)

	Gets a 3-tuple of the new, remaining, and old views for the current
viewport.

The new views are synced to the data except for the size/pos
properties.
The old views need to be removed from the layout, and the new views
added.

The new views are not necessarily new, but are all the currently
visible views.

	
class kivy.uix.recycleview.views.RecycleDataViewBehavior

	Bases: builtins.object

A optional base class for data views (RecycleView.viewclass).
If a view inherits from this class, the class’s functions will be called
when the view needs to be updated due to a data change or layout update.

	
refresh_view_attrs(rv, index, data)

	Called by the RecycleAdapter when the view is initially
populated with the values from the data dictionary for this item.

Any pos or size info should be removed because they are set
subsequently with refresh_view_layout.

	Parameters:

	
	rv: RecycleView instance
	The RecycleView that caused the update.

	data: dict
	The data dict used to populate this view.

	
refresh_view_layout(rv, index, layout, viewport)

	Called when the view’s size is updated by the layout manager,
RecycleLayoutManagerBehavior.

	Parameters:

	
	rv: RecycleView instance
	The RecycleView that caused the update.

	viewport: 4-tuple
	The coordinates of the bottom left and width height in layout
manager coordinates. This may be larger than this view item.

	Raises:

	LayoutChangeException: If the sizing or data changed during a
call to this method, raising a LayoutChangeException exception
will force a refresh. Useful when data changed and we don’t want
to layout further since it’ll be overwritten again soon.

	
class kivy.uix.recycleview.views.RecycleKVIDsDataViewBehavior

	Bases: kivy.uix.recycleview.views.RecycleDataViewBehavior

Similar to RecycleDataViewBehavior, except that the data keys
can signify properties of an object named with an id in the root KV rule.

E.g. given a KV rule:

<MyRule@RecycleKVIDsDataViewBehavior+BoxLayout>:
 Label:
 id: name
 Label:
 id: value

Then setting the data list with
rv.data = [{'name.text': 'Kivy user', 'value.text': '12'}] would
automatically set the corresponding labels.

So, if the key doesn’t have a period, the named property of the root widget
will be set to the corresponding value. If there is a period, the named
property of the widget with the id listed before the period will be set to
the corresponding value.

New in version 2.0.0.

	
refresh_view_attrs(rv, index, data)

	Called by the RecycleAdapter when the view is initially
populated with the values from the data dictionary for this item.

Any pos or size info should be removed because they are set
subsequently with refresh_view_layout.

	Parameters:

	
	rv: RecycleView instance
	The RecycleView that caused the update.

	data: dict
	The data dict used to populate this view.

RecycleView Data Model

New in version 1.10.0.

The data model part of the RecycleView model-view-controller pattern.

It defines the models (classes) that store the data associated with a
RecycleViewBehavior. Each model (class)
determines how the data is stored and emits requests to the controller
(RecycleViewBehavior) when the data is
modified.

	
class kivy.uix.recycleview.datamodel.RecycleDataModel(**kwargs)

	Bases: kivy.uix.recycleview.datamodel.RecycleDataModelBehavior, kivy.event.EventDispatcher

An implementation of RecycleDataModelBehavior that keeps the
data in a indexable list. See data.

When data changes this class currently dispatches on_data_changed with
one of the following additional keyword arguments.

	none: no keyword argument
	With no additional argument it means a generic data change.

	removed: a slice or integer
	The value is a slice or integer indicating the indices removed.

	appended: a slice
	The slice in data indicating the first and last new items
(i.e. the slice pointing to the new items added at the end).

	inserted: a integer
	The index in data where a new data item was inserted.

	modified: a slice
	The slice with the indices where the data has been modified.
This currently does not allow changing of size etc.

	
attach_recycleview(rv)

	Associates a
RecycleViewBehavior with
this data model.

	
data

	Stores the model’s data using a list.

The data for a item at index i can also be accessed with
RecycleDataModel [i].

	
detach_recycleview()

	Removes the
RecycleViewBehavior
associated with this data model.

	
property observable_dict

	A dictionary instance, which when modified will trigger a data and
consequently an on_data_changed dispatch.

	
class kivy.uix.recycleview.datamodel.RecycleDataModelBehavior

	Bases: builtins.object

RecycleDataModelBehavior is the base class for the models
that describes and provides the data for the
RecycleViewBehavior.

	Events:

	
	on_data_changed:
	Fired when the data changes. The event may dispatch
keyword arguments specific to each implementation of the data
model.
When dispatched, the event and keyword arguments are forwarded to
refresh_from_data().

	
attach_recycleview(rv)

	Associates a
RecycleViewBehavior with
this data model.

	
detach_recycleview()

	Removes the
RecycleViewBehavior
associated with this data model.

	
recycleview

	The
RecycleViewBehavior instance
associated with this data model.

RecycleView Layouts

New in version 1.10.0.

The Layouts handle the presentation of views for the
RecycleView.

Warning

This module is highly experimental, its API may change in the future and
the documentation is not complete at this time.

	
exception kivy.uix.recycleview.layout.LayoutChangeException

	Bases: Exception

	
class kivy.uix.recycleview.layout.LayoutSelectionBehavior(**kwargs)

	Bases: kivy.uix.behaviors.compoundselection.CompoundSelectionBehavior

The LayoutSelectionBehavior can be combined with
RecycleLayoutManagerBehavior to allow its derived classes
selection behaviors similarly to how
CompoundSelectionBehavior
can be used to add selection behaviors to normal layout.

RecycleLayoutManagerBehavior manages its children
differently than normal layouts or widgets so this class adapts
CompoundSelectionBehavior
based selection to work with RecycleLayoutManagerBehavior as well.

Similarly to
CompoundSelectionBehavior,
one can select using the keyboard or touch, which calls select_node()
or deselect_node(), or one can call these methods directly. When a
item is selected or deselected apply_selection() is called. See
apply_selection().

	
apply_selection(index, view, is_selected)

	Applies the selection to the view. This is called internally when
a view is displayed and it needs to be shown as selected or as not
selected.

It is called when select_node() or deselect_node() is
called or when a view needs to be refreshed. Its function is purely to
update the view to reflect the selection state. So the function may be
called multiple times even if the selection state may not have changed.

If the view is a instance of
RecycleDataViewBehavior, its
apply_selection() method will be called every time the view needs to refresh
the selection state. Otherwise, the this method is responsible
for applying the selection.

	Parameters:

	
	index: int
	The index of the data item that is associated with the view.

	view: widget
	The widget that is the view of this data item.

	is_selected: bool
	Whether the item is selected.

	
deselect_node(node)

	Deselects a possibly selected node.

It is called by the controller when it deselects a node and can also
be called from the outside to deselect a node directly. The derived
widget should overwrite this method and change the node to its
unselected state when this is called

	Parameters:

	
	node
	The node to be deselected.

Warning

This method must be called by the derived widget using super if it
is overwritten.

	
get_index_of_node(node, selectable_nodes)

	(internal) Returns the index of the node within the
selectable_nodes returned by get_selectable_nodes().

	
get_selectable_nodes()

	(internal) Returns a list of the nodes that can be selected. It can
be overwritten by the derived widget to return the correct list.

This list is used to determine which nodes to select with group
selection. E.g. the last element in the list will be selected when
home is pressed, pagedown will move (or add to, if shift is held) the
selection from the current position by negative page_count
nodes starting from the position of the currently selected node in
this list and so on. Still, nodes can be selected even if they are not
in this list.

Note

It is safe to dynamically change this list including removing,
adding, or re-arranging its elements. Nodes can be selected even
if they are not on this list. And selected nodes removed from the
list will remain selected until deselect_node() is called.

Warning

Layouts display their children in the reverse order. That is, the
contents of children is displayed
form right to left, bottom to top. Therefore, internally, the
indices of the elements returned by this function are reversed to
make it work by default for most layouts so that the final result
is consistent e.g. home, although it will select the last element
in this list visually, will select the first element when
counting from top to bottom and left to right. If this behavior is
not desired, a reversed list should be returned instead.

Defaults to returning children.

	
goto_node(key, last_node, last_node_idx)

	(internal) Used by the controller to get the node at the position
indicated by key. The key can be keyboard inputs, e.g. pageup,
or scroll inputs from the mouse scroll wheel, e.g. scrollup.
‘last_node’ is the last node selected and is used to find the resulting
node. For example, if the key is up, the returned node is one node
up from the last node.

It can be overwritten by the derived widget.

	Parameters:

	
	key
	str, the string used to find the desired node. It can be any
of the keyboard keys, as well as the mouse scrollup,
scrolldown, scrollright, and scrollleft strings. If letters
are typed in quick succession, the letters will be combined
before it’s passed in as key and can be used to find nodes that
have an associated string that starts with those letters.

	last_node
	The last node that was selected.

	last_node_idx
	The cached index of the last node selected in the
get_selectable_nodes() list. If the list hasn’t changed
it saves having to look up the index of last_node in that
list.

	Returns:

	tuple, the node targeted by key and its index in the
get_selectable_nodes() list. Returning
(last_node, last_node_idx) indicates a node wasn’t found.

	
key_selection

	The key used to check whether a view of a data item can be selected
with touch or the keyboard.

key_selection is the key in data, which if present and True
will enable selection for this item from the keyboard or with a touch.
When None, the default, not item will be selectable.

key_selection is a StringProperty and defaults to None.

Note

All data items can be selected directly using select_node() or
deselect_node(), even if key_selection is False.

	
select_node(node)

	Selects a node.

It is called by the controller when it selects a node and can be
called from the outside to select a node directly. The derived widget
should overwrite this method and change the node state to selected
when called.

	Parameters:

	
	node
	The node to be selected.

	Returns:

	bool, True if the node was selected, False otherwise.

Warning

This method must be called by the derived widget using super if it
is overwritten.

	
class kivy.uix.recycleview.layout.RecycleLayoutManagerBehavior

	Bases: builtins.object

A RecycleLayoutManagerBehavior is responsible for positioning views into
the RecycleView.data within a RecycleView. It adds new
views into the data when it becomes visible to the user, and removes them
when they leave the visible area.

	
compute_visible_views(data, viewport)

	viewport is in coordinates of the layout manager.

	
get_view_index_at(pos)

	Return the view index on which position, pos, falls.

pos is in coordinates of the layout manager.

	
goto_view(index)

	Moves the views so that the view corresponding to index is
visible.

	
key_viewclass

	See RecyclerView.key_viewclass.

	
refresh_view_layout(index, layout, view, viewport)

	See :meth:`~kivy.uix.recycleview.views.RecycleDataAdapter.refresh_view_layout.

	
set_visible_views(indices, data, viewport)

	viewport is in coordinates of the layout manager.

	
viewclass

	See RecyclerView.viewclass.

RecycleView Views

New in version 1.10.0.

The adapter part of the RecycleView which together with the layout is the
view part of the model-view-controller pattern.

The view module handles converting the data to a view using the adapter class
which is then displayed by the layout. A view can be any Widget based class.
However, inheriting from RecycleDataViewBehavior adds methods for converting
the data to a view.

	TODO:
	
	Make view caches specific to each view class type.

	
class kivy.uix.recycleview.views.RecycleDataAdapter(**kwargs)

	Bases: kivy.event.EventDispatcher

The class that converts data to a view.

— Internal details —
A view can have 3 states.

	It can be completely in sync with the data, which
occurs when the view is displayed. These are stored in views.

	It can be dirty, which occurs when the view is in sync with the data,
except for the size/pos parameters which is controlled by the layout.
This occurs when the view is not currently displayed but the data has
not changed. These views are stored in dirty_views.

	Finally the view can be dead which occurs when the data changes and
the view was not updated or when a view is just created. Such views
are typically added to the internal cache.

Typically what happens is that the layout manager lays out the data
and then asks for views, using set_visible_views,() for some specific
data items that it displays.

These views are gotten from the current views, dirty or global cache. Then
depending on the view state refresh_view_attrs() is called to bring
the view up to date with the data (except for sizing parameters). Finally,
the layout manager gets these views, updates their size and displays them.

	
attach_recycleview(rv)

	Associates a RecycleViewBehavior
with this instance. It is stored in recycleview.

	
create_view(index, data_item, viewclass)

	(internal) Creates and initializes the view for the data at index.

The returned view is synced with the data, except for the pos/size
information.

	
detach_recycleview()

	Removes the RecycleViewBehavior
associated with this instance and clears recycleview.

	
get_view(index, data_item, viewclass)

	(internal) Returns a view instance for the data at index

It looks through the various caches and finally creates a view if it
doesn’t exist. The returned view is synced with the data, except for
the pos/size information.

If found in the cache it’s removed from the source
before returning. It doesn’t check the current views.

	
get_visible_view(index)

	Returns the currently visible view associated with index.

If no view is currently displayed for index it returns None.

	
invalidate()

	Moves all the current views into the global cache.

As opposed to making a view dirty where the view is in sync with the
data except for sizing information, this will completely disconnect the
view from the data, as it is assumed the data has gone out of sync with
the view.

This is typically called when the data changes.

	
make_view_dirty(view, index)

	(internal) Used to flag this view as dirty, ready to be used for
others. See make_views_dirty().

	
make_views_dirty()

	Makes all the current views dirty.

Dirty views are still in sync with the corresponding data. However, the
size information may go out of sync. Therefore a dirty view can be
reused by the same index by just updating the sizing information.

Once the underlying data of this index changes, the view should be
removed from the dirty views and moved to the global cache with
invalidate().

This is typically called when the layout manager needs to re-layout all
the data.

	
recycleview

	The RecycleViewBehavior associated
with this instance.

	
refresh_view_attrs(index, data_item, view)

	(internal) Syncs the view and brings it up to date with the data.

This method calls RecycleDataViewBehavior.refresh_view_attrs()
if the view inherits from RecycleDataViewBehavior. See that
method for more details.

Note

Any sizing and position info is skipped when syncing with the data.

	
refresh_view_layout(index, layout, view, viewport)

	Updates the sizing information of the view.

viewport is in coordinates of the layout manager.

This method calls RecycleDataViewBehavior.refresh_view_attrs()
if the view inherits from RecycleDataViewBehavior. See that
method for more details.

Note

Any sizing and position info is skipped when syncing with the data.

	
set_visible_views(indices, data, viewclasses)

	Gets a 3-tuple of the new, remaining, and old views for the current
viewport.

The new views are synced to the data except for the size/pos
properties.
The old views need to be removed from the layout, and the new views
added.

The new views are not necessarily new, but are all the currently
visible views.

	
class kivy.uix.recycleview.views.RecycleDataViewBehavior

	Bases: builtins.object

A optional base class for data views (RecycleView.viewclass).
If a view inherits from this class, the class’s functions will be called
when the view needs to be updated due to a data change or layout update.

	
refresh_view_attrs(rv, index, data)

	Called by the RecycleAdapter when the view is initially
populated with the values from the data dictionary for this item.

Any pos or size info should be removed because they are set
subsequently with refresh_view_layout.

	Parameters:

	
	rv: RecycleView instance
	The RecycleView that caused the update.

	data: dict
	The data dict used to populate this view.

	
refresh_view_layout(rv, index, layout, viewport)

	Called when the view’s size is updated by the layout manager,
RecycleLayoutManagerBehavior.

	Parameters:

	
	rv: RecycleView instance
	The RecycleView that caused the update.

	viewport: 4-tuple
	The coordinates of the bottom left and width height in layout
manager coordinates. This may be larger than this view item.

	Raises:

	LayoutChangeException: If the sizing or data changed during a
call to this method, raising a LayoutChangeException exception
will force a refresh. Useful when data changed and we don’t want
to layout further since it’ll be overwritten again soon.

	
class kivy.uix.recycleview.views.RecycleKVIDsDataViewBehavior

	Bases: kivy.uix.recycleview.views.RecycleDataViewBehavior

Similar to RecycleDataViewBehavior, except that the data keys
can signify properties of an object named with an id in the root KV rule.

E.g. given a KV rule:

<MyRule@RecycleKVIDsDataViewBehavior+BoxLayout>:
 Label:
 id: name
 Label:
 id: value

Then setting the data list with
rv.data = [{'name.text': 'Kivy user', 'value.text': '12'}] would
automatically set the corresponding labels.

So, if the key doesn’t have a period, the named property of the root widget
will be set to the corresponding value. If there is a period, the named
property of the widget with the id listed before the period will be set to
the corresponding value.

New in version 2.0.0.

	
refresh_view_attrs(rv, index, data)

	Called by the RecycleAdapter when the view is initially
populated with the values from the data dictionary for this item.

Any pos or size info should be removed because they are set
subsequently with refresh_view_layout.

	Parameters:

	
	rv: RecycleView instance
	The RecycleView that caused the update.

	data: dict
	The data dict used to populate this view.

Relative Layout

New in version 1.4.0.

This layout allows you to set relative coordinates for children. If you want
absolute positioning, use the FloatLayout.

The RelativeLayout class behaves just like the regular
FloatLayout except that its child widgets are positioned relative to
the layout.

When a widget with position = (0,0) is added to a RelativeLayout,
the child widget will also move when the position of the RelativeLayout
is changed. The child widgets coordinates remain (0,0) as they are
always relative to the parent layout.

Coordinate Systems

Window coordinates

By default, there’s only one coordinate system that defines the position of
widgets and touch events dispatched to them: the window coordinate system,
which places (0, 0) at the bottom left corner of the window.
Although there are other coordinate systems defined, e.g. local
and parent coordinates, these coordinate systems are identical to the window
coordinate system as long as a relative layout type widget is not in the
widget’s parent stack. When widget.pos is read or a touch is received,
the coordinate values are in parent coordinates. But as mentioned, these are
identical to window coordinates, even in complex widget stacks as long as
there’s no relative layout type widget in the widget’s parent stack.

For example:

BoxLayout:
 Label:
 text: 'Left'
 Button:
 text: 'Middle'
 on_touch_down: print('Middle: {}'.format(args[1].pos))
 BoxLayout:
 on_touch_down: print('Box: {}'.format(args[1].pos))
 Button:
 text: 'Right'
 on_touch_down: print('Right: {}'.format(args[1].pos))

When the middle button is clicked and the touch propagates through the
different parent coordinate systems, it prints the following:

>>> Box: (430.0, 282.0)
>>> Right: (430.0, 282.0)
>>> Middle: (430.0, 282.0)

As claimed, the touch has identical coordinates to the window coordinates
in every coordinate system. collide_point()
for example, takes the point in window coordinates.

Parent coordinates

Other RelativeLayout type widgets are
Scatter,
ScatterLayout,
and ScrollView. If such a special widget is in
the parent stack, only then does the parent and local coordinate system
diverge from the window coordinate system. For each such widget in the stack,
a coordinate system with (0, 0) of that coordinate system being at the bottom
left corner of that widget is created. Position and touch coordinates
received and read by a widget are in the coordinate system of the most
recent special widget in its parent stack (not including itself) or in window
coordinates if there are none (as in the first example). We call these
coordinates parent coordinates.

For example:

BoxLayout:
 Label:
 text: 'Left'
 Button:
 text: 'Middle'
 on_touch_down: print('Middle: {}'.format(args[1].pos))
 RelativeLayout:
 on_touch_down: print('Relative: {}'.format(args[1].pos))
 Button:
 text: 'Right'
 on_touch_down: print('Right: {}'.format(args[1].pos))

Clicking on the middle button prints:

>>> Relative: (396.0, 298.0)
>>> Right: (-137.33, 298.0)
>>> Middle: (396.0, 298.0)

As the touch propagates through the widgets, for each widget, the
touch is received in parent coordinates. Because both the relative and middle
widgets don’t have these special widgets in their parent stack, the touch is
the same as window coordinates. Only the right widget, which has a
RelativeLayout in its parent stack, receives the touch in coordinates relative
to that RelativeLayout which is different than window coordinates.

Local and Widget coordinates

When expressed in parent coordinates, the position is expressed in the
coordinates of the most recent special widget in its parent stack, not
including itself. When expressed in local or widget coordinates, the widgets
themselves are also included.

Changing the above example to transform the parent coordinates into local
coordinates:

BoxLayout:
 Label:
 text: 'Left'
 Button:
 text: 'Middle'
 on_touch_down: print('Middle: {}'.format(self.to_local(*args[1].pos)))
 RelativeLayout:
 on_touch_down: print('Relative: {}'.format(self.to_local(*args[1].pos)))
 Button:
 text: 'Right'
 on_touch_down: print('Right: {}'.format(self.to_local(*args[1].pos)))

Now, clicking on the middle button prints:

>>> Relative: (-135.33, 301.0)
>>> Right: (-135.33, 301.0)
>>> Middle: (398.0, 301.0)

This is because now the relative widget also expresses the coordinates
relative to itself.

Note

Although all widgets including RelativeLayout receive their touch
events in on_touch_xxx in parent coordinates, these special widgets
will transform the touch position to be in local coordinates before it
calls super. This may only be noticeable in a complex inheritance
class.

Coordinate transformations

Widget provides 4 functions to transform coordinates
between the various coordinate systems. For now, we assume that the relative
keyword of these functions is False.
to_widget() takes the coordinates expressed in
window coordinates and returns them in local (widget) coordinates.
to_window() takes the coordinates expressed in
local coordinates and returns them in window coordinates.
to_parent() takes the coordinates expressed in
local coordinates and returns them in parent coordinates.
to_local() takes the coordinates expressed in
parent coordinates and returns them in local coordinates.

Each of the 4 transformation functions take a relative parameter. When the
relative parameter is True, the coordinates are returned or originate in
true relative coordinates - relative to a coordinate system with its (0, 0) at
the bottom left corner of the widget in question.

Common Pitfalls

As all positions within a RelativeLayout are relative to the position
of the layout itself, the position of the layout should never be used in
determining the position of sub-widgets or the layout’s canvas.

Take the following kv code for example:

[image: _images/relativelayout-fixedposition.png]

expected result

[image: _images/relativelayout-doubleposition.png]

actual result

FloatLayout:
 Widget:
 size_hint: None, None
 size: 200, 200
 pos: 200, 200

 canvas:
 Color:
 rgba: 1, 1, 1, 1
 Rectangle:
 pos: self.pos
 size: self.size

 RelativeLayout:
 size_hint: None, None
 size: 200, 200
 pos: 200, 200

 canvas:
 Color:
 rgba: 1, 0, 0, 0.5
 Rectangle:
 pos: self.pos # incorrect
 size: self.size

You might expect this to render a single pink rectangle; however, the content
of the RelativeLayout is already transformed, so the use of
pos: self.pos will double that transformation. In this case, using
pos: 0, 0 or omitting pos completely will provide the expected result.

This also applies to the position of sub-widgets. Instead of positioning a
Widget based on the layout’s own position:

RelativeLayout:
 Widget:
 pos: self.parent.pos
 Widget:
 center: self.parent.center

use the pos_hint property:

RelativeLayout:
 Widget:
 pos_hint: {'x': 0, 'y': 0}
 Widget:
 pos_hint: {'center_x': 0.5, 'center_y': 0.5}

Changed in version 1.7.0: Prior to version 1.7.0, the RelativeLayout was implemented as a
FloatLayout inside a
Scatter. This behaviour/widget has
been renamed to ScatterLayout. The RelativeLayout now only
supports relative positions (and can’t be rotated, scaled or translated on
a multitouch system using two or more fingers). This was done so that the
implementation could be optimized and avoid the heavier calculations of
Scatter (e.g. inverse matrix, recalculating multiple properties
etc.)

	
class kivy.uix.relativelayout.RelativeLayout(**kw)

	Bases: kivy.uix.floatlayout.FloatLayout

RelativeLayout class, see module documentation for more information.

	
do_layout(*args)

	This function is called when a layout is called by a trigger.
If you are writing a new Layout subclass, don’t call this function
directly but use _trigger_layout() instead.

The function is by default called before the next frame, therefore
the layout isn’t updated immediately. Anything depending on the
positions of e.g. children should be scheduled for the next frame.

New in version 1.0.8.

	
on_motion(etype, me)

	Called when a motion event is received.

	Parameters:

	
	etype: str
	Event type, one of “begin”, “update” or “end”

	me: MotionEvent
	Received motion event

	Returns:

	bool
True to stop event dispatching

New in version 2.1.0.

Warning

This is an experimental method and it remains so while this warning
is present.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_move(touch)

	Receive a touch move event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
to_local(x, y, **k)

	Transform parent coordinates to local (current widget) coordinates.

See relativelayout for details on the coordinate
systems.

	Parameters:

	
	relative: bool, defaults to False
	Change to True if you want to translate coordinates to
relative widget coordinates.

	
to_parent(x, y, **k)

	Transform local (current widget) coordinates to parent coordinates.

See relativelayout for details on the coordinate
systems.

	Parameters:

	
	relative: bool, defaults to False
	Change to True if you want to translate relative positions from
a widget to its parent coordinates.

reStructuredText renderer

New in version 1.1.0.

reStructuredText [http://docutils.sourceforge.net/rst.html] is an
easy-to-read, what-you-see-is-what-you-get plaintext markup syntax and parser
system.

Note

This widget requires the docutils package to run. Install it with
pip or include it as one of your deployment requirements.

Warning

This widget is highly experimental. The styling and implementation should
not be considered stable until this warning has been removed.

Usage with Text

text = """
.. _top:

Hello world
===========

This is an **emphased text**, some ``interpreted text``.
And this is a reference to top_::

 $ print("Hello world")

"""
document = RstDocument(text=text)

The rendering will output:

[image: _images/rstdocument.png]

Usage with Source

You can also render a rst file using the source property:

document = RstDocument(source='index.rst')

You can reference other documents using the role :doc:. For example, in the
document index.rst you can write:

Go to my next document: :doc:`moreinfo.rst`

It will generate a link that, when clicked, opens the moreinfo.rst
document.

	
class kivy.uix.rst.RstDocument(**kwargs)

	Bases: kivy.uix.scrollview.ScrollView

Base widget used to store an Rst document. See module documentation for
more information.

	
background_color

	Specifies the background_color to be used for the RstDocument.

New in version 1.8.0.

background_color is an AliasProperty
for colors[‘background’].

	
base_font_size

	Font size for the biggest title, 31 by default. All other font sizes are
derived from this.

New in version 1.8.0.

	
colors

	Dictionary of all the colors used in the RST rendering.

Warning

This dictionary is needs special handling. You also need to call
RstDocument.render() if you change them after loading.

colors is a DictProperty.

	
document_root

	Root path where :doc: will search for rst documents. If no path is
given, it will use the directory of the first loaded source file.

document_root is a StringProperty and
defaults to None.

	
goto(ref, *largs)

	Scroll to the reference. If it’s not found, nothing will be done.

For this text:

.. _myref:

This is something I always wanted.

You can do:

from kivy.clock import Clock
from functools import partial

doc = RstDocument(...)
Clock.schedule_once(partial(doc.goto, 'myref'), 0.1)

Note

It is preferable to delay the call of the goto if you just loaded
the document because the layout might not be finished or the
size of the RstDocument has not yet been determined. In
either case, the calculation of the scrolling would be
wrong.

You can, however, do a direct call if the document is already
loaded.

New in version 1.3.0.

	
preload(filename, encoding='utf-8', errors='strict')

	Preload a rst file to get its toctree and its title.

The result will be stored in toctrees with the filename as
key.

	
render()

	Force document rendering.

	
resolve_path(filename)

	Get the path for this filename. If the filename doesn’t exist,
it returns the document_root + filename.

	
show_errors

	Indicate whether RST parsers errors should be shown on the screen
or not.

show_errors is a BooleanProperty and
defaults to False.

	
source

	Filename of the RST document.

source is a StringProperty and
defaults to None.

	
source_encoding

	Encoding to be used for the source file.

source_encoding is a StringProperty and
defaults to utf-8.

Note

It is your responsibility to ensure that the value provided is a
valid codec supported by python.

	
source_error

	Error handling to be used while encoding the source file.

source_error is an OptionProperty and
defaults to strict. Can be one of ‘strict’, ‘ignore’, ‘replace’,
‘xmlcharrefreplace’ or ‘backslashreplac’.

	
text

	RST markup text of the document.

text is a StringProperty and defaults to
None.

	
title

	Title of the current document.

title is a StringProperty and defaults to
‘’. It is read-only.

	
toctrees

	Toctree of all loaded or preloaded documents. This dictionary is filled
when a rst document is explicitly loaded or where preload() has been
called.

If the document has no filename, e.g. when the document is loaded from a
text file, the key will be ‘’.

toctrees is a DictProperty and defaults
to {}.

	
underline_color

	underline color of the titles, expressed in html color notation

underline_color is a
StringProperty and defaults to ‘204a9699’.

Sandbox

New in version 1.8.0.

Warning

This is experimental and subject to change as long as this warning notice
is present.

This is a widget that runs itself and all of its children in a Sandbox. That
means if a child raises an Exception, it will be caught. The Sandbox
itself runs its own Clock, Cache, etc.

The SandBox widget is still experimental and required for the Kivy designer.
When the user designs their own widget, if they do something wrong (wrong size
value, invalid python code), it will be caught correctly without breaking
the whole application. Because it has been designed that way, we are still
enhancing this widget and the kivy.context module.
Don’t use it unless you know what you are doing.

	
class kivy.uix.sandbox.Sandbox(**kwargs)

	Bases: kivy.uix.floatlayout.FloatLayout

Sandbox widget, used to trap all the exceptions raised by child
widgets.

	
add_widget(*args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
clear_widgets(*args, **kwargs)

	Remove all (or the specified) children of this widget.
If the ‘children’ argument is specified, it should be a list (or
filtered list) of children of the current widget.

Changed in version 1.8.0: The children argument can be used to specify the children you
want to remove.

Changed in version 2.1.0: Specifying an empty children list leaves the widgets unchanged.
Previously it was treated like None and all children were
removed.

	
on_context_created()

	Override this method in order to load your kv file or do anything
else with the newly created context.

	
on_exception(exception, _traceback=None)

	Override this method in order to catch all the exceptions from
children.

If you return True, it will not reraise the exception.
If you return False, the exception will be raised to the parent.

	
on_motion(etype, me)

	Called when a motion event is received.

	Parameters:

	
	etype: str
	Event type, one of “begin”, “update” or “end”

	me: MotionEvent
	Received motion event

	Returns:

	bool
True to stop event dispatching

New in version 2.1.0.

Warning

This is an experimental method and it remains so while this warning
is present.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_move(touch)

	Receive a touch move event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
remove_widget(*args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

Scatter

[image: _images/scatter.gif]
Scatter is used to build interactive widgets that can be translated,
rotated and scaled with two or more fingers on a multitouch system.

Scatter has its own matrix transformation: the modelview matrix is changed
before the children are drawn and the previous matrix is restored when the
drawing is finished. That makes it possible to perform rotation, scaling and
translation over the entire children tree without changing any widget
properties. That specific behavior makes the scatter unique, but there are some
advantages / constraints that you should consider:

	The children are positioned relative to the scatter similarly to a
RelativeLayout. So when dragging the
scatter, the position of the children don’t change, only the position of
the scatter does.

	The scatter size has no impact on the size of its children.

	If you want to resize the scatter, use scale, not size (read #2). Scale
transforms both the scatter and its children, but does not change size.

	The scatter is not a layout. You must manage the size of the children
yourself.

For touch events, the scatter converts from the parent matrix to the scatter
matrix automatically in on_touch_down/move/up events. If you are doing things
manually, you will need to use to_parent() and
to_local().

Usage

By default, the Scatter does not have a graphical representation: it is a
container only. The idea is to combine the Scatter with another widget, for
example an Image:

scatter = Scatter()
image = Image(source='sun.jpg')
scatter.add_widget(image)

Control Interactions

By default, all interactions are enabled. You can selectively disable
them using the do_rotation, do_translation and do_scale properties.

Disable rotation:

scatter = Scatter(do_rotation=False)

Allow only translation:

scatter = Scatter(do_rotation=False, do_scale=False)

Allow only translation on x axis:

scatter = Scatter(do_rotation=False, do_scale=False,
 do_translation_y=False)

Automatic Bring to Front

If the Scatter.auto_bring_to_front property is True, the scatter
widget will be removed and re-added to the parent when it is touched
(brought to front, above all other widgets in the parent). This is useful
when you are manipulating several scatter widgets and don’t want the active
one to be partially hidden.

Scale Limitation

We are using a 32-bit matrix in double representation. That means we have
a limit for scaling. You cannot do infinite scaling down/up with our
implementation. Generally, you don’t hit the minimum scale (because you don’t
see it on the screen), but the maximum scale is 9.99506983235e+19 (2^66).

You can also limit the minimum and maximum scale allowed:

scatter = Scatter(scale_min=.5, scale_max=3.)

Behavior

Changed in version 1.1.0: If no control interactions are enabled, then the touch handler will never
return True.

	
class kivy.uix.scatter.Scatter(**kwargs)

	Bases: kivy.uix.widget.Widget

Scatter class. See module documentation for more information.

	Events:

	
	on_transform_with_touch:
	Fired when the scatter has been transformed by user touch
or multitouch, such as panning or zooming.

	on_bring_to_front:
	Fired when the scatter is brought to the front.

Changed in version 1.9.0: Event on_bring_to_front added.

Changed in version 1.8.0: Event on_transform_with_touch added.

	
apply_transform(trans, post_multiply=False, anchor=(0, 0))

	Transforms the scatter by applying the “trans” transformation
matrix (on top of its current transformation state). The resultant
matrix can be found in the transform property.

	Parameters:

	
	trans: Matrix.
	Transformation matrix to be applied to the scatter widget.

	anchor: tuple, defaults to (0, 0).
	The point to use as the origin of the transformation
(uses local widget space).

	post_multiply: bool, defaults to False.
	If True, the transform matrix is post multiplied
(as if applied before the current transform).

Usage example:

from kivy.graphics.transformation import Matrix
mat = Matrix().scale(3, 3, 3)
scatter_instance.apply_transform(mat)

	
auto_bring_to_front

	If True, the widget will be automatically pushed on the top of parent
widget list for drawing.

auto_bring_to_front is a BooleanProperty
and defaults to True.

	
bbox

	Bounding box of the widget in parent space:

((x, y), (w, h))
x, y = lower left corner

bbox is an AliasProperty.

	
center

	Center position of the widget.

center is a ReferenceListProperty of
(center_x, center_y) properties.

	
center_x

	X center position of the widget.

center_x is an AliasProperty of
(x + width / 2.).

	
center_y

	Y center position of the widget.

center_y is an AliasProperty of
(y + height / 2.).

	
collide_point(x, y)

	Check if a point (x, y) is inside the widget’s axis aligned bounding
box.

	Parameters:

	
	x: numeric
	x position of the point (in parent coordinates)

	y: numeric
	y position of the point (in parent coordinates)

	Returns:

	A bool. True if the point is inside the bounding box, False
otherwise.

>>> Widget(pos=(10, 10), size=(50, 50)).collide_point(40, 40)
True

	
do_collide_after_children

	If True, the collision detection for limiting the touch inside the
scatter will be done after dispaching the touch to the children.
You can put children outside the bounding box of the scatter and still be
able to touch them.

do_collide_after_children is a
BooleanProperty and defaults to False.

New in version 1.3.0.

	
do_rotation

	Allow rotation.

do_rotation is a BooleanProperty and
defaults to True.

	
do_scale

	Allow scaling.

do_scale is a BooleanProperty and
defaults to True.

	
do_translation

	Allow translation on the X or Y axis.

do_translation is an AliasProperty of
(do_translation_x + do_translation_y)

	
do_translation_x

	Allow translation on the X axis.

do_translation_x is a BooleanProperty and
defaults to True.

	
do_translation_y

	Allow translation on Y axis.

do_translation_y is a BooleanProperty and
defaults to True.

	
on_bring_to_front(touch)

	Called when a touch event causes the scatter to be brought to the
front of the parent (only if auto_bring_to_front is True)

	Parameters:

	
	touch:
	The touch object which brought the scatter to front.

New in version 1.9.0.

	
on_motion(etype, me)

	Called when a motion event is received.

	Parameters:

	
	etype: str
	Event type, one of “begin”, “update” or “end”

	me: MotionEvent
	Received motion event

	Returns:

	bool
True to stop event dispatching

New in version 2.1.0.

Warning

This is an experimental method and it remains so while this warning
is present.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_move(touch)

	Receive a touch move event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_transform_with_touch(touch)

	Called when a touch event has transformed the scatter widget.
By default this does nothing, but can be overridden by derived
classes that need to react to transformations caused by user
input.

	Parameters:

	
	touch:
	The touch object which triggered the transformation.

New in version 1.8.0.

	
pos

	Position of the widget.

pos is a ReferenceListProperty of
(x, y) properties.

	
right

	Right position of the widget.

right is an AliasProperty of
(x + width).

	
rotation

	Rotation value of the scatter in degrees moving in a counterclockwise
direction.

rotation is an AliasProperty and defaults
to 0.0.

	
scale

	Scale value of the scatter.

scale is an AliasProperty and defaults to
1.0.

	
scale_max

	Maximum scaling factor allowed.

scale_max is a NumericProperty and
defaults to 1e20.

	
scale_min

	Minimum scaling factor allowed.

scale_min is a NumericProperty and
defaults to 0.01.

	
to_local(x, y, **k)

	Transform parent coordinates to local (current widget) coordinates.

See relativelayout for details on the coordinate
systems.

	Parameters:

	
	relative: bool, defaults to False
	Change to True if you want to translate coordinates to
relative widget coordinates.

	
to_parent(x, y, **k)

	Transform local (current widget) coordinates to parent coordinates.

See relativelayout for details on the coordinate
systems.

	Parameters:

	
	relative: bool, defaults to False
	Change to True if you want to translate relative positions from
a widget to its parent coordinates.

	
top

	Top position of the widget.

top is an AliasProperty of
(y + height).

	
transform

	Transformation matrix.

transform is an ObjectProperty and
defaults to the identity matrix.

Note

This matrix reflects the current state of the transformation matrix
but setting it directly will erase previously applied
transformations. To apply a transformation considering context,
please use the apply_transform method.

	
transform_inv

	Inverse of the transformation matrix.

transform_inv is an ObjectProperty and
defaults to the identity matrix.

	
translation_touches

	Determine whether translation was triggered by a single or multiple
touches. This only has effect when do_translation = True.

translation_touches is a NumericProperty
and defaults to 1.

New in version 1.7.0.

	
x

	X position of the widget.

x is a NumericProperty and defaults to 0.

	
y

	Y position of the widget.

y is a NumericProperty and defaults to 0.

	
class kivy.uix.scatter.ScatterPlane(**kwargs)

	Bases: kivy.uix.scatter.Scatter

This is essentially an unbounded Scatter widget. It’s a convenience
class to make it easier to handle infinite planes.

	
collide_point(x, y)

	Check if a point (x, y) is inside the widget’s axis aligned bounding
box.

	Parameters:

	
	x: numeric
	x position of the point (in parent coordinates)

	y: numeric
	y position of the point (in parent coordinates)

	Returns:

	A bool. True if the point is inside the bounding box, False
otherwise.

>>> Widget(pos=(10, 10), size=(50, 50)).collide_point(40, 40)
True

Scatter Layout

New in version 1.6.0.

This layout behaves just like a
RelativeLayout.
When a widget is added with position = (0,0) to a ScatterLayout,
the child widget will also move when you change the position of the
ScatterLayout. The child widget’s coordinates remain
(0,0) as they are relative to the parent layout.

However, since ScatterLayout is implemented using a
Scatter
widget, you can also translate, rotate and scale the layout using touches
or clicks, just like in the case of a normal Scatter widget, and the child
widgets will behave as expected.

In contrast to a Scatter, the Layout favours ‘hint’ properties, such as
size_hint, size_hint_x, size_hint_y and pos_hint.

Note

The ScatterLayout is implemented as a
FloatLayout
inside a Scatter.

Warning

Since the actual ScatterLayout is a
Scatter, its
add_widget and remove_widget functions are overridden to add children
to the embedded FloatLayout (accessible as
the content property of Scatter)
automatically. So if you want to access the added child elements,
you need self.content.children instead of self.children.

Warning

The ScatterLayout was introduced in 1.7.0 and was called
RelativeLayout in prior versions.
The RelativeLayout is now an optimized
implementation that uses only a positional transform to avoid some of the
heavier calculation involved for Scatter.

	
class kivy.uix.scatterlayout.ScatterLayout(**kw)

	Bases: kivy.uix.scatter.Scatter

ScatterLayout class, see module documentation for more information.

	
add_widget(*args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
clear_widgets(*args, **kwargs)

	Remove all (or the specified) children of this widget.
If the ‘children’ argument is specified, it should be a list (or
filtered list) of children of the current widget.

Changed in version 1.8.0: The children argument can be used to specify the children you
want to remove.

Changed in version 2.1.0: Specifying an empty children list leaves the widgets unchanged.
Previously it was treated like None and all children were
removed.

	
remove_widget(*args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
class kivy.uix.scatterlayout.ScatterPlaneLayout(**kwargs)

	Bases: kivy.uix.scatter.ScatterPlane

ScatterPlaneLayout class, see module documentation for more information.

Similar to ScatterLayout, but based on ScatterPlane - so the input is not
bounded.

New in version 1.9.0.

	
collide_point(x, y)

	Check if a point (x, y) is inside the widget’s axis aligned bounding
box.

	Parameters:

	
	x: numeric
	x position of the point (in parent coordinates)

	y: numeric
	y position of the point (in parent coordinates)

	Returns:

	A bool. True if the point is inside the bounding box, False
otherwise.

>>> Widget(pos=(10, 10), size=(50, 50)).collide_point(40, 40)
True

Screen Manager

[image: _images/screenmanager.gif]

New in version 1.4.0.

The screen manager is a widget dedicated to managing multiple screens for your
application. The default ScreenManager displays only one
Screen at a time and uses a TransitionBase to switch from one
Screen to another.

Multiple transitions are supported based on changing the screen coordinates /
scale or even performing fancy animation using custom shaders.

Basic Usage

Let’s construct a Screen Manager with 4 named screens. When you are creating
a screen, you absolutely need to give a name to it:

from kivy.uix.screenmanager import ScreenManager, Screen

Create the manager
sm = ScreenManager()

Add few screens
for i in range(4):
 screen = Screen(name='Title %d' % i)
 sm.add_widget(screen)

By default, the first screen added into the ScreenManager will be
displayed. You can then change to another screen.

Let's display the screen named 'Title 2'
A transition will automatically be used.
sm.current = 'Title 2'

The default ScreenManager.transition is a SlideTransition with
options direction and
duration.

Please note that by default, a Screen displays nothing: it’s just a
RelativeLayout. You need to use that class as
a root widget for your own screen, the best way being to subclass.

Warning

As Screen is a RelativeLayout,
it is important to understand the
Common Pitfalls.

Here is an example with a ‘Menu Screen’ and a ‘Settings Screen’:

from kivy.app import App
from kivy.lang import Builder
from kivy.uix.screenmanager import ScreenManager, Screen

Create both screens. Please note the root.manager.current: this is how
you can control the ScreenManager from kv. Each screen has by default a
property manager that gives you the instance of the ScreenManager used.
Builder.load_string("""
<MenuScreen>:
 BoxLayout:
 Button:
 text: 'Goto settings'
 on_press: root.manager.current = 'settings'
 Button:
 text: 'Quit'

<SettingsScreen>:
 BoxLayout:
 Button:
 text: 'My settings button'
 Button:
 text: 'Back to menu'
 on_press: root.manager.current = 'menu'
""")

Declare both screens
class MenuScreen(Screen):
 pass

class SettingsScreen(Screen):
 pass

class TestApp(App):

 def build(self):
 # Create the screen manager
 sm = ScreenManager()
 sm.add_widget(MenuScreen(name='menu'))
 sm.add_widget(SettingsScreen(name='settings'))

 return sm

if __name__ == '__main__':
 TestApp().run()

Changing Direction

A common use case for ScreenManager involves using a
SlideTransition which slides right to the next screen
and slides left to the previous screen. Building on the previous
example, this can be accomplished like so:

Builder.load_string("""
<MenuScreen>:
 BoxLayout:
 Button:
 text: 'Goto settings'
 on_press:
 root.manager.transition.direction = 'left'
 root.manager.current = 'settings'
 Button:
 text: 'Quit'

<SettingsScreen>:
 BoxLayout:
 Button:
 text: 'My settings button'
 Button:
 text: 'Back to menu'
 on_press:
 root.manager.transition.direction = 'right'
 root.manager.current = 'menu'
""")

Advanced Usage

From 1.8.0, you can now switch dynamically to a new screen, change the
transition options and remove the previous one by using
switch_to():

sm = ScreenManager()
screens = [Screen(name='Title {}'.format(i)) for i in range(4)]

sm.switch_to(screens[0])
later
sm.switch_to(screens[1], direction='right')

Note that this method adds the screen to the ScreenManager instance
and should not be used if your screens have already been added to this
instance. To switch to a screen which is already added, you should use the
current property.

Changing transitions

You have multiple transitions available by default, such as:

	NoTransition - switches screens instantly with no animation

	SlideTransition - slide the screen in/out, from any direction

	CardTransition - new screen slides on the previous
or the old one slides off the new one depending on the mode

	SwapTransition - implementation of the iOS swap transition

	FadeTransition - shader to fade the screen in/out

	WipeTransition - shader to wipe the screens from right to left

	FallOutTransition - shader where the old screen ‘falls’ and
becomes transparent, revealing the new one behind it.

	RiseInTransition - shader where the new screen rises from the
screen centre while fading from transparent to opaque.

You can easily switch transitions by changing the
ScreenManager.transition property:

sm = ScreenManager(transition=FadeTransition())

Note

Currently, none of Shader based Transitions use
anti-aliasing. This is because they use the FBO which doesn’t have
any logic to handle supersampling. This is a known issue and we
are working on a transparent implementation that will give the
same results as if it had been rendered on screen.

To be more concrete, if you see sharp edged text during the animation, it’s
normal.

	
class kivy.uix.screenmanager.CardTransition

	Bases: kivy.uix.screenmanager.SlideTransition

Card transition that looks similar to Android 4.x application drawer
interface animation.

It supports 4 directions like SlideTransition: left, right, up and down,
and two modes, pop and push. If push mode is activated, the previous
screen does not move, and the new one slides in from the given direction.
If the pop mode is activated, the previous screen slides out, when the new
screen is already on the position of the ScreenManager.

New in version 1.10.

	
mode

	Indicates if the transition should push or pop
the screen on/off the ScreenManager.

	‘push’ means the screen slides in in the given direction

	‘pop’ means the screen slides out in the given direction

mode is an OptionProperty and
defaults to ‘push’.

	
start(manager)

	(internal) Starts the transition. This is automatically
called by the ScreenManager.

	
class kivy.uix.screenmanager.FadeTransition

	Bases: kivy.uix.screenmanager.ShaderTransition

Fade transition, based on a fragment Shader.

	
fs

	Fragment shader to use.

fs is a StringProperty and defaults to
None.

	
class kivy.uix.screenmanager.FallOutTransition

	Bases: kivy.uix.screenmanager.ShaderTransition

Transition where the new screen ‘falls’ from the screen centre,
becoming smaller and more transparent until it disappears, and
revealing the new screen behind it. Mimics the popular/standard
Android transition.

New in version 1.8.0.

	
duration

	Duration in seconds of the transition, replacing the default of
TransitionBase.

duration is a NumericProperty and
defaults to .15 (= 150ms).

	
fs

	Fragment shader to use.

fs is a StringProperty and defaults to
None.

	
class kivy.uix.screenmanager.NoTransition

	Bases: kivy.uix.screenmanager.TransitionBase

No transition, instantly switches to the next screen with no delay or
animation.

New in version 1.8.0.

	
duration

	Duration in seconds of the transition.

duration is a NumericProperty and
defaults to .4 (= 400ms).

Changed in version 1.8.0: Default duration has been changed from 700ms to 400ms.

	
class kivy.uix.screenmanager.RiseInTransition

	Bases: kivy.uix.screenmanager.ShaderTransition

Transition where the new screen rises from the screen centre,
becoming larger and changing from transparent to opaque until it
fills the screen. Mimics the popular/standard Android transition.

New in version 1.8.0.

	
duration

	Duration in seconds of the transition, replacing the default of
TransitionBase.

duration is a NumericProperty and
defaults to .2 (= 200ms).

	
fs

	Fragment shader to use.

fs is a StringProperty and defaults to
None.

	
class kivy.uix.screenmanager.Screen(**kw)

	Bases: kivy.uix.relativelayout.RelativeLayout

Screen is an element intended to be used with a ScreenManager.
Check module documentation for more information.

	Events:

	
	on_pre_enter: ()
	Event fired when the screen is about to be used: the entering
animation is started.

	on_enter: ()
	Event fired when the screen is displayed: the entering animation is
complete.

	on_pre_leave: ()
	Event fired when the screen is about to be removed: the leaving
animation is started.

	on_leave: ()
	Event fired when the screen is removed: the leaving animation is
finished.

Changed in version 1.6.0: Events on_pre_enter, on_enter, on_pre_leave and on_leave were
added.

	
manager

	ScreenManager object, set when the screen is added to a
manager.

manager is an ObjectProperty and
defaults to None, read-only.

	
name

	Name of the screen which must be unique within a ScreenManager.
This is the name used for ScreenManager.current.

name is a StringProperty and defaults to
‘’.

	
transition_progress

	Value that represents the completion of the current transition, if any
is occurring.

If a transition is in progress, whatever the mode, the value will change
from 0 to 1. If you want to know if it’s an entering or leaving animation,
check the transition_state.

transition_progress is a NumericProperty
and defaults to 0.

	
transition_state

	Value that represents the state of the transition:

	‘in’ if the transition is going to show your screen

	‘out’ if the transition is going to hide your screen

After the transition is complete, the state will retain its last value (in
or out).

transition_state is an OptionProperty and
defaults to ‘out’.

	
class kivy.uix.screenmanager.ScreenManager(**kwargs)

	Bases: kivy.uix.floatlayout.FloatLayout

Screen manager. This is the main class that will control your
Screen stack and memory.

By default, the manager will show only one screen at a time.

	
add_widget(widget, *args, **kwargs)

	
Changed in version 2.1.0: Renamed argument screen to widget.

	
clear_widgets(children=None, *args, **kwargs)

	
Changed in version 2.1.0: Renamed argument screens to children.

	
current

	Name of the screen currently shown, or the screen to show.

from kivy.uix.screenmanager import ScreenManager, Screen

sm = ScreenManager()
sm.add_widget(Screen(name='first'))
sm.add_widget(Screen(name='second'))

By default, the first added screen will be shown. If you want to
show another one, just set the 'current' property.
sm.current = 'second'

current is a StringProperty and defaults
to None.

	
current_screen

	Contains the currently displayed screen. You must not change this
property manually, use current instead.

current_screen is an ObjectProperty and
defaults to None, read-only.

	
get_screen(name)

	Return the screen widget associated with the name or raise a
ScreenManagerException if not found.

	
has_screen(name)

	Return True if a screen with the name has been found.

New in version 1.6.0.

	
next()

	Return the name of the next screen from the screen list.

	
on_motion(etype, me)

	Called when a motion event is received.

	Parameters:

	
	etype: str
	Event type, one of “begin”, “update” or “end”

	me: MotionEvent
	Received motion event

	Returns:

	bool
True to stop event dispatching

New in version 2.1.0.

Warning

This is an experimental method and it remains so while this warning
is present.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_move(touch)

	Receive a touch move event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
previous()

	Return the name of the previous screen from the screen list.

	
remove_widget(widget, *args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
screen_names

	List of the names of all the Screen widgets added. The list
is read only.

screens_names is an AliasProperty and
is read-only. It is updated if the screen list changes or the name
of a screen changes.

	
screens

	List of all the Screen widgets added. You should not change
this list manually. Use the
add_widget method instead.

screens is a ListProperty and defaults to
[], read-only.

	
switch_to(screen, **options)

	Add a new or existing screen to the ScreenManager and switch to it.
The previous screen will be “switched away” from. options are the
transition options that will be changed before the animation
happens.

If no previous screens are available, the screen will be used as the
main one:

sm = ScreenManager()
sm.switch_to(screen1)
later
sm.switch_to(screen2, direction='left')
later
sm.switch_to(screen3, direction='right', duration=1.)

If any animation is in progress, it will be stopped and replaced by
this one: you should avoid this because the animation will just look
weird. Use either switch_to() or current but not both.

The screen name will be changed if there is any conflict with the
current screen.

	
transition

	Transition object to use for animating the transition from the current
screen to the next one being shown.

For example, if you want to use a WipeTransition between
slides:

from kivy.uix.screenmanager import ScreenManager, Screen,
WipeTransition

sm = ScreenManager(transition=WipeTransition())
sm.add_widget(Screen(name='first'))
sm.add_widget(Screen(name='second'))

by default, the first added screen will be shown. If you want to
show another one, just set the 'current' property.
sm.current = 'second'

transition is an ObjectProperty and
defaults to a SlideTransition.

Changed in version 1.8.0: Default transition has been changed from SwapTransition to
SlideTransition.

	
exception kivy.uix.screenmanager.ScreenManagerException

	Bases: Exception

Exception for the ScreenManager.

	
class kivy.uix.screenmanager.ShaderTransition

	Bases: kivy.uix.screenmanager.TransitionBase

Transition class that uses a Shader for animating the transition between
2 screens. By default, this class doesn’t assign any fragment/vertex
shader. If you want to create your own fragment shader for the transition,
you need to declare the header yourself and include the “t”, “tex_in” and
“tex_out” uniform:

Create your own transition. This shader implements a "fading"
transition.
fs = """$HEADER
 uniform float t;
 uniform sampler2D tex_in;
 uniform sampler2D tex_out;

 void main(void) {
 vec4 cin = texture2D(tex_in, tex_coord0);
 vec4 cout = texture2D(tex_out, tex_coord0);
 gl_FragColor = mix(cout, cin, t);
 }
"""

And create your transition
tr = ShaderTransition(fs=fs)
sm = ScreenManager(transition=tr)

	
add_screen(screen)

	(internal) Used to add a screen to the ScreenManager.

	
clearcolor

	Sets the color of Fbo ClearColor.

New in version 1.9.0.

clearcolor is a ColorProperty
and defaults to [0, 0, 0, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
fs

	Fragment shader to use.

fs is a StringProperty and defaults to
None.

	
remove_screen(screen)

	(internal) Used to remove a screen from the ScreenManager.

	
stop()

	(internal) Stops the transition. This is automatically called by the
ScreenManager.

	
vs

	Vertex shader to use.

vs is a StringProperty and defaults to
None.

	
class kivy.uix.screenmanager.SlideTransition

	Bases: kivy.uix.screenmanager.TransitionBase

Slide Transition, can be used to show a new screen from any direction:
left, right, up or down.

	
direction

	Direction of the transition.

direction is an OptionProperty and
defaults to ‘left’. Can be one of ‘left’, ‘right’, ‘up’ or ‘down’.

	
class kivy.uix.screenmanager.SwapTransition(**kwargs)

	Bases: kivy.uix.screenmanager.TransitionBase

Swap transition that looks like iOS transition when a new window
appears on the screen.

	
add_screen(screen)

	(internal) Used to add a screen to the ScreenManager.

	
start(manager)

	(internal) Starts the transition. This is automatically
called by the ScreenManager.

	
class kivy.uix.screenmanager.TransitionBase

	Bases: kivy.event.EventDispatcher

TransitionBase is used to animate 2 screens within the
ScreenManager. This class acts as a base for other
implementations like the SlideTransition and
SwapTransition.

	Events:

	
	on_progress: Transition object, progression float
	Fired during the animation of the transition.

	on_complete: Transition object
	Fired when the transition is finished.

	
add_screen(screen)

	(internal) Used to add a screen to the ScreenManager.

	
duration

	Duration in seconds of the transition.

duration is a NumericProperty and
defaults to .4 (= 400ms).

Changed in version 1.8.0: Default duration has been changed from 700ms to 400ms.

	
is_active

	Indicate whether the transition is currently active or not.

is_active is a BooleanProperty and
defaults to False, read-only.

	
manager

	ScreenManager object, set when the screen is added to a
manager.

manager is an ObjectProperty and
defaults to None, read-only.

	
remove_screen(screen)

	(internal) Used to remove a screen from the ScreenManager.

	
screen_in

	Property that contains the screen to show.
Automatically set by the ScreenManager.

screen_in is an ObjectProperty and
defaults to None.

	
screen_out

	Property that contains the screen to hide.
Automatically set by the ScreenManager.

screen_out is an ObjectProperty and
defaults to None.

	
start(manager)

	(internal) Starts the transition. This is automatically
called by the ScreenManager.

	
stop()

	(internal) Stops the transition. This is automatically called by the
ScreenManager.

	
class kivy.uix.screenmanager.WipeTransition

	Bases: kivy.uix.screenmanager.ShaderTransition

Wipe transition, based on a fragment Shader.

	
fs

	Fragment shader to use.

fs is a StringProperty and defaults to
None.

ScrollView

New in version 1.0.4.

The ScrollView widget provides a scrollable/pannable viewport that is
clipped at the scrollview’s bounding box.

Scrolling Behavior

The ScrollView accepts only one child and applies a viewport/window to
it according to the scroll_x and
scroll_y properties. Touches are analyzed to
determine if the user wants to scroll or control the child in some
other manner: you cannot do both at the same time. To determine if
interaction is a scrolling gesture, these properties are used:

	scroll_distance: the minimum distance to travel,
defaults to 20 pixels.

	scroll_timeout: the maximum time period, defaults
to 55 milliseconds.

If a touch travels scroll_distance pixels within the
scroll_timeout period, it is recognized as a scrolling
gesture and translation (scroll/pan) will begin. If the timeout occurs, the
touch down event is dispatched to the child instead (no translation).

The default value for those settings can be changed in the configuration file:

[widgets]
scroll_timeout = 250
scroll_distance = 20

New in version 1.1.1: ScrollView now animates scrolling in Y when a mousewheel is used.

Limiting to the X or Y Axis

By default, the ScrollView allows scrolling along both the X and Y axes. You
can explicitly disable scrolling on an axis by setting the
do_scroll_x or do_scroll_y properties
to False.

Managing the Content Size and Position

The ScrollView manages the position of its children similarly to a
RelativeLayout but does not use the
size_hint. You must
carefully specify the size of your content to
get the desired scroll/pan effect.

By default, the size_hint is (1, 1), so the
content size will fit your ScrollView
exactly (you will have nothing to scroll). You must deactivate at least one of
the size_hint instructions (x or y) of the child to enable scrolling.
Setting size_hint_min to not be None will
also enable scrolling for that dimension when the ScrollView is
smaller than the minimum size.

To scroll a GridLayout on it’s Y-axis/vertically,
set the child’s width to that of the ScrollView (size_hint_x=1), and set
the size_hint_y property to None:

from kivy.uix.gridlayout import GridLayout
from kivy.uix.button import Button
from kivy.uix.scrollview import ScrollView
from kivy.core.window import Window
from kivy.app import runTouchApp

layout = GridLayout(cols=1, spacing=10, size_hint_y=None)
Make sure the height is such that there is something to scroll.
layout.bind(minimum_height=layout.setter('height'))
for i in range(100):
 btn = Button(text=str(i), size_hint_y=None, height=40)
 layout.add_widget(btn)
root = ScrollView(size_hint=(1, None), size=(Window.width, Window.height))
root.add_widget(layout)

runTouchApp(root)

Kv Example:

ScrollView:
 do_scroll_x: False
 do_scroll_y: True

 Label:
 size_hint_y: None
 height: self.texture_size[1]
 text_size: self.width, None
 padding: 10, 10
 text:
 'really some amazing text\n' * 100

Overscroll Effects

New in version 1.7.0.

When scrolling would exceed the bounds of the ScrollView, it
uses a ScrollEffect to handle the
overscroll. These effects can perform actions like bouncing back,
changing opacity, or simply preventing scrolling beyond the normal
boundaries. Note that complex effects may perform many computations,
which can be slow on weaker hardware.

You can change what effect is being used by setting
effect_cls to any effect class. Current options
include:

	ScrollEffect: Does not allow
scrolling beyond the ScrollView boundaries.

	DampedScrollEffect: The
current default. Allows the user to scroll beyond the normal
boundaries, but has the content spring back once the
touch/click is released.

	OpacityScrollEffect: Similar
to the DampedScrollEffect, but
also reduces opacity during overscroll.

You can also create your own scroll effect by subclassing one of these,
then pass it as the effect_cls in the same way.

Alternatively, you can set effect_x and/or
effect_y to an instance of the effect you want to
use. This will override the default effect set in
effect_cls.

All the effects are located in the kivy.effects.

	
class kivy.uix.scrollview.ScrollView(**kwargs)

	Bases: kivy.uix.stencilview.StencilView

ScrollView class. See module documentation for more information.

	Events:

	
	on_scroll_start
	Generic event fired when scrolling starts from touch.

	on_scroll_move
	Generic event fired when scrolling move from touch.

	on_scroll_stop
	Generic event fired when scrolling stops from touch.

Changed in version 1.9.0: on_scroll_start, on_scroll_move and on_scroll_stop events are
now dispatched when scrolling to handle nested ScrollViews.

Changed in version 1.7.0: auto_scroll, scroll_friction, scroll_moves, scroll_stoptime’ has
been deprecated, use :attr:`effect_cls instead.

	
add_widget(widget, *args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
always_overscroll

	Make sure user can overscroll even if there is not enough content
to require scrolling.

This is useful if you want to trigger some action on overscroll, but
there is not always enough content to trigger it.

always_overscroll is a
BooleanProperty and defaults to True.

New in version 2.0.0.

The option was added and enabled by default, set to False to get the
previous behavior of only allowing to overscroll when there is
enough content to allow scrolling.

	
bar_color

	Color of horizontal / vertical scroll bar, in RGBA format.

New in version 1.2.0.

bar_color is a ColorProperty and defaults
to [.7, .7, .7, .9].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
bar_inactive_color

	Color of horizontal / vertical scroll bar (in RGBA format), when no
scroll is happening.

New in version 1.9.0.

bar_inactive_color is a
ColorProperty and defaults to [.7, .7, .7, .2].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
bar_margin

	Margin between the bottom / right side of the scrollview when drawing
the horizontal / vertical scroll bar.

New in version 1.2.0.

bar_margin is a NumericProperty, default
to 0

	
bar_pos

	Which side of the scroll view to place each of the bars on.

bar_pos is a ReferenceListProperty of
(bar_pos_x, bar_pos_y)

	
bar_pos_x

	Which side of the ScrollView the horizontal scroll bar should go
on. Possible values are ‘top’ and ‘bottom’.

New in version 1.8.0.

bar_pos_x is an OptionProperty,
defaults to ‘bottom’.

	
bar_pos_y

	Which side of the ScrollView the vertical scroll bar should go
on. Possible values are ‘left’ and ‘right’.

New in version 1.8.0.

bar_pos_y is an OptionProperty and
defaults to ‘right’.

	
bar_width

	Width of the horizontal / vertical scroll bar. The width is interpreted
as a height for the horizontal bar.

New in version 1.2.0.

bar_width is a NumericProperty and
defaults to 2.

	
convert_distance_to_scroll(dx, dy)

	Convert a distance in pixels to a scroll distance, depending on the
content size and the scrollview size.

The result will be a tuple of scroll distance that can be added to
scroll_x and scroll_y

	
do_scroll

	Allow scroll on X or Y axis.

do_scroll is a AliasProperty of
(do_scroll_x + do_scroll_y)

	
do_scroll_x

	Allow scroll on X axis.

do_scroll_x is a BooleanProperty and
defaults to True.

	
do_scroll_y

	Allow scroll on Y axis.

do_scroll_y is a BooleanProperty and
defaults to True.

	
effect_cls

	Class effect to instantiate for X and Y axis.

New in version 1.7.0.

effect_cls is an ObjectProperty and
defaults to DampedScrollEffect.

Changed in version 1.8.0: If you set a string, the Factory will be used to
resolve the class.

	
effect_x

	Effect to apply for the X axis. If None is set, an instance of
effect_cls will be created.

New in version 1.7.0.

effect_x is an ObjectProperty and
defaults to None.

	
effect_y

	Effect to apply for the Y axis. If None is set, an instance of
effect_cls will be created.

New in version 1.7.0.

effect_y is an ObjectProperty and
defaults to None, read-only.

	
hbar

	Return a tuple of (position, size) of the horizontal scrolling bar.

New in version 1.2.0.

The position and size are normalized between 0-1, and represent a
proportion of the current scrollview height. This property is used
internally for drawing the little horizontal bar when you’re scrolling.

hbar is a AliasProperty, readonly.

	
on_motion(etype, me)

	Called when a motion event is received.

	Parameters:

	
	etype: str
	Event type, one of “begin”, “update” or “end”

	me: MotionEvent
	Received motion event

	Returns:

	bool
True to stop event dispatching

New in version 2.1.0.

Warning

This is an experimental method and it remains so while this warning
is present.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_move(touch)

	Receive a touch move event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
remove_widget(widget, *args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
scroll_distance

	Distance to move before scrolling the ScrollView, in pixels. As
soon as the distance has been traveled, the ScrollView will start
to scroll, and no touch event will go to children.
It is advisable that you base this value on the dpi of your target device’s
screen.

scroll_distance is a NumericProperty and
defaults to 20 (pixels), according to the default value in user
configuration.

	
scroll_timeout

	Timeout allowed to trigger the scroll_distance, in milliseconds.
If the user has not moved scroll_distance within the timeout,
the scrolling will be disabled, and the touch event will go to the
children.

scroll_timeout is a NumericProperty and
defaults to 55 (milliseconds) according to the default value in user
configuration.

Changed in version 1.5.0: Default value changed from 250 to 55.

	
scroll_to(widget, padding=10, animate=True)

	Scrolls the viewport to ensure that the given widget is visible,
optionally with padding and animation. If animate is True (the
default), then the default animation parameters will be used.
Otherwise, it should be a dict containing arguments to pass to
Animation constructor.

New in version 1.9.1.

	
scroll_type

	Sets the type of scrolling to use for the content of the scrollview.
Available options are: [‘content’], [‘bars’], [‘bars’, ‘content’].

	[‘content’]

	Content is scrolled by dragging or swiping the
content directly.

	[‘bars’]

	Content is scrolled by dragging or swiping the
scroll bars.

	[‘bars’, ‘content’]

	Content is scrolled by either of the above
methods.

New in version 1.8.0.

scroll_type is an OptionProperty and
defaults to [‘content’].

	
scroll_wheel_distance

	Distance to move when scrolling with a mouse wheel.
It is advisable that you base this value on the dpi of your target device’s
screen.

New in version 1.8.0.

scroll_wheel_distance is a
NumericProperty , defaults to 20 pixels.

	
scroll_x

	X scrolling value, between 0 and 1. If 0, the content’s left side will
touch the left side of the ScrollView. If 1, the content’s right side will
touch the right side.

This property is controlled by ScrollView only if
do_scroll_x is True.

scroll_x is a NumericProperty and
defaults to 0.

	
scroll_y

	Y scrolling value, between 0 and 1. If 0, the content’s bottom side will
touch the bottom side of the ScrollView. If 1, the content’s top side will
touch the top side.

This property is controlled by ScrollView only if
do_scroll_y is True.

scroll_y is a NumericProperty and
defaults to 1.

	
smooth_scroll_end

	Whether smooth scroll end should be used when scrolling with the
mouse-wheel and the factor of transforming the scroll distance to
velocity. This option also enables velocity addition meaning if you
scroll more, you will scroll faster and further. The recommended value
is 10. The velocity is calculated as scroll_wheel_distance *
smooth_scroll_end.

New in version 1.11.0.

smooth_scroll_end is a NumericProperty
and defaults to None.

	
to_local(x, y, **k)

	Transform parent coordinates to local (current widget) coordinates.

See relativelayout for details on the coordinate
systems.

	Parameters:

	
	relative: bool, defaults to False
	Change to True if you want to translate coordinates to
relative widget coordinates.

	
to_parent(x, y, **k)

	Transform local (current widget) coordinates to parent coordinates.

See relativelayout for details on the coordinate
systems.

	Parameters:

	
	relative: bool, defaults to False
	Change to True if you want to translate relative positions from
a widget to its parent coordinates.

	
update_from_scroll(*largs)

	Force the reposition of the content, according to current value of
scroll_x and scroll_y.

This method is automatically called when one of the scroll_x,
scroll_y, pos or size properties change, or
if the size of the content changes.

	
vbar

	Return a tuple of (position, size) of the vertical scrolling bar.

New in version 1.2.0.

The position and size are normalized between 0-1, and represent a
proportion of the current scrollview height. This property is used
internally for drawing the little vertical bar when you’re scrolling.

vbar is a AliasProperty, readonly.

	
viewport_size

	(internal) Size of the internal viewport. This is the size of your only
child in the scrollview.

Settings

New in version 1.0.7.

This module provides a complete and extensible framework for adding a
Settings interface to your application. By default, the interface uses
a SettingsWithSpinner, which consists of a
Spinner (top) to switch between individual
settings panels (bottom). See Different panel layouts for some
alternatives.

[image: _images/settingswithspinner_kivy.jpg]
A SettingsPanel represents a group of configurable options. The
SettingsPanel.title property is used by Settings when a panel
is added: it determines the name of the sidebar button. SettingsPanel controls
a ConfigParser instance.

The panel can be automatically constructed from a JSON definition file: you
describe the settings you want and corresponding sections/keys in the
ConfigParser instance… and you’re done!

Settings are also integrated into the App class. Use
Settings.add_kivy_panel() to configure the Kivy core settings in a panel.

Create a panel from JSON

To create a panel from a JSON-file, you need two things:

	a ConfigParser instance with default values

	a JSON file

Warning

The kivy.config.ConfigParser is required. You cannot use the
default ConfigParser from Python libraries.

You must create and handle the ConfigParser
object. SettingsPanel will read the values from the associated
ConfigParser instance. Make sure you have set default values (using
setdefaults) for all the sections/keys
in your JSON file!

The JSON file contains structured information to describe the available
settings. Here is an example:

[
 {
 "type": "title",
 "title": "Windows"
 },
 {
 "type": "bool",
 "title": "Fullscreen",
 "desc": "Set the window in windowed or fullscreen",
 "section": "graphics",
 "key": "fullscreen"
 }
]

Each element in the root list represents a setting that the user can
configure. Only the “type” key is mandatory: an instance of the associated
class will be created and used for the setting - other keys are assigned to
corresponding properties of that class.

	Type

	Associated class

	title

	SettingTitle

	bool

	SettingBoolean

	numeric

	SettingNumeric

	options

	SettingOptions

	string

	SettingString

	path

	SettingPath

	color

	SettingColor

New in version 1.1.0: Added SettingPath type

New in version 2.1.0: Added SettingColor type

In the JSON example above, the first element is of type “title”. It will create
a new instance of SettingTitle and apply the rest of the key-value
pairs to the properties of that class, i.e. “title”: “Windows” sets the
title property of the panel to “Windows”.

To load the JSON example to a Settings instance, use the
Settings.add_json_panel() method. It will automatically instantiate a
SettingsPanel and add it to Settings:

from kivy.config import ConfigParser

config = ConfigParser()
config.read('myconfig.ini')

s = Settings()
s.add_json_panel('My custom panel', config, 'settings_custom.json')
s.add_json_panel('Another panel', config, 'settings_test2.json')

then use the s as a widget...

Different panel layouts

A kivy App can automatically create and display a
Settings instance. See the settings_cls
documentation for details on how to choose which settings class to
display.

Several pre-built settings widgets are available. All except
SettingsWithNoMenu include close buttons triggering the
on_close event.

	Settings: Displays settings with a sidebar at the left to
switch between json panels.

	SettingsWithSidebar: A trivial subclass of
Settings.

	SettingsWithSpinner: Displays settings with a spinner at
the top, which can be used to switch between json panels. Uses
InterfaceWithSpinner as the
interface_cls. This is the default behavior from
Kivy 1.8.0.

	SettingsWithTabbedPanel: Displays json panels as individual
tabs in a TabbedPanel. Uses
InterfaceWithTabbedPanel as the interface_cls.

	SettingsWithNoMenu: Displays a single json panel, with no
way to switch to other panels and no close button. This makes it
impossible for the user to exit unless
close_settings() is overridden with a different
close trigger! Uses InterfaceWithNoMenu as the
interface_cls.

You can construct your own settings panels with any layout you choose
by setting Settings.interface_cls. This should be a widget
that displays a json settings panel with some way to switch between
panels. An instance will be automatically created by Settings.

Interface widgets may be anything you like, but must have a method
add_panel that receives newly created json settings panels for the
interface to display. See the documentation for
InterfaceWithSidebar for more information. They may
optionally dispatch an on_close event, for instance if a close button
is clicked. This event is used by Settings to trigger its own
on_close event.

For a complete, working example, please see
kivy/examples/settings/main.py.

	
class kivy.uix.settings.ContentPanel(**kwargs)

	Bases: kivy.uix.scrollview.ScrollView

A class for displaying settings panels. It displays a single
settings panel at a time, taking up the full size and shape of the
ContentPanel. It is used by InterfaceWithSidebar and
InterfaceWithSpinner to display settings.

	
add_panel(panel, name, uid)

	This method is used by Settings to add new panels for possible
display. Any replacement for ContentPanel must implement
this method.

	Parameters:

	
	panel: SettingsPanel
	It should be stored and displayed when requested.

	name:
	The name of the panel as a string. It may be used to represent
the panel.

	uid:
	A unique int identifying the panel. It should be stored and
used to identify panels when switching.

	
add_widget(*args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
container

	(internal) A reference to the GridLayout that contains the
settings panel.

container is an ObjectProperty and
defaults to None.

	
current_panel

	(internal) A reference to the current settings panel.

current_panel is an ObjectProperty and
defaults to None.

	
current_uid

	(internal) A reference to the uid of the current settings panel.

current_uid is a
NumericProperty and defaults to 0.

	
on_current_uid(*args)

	The uid of the currently displayed panel. Changing this will
automatically change the displayed panel.

	Parameters:

	
	uid:
	A panel uid. It should be used to retrieve and display
a settings panel that has previously been added with
add_panel().

	
panels

	(internal) Stores a dictionary mapping settings panels to their uids.

panels is a DictProperty and
defaults to {}.

	
remove_widget(*args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
class kivy.uix.settings.InterfaceWithSidebar(*args, **kwargs)

	Bases: kivy.uix.boxlayout.BoxLayout

The default Settings interface class. It displays a sidebar menu
with names of available settings panels, which may be used to switch
which one is currently displayed.

See add_panel() for information on the
method you must implement if creating your own interface.

This class also dispatches an event ‘on_close’, which is triggered
when the sidebar menu’s close button is released. If creating your
own interface widget, it should also dispatch such an event which
will automatically be caught by Settings and used to
trigger its own ‘on_close’ event.

	
add_panel(panel, name, uid)

	This method is used by Settings to add new panels for possible
display. Any replacement for ContentPanel must implement
this method.

	Parameters:

	
	panel: SettingsPanel
	It should be stored and the interface should provide a way to
switch between panels.

	name:
	The name of the panel as a string. It may be used to represent
the panel but isn’t necessarily unique.

	uid:
	A unique int identifying the panel. It should be used to
identify and switch between panels.

	
content

	(internal) A reference to the panel display widget (a
ContentPanel).

content is an ObjectProperty and
defaults to None.

	
menu

	(internal) A reference to the sidebar menu widget.

menu is an ObjectProperty and
defaults to None.

	
class kivy.uix.settings.MenuSidebar(**kwargs)

	Bases: kivy.uix.floatlayout.FloatLayout

The menu used by InterfaceWithSidebar. It provides a
sidebar with an entry for each settings panel, which the user may
click to select.

	
add_item(name, uid)

	This method is used to add new panels to the menu.

	Parameters:

	
	name:
	The name (a string) of the panel. It should be used
to represent the panel in the menu.

	uid:
	The name (an int) of the panel. It should be used internally
to represent the panel and used to set self.selected_uid when
the panel is changed.

	
buttons_layout

	(internal) Reference to the GridLayout that contains individual
settings panel menu buttons.

buttons_layout is an
ObjectProperty and defaults to None.

	
close_button

	(internal) Reference to the widget’s Close button.

buttons_layout is an
ObjectProperty and defaults to None.

	
on_selected_uid(*args)

	(internal) unselects any currently selected menu buttons, unless
they represent the current panel.

	
selected_uid

	The uid of the currently selected panel. This may be used to switch
between displayed panels, e.g. by binding it to the
current_uid of a ContentPanel.

selected_uid is a
NumericProperty and defaults to 0.

	
class kivy.uix.settings.SettingBoolean(**kwargs)

	Bases: kivy.uix.settings.SettingItem

Implementation of a boolean setting on top of a SettingItem.
It is visualized with a Switch widget.
By default, 0 and 1 are used for values: you can change them by setting
values.

	
values

	Values used to represent the state of the setting. If you want to use
“yes” and “no” in your ConfigParser instance:

SettingBoolean(..., values=['no', 'yes'])

Warning

You need a minimum of two values, the index 0 will be used as False,
and index 1 as True

values is a ListProperty and defaults to
[‘0’, ‘1’]

	
class kivy.uix.settings.SettingItem(**kwargs)

	Bases: kivy.uix.floatlayout.FloatLayout

Base class for individual settings (within a panel). This class cannot
be used directly; it is used for implementing the other setting classes.
It builds a row with a title/description (left) and a setting control
(right).

Look at SettingBoolean, SettingNumeric and
SettingOptions for usage examples.

	Events:

	
	on_release
	Fired when the item is touched and then released.

	
add_widget(*args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
content

	(internal) Reference to the widget that contains the real setting.
As soon as the content object is set, any further call to add_widget will
call the content.add_widget. This is automatically set.

content is an ObjectProperty and
defaults to None.

	
desc

	Description of the setting, rendered on the line below the title.

desc is a StringProperty and defaults to
None.

	
disabled

	Indicate if this setting is disabled. If True, all touches on the
setting item will be discarded.

disabled is a BooleanProperty and
defaults to False.

	
key

	Key of the token inside the section in the
ConfigParser instance.

key is a StringProperty and defaults to
None.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
panel

	(internal) Reference to the SettingsPanel for this setting. You don’t
need to use it.

panel is an ObjectProperty and defaults
to None.

	
section

	Section of the token inside the ConfigParser
instance.

section is a StringProperty and defaults
to None.

	
selected_alpha

	(internal) Float value from 0 to 1, used to animate the background when
the user touches the item.

selected_alpha is a NumericProperty and
defaults to 0.

	
title

	Title of the setting, defaults to ‘<No title set>’.

title is a StringProperty and defaults
to ‘<No title set>’.

	
value

	Value of the token according to the ConfigParser
instance. Any change to this value will trigger a
Settings.on_config_change() event.

value is an ObjectProperty and defaults
to None.

	
class kivy.uix.settings.SettingNumeric(**kwargs)

	Bases: kivy.uix.settings.SettingString

Implementation of a numeric setting on top of a SettingString.
It is visualized with a Label widget that, when
clicked, will open a Popup with a
Textinput so the user can enter a custom
value.

	
class kivy.uix.settings.SettingOptions(**kwargs)

	Bases: kivy.uix.settings.SettingItem

Implementation of an option list on top of a SettingItem.
It is visualized with a Label widget that, when
clicked, will open a Popup with a
list of options from which the user can select.

	
options

	List of all availables options. This must be a list of “string” items.
Otherwise, it will crash. :)

options is a ListProperty and defaults
to [].

	
popup

	(internal) Used to store the current popup when it is shown.

popup is an ObjectProperty and defaults
to None.

	
class kivy.uix.settings.SettingPath(**kwargs)

	Bases: kivy.uix.settings.SettingItem

Implementation of a Path setting on top of a SettingItem.
It is visualized with a Label widget that, when
clicked, will open a Popup with a
FileChooserListView so the user can enter
a custom value.

New in version 1.1.0.

	
dirselect

	Whether to allow selection of directories.

dirselect is a BooleanProperty and
defaults to True.

New in version 1.10.0.

	
popup

	(internal) Used to store the current popup when it is shown.

popup is an ObjectProperty and defaults
to None.

	
show_hidden

	Whether to show ‘hidden’ filenames. What that means is
operating-system-dependent.

show_hidden is an BooleanProperty and
defaults to False.

New in version 1.10.0.

	
textinput

	(internal) Used to store the current textinput from the popup and
to listen for changes.

textinput is an ObjectProperty and
defaults to None.

	
class kivy.uix.settings.SettingString(**kwargs)

	Bases: kivy.uix.settings.SettingItem

Implementation of a string setting on top of a SettingItem.
It is visualized with a Label widget that, when
clicked, will open a Popup with a
Textinput so the user can enter a custom
value.

	
popup

	(internal) Used to store the current popup when it’s shown.

popup is an ObjectProperty and defaults
to None.

	
textinput

	(internal) Used to store the current textinput from the popup and
to listen for changes.

textinput is an ObjectProperty and
defaults to None.

	
class kivy.uix.settings.SettingTitle(**kwargs)

	Bases: kivy.uix.label.Label

A simple title label, used to organize the settings in sections.

	
class kivy.uix.settings.Settings(*args, **kargs)

	Bases: kivy.uix.boxlayout.BoxLayout

Settings UI. Check module documentation for more information on how
to use this class.

	Events:

	
	on_config_change: ConfigParser instance, section, key, value
	Fired when the section’s key-value pair of a ConfigParser changes.

	on_close
	Fired by the default panel when the Close button is pressed.

	
add_interface()

	(Internal) creates an instance of Settings.interface_cls,
and sets it to interface. When json panels are
created, they will be added to this interface which will display them
to the user.

	
add_json_panel(title, config, filename=None, data=None)

	Create and add a new SettingsPanel using the configuration
config with the JSON definition filename. If filename is not set,
then the JSON definition is read from the data parameter instead.

Check the Create a panel from JSON section in the documentation for more
information about JSON format and the usage of this function.

	
add_kivy_panel()

	Add a panel for configuring Kivy. This panel acts directly on the
kivy configuration. Feel free to include or exclude it in your
configuration.

See use_kivy_settings() for information on
enabling/disabling the automatic kivy panel.

	
create_json_panel(title, config, filename=None, data=None)

	Create new SettingsPanel.

New in version 1.5.0.

Check the documentation of add_json_panel() for more information.

	
interface

	(internal) Reference to the widget that will contain, organise and
display the panel configuration panel widgets.

interface is an ObjectProperty and
defaults to None.

	
interface_cls

	The widget class that will be used to display the graphical
interface for the settings panel. By default, it displays one Settings
panel at a time with a sidebar to switch between them.

interface_cls is an
ObjectProperty and defaults to
InterfaceWithSidebar.

Changed in version 1.8.0: If you set a string, the Factory will be used to
resolve the class.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
register_type(tp, cls)

	Register a new type that can be used in the JSON definition.

	
class kivy.uix.settings.SettingsPanel(**kwargs)

	Bases: kivy.uix.gridlayout.GridLayout

This class is used to construct panel settings, for use with a
Settings instance or subclass.

	
config

	A kivy.config.ConfigParser instance. See module documentation
for more information.

	
get_value(section, key)

	Return the value of the section/key from the config
ConfigParser instance. This function is used by SettingItem to
get the value for a given section/key.

If you don’t want to use a ConfigParser instance, you might want to
override this function.

	
settings

	A Settings instance that will be used to fire the
on_config_change event.

	
title

	Title of the panel. The title will be reused by the Settings in
the sidebar.

	
class kivy.uix.settings.SettingsWithNoMenu(*args, **kwargs)

	Bases: kivy.uix.settings.Settings

A settings widget that displays a single settings panel with no
Close button. It will not accept more than one Settings panel. It
is intended for use in programs with few enough settings that a
full panel switcher is not useful.

Warning

This Settings panel does not provide a Close
button, and so it is impossible to leave the settings screen
unless you also add other behaviour or override
display_settings() and
close_settings().

	
class kivy.uix.settings.SettingsWithSidebar(*args, **kargs)

	Bases: kivy.uix.settings.Settings

A settings widget that displays settings panels with a sidebar to
switch between them. This is the default behaviour of
Settings, and this widget is a trivial wrapper subclass.

	
class kivy.uix.settings.SettingsWithSpinner(*args, **kwargs)

	Bases: kivy.uix.settings.Settings

A settings widget that displays one settings panel at a time with a
spinner at the top to switch between them.

	
class kivy.uix.settings.SettingsWithTabbedPanel(*args, **kwargs)

	Bases: kivy.uix.settings.Settings

A settings widget that displays settings panels as pages in a
TabbedPanel.

Slider

[image: _images/slider.jpg]
The Slider widget looks like a scrollbar. It supports horizontal and
vertical orientations, min/max values and a default value.

To create a slider from -100 to 100 starting from 25:

from kivy.uix.slider import Slider
s = Slider(min=-100, max=100, value=25)

To create a vertical slider:

from kivy.uix.slider import Slider
s = Slider(orientation='vertical')

To create a slider with a red line tracking the value:

from kivy.uix.slider import Slider
s = Slider(value_track=True, value_track_color=[1, 0, 0, 1])

Kv Example:

BoxLayout:
 Slider:
 id: slider
 min: 0
 max: 100
 step: 1
 orientation: 'vertical'

 Label:
 text: str(slider.value)

	
class kivy.uix.slider.Slider(**kwargs)

	Bases: kivy.uix.widget.Widget

Class for creating a Slider widget.

Check module documentation for more details.

	
background_disabled_horizontal

	Background of the disabled slider used in the horizontal orientation.

New in version 1.10.0.

background_disabled_horizontal is a
StringProperty and defaults to
atlas://data/images/defaulttheme/sliderh_background_disabled.

	
background_disabled_vertical

	Background of the disabled slider used in the vertical orientation.

New in version 1.10.0.

background_disabled_vertical is a
StringProperty and defaults to
atlas://data/images/defaulttheme/sliderv_background_disabled.

	
background_horizontal

	Background of the slider used in the horizontal orientation.

New in version 1.10.0.

background_horizontal is a StringProperty
and defaults to atlas://data/images/defaulttheme/sliderh_background.

	
background_vertical

	Background of the slider used in the vertical orientation.

New in version 1.10.0.

background_vertical is a StringProperty
and defaults to atlas://data/images/defaulttheme/sliderv_background.

	
background_width

	Slider’s background’s width (thickness), used in both horizontal
and vertical orientations.

background_width is a
NumericProperty and defaults to 36sp.

	
border_horizontal

	Border used to draw the slider background in horizontal orientation.

border_horizontal is a ListProperty
and defaults to [0, 18, 0, 18].

	
border_vertical

	Border used to draw the slider background in vertical orientation.

border_horizontal is a ListProperty
and defaults to [18, 0, 18, 0].

	
cursor_disabled_image

	Path of the image used to draw the disabled slider cursor.

cursor_image is a StringProperty
and defaults to atlas://data/images/defaulttheme/slider_cursor_disabled.

	
cursor_height

	Height of the cursor image.

cursor_height is a NumericProperty
and defaults to 32sp.

	
cursor_image

	Path of the image used to draw the slider cursor.

cursor_image is a StringProperty
and defaults to atlas://data/images/defaulttheme/slider_cursor.

	
cursor_size

	Size of the cursor image.

cursor_size is a ReferenceListProperty
of (cursor_width, cursor_height) properties.

	
cursor_width

	Width of the cursor image.

cursor_width is a NumericProperty
and defaults to 32sp.

	
max

	Maximum value allowed for value.

max is a NumericProperty and defaults to
100.

	
min

	Minimum value allowed for value.

min is a NumericProperty and defaults to
0.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_move(touch)

	Receive a touch move event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
orientation

	Orientation of the slider.

orientation is an OptionProperty and
defaults to ‘horizontal’. Can take a value of ‘vertical’ or ‘horizontal’.

	
padding

	Padding of the slider. The padding is used for graphical representation
and interaction. It prevents the cursor from going out of the bounds of the
slider bounding box.

By default, padding is 16sp. The range of the slider is reduced from
padding *2 on the screen. It allows drawing the default cursor of 32sp
width without having the cursor go out of the widget.

padding is a NumericProperty and defaults
to 16sp.

	
range

	Range of the slider in the format (minimum value, maximum value):

>>> slider = Slider(min=10, max=80)
>>> slider.range
[10, 80]
>>> slider.range = (20, 100)
>>> slider.min
20
>>> slider.max
100

range is a ReferenceListProperty of
(min, max) properties.

	
sensitivity

	Whether the touch collides with the whole body of the widget
or with the slider handle part only.

New in version 1.10.1.

sensitivity is a OptionProperty
and defaults to ‘all’. Can take a value of ‘all’ or ‘handle’.

	
step

	Step size of the slider.

New in version 1.4.0.

Determines the size of each interval or step the slider takes between
min and max. If the value range can’t be evenly
divisible by step the last step will be capped by slider.max.
A zero value will result in the smallest possible intervals/steps,
calculated from the (pixel) position of the slider.

step is a NumericProperty and defaults
to 0.

	
value

	Current value used for the slider.

value is a NumericProperty and defaults
to 0.

	
value_normalized

	Normalized value inside the range (min/max) to 0-1 range:

>>> slider = Slider(value=50, min=0, max=100)
>>> slider.value
50
>>> slider.value_normalized
0.5
>>> slider.value = 0
>>> slider.value_normalized
0
>>> slider.value = 100
>>> slider.value_normalized
1

You can also use it for setting the real value without knowing the minimum
and maximum:

>>> slider = Slider(min=0, max=200)
>>> slider.value_normalized = .5
>>> slider.value
100
>>> slider.value_normalized = 1.
>>> slider.value
200

value_normalized is an AliasProperty.

	
value_pos

	Position of the internal cursor, based on the normalized value.

value_pos is an AliasProperty.

	
value_track

	Decides if slider should draw the line indicating the
space between min and value properties values.

value_track is a BooleanProperty
and defaults to False.

	
value_track_color

	Color of the value_line in rgba format.

value_track_color is a ColorProperty
and defaults to [1, 1, 1, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
value_track_width

	Width of the track line.

value_track_width is a NumericProperty
and defaults to 3dp.

Spinner

New in version 1.4.0.

[image: _images/spinner.jpg]
Spinner is a widget that provides a quick way to select one value from a set.
In the default state, a spinner shows its currently selected value.
Touching the spinner displays a dropdown menu with all the other available
values from which the user can select a new one.

Example:

from kivy.base import runTouchApp
from kivy.uix.spinner import Spinner

spinner = Spinner(
 # default value shown
 text='Home',
 # available values
 values=('Home', 'Work', 'Other', 'Custom'),
 # just for positioning in our example
 size_hint=(None, None),
 size=(100, 44),
 pos_hint={'center_x': .5, 'center_y': .5})

def show_selected_value(spinner, text):
 print('The spinner', spinner, 'has text', text)

spinner.bind(text=show_selected_value)

runTouchApp(spinner)

Kv Example:

FloatLayout:
 Spinner:
 size_hint: None, None
 size: 100, 44
 pos_hint: {'center': (.5, .5)}
 text: 'Home'
 values: 'Home', 'Work', 'Other', 'Custom'
 on_text:
 print("The spinner {} has text {}".format(self, self.text))

	
class kivy.uix.spinner.Spinner(**kwargs)

	Bases: kivy.uix.button.Button

Spinner class, see module documentation for more information.

	
dropdown_cls

	Class used to display the dropdown list when the Spinner is pressed.

dropdown_cls is an ObjectProperty and
defaults to DropDown.

Changed in version 1.8.0: If set to a string, the Factory will be used to
resolve the class name.

	
is_open

	By default, the spinner is not open. Set to True to open it.

is_open is a BooleanProperty and
defaults to False.

New in version 1.4.0.

	
option_cls

	Class used to display the options within the dropdown list displayed
under the Spinner. The text property of the class will be used to
represent the value.

The option class requires:

	a text property, used to display the value.

	an on_release event, used to trigger the option when pressed/touched.

	a size_hint_y of None.

	the height to be set.

option_cls is an ObjectProperty and
defaults to SpinnerOption.

Changed in version 1.8.0: If you set a string, the Factory will be used to
resolve the class.

	
sync_height

	Each element in a dropdown list uses a default/user-supplied height.
Set to True to propagate the Spinner’s height value to each dropdown
list element.

New in version 1.10.0.

sync_height is a BooleanProperty and
defaults to False.

	
text_autoupdate

	Indicates if the spinner’s text should be automatically
updated with the first value of the values property.
Setting it to True will cause the spinner to update its text
property every time attr:values are changed.

New in version 1.10.0.

text_autoupdate is a BooleanProperty and
defaults to False.

	
values

	Values that can be selected by the user. It must be a list of strings.

values is a ListProperty and defaults to
[].

	
class kivy.uix.spinner.SpinnerOption(**kwargs)

	Bases: kivy.uix.button.Button

Special button used in the Spinner dropdown list. By default,
this is just a Button with a size_hint_y of None
and a height of 48dp.

Splitter

New in version 1.5.0.

[image: _images/splitter.jpg]
The Splitter is a widget that helps you re-size its child
widget/layout by letting you re-size it via dragging the boundary or
double tapping the boundary. This widget is similar to the
ScrollView in that it allows only one
child widget.

Usage:

splitter = Splitter(sizable_from = 'right')
splitter.add_widget(layout_or_widget_instance)
splitter.min_size = 100
splitter.max_size = 250

To change the size of the strip/border used for resizing:

splitter.strip_size = '10pt'

To change its appearance:

splitter.strip_cls = your_custom_class

You can also change the appearance of the strip_cls, which defaults to
SplitterStrip, by overriding the kv rule in your app:

<SplitterStrip>:
 horizontal: True if self.parent and self.parent.sizable_from[0] in ('t', 'b') else False
 background_normal: 'path to normal horizontal image' if self.horizontal else 'path to vertical normal image'
 background_down: 'path to pressed horizontal image' if self.horizontal else 'path to vertical pressed image'

	
class kivy.uix.splitter.Splitter(**kwargs)

	Bases: kivy.uix.boxlayout.BoxLayout

See module documentation.

	Events:

	
	on_press:
	Fired when the splitter is pressed.

	on_release:
	Fired when the splitter is released.

Changed in version 1.6.0: Added on_press and on_release events.

	
add_widget(widget, index=0, *args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
border

	Border used for the
BorderImage
graphics instruction.

This must be a list of four values: (bottom, right, top, left).
Read the BorderImage instructions for more information about how
to use it.

border is a ListProperty and
defaults to (4, 4, 4, 4).

	
clear_widgets(*args, **kwargs)

	Remove all (or the specified) children of this widget.
If the ‘children’ argument is specified, it should be a list (or
filtered list) of children of the current widget.

Changed in version 1.8.0: The children argument can be used to specify the children you
want to remove.

Changed in version 2.1.0: Specifying an empty children list leaves the widgets unchanged.
Previously it was treated like None and all children were
removed.

	
keep_within_parent

	If True, will limit the splitter to stay within its parent widget.

keep_within_parent is a
BooleanProperty and defaults to False.

New in version 1.9.0.

	
max_size

	Specifies the maximum size beyond which the widget is not resizable.

max_size is a NumericProperty
and defaults to 500pt.

	
min_size

	Specifies the minimum size beyond which the widget is not resizable.

min_size is a NumericProperty and
defaults to 100pt.

	
remove_widget(widget, *args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
rescale_with_parent

	If True, will automatically change size to take up the same
proportion of the parent widget when it is resized, while
staying within min_size and max_size. As long as
these attributes can be satisfied, this stops the
Splitter from exceeding the parent size during rescaling.

rescale_with_parent is a
BooleanProperty and defaults to False.

New in version 1.9.0.

	
sizable_from

	Specifies whether the widget is resizable. Options are:
left, right, top or bottom

sizable_from is an OptionProperty
and defaults to left.

	
strip_cls

	Specifies the class of the resize Strip.

strip_cls is an kivy.properties.ObjectProperty and
defaults to SplitterStrip, which is of type
Button.

Changed in version 1.8.0: If you set a string, the Factory will be used to
resolve the class.

	
strip_size

	Specifies the size of resize strip

strp_size is a NumericProperty
defaults to 10pt

Stack Layout

[image: _images/stacklayout.gif]

New in version 1.0.5.

The StackLayout arranges children vertically or horizontally, as many
as the layout can fit. The size of the individual children widgets do not
have to be uniform.

For example, to display widgets that get progressively larger in width:

root = StackLayout()
for i in range(25):
 btn = Button(text=str(i), width=40 + i * 5, size_hint=(None, 0.15))
 root.add_widget(btn)

[image: _images/stacklayout_sizing.png]

	
class kivy.uix.stacklayout.StackLayout(**kwargs)

	Bases: kivy.uix.layout.Layout

Stack layout class. See module documentation for more information.

	
do_layout(*largs)

	This function is called when a layout is called by a trigger.
If you are writing a new Layout subclass, don’t call this function
directly but use _trigger_layout() instead.

The function is by default called before the next frame, therefore
the layout isn’t updated immediately. Anything depending on the
positions of e.g. children should be scheduled for the next frame.

New in version 1.0.8.

	
minimum_height

	Minimum height needed to contain all children. It is automatically set
by the layout.

New in version 1.0.8.

minimum_height is a kivy.properties.NumericProperty and
defaults to 0.

	
minimum_size

	Minimum size needed to contain all children. It is automatically set
by the layout.

New in version 1.0.8.

minimum_size is a
ReferenceListProperty of
(minimum_width, minimum_height) properties.

	
minimum_width

	Minimum width needed to contain all children. It is automatically set
by the layout.

New in version 1.0.8.

minimum_width is a kivy.properties.NumericProperty and
defaults to 0.

	
orientation

	Orientation of the layout.

orientation is an OptionProperty and
defaults to ‘lr-tb’.

Valid orientations are ‘lr-tb’, ‘tb-lr’, ‘rl-tb’, ‘tb-rl’, ‘lr-bt’,
‘bt-lr’, ‘rl-bt’ and ‘bt-rl’.

Changed in version 1.5.0: orientation now correctly handles all valid combinations of
‘lr’,’rl’,’tb’,’bt’. Before this version only ‘lr-tb’ and
‘tb-lr’ were supported, and ‘tb-lr’ was misnamed and placed
widgets from bottom to top and from right to left (reversed compared
to what was expected).

Note

‘lr’ means Left to Right.
‘rl’ means Right to Left.
‘tb’ means Top to Bottom.
‘bt’ means Bottom to Top.

	
padding

	Padding between the layout box and it’s children: [padding_left,
padding_top, padding_right, padding_bottom].

padding also accepts a two argument form [padding_horizontal,
padding_vertical] and a single argument form [padding].

Changed in version 1.7.0: Replaced the NumericProperty with a VariableListProperty.

padding is a
VariableListProperty and defaults to
[0, 0, 0, 0].

	
spacing

	Spacing between children: [spacing_horizontal, spacing_vertical].

spacing also accepts a single argument form [spacing].

spacing is a
VariableListProperty and defaults to [0, 0].

Stencil View

[image: _images/stencilview.gif]

New in version 1.0.4.

StencilView limits the drawing of child widgets to the StencilView’s
bounding box. Any drawing outside the bounding box will be clipped (trashed).

The StencilView uses the stencil graphics instructions under the hood. It
provides an efficient way to clip the drawing area of children.

Note

As with the stencil graphics instructions, you cannot stack more than 128
stencil-aware widgets.

Note

StencilView is not a layout. Consequently, you have to manage the size and
position of its children directly. You can combine (subclass both)
a StencilView and a Layout in order to achieve a layout’s behavior.
For example:

class BoxStencil(BoxLayout, StencilView):
 pass

	
class kivy.uix.stencilview.StencilView(**kwargs)

	Bases: kivy.uix.widget.Widget

StencilView class. See module documentation for more information.

Switch

New in version 1.0.7.

[image: _images/switch-on.jpg]
[image: _images/switch-off.jpg]
The Switch widget is active or inactive, like a mechanical light
switch. The user can swipe to the left/right to activate/deactivate it:

switch = Switch(active=True)

To attach a callback that listens to the activation state:

def callback(instance, value):
 print('the switch', instance, 'is', value)

switch = Switch()
switch.bind(active=callback)

By default, the representation of the widget is static. The minimum size
required is 83x32 pixels (defined by the background image). The image is
centered within the widget.

The entire widget is active, not just the part with graphics. As long as you
swipe over the widget’s bounding box, it will work.

Note

If you want to control the state with a single touch instead of a swipe,
use the ToggleButton instead.

Kv Example:

BoxLayout:
 Label:
 text: 'power up'
 Switch:
 id: switch
 Label:
 text: 'woooooooooooh' if switch.active else ''

	
class kivy.uix.switch.Switch(**kwargs)

	Bases: kivy.uix.widget.Widget

Switch class. See module documentation for more information.

	
active

	Indicate whether the switch is active or inactive.

active is a BooleanProperty and defaults
to False.

	
active_norm_pos

	(internal) Contains the normalized position of the movable element
inside the switch, in the 0-1 range.

active_norm_pos is a NumericProperty
and defaults to 0.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_move(touch)

	Receive a touch move event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
touch_control

	(internal) Contains the touch that currently interacts with the switch.

touch_control is an ObjectProperty
and defaults to None.

	
touch_distance

	(internal) Contains the distance between the initial position of the
touch and the current position to determine if the swipe is from the left
or right.

touch_distance is a NumericProperty
and defaults to 0.

TabbedPanel

[image: _images/tabbed_panel.jpg]

New in version 1.3.0.

The TabbedPanel widget manages different widgets in tabs, with a header area
for the actual tab buttons and a content area for showing the current tab
content.

The TabbedPanel provides one default tab.

Simple example

'''
TabbedPanel
============

Test of the widget TabbedPanel.
'''

from kivy.app import App
from kivy.uix.tabbedpanel import TabbedPanel
from kivy.lang import Builder

Builder.load_string("""

<Test>:
 size_hint: .5, .5
 pos_hint: {'center_x': .5, 'center_y': .5}
 do_default_tab: False

 TabbedPanelItem:
 text: 'first tab'
 Label:
 text: 'First tab content area'
 TabbedPanelItem:
 text: 'tab2'
 BoxLayout:
 Label:
 text: 'Second tab content area'
 Button:
 text: 'Button that does nothing'
 TabbedPanelItem:
 text: 'tab3'
 RstDocument:
 text:
 '\\n'.join(("Hello world", "-----------",
 "You are in the third tab."))

""")

class Test(TabbedPanel):
 pass

class TabbedPanelApp(App):
 def build(self):
 return Test()

if __name__ == '__main__':
 TabbedPanelApp().run()

Note

A new class TabbedPanelItem has been introduced in 1.5.0 for
convenience. So now one can simply add a TabbedPanelItem to a
TabbedPanel and content to the TabbedPanelItem
as in the example provided above.

Customize the Tabbed Panel

You can choose the position in which the tabs are displayed:

tab_pos = 'top_mid'

An individual tab is called a TabbedPanelHeader. It is a special button
containing a content property. You add the TabbedPanelHeader first, and set
its content property separately:

tp = TabbedPanel()
th = TabbedPanelHeader(text='Tab2')
tp.add_widget(th)

An individual tab, represented by a TabbedPanelHeader, needs its content set.
This content can be any widget. It could be a layout with a deep
hierarchy of widgets, or it could be an individual widget, such as a label or a
button:

th.content = your_content_instance

There is one “shared” main content area active at any given time, for all
the tabs. Your app is responsible for adding the content of individual tabs
and for managing them, but it’s not responsible for content switching. The
tabbed panel handles switching of the main content object as per user action.

There is a default tab added when the tabbed panel is instantiated.
Tabs that you add individually as above, are added in addition to the default
tab. Thus, depending on your needs and design, you will want to customize the
default tab:

tp.default_tab_text = 'Something Specific To Your Use'

The default tab machinery requires special consideration and management.
Accordingly, an on_default_tab event is provided for associating a callback:

tp.bind(default_tab = my_default_tab_callback)

It’s important to note that by default, default_tab_cls is of type
TabbedPanelHeader and thus has the same properties as other tabs.

Since 1.5.0, it is now possible to disable the creation of the
default_tab by setting do_default_tab to False.

Tabs and content can be removed in several ways:

tp.remove_widget(widget/tabbed_panel_header)
or
tp.clear_widgets() # to clear all the widgets in the content area
or
tp.clear_tabs() # to remove the TabbedPanelHeaders

To access the children of the tabbed panel, use content.children:

tp.content.children

To access the list of tabs:

tp.tab_list

To change the appearance of the main tabbed panel content:

background_color = (1, 0, 0, .5) #50% translucent red
border = [0, 0, 0, 0]
background_image = 'path/to/background/image'

To change the background of a individual tab, use these two properties:

tab_header_instance.background_normal = 'path/to/tab_head/img'
tab_header_instance.background_down = 'path/to/tab_head/img_pressed'

A TabbedPanelStrip contains the individual tab headers. To change the
appearance of this tab strip, override the canvas of TabbedPanelStrip.
For example, in the kv language:

<TabbedPanelStrip>
 canvas:
 Color:
 rgba: (0, 1, 0, 1) # green
 Rectangle:
 size: self.size
 pos: self.pos

By default the tabbed panel strip takes its background image and color from the
tabbed panel’s background_image and background_color.

	
class kivy.uix.tabbedpanel.StripLayout(**kwargs)

	Bases: kivy.uix.gridlayout.GridLayout

The main layout that is used to house the entire tabbedpanel strip
including the blank areas in case the tabs don’t cover the entire
width/height.

New in version 1.8.0.

	
background_image

	Background image to be used for the Strip layout of the TabbedPanel.

background_image is a StringProperty and
defaults to a transparent image.

	
border

	Border property for the background_image.

border is a ListProperty and defaults
to [4, 4, 4, 4]

	
class kivy.uix.tabbedpanel.TabbedPanel(**kwargs)

	Bases: kivy.uix.gridlayout.GridLayout

The TabbedPanel class. See module documentation for more information.

	
add_widget(widget, *args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
background_color

	Background color, in the format (r, g, b, a).

background_color is a ColorProperty and
defaults to [1, 1, 1, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
background_disabled_image

	Background image of the main shared content object when disabled.

New in version 1.8.0.

background_disabled_image is a
StringProperty and defaults to
‘atlas://data/images/defaulttheme/tab’.

	
background_image

	Background image of the main shared content object.

background_image is a StringProperty and
defaults to ‘atlas://data/images/defaulttheme/tab’.

	
bar_width

	Width of the horizontal scroll bar. The width is interpreted
as a height for the horizontal bar.

New in version 2.2.0.

bar_width is a NumericProperty and
defaults to 2.

	
border

	Border used for BorderImage
graphics instruction, used itself for background_image.
Can be changed for a custom background.

It must be a list of four values: (bottom, right, top, left). Read the
BorderImage instructions for more information.

border is a ListProperty and
defaults to (16, 16, 16, 16)

	
clear_widgets(*args, **kwargs)

	Remove all (or the specified) children of this widget.
If the ‘children’ argument is specified, it should be a list (or
filtered list) of children of the current widget.

Changed in version 1.8.0: The children argument can be used to specify the children you
want to remove.

Changed in version 2.1.0: Specifying an empty children list leaves the widgets unchanged.
Previously it was treated like None and all children were
removed.

	
content

	This is the object holding (current_tab’s content is added to this)
the content of the current tab. To Listen to the changes in the content
of the current tab, you should bind to current_tabs content property.

content is an ObjectProperty and
defaults to ‘None’.

	
current_tab

	Links to the currently selected or active tab.

New in version 1.4.0.

current_tab is an AliasProperty, read-only.

	
default_tab

	Holds the default tab.

Note

For convenience, the automatically provided default tab is
deleted when you change default_tab to something else.
As of 1.5.0, this behaviour has been extended to every
default_tab for consistency and not just the automatically
provided one.

default_tab is an AliasProperty.

	
default_tab_cls

	Specifies the class to use for the styling of the default tab.

New in version 1.4.0.

Warning

default_tab_cls should be subclassed from TabbedPanelHeader

default_tab_cls is an ObjectProperty
and defaults to TabbedPanelHeader. If you set a string, the
Factory will be used to resolve the class.

Changed in version 1.8.0: The Factory will resolve the class if a string
is set.

	
default_tab_content

	Holds the default tab content.

default_tab_content is an AliasProperty.

	
default_tab_text

	Specifies the text displayed on the default tab header.

default_tab_text is a StringProperty and
defaults to ‘default tab’.

	
do_default_tab

	Specifies whether a default_tab head is provided.

New in version 1.5.0.

do_default_tab is a BooleanProperty and
defaults to ‘True’.

	
remove_widget(widget, *args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
scroll_type

	Sets the type of scrolling to use for the content of the scrollview.
Available options are: [‘content’], [‘bars’], [‘bars’, ‘content’].

New in version 2.2.0.

scroll_type is an OptionProperty and
defaults to [‘content’].

	
strip_border

	Border to be used on strip_image.

New in version 1.8.0.

strip_border is a ListProperty and
defaults to [4, 4, 4, 4].

	
strip_image

	Background image of the tabbed strip.

New in version 1.8.0.

strip_image is a StringProperty
and defaults to a empty image.

	
switch_to(header, do_scroll=False)

	Switch to a specific panel header.

Changed in version 1.10.0.

If used with do_scroll=True, it scrolls
to the header’s tab too.

switch_to() cannot be called from within the
TabbedPanel or its subclass’ __init__ method.
If that is required, use the Clock to schedule it. See discussion [https://github.com/kivy/kivy/issues/3493#issuecomment-121567969]
for full example.

	
tab_height

	Specifies the height of the tab header.

tab_height is a NumericProperty and
defaults to 40.

	
tab_list

	List of all the tab headers.

tab_list is an AliasProperty and is
read-only.

	
tab_pos

	Specifies the position of the tabs relative to the content.
Can be one of: left_top, left_mid, left_bottom, top_left,
top_mid, top_right, right_top, right_mid, right_bottom,
bottom_left, bottom_mid, bottom_right.

tab_pos is an OptionProperty and
defaults to ‘top_left’.

	
tab_width

	Specifies the width of the tab header.

tab_width is a NumericProperty and
defaults to 100.

	
class kivy.uix.tabbedpanel.TabbedPanelContent(**kwargs)

	Bases: kivy.uix.floatlayout.FloatLayout

The TabbedPanelContent class.

	
exception kivy.uix.tabbedpanel.TabbedPanelException

	Bases: Exception

The TabbedPanelException class.

	
class kivy.uix.tabbedpanel.TabbedPanelHeader(**kwargs)

	Bases: kivy.uix.togglebutton.ToggleButton

A Base for implementing a Tabbed Panel Head. A button intended to be
used as a Heading/Tab for a TabbedPanel widget.

You can use this TabbedPanelHeader widget to add a new tab to a
TabbedPanel.

	
content

	Content to be loaded when this tab header is selected.

content is an ObjectProperty and defaults
to None.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
class kivy.uix.tabbedpanel.TabbedPanelItem(**kwargs)

	Bases: kivy.uix.tabbedpanel.TabbedPanelHeader

This is a convenience class that provides a header of type
TabbedPanelHeader and links it with the content automatically. Thus
facilitating you to simply do the following in kv language:

<TabbedPanel>:
 # ...other settings
 TabbedPanelItem:
 BoxLayout:
 Label:
 text: 'Second tab content area'
 Button:
 text: 'Button that does nothing'

New in version 1.5.0.

	
add_widget(widget, *args, **kwargs)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
remove_widget(*args, **kwargs)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
class kivy.uix.tabbedpanel.TabbedPanelStrip(**kwargs)

	Bases: kivy.uix.gridlayout.GridLayout

A strip intended to be used as background for Heading/Tab.
This does not cover the blank areas in case the tabs don’t cover
the entire width/height of the TabbedPanel(use StripLayout
for that).

	
tabbed_panel

	Link to the panel that the tab strip is a part of.

tabbed_panel is an ObjectProperty and
defaults to None .

Text Input

New in version 1.0.4.

[image: _images/textinput-mono.jpg]
[image: _images/textinput-multi.jpg]
The TextInput widget provides a box for editable plain text.

Unicode, multiline, cursor navigation, selection and clipboard features
are supported.

The TextInput uses two different coordinate systems:

	(x, y) - coordinates in pixels, mostly used for rendering on screen.

	(col, row) - cursor index in characters / lines, used for selection
and cursor movement.

Usage example

To create a multiline TextInput (the ‘enter’ key adds a new line):

from kivy.uix.textinput import TextInput
textinput = TextInput(text='Hello world')

To create a singleline TextInput, set the TextInput.multiline
property to False (the ‘enter’ key will defocus the TextInput and emit an
TextInput.on_text_validate() event):

def on_enter(instance, value):
 print('User pressed enter in', instance)

textinput = TextInput(text='Hello world', multiline=False)
textinput.bind(on_text_validate=on_enter)

The textinput’s text is stored in its TextInput.text property. To run a
callback when the text changes:

def on_text(instance, value):
 print('The widget', instance, 'have:', value)

textinput = TextInput()
textinput.bind(text=on_text)

You can set the focus to a
Textinput, meaning that the input box will be highlighted and keyboard focus
will be requested:

textinput = TextInput(focus=True)

The textinput is defocused if the ‘escape’ key is pressed, or if another
widget requests the keyboard. You can bind a callback to the focus property to
get notified of focus changes:

def on_focus(instance, value):
 if value:
 print('User focused', instance)
 else:
 print('User defocused', instance)

textinput = TextInput()
textinput.bind(focus=on_focus)

See FocusBehavior, from which the
TextInput inherits, for more details.

Selection

The selection is automatically updated when the cursor position changes.
You can get the currently selected text from the
TextInput.selection_text property.

Filtering

You can control which text can be added to the TextInput by
overwriting TextInput.insert_text(). Every string that is typed, pasted
or inserted by any other means into the TextInput is passed through
this function. By overwriting it you can reject or change unwanted characters.

For example, to write only in capitalized characters:

class CapitalInput(TextInput):

 def insert_text(self, substring, from_undo=False):
 s = substring.upper()
 return super().insert_text(s, from_undo=from_undo)

Or to only allow floats (0 - 9 and a single period):

class FloatInput(TextInput):

 pat = re.compile('[^0-9]')
 def insert_text(self, substring, from_undo=False):
 pat = self.pat
 if '.' in self.text:
 s = re.sub(pat, '', substring)
 else:
 s = '.'.join(
 re.sub(pat, '', s)
 for s in substring.split('.', 1)
)
 return super().insert_text(s, from_undo=from_undo)

Default shortcuts

	Shortcuts

	Description

	Left

	Move cursor to left

	Right

	Move cursor to right

	Up

	Move cursor to up

	Down

	Move cursor to down

	Home

	Move cursor at the beginning of the line

	End

	Move cursor at the end of the line

	PageUp

	Move cursor to 3 lines before

	PageDown

	Move cursor to 3 lines after

	Backspace

	Delete the selection or character before the cursor

	Del

	Delete the selection of character after the cursor

	Shift + <dir>

	Start a text selection. Dir can be Up, Down, Left or
Right

	Control + c

	Copy selection

	Control + x

	Cut selection

	Control + v

	Paste clipboard content

	Control + a

	Select all the content

	Control + z

	undo

	Control + r

	redo

Note

To enable Emacs-style keyboard shortcuts, you can use
EmacsBehavior.

	
class kivy.uix.textinput.TextInput(**kwargs)

	Bases: kivy.uix.behaviors.focus.FocusBehavior, kivy.uix.widget.Widget

TextInput class. See module documentation for more information.

	Events:

	
	on_text_validate
	Fired only in multiline=False mode when the user hits ‘enter’.
This will also unfocus the textinput.

	on_double_tap
	Fired when a double tap happens in the text input. The default
behavior selects the text around the cursor position. More info at
on_double_tap().

	on_triple_tap
	Fired when a triple tap happens in the text input. The default
behavior selects the line around the cursor position. More info at
on_triple_tap().

	on_quad_touch
	Fired when four fingers are touching the text input. The default
behavior selects the whole text. More info at
on_quad_touch().

Warning

When changing a TextInput property that requires re-drawing,
e.g. modifying the text, the updates occur on the next
clock cycle and not instantly. This might cause any changes to the
TextInput that occur between the modification and the next
cycle to be ignored, or to use previous values. For example, after
a update to the text, changing the cursor in the same clock
frame will move it using the previous text and will likely end up in an
incorrect position. The solution is to schedule any updates to occur
on the next clock cycle using
schedule_once().

Note

Selection is cancelled when TextInput is focused. If you need to
show selection when TextInput is focused, you should delay
(use Clock.schedule) the call to the functions for selecting
text (select_all, select_text).

Changed in version 1.10.0: background_disabled_active has been removed.

Changed in version 1.9.0: TextInput now inherits from
FocusBehavior.
keyboard_mode,
show_keyboard(),
hide_keyboard(),
focus(),
and input_type
have been removed since they are now inherited
from FocusBehavior.

Changed in version 1.7.0: on_double_tap, on_triple_tap and on_quad_touch events added.

Changed in version 2.1.0: keyboard_suggestions
is now inherited from FocusBehavior.

	
allow_copy

	Decides whether to allow copying the text.

New in version 1.8.0.

allow_copy is a BooleanProperty and
defaults to True.

	
auto_indent

	Automatically indent multiline text.

New in version 1.7.0.

auto_indent is a BooleanProperty and
defaults to False.

	
background_active

	Background image of the TextInput when it’s in focus.

New in version 1.4.1.

background_active is a
StringProperty and
defaults to ‘atlas://data/images/defaulttheme/textinput_active’.

	
background_color

	Current color of the background, in (r, g, b, a) format.

New in version 1.2.0.

background_color is a ColorProperty
and defaults to [1, 1, 1, 1] (white).

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
background_disabled_normal

	Background image of the TextInput when disabled.

New in version 1.8.0.

background_disabled_normal is a
StringProperty and
defaults to ‘atlas://data/images/defaulttheme/textinput_disabled’.

	
background_normal

	Background image of the TextInput when it’s not in focus.

New in version 1.4.1.

background_normal is a StringProperty and
defaults to ‘atlas://data/images/defaulttheme/textinput’.

	
base_direction

	Base direction of text, this impacts horizontal alignment when
halign is auto (the default). Available options are: None,
“ltr” (left to right), “rtl” (right to left) plus “weak_ltr” and
“weak_rtl”.

Note

This feature requires the Pango text provider.

Note

Weak modes are currently not implemented in Kivy text layout, and
have the same effect as setting strong mode.

New in version 1.10.1.

base_direction is an OptionProperty and
defaults to None (autodetect RTL if possible, otherwise LTR).

	
border

	Border used for BorderImage
graphics instruction. Used with background_normal and
background_active. Can be used for a custom background.

New in version 1.4.1.

It must be a list of four values: (bottom, right, top, left). Read the
BorderImage instruction for more information about how to use it.

border is a ListProperty and defaults
to (4, 4, 4, 4).

	
cancel_selection()

	Cancel current selection (if any).

	
copy(data='')

	Copy the value provided in argument data into current clipboard.
If data is not of type string it will be converted to string.
If no data is provided then current selection if present is copied.

New in version 1.8.0.

	
cursor

	Tuple of (col, row) values indicating the current cursor position.
You can set a new (col, row) if you want to move the cursor. The scrolling
area will be automatically updated to ensure that the cursor is
visible inside the viewport.

cursor is an AliasProperty.

	
cursor_blink

	This property is used to set whether the graphic cursor should blink
or not.

Changed in version 1.10.1: cursor_blink has been refactored to enable switching the blinking
on/off and the previous behavior has been moved to a private
_cursor_blink property. The previous default value False has been
changed to True.

cursor_blink is a BooleanProperty and
defaults to True.

	
cursor_col

	Current column of the cursor.

cursor_col is an AliasProperty to
cursor[0], read-only.

	
cursor_color

	Current color of the cursor, in (r, g, b, a) format.

New in version 1.9.0.

cursor_color is a ColorProperty and
defaults to [1, 0, 0, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
cursor_index(cursor=None)

	Return the cursor index in the text/value.

	
cursor_offset()

	Get the cursor x offset on the current line.

	
cursor_pos

	Current position of the cursor, in (x, y).

cursor_pos is an AliasProperty,
read-only.

	
cursor_row

	Current row of the cursor.

cursor_row is an AliasProperty to
cursor[1], read-only.

	
cursor_width

	Current width of the cursor.

New in version 1.10.0.

cursor_width is a NumericProperty and
defaults to ‘1sp’.

	
cut()

	Copy current selection to clipboard then delete it from TextInput.

New in version 1.8.0.

	
delete_selection(from_undo=False)

	Delete the current text selection (if any).

	
disabled_foreground_color

	Current color of the foreground when disabled, in (r, g, b, a) format.

New in version 1.8.0.

disabled_foreground_color is a
ColorProperty and
defaults to [0, 0, 0, 5] (50% transparent black).

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
do_backspace(from_undo=False, mode='bkspc')

	Do backspace operation from the current cursor position.
This action might do several things:

	removing the current selection if available.

	removing the previous char and move the cursor back.

	do nothing, if we are at the start.

	
do_cursor_movement(action, control=False, alt=False)

	Move the cursor relative to its current position.
Action can be one of :

	cursor_left: move the cursor to the left

	cursor_right: move the cursor to the right

	cursor_up: move the cursor on the previous line

	cursor_down: move the cursor on the next line

	cursor_home: move the cursor at the start of the current line

	cursor_end: move the cursor at the end of current line

	cursor_pgup: move one “page” before

	cursor_pgdown: move one “page” after

In addition, the behavior of certain actions can be modified:

	control + cursor_left: move the cursor one word to the left

	control + cursor_right: move the cursor one word to the right

	control + cursor_up: scroll up one line

	control + cursor_down: scroll down one line

	control + cursor_home: go to beginning of text

	control + cursor_end: go to end of text

	alt + cursor_up: shift line(s) up

	alt + cursor_down: shift line(s) down

Changed in version 1.9.1.

	
do_redo()

	Do redo operation.

New in version 1.3.0.

This action re-does any command that has been un-done by
do_undo/ctrl+z. This function is automatically called when
ctrl+r keys are pressed.

	
do_undo()

	Do undo operation.

New in version 1.3.0.

This action un-does any edits that have been made since the last
call to reset_undo().
This function is automatically called when ctrl+z keys are pressed.

	
do_wrap

	If True, and the text is multiline, then lines larger than the width of
the widget will wrap around to the next line, avoiding the need for
horizontal scrolling. Disabling this option ensure one line is always
displayed as one line.

do_wrap is a BooleanProperty and defaults
to True.

versionadded:: 2.1.0

	
font_context

	Font context. None means the font is used in isolation, so you are
guaranteed to be drawing with the TTF file resolved by font_name.
Specifying a value here will load the font file into a named context,
enabling fallback between all fonts in the same context. If a font
context is set, you are not guaranteed that rendering will actually use
the specified TTF file for all glyphs (Pango will pick the one it
thinks is best).

If Kivy is linked against a system-wide installation of FontConfig,
you can load the system fonts by specifying a font context starting
with the special string system://. This will load the system
fontconfig configuration, and add your application-specific fonts on
top of it (this imposes a significant risk of family name collision,
Pango may not use your custom font file, but pick one from the system)

Note

This feature requires the Pango text provider.

New in version 1.10.1.

font_context is a StringProperty and
defaults to None.

	
font_family

	Font family, this is only applicable when using font_context
option. The specified font family will be requested, but note that it may
not be available, or there could be multiple fonts registered with the
same family. The value can be a family name (string) available in the
font context (for example a system font in a system:// context, or a
custom font file added using kivy.core.text.FontContextManager).
If set to None, font selection is controlled by the font_name
setting.

Note

If using font_name to reference a custom font file, you
should leave this as None. The family name is managed automatically
in this case.

Note

This feature requires the Pango text provider.

New in version 1.10.1.

font_family is a StringProperty and
defaults to None.

	
font_name

	Filename of the font to use. The path can be absolute or relative.
Relative paths are resolved by the resource_find()
function.

Warning

Depending on your text provider, the font file may be ignored. However,
you can mostly use this without problems.

If the font used lacks the glyphs for the particular language/symbols
you are using, you will see ‘[]’ blank box characters instead of the
actual glyphs. The solution is to use a font that has the glyphs you
need to display. For example, to display [image: unicodechar], use a font like
freesans.ttf that has the glyph.

font_name is a StringProperty and
defaults to ‘Roboto’. This value is taken
from Config.

	
font_size

	Font size of the text in pixels.

font_size is a NumericProperty and
defaults to 15 sp.

	
foreground_color

	Current color of the foreground, in (r, g, b, a) format.

New in version 1.2.0.

foreground_color is a ColorProperty
and defaults to [0, 0, 0, 1] (black).

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
get_cursor_from_index(index)

	Return the (col, row) of the cursor from text index.

	
get_cursor_from_xy(x, y)

	Return the (col, row) of the cursor from an (x, y) position.

	
halign

	Horizontal alignment of the text.

halign is an OptionProperty and
defaults to ‘auto’. Available options are : auto, left, center and right.
Auto will attempt to autodetect horizontal alignment for RTL text (Pango
only), otherwise it behaves like left.

New in version 1.10.1.

	
handle_image_left

	Image used to display the Left handle on the TextInput for selection.

New in version 1.8.0.

handle_image_left is a StringProperty and
defaults to ‘atlas://data/images/defaulttheme/selector_left’.

	
handle_image_middle

	Image used to display the middle handle on the TextInput for cursor
positioning.

New in version 1.8.0.

handle_image_middle is a StringProperty
and defaults to ‘atlas://data/images/defaulttheme/selector_middle’.

	
handle_image_right

	Image used to display the Right handle on the TextInput for selection.

New in version 1.8.0.

handle_image_right is a
StringProperty and defaults to
‘atlas://data/images/defaulttheme/selector_right’.

	
hint_text

	Hint text of the widget, shown if text is ‘’.

New in version 1.6.0.

Changed in version 1.10.0: The property is now an AliasProperty and byte values are decoded to
strings. The hint text will stay visible when the widget is focused.

hint_text a AliasProperty and defaults
to ‘’.

	
hint_text_color

	Current color of the hint_text text, in (r, g, b, a) format.

New in version 1.6.0.

hint_text_color is a ColorProperty and
defaults to [0.5, 0.5, 0.5, 1.0] (grey).

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
input_filter

	Filters the input according to the specified mode, if not None. If
None, no filtering is applied.

New in version 1.9.0.

input_filter is an ObjectProperty and
defaults to None. Can be one of None, ‘int’ (string), or ‘float’
(string), or a callable. If it is ‘int’, it will only accept numbers.
If it is ‘float’ it will also accept a single period. Finally, if it is
a callable it will be called with two parameters; the string to be added
and a bool indicating whether the string is a result of undo (True). The
callable should return a new substring that will be used instead.

	
insert_text(substring, from_undo=False)

	Insert new text at the current cursor position. Override this
function in order to pre-process text for input validation.

	
keyboard_on_key_down(window, keycode, text, modifiers)

	The method bound to the keyboard when the instance has focus.

When the instance becomes focused, this method is bound to the
keyboard and will be called for every input press. The parameters are
the same as kivy.core.window.WindowBase.on_key_down().

When overwriting the method in the derived widget, super should be
called to enable tab cycling. If the derived widget wishes to use tab
for its own purposes, it can call super after it has processed the
character (if it does not wish to consume the tab).

Similar to other keyboard functions, it should return True if the
key was consumed.

	
keyboard_on_key_up(window, keycode)

	The method bound to the keyboard when the instance has focus.

When the instance becomes focused, this method is bound to the
keyboard and will be called for every input release. The parameters are
the same as kivy.core.window.WindowBase.on_key_up().

When overwriting the method in the derived widget, super should be
called to enable de-focusing on escape. If the derived widget wishes
to use escape for its own purposes, it can call super after it has
processed the character (if it does not wish to consume the escape).

See keyboard_on_key_down()

	
line_height

	Height of a line. This property is automatically computed from the
font_name, font_size. Changing the line_height will have
no impact.

Note

line_height is the height of a single line of text.
Use minimum_height, which also includes padding, to
get the height required to display the text properly.

line_height is a NumericProperty,
read-only.

	
line_spacing

	Space taken up between the lines.

New in version 1.8.0.

line_spacing is a NumericProperty and
defaults to 0.

	
lines_to_scroll

	Set how many lines will be scrolled at once when using the mouse scroll
wheel.

New in version 2.2.0.

lines_to_scroll is a
:class:`~kivy.properties.BoundedNumericProperty and defaults to 3, the
minimum is 1.

	
minimum_height

	Minimum height of the content inside the TextInput.

New in version 1.8.0.

minimum_height is a readonly
AliasProperty.

Warning

minimum_width is calculated based on width therefore
code like this will lead to an infinite loop:

<FancyTextInput>:
 height: self.minimum_height
 width: self.height

	
multiline

	If True, the widget will be able show multiple lines of text. If False,
the “enter” keypress will defocus the textinput instead of adding a new
line.

multiline is a BooleanProperty and
defaults to True.

	
on_cursor(instance, value)

	When the cursor is moved, reset cursor blinking to keep it showing,
and update all the graphics.

	
on_cursor_blink(instance, value)

	trigger blink event reset to switch blinking while focused

	
on_double_tap()

	This event is dispatched when a double tap happens
inside TextInput. The default behavior is to select the
word around the current cursor position. Override this to provide
different behavior. Alternatively, you can bind to this
event to provide additional functionality.

	
on_quad_touch()

	This event is dispatched when four fingers are touching
inside TextInput. The default behavior is to select all text.
Override this to provide different behavior. Alternatively,
you can bind to this event to provide additional functionality.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_move(touch)

	Receive a touch move event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_triple_tap()

	This event is dispatched when a triple tap happens
inside TextInput. The default behavior is to select the
line around current cursor position. Override this to provide
different behavior. Alternatively, you can bind to this
event to provide additional functionality.

	
padding

	Padding of the text: [padding_left, padding_top, padding_right,
padding_bottom].

padding also accepts a two argument form [padding_horizontal,
padding_vertical] and a one argument form [padding].

Changed in version 1.7.0: Replaced AliasProperty with VariableListProperty.

padding is a VariableListProperty and
defaults to [6, 6, 6, 6].

	
padding_x

	Horizontal padding of the text: [padding_left, padding_right].

padding_x also accepts a one argument form [padding_horizontal].

padding_x is a VariableListProperty and
defaults to [0, 0]. This might be changed by the current theme.

Deprecated since version 1.7.0: Use padding instead.

	
padding_y

	Vertical padding of the text: [padding_top, padding_bottom].

padding_y also accepts a one argument form [padding_vertical].

padding_y is a VariableListProperty and
defaults to [0, 0]. This might be changed by the current theme.

Deprecated since version 1.7.0: Use padding instead.

	
password

	If True, the widget will display its characters as the character
set in password_mask.

New in version 1.2.0.

password is a BooleanProperty and
defaults to False.

	
password_mask

	Sets the character used to mask the text when password is True.

New in version 1.10.0.

password_mask is a StringProperty and
defaults to ‘*’.

	
paste()

	Insert text from system Clipboard
into the TextInput at current cursor
position.

New in version 1.8.0.

	
property pgmove_speed

	how much vertical distance hitting pg_up or pg_down will move

	
readonly

	If True, the user will not be able to change the content of a textinput.

New in version 1.3.0.

readonly is a BooleanProperty and
defaults to False.

	
replace_crlf

	Automatically replace CRLF with LF.

New in version 1.9.1.

replace_crlf is a BooleanProperty and
defaults to True.

	
reset_undo()

	Reset undo and redo lists from memory.

New in version 1.3.0.

	
scroll_distance

	Minimum distance to move before change from scroll to selection mode, in
pixels.
It is advisable that you base this value on the dpi of your target device’s
screen.

New in version 2.1.0.

scroll_distance is a NumericProperty and defaults to 20 pixels.

	
scroll_from_swipe

	Allow to scroll the text using swipe gesture according to
scroll_timeout and scroll_distance.

New in version 2.1.0.

scroll_from_swipe is a BooleanProperty and defaults to True on
mobile OS’s, False on desktop OS’s.

	
scroll_timeout

	Timeout allowed to trigger the scroll_distance, in milliseconds.
If the user has not moved scroll_distance within the timeout, the
scrolling will be disabled, and the selection mode will start.

New in version 2.1.0.

scroll_timeout is a NumericProperty and defaults to 250
milliseconds.

	
scroll_x

	X scrolling value of the viewport. The scrolling is automatically
updated when the cursor is moved or text changed. If there is no
user input, the scroll_x and scroll_y properties may be changed.

scroll_x is a NumericProperty and
defaults to 0.

	
scroll_y

	Y scrolling value of the viewport. See scroll_x for more
information.

scroll_y is a NumericProperty and
defaults to 0.

	
select_all()

	Select all of the text displayed in this TextInput.

New in version 1.4.0.

	
select_text(start, end)

	Select a portion of text displayed in this TextInput.

New in version 1.4.0.

	Parameters:

	
	start
	Index of textinput.text from where to start selection

	end
	Index of textinput.text till which the selection should be
displayed

	
selection_color

	Current color of the selection, in (r, g, b, a) format.

Warning

The color should always have an “alpha” component less than 1
since the selection is drawn after the text.

selection_color is a ColorProperty and
defaults to [0.1843, 0.6549, 0.8313, .5].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
selection_from

	If a selection is in progress or complete, this property will represent
the cursor index where the selection started.

Changed in version 1.4.0: selection_from is an AliasProperty
and defaults to None, readonly.

	
selection_text

	Current content selection.

selection_text is a StringProperty
and defaults to ‘’, readonly.

	
selection_to

	If a selection is in progress or complete, this property will represent
the cursor index where the selection started.

Changed in version 1.4.0: selection_to is an AliasProperty and
defaults to None, readonly.

	
tab_width

	By default, each tab will be replaced by four spaces on the text
input widget. You can set a lower or higher value.

tab_width is a NumericProperty and
defaults to 4.

	
text

	Text of the widget.

Creation of a simple hello world:

widget = TextInput(text='Hello world')

If you want to create the widget with an unicode string, use:

widget = TextInput(text=u'My unicode string')

text is an AliasProperty.

	
text_language

	Language of the text, if None Pango will determine it from locale.
This is an RFC-3066 format language tag (as a string), for example
“en_US”, “zh_CN”, “fr” or “ja”. This can impact font selection, metrics
and rendering. For example, the same bytes of text can look different
for ur and ar languages, though both use Arabic script.

Note

This feature requires the Pango text provider.

New in version 1.10.1.

text_language is a StringProperty and
defaults to None.

	
text_validate_unfocus

	If True, the TextInput.on_text_validate() event will unfocus the
widget, therefore make it stop listening to the keyboard. When disabled,
the TextInput.on_text_validate() event can be fired multiple times
as the result of TextInput keeping the focus enabled.

New in version 1.10.1.

text_validate_unfocus is
a BooleanProperty and defaults to True.

	
use_bubble

	Indicates whether the cut/copy/paste bubble is used.

New in version 1.7.0.

use_bubble is a BooleanProperty
and defaults to True on mobile OS’s, False on desktop OS’s.

	
use_handles

	Indicates whether the selection handles are displayed.

New in version 1.8.0.

use_handles is a BooleanProperty
and defaults to True on mobile OS’s, False on desktop OS’s.

	
write_tab

	Whether the tab key should move focus to the next widget or if it should
enter a tab in the TextInput. If True a tab will be written,
otherwise, focus will move to the next widget.

New in version 1.9.0.

write_tab is a BooleanProperty and
defaults to True.

Toggle button

[image: _images/togglebutton.jpg]
The ToggleButton widget acts like a checkbox. When you touch or click
it, the state toggles between ‘normal’ and ‘down’ (as opposed to a
Button that is only ‘down’ as long as it is pressed).

Toggle buttons can also be grouped to make radio buttons - only one button in
a group can be in a ‘down’ state. The group name can be a string or any other
hashable Python object:

btn1 = ToggleButton(text='Male', group='sex',)
btn2 = ToggleButton(text='Female', group='sex', state='down')
btn3 = ToggleButton(text='Mixed', group='sex')

Only one of the buttons can be ‘down’/checked at the same time.

To configure the ToggleButton, you can use the same properties that you can use
for a Button class.

	
class kivy.uix.togglebutton.ToggleButton(**kwargs)

	Bases: kivy.uix.behaviors.togglebutton.ToggleButtonBehavior, kivy.uix.button.Button

Toggle button class, see module documentation for more information.

Tree View

[image: _images/treeview.png]

New in version 1.0.4.

TreeView is a widget used to represent a tree structure. It is
currently very basic, supporting a minimal feature set.

Introduction

A TreeView is populated with TreeViewNode instances, but you
cannot use a TreeViewNode directly. You must combine it with another
widget, such as Label,
Button or even your own widget. The TreeView
always creates a default root node, based on TreeViewLabel.

TreeViewNode is a class object containing needed properties for
serving as a tree node. Extend TreeViewNode to create custom node
types for use with a TreeView.

For constructing your own subclass, follow the pattern of TreeViewLabel which
combines a Label and a TreeViewNode, producing a TreeViewLabel for
direct use in a TreeView instance.

To use the TreeViewLabel class, you could create two nodes directly attached
to root:

tv = TreeView()
tv.add_node(TreeViewLabel(text='My first item'))
tv.add_node(TreeViewLabel(text='My second item'))

Or, create two nodes attached to a first:

tv = TreeView()
n1 = tv.add_node(TreeViewLabel(text='Item 1'))
tv.add_node(TreeViewLabel(text='SubItem 1'), n1)
tv.add_node(TreeViewLabel(text='SubItem 2'), n1)

If you have a large tree structure, perhaps you would need a utility function
to populate the tree view:

def populate_tree_view(tree_view, parent, node):
 if parent is None:
 tree_node = tree_view.add_node(TreeViewLabel(text=node['node_id'],
 is_open=True))
 else:
 tree_node = tree_view.add_node(TreeViewLabel(text=node['node_id'],
 is_open=True), parent)

 for child_node in node['children']:
 populate_tree_view(tree_view, tree_node, child_node)

tree = {'node_id': '1',
 'children': [{'node_id': '1.1',
 'children': [{'node_id': '1.1.1',
 'children': [{'node_id': '1.1.1.1',
 'children': []}]},
 {'node_id': '1.1.2',
 'children': []},
 {'node_id': '1.1.3',
 'children': []}]},
 {'node_id': '1.2',
 'children': []}]}

class TreeWidget(FloatLayout):
 def __init__(self, **kwargs):
 super(TreeWidget, self).__init__(**kwargs)

 tv = TreeView(root_options=dict(text='Tree One'),
 hide_root=False,
 indent_level=4)

 populate_tree_view(tv, None, tree)

 self.add_widget(tv)

The root widget in the tree view is opened by default and has text set as
‘Root’. If you want to change that, you can use the
TreeView.root_options
property. This will pass options to the root widget:

tv = TreeView(root_options=dict(text='My root label'))

Creating Your Own Node Widget

For a button node type, combine a Button and a
TreeViewNode as follows:

class TreeViewButton(Button, TreeViewNode):
 pass

You must know that, for a given node, only the
size_hint_x will be honored. The allocated
width for the node will depend of the current width of the TreeView and the
level of the node. For example, if a node is at level 4, the width
allocated will be:

treeview.width - treeview.indent_start - treeview.indent_level * node.level

You might have some trouble with that. It is the developer’s responsibility to
correctly handle adapting the graphical representation nodes, if needed.

	
class kivy.uix.treeview.TreeView(**kwargs)

	Bases: kivy.uix.widget.Widget

TreeView class. See module documentation for more information.

	Events:

	
	on_node_expand: (node,)
	Fired when a node is being expanded

	on_node_collapse: (node,)
	Fired when a node is being collapsed

	
add_node(node, parent=None)

	Add a new node to the tree.

	Parameters:

	
	node: instance of a TreeViewNode
	Node to add into the tree

	parent: instance of a TreeViewNode, defaults to None
	Parent node to attach the new node. If None, it is added to
the root node.

	Returns:

	the node node.

	
deselect_node(*args)

	Deselect any selected node.

New in version 1.10.0.

	
get_node_at_pos(pos)

	Get the node at the position (x, y).

	
hide_root

	Use this property to show/hide the initial root node. If True, the root
node will be appear as a closed node.

hide_root is a BooleanProperty and
defaults to False.

	
indent_level

	Width used for the indentation of each level except the first level.

Computation of indent for each level of the tree is:

indent = indent_start + level * indent_level

indent_level is a NumericProperty and
defaults to 16.

	
indent_start

	Indentation width of the level 0 / root node. This is mostly the initial
size to accommodate a tree icon (collapsed / expanded). See
indent_level for more information about the computation of level
indentation.

indent_start is a NumericProperty and
defaults to 24.

	
iterate_all_nodes(node=None)

	Generator to iterate over all nodes from node and down whether
expanded or not. If node is None, the generator start with
root.

	
iterate_open_nodes(node=None)

	Generator to iterate over all the expended nodes starting from
node and down. If node is None, the generator start with
root.

To get all the open nodes:

treeview = TreeView()
... add nodes ...
for node in treeview.iterate_open_nodes():
 print(node)

	
load_func

	Callback to use for asynchronous loading. If set, asynchronous loading
will be automatically done. The callback must act as a Python generator
function, using yield to send data back to the treeview.

The callback should be in the format:

def callback(treeview, node):
 for name in ('Item 1', 'Item 2'):
 yield TreeViewLabel(text=name)

load_func is a ObjectProperty and
defaults to None.

	
minimum_height

	Minimum height needed to contain all children.

New in version 1.0.9.

minimum_height is a NumericProperty and
defaults to 0.

	
minimum_size

	Minimum size needed to contain all children.

New in version 1.0.9.

minimum_size is a ReferenceListProperty
of (minimum_width, minimum_height) properties.

	
minimum_width

	Minimum width needed to contain all children.

New in version 1.0.9.

minimum_width is a NumericProperty and
defaults to 0.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
remove_node(node)

	Removes a node from the tree.

New in version 1.0.7.

	Parameters:

	
	node: instance of a TreeViewNode
	Node to remove from the tree. If node is root, it is
not removed.

	
root

	Root node.

By default, the root node widget is a TreeViewLabel with text
‘Root’. If you want to change the default options passed to the widget
creation, use the root_options property:

treeview = TreeView(root_options={
 'text': 'Root directory',
 'font_size': 15})

root_options will change the properties of the
TreeViewLabel instance. However, you cannot change the class used
for root node yet.

root is an AliasProperty and defaults to
None. It is read-only. However, the content of the widget can be changed.

	
root_options

	Default root options to pass for root widget. See root property
for more information about the usage of root_options.

root_options is an ObjectProperty and
defaults to {}.

	
select_node(node)

	Select a node in the tree.

	
selected_node

	Node selected by TreeView.select_node() or by touch.

selected_node is a AliasProperty and
defaults to None. It is read-only.

	
toggle_node(node)

	Toggle the state of the node (open/collapsed).

	
exception kivy.uix.treeview.TreeViewException

	Bases: Exception

Exception for errors in the TreeView.

	
class kivy.uix.treeview.TreeViewLabel(**kwargs)

	Bases: kivy.uix.label.Label, kivy.uix.treeview.TreeViewNode

Combines a Label and a TreeViewNode to
create a TreeViewLabel that can be used as a text node in the
tree.

See module documentation for more information.

	
class kivy.uix.treeview.TreeViewNode(**kwargs)

	Bases: builtins.object

TreeViewNode class, used to build a node class for a TreeView object.

	
color_selected

	Background color of the node when the node is selected.

color_selected is a ColorProperty and
defaults to [.1, .1, .1, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
even_color

	Background color of even nodes when the node is not selected.

bg_color is a ColorProperty and defaults
to [.5, .5, .5, .1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
is_leaf

	Boolean to indicate whether this node is a leaf or not. Used to adjust
the graphical representation.

is_leaf is a BooleanProperty and defaults
to True. It is automatically set to False when child is added.

	
is_loaded

	Boolean to indicate whether this node is already loaded or not. This
property is used only if the TreeView uses asynchronous loading.

is_loaded is a BooleanProperty and
defaults to False.

	
is_open

	Boolean to indicate whether this node is opened or not, in case there
are child nodes. This is used to adjust the graphical representation.

Warning

This property is automatically set by the TreeView. You can
read but not write it.

is_open is a BooleanProperty and defaults
to False.

	
is_selected

	Boolean to indicate whether this node is selected or not. This is used
adjust the graphical representation.

Warning

This property is automatically set by the TreeView. You can
read but not write it.

is_selected is a BooleanProperty and
defaults to False.

	
level

	Level of the node.

level is a NumericProperty and defaults
to -1.

	
no_selection

	
	Boolean used to indicate whether selection of the node is allowed or
	not.

no_selection is a BooleanProperty and
defaults to False.

	
nodes

	List of nodes. The nodes list is different than the children list. A
node in the nodes list represents a node on the tree. An item in the
children list represents the widget associated with the node.

Warning

This property is automatically set by the TreeView. You can
read but not write it.

nodes is a ListProperty and defaults to
[].

	
odd

	This property is set by the TreeView widget automatically and is read-only.

odd is a BooleanProperty and defaults to
False.

	
odd_color

	Background color of odd nodes when the node is not selected.

odd_color is a ColorProperty and defaults
to [1., 1., 1., 0.].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
parent_node

	Parent node. This attribute is needed because the parent can be
None when the node is not displayed.

New in version 1.0.7.

parent_node is an ObjectProperty and
defaults to None.

Video

The Video widget is used to display video files and streams.
Depending on your Video core provider, platform, and plugins, you will
be able to play different formats. For example, the pygame video
provider only supports MPEG1 on Linux and OSX. GStreamer is more
versatile, and can read many video containers and codecs such as MKV,
OGV, AVI, MOV, FLV (if the correct gstreamer plugins are installed). Our
VideoBase implementation is used under the
hood.

Video loading is asynchronous - many properties are not available until
the video is loaded (when the texture is created):

def on_position_change(instance, value):
 print('The position in the video is', value)

def on_duration_change(instance, value):
 print('The duration of the video is', value)

video = Video(source='PandaSneezes.avi')
video.bind(
 position=on_position_change,
 duration=on_duration_change
)

One can define a preview image which gets displayed until the video is
started/loaded by passing preview to the constructor:

video = Video(
 source='PandaSneezes.avi',
 preview='PandaSneezes_preview.png'
)

One can display the placeholder image when the video stops by reacting on eos:

def on_eos_change(self, inst, val):
 if val and self.preview:
 self.set_texture_from_resource(self.preview)

video.bind(eos=on_eos_change)

	
class kivy.uix.video.Video(**kwargs)

	Bases: kivy.uix.image.Image

Video class. See module documentation for more information.

	
duration

	Duration of the video. The duration defaults to -1, and is set to a real
duration when the video is loaded.

duration is a NumericProperty and
defaults to -1.

	
eos

	Boolean, indicates whether the video has finished playing or not
(reached the end of the stream).

eos is a BooleanProperty and defaults to
False.

	
loaded

	Boolean, indicates whether the video is loaded and ready for playback
or not.

New in version 1.6.0.

loaded is a BooleanProperty and defaults
to False.

	
options

	Options to pass at Video core object creation.

New in version 1.0.4.

options is an kivy.properties.ObjectProperty and defaults
to {}.

	
play

	
Deprecated since version 1.4.0: Use state instead.

Boolean, indicates whether the video is playing or not.
You can start/stop the video by setting this property:

start playing the video at creation
video = Video(source='movie.mkv', play=True)

create the video, and start later
video = Video(source='movie.mkv')
and later
video.play = True

play is a BooleanProperty and defaults to
False.

Deprecated since version 1.4.0: Use state instead.

	
position

	Position of the video between 0 and duration. The position
defaults to -1 and is set to a real position when the video is loaded.

position is a NumericProperty and
defaults to -1.

	
preview

	Filename / source of a preview image displayed before video starts.

preview is a StringProperty and
defaults to None.

If set, it gets displayed until the video is loaded/started.

New in version 2.1.0.

	
seek(percent, precise=True)

	
	Change the position to a percentage (strictly, a proportion)
	of duration.

	Parameters:

	
	percent: float or int
	Position to seek as a proportion of the total duration,
must be between 0-1.

	precise: bool, defaults to True
	Precise seeking is slower, but seeks to exact requested
percent.

Warning

Calling seek() before the video is loaded has no effect.

New in version 1.2.0.

Changed in version 1.10.1: The precise keyword argument has been added.

	
state

	String, indicates whether to play, pause, or stop the video:

start playing the video at creation
video = Video(source='movie.mkv', state='play')

create the video, and start later
video = Video(source='movie.mkv')
and later
video.state = 'play'

state is an OptionProperty and defaults
to ‘stop’.

	
unload()

	Unload the video. The playback will be stopped.

New in version 1.8.0.

	
volume

	Volume of the video, in the range 0-1. 1 means full volume, 0
means mute.

volume is a NumericProperty and defaults
to 1.

Video player

New in version 1.2.0.

The video player widget can be used to play video and let the user control the
play/pausing, volume and position. The widget cannot be customized much because
of the complex assembly of numerous base widgets.

[image: _images/videoplayer.jpg]

Annotations

If you want to display text at a specific time and for a certain duration,
consider annotations. An annotation file has a “.jsa” extension. The player
will automatically load the associated annotation file if it exists.

An annotation file is JSON-based, providing a list of label dictionary items.
The key and value must match one of the VideoPlayerAnnotation items.
For example, here is a short version of a jsa file that you can find in
examples/widgets/cityCC0.jsa:

[
 {"start": 0, "duration": 2,
 "text": "This is an example of annotation"},
 {"start": 2, "duration": 2,
 "bgcolor": [0.5, 0.2, 0.4, 0.5],
 "text": "You can change the background color"}
]

For our cityCC0.mpg example, the result will be:

[image: _images/videoplayer-annotation.jpg]
If you want to experiment with annotation files, test with:

python -m kivy.uix.videoplayer examples/widgets/cityCC0.mpg

Fullscreen

The video player can play the video in fullscreen, if
VideoPlayer.allow_fullscreen is activated by a double-tap on
the video. By default, if the video is smaller than the Window, it will be not
stretched.

You can allow stretching by passing custom options to a
VideoPlayer instance:

player = VideoPlayer(source='myvideo.avi', state='play',
 options={'fit_mode': 'contain'})

End-of-stream behavior

You can specify what happens when the video has finished playing by passing an
eos (end of stream) directive to the underlying
VideoBase class. eos can be one of ‘stop’, ‘pause’
or ‘loop’ and defaults to ‘stop’. For example, in order to loop the video:

player = VideoPlayer(source='myvideo.avi', state='play',
 options={'eos': 'loop'})

Note

The eos property of the VideoBase class is a string specifying the
end-of-stream behavior. This property differs from the eos
properties of the VideoPlayer and
Video classes, whose eos
property is simply a boolean indicating that the end of the file has
been reached.

	
class kivy.uix.videoplayer.VideoPlayer(**kwargs)

	Bases: kivy.uix.gridlayout.GridLayout

VideoPlayer class. See module documentation for more information.

	
allow_fullscreen

	By default, you can double-tap on the video to make it fullscreen. Set
this property to False to prevent this behavior.

allow_fullscreen is a BooleanProperty
defaults to True.

	
annotations

	If set, it will be used for reading annotations box.

annotations is a StringProperty
and defaults to ‘’.

	
duration

	Duration of the video. The duration defaults to -1 and is set to the
real duration when the video is loaded.

duration is a NumericProperty and
defaults to -1.

	
fullscreen

	Switch to fullscreen view. This should be used with care. When
activated, the widget will remove itself from its parent, remove all
children from the window and will add itself to it. When fullscreen is
unset, all the previous children are restored and the widget is restored to
its previous parent.

Warning

The re-add operation doesn’t care about the index position of its
children within the parent.

fullscreen is a BooleanProperty
and defaults to False.

	
image_loading

	Image filename used when the video is loading.

image_loading is a StringProperty and
defaults to ‘data/images/image-loading.zip’.

	
image_overlay_play

	Image filename used to show a “play” overlay when the video has not yet
started.

image_overlay_play is a
StringProperty and
defaults to ‘atlas://data/images/defaulttheme/player-play-overlay’.

	
image_pause

	Image filename used for the “Pause” button.

image_pause is a StringProperty and
defaults to ‘atlas://data/images/defaulttheme/media-playback-pause’.

	
image_play

	Image filename used for the “Play” button.

image_play is a StringProperty and
defaults to ‘atlas://data/images/defaulttheme/media-playback-start’.

	
image_stop

	Image filename used for the “Stop” button.

image_stop is a StringProperty and
defaults to ‘atlas://data/images/defaulttheme/media-playback-stop’.

	
image_volumehigh

	Image filename used for the volume icon when the volume is high.

image_volumehigh is a StringProperty and
defaults to ‘atlas://data/images/defaulttheme/audio-volume-high’.

	
image_volumelow

	Image filename used for the volume icon when the volume is low.

image_volumelow is a StringProperty
and defaults to ‘atlas://data/images/defaulttheme/audio-volume-low’.

	
image_volumemedium

	Image filename used for the volume icon when the volume is medium.

image_volumemedium is a StringProperty
and defaults to ‘atlas://data/images/defaulttheme/audio-volume-medium’.

	
image_volumemuted

	Image filename used for the volume icon when the volume is muted.

image_volumemuted is a StringProperty
and defaults to ‘atlas://data/images/defaulttheme/audio-volume-muted’.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
options

	Optional parameters can be passed to a Video
instance with this property.

options a DictProperty and
defaults to {}.

	
play

	
Deprecated since version 1.4.0: Use state instead.

Boolean, indicates whether the video is playing or not. You can start/stop
the video by setting this property:

start playing the video at creation
video = VideoPlayer(source='movie.mkv', play=True)

create the video, and start later
video = VideoPlayer(source='movie.mkv')
and later
video.play = True

play is a BooleanProperty and defaults
to False.

	
position

	Position of the video between 0 and duration. The position
defaults to -1 and is set to the real position when the video is loaded.

position is a NumericProperty and
defaults to -1.

	
seek(percent, precise=True)

	
	Change the position to a percentage (strictly, a proportion)
	of duration.

	Parameters:

	
	percent: float or int
	Position to seek as a proportion of total duration, must
be between 0-1.

	precise: bool, defaults to True
	Precise seeking is slower, but seeks to exact requested
percent.

Warning

Calling seek() before the video is loaded has no effect.

New in version 1.2.0.

Changed in version 1.10.1: The precise keyword argument has been added.

	
source

	Source of the video to read.

source is a StringProperty and
defaults to ‘’.

Changed in version 1.4.0.

	
state

	String, indicates whether to play, pause, or stop the video:

start playing the video at creation
video = VideoPlayer(source='movie.mkv', state='play')

create the video, and start later
video = VideoPlayer(source='movie.mkv')
and later
video.state = 'play'

state is an OptionProperty and defaults
to ‘stop’.

	
thumbnail

	Thumbnail of the video to show. If None, VideoPlayer will try to find
the thumbnail from the source + ‘.png’.

thumbnail a StringProperty and defaults
to ‘’.

Changed in version 1.4.0.

	
volume

	Volume of the video in the range 0-1. 1 means full volume and 0 means
mute.

volume is a NumericProperty and defaults
to 1.

	
class kivy.uix.videoplayer.VideoPlayerAnnotation(**kwargs)

	Bases: kivy.uix.label.Label

Annotation class used for creating annotation labels.

Additional keys are available:

	bgcolor: [r, g, b, a] - background color of the text box

	bgsource: ‘filename’ - background image used for the background text box

	border: (n, e, s, w) - border used for the background image

	
duration

	Duration of the annotation.

duration is a NumericProperty and
defaults to 1.

	
start

	Start time of the annotation.

start is a NumericProperty and defaults
to 0.

VKeyboard

[image: _images/vkeyboard.jpg]

New in version 1.0.8.

VKeyboard is an onscreen keyboard for Kivy. Its operation is intended to be
transparent to the user. Using the widget directly is NOT recommended. Read the
section Request keyboard first.

Modes

This virtual keyboard has a docked and free mode:

	docked mode (VKeyboard.docked = True)
Generally used when only one person is using the computer, like a tablet or
personal computer etc.

	free mode: (VKeyboard.docked = False)
Mostly for multitouch surfaces. This mode allows multiple virtual
keyboards to be used on the screen.

If the docked mode changes, you need to manually call
VKeyboard.setup_mode() otherwise the change will have no impact.
During that call, the VKeyboard, implemented on top of a
Scatter, will change the
behavior of the scatter and position the keyboard near the target (if target
and docked mode is set).

Layouts

The virtual keyboard is able to load a custom layout. If you create a new
layout and put the JSON in <kivy_data_dir>/keyboards/<layoutid>.json,
you can load it by setting VKeyboard.layout to your layoutid.

The JSON must be structured like this:

{
 "title": "Title of your layout",
 "description": "Description of your layout",
 "cols": 15,
 "rows": 5,

 ...
}

Then, you need to describe the keys in each row, for either a “normal”,
“shift” or a “special” (added in version 1.9.0) mode. Keys for this row
data must be named normal_<row>, shift_<row> and special_<row>.
Replace row with the row number.
Inside each row, you will describe the key. A key is a 4 element list in
the format:

[<text displayed on the keyboard>, <text to put when the key is pressed>,
 <text that represents the keycode>, <size of cols>]

Here are example keys:

f key
["f", "f", "f", 1]
capslock
["↹", " ", "tab", 1.5]

Finally, complete the JSON:

{
 ...
 "normal_1": [
 ["`", "`", "`", 1], ["1", "1", "1", 1], ["2", "2", "2", 1],
 ["3", "3", "3", 1], ["4", "4", "4", 1], ["5", "5", "5", 1],
 ["6", "6", "6", 1], ["7", "7", "7", 1], ["8", "8", "8", 1],
 ["9", "9", "9", 1], ["0", "0", "0", 1], ["+", "+", "+", 1],
 ["=", "=", "=", 1], ["⌫", null, "backspace", 2]
],

 "shift_1": [...],
 "normal_2": [...],
 "special_2": [...],
 ...
}

Request Keyboard

The instantiation of the virtual keyboard is controlled by the configuration.
Check keyboard_mode and keyboard_layout in the Configuration object.

If you intend to create a widget that requires a keyboard, do not use the
virtual keyboard directly, but prefer to use the best method available on
the platform. Check the request_keyboard()
method in the Window.

If you want a specific layout when you request the keyboard, you should write
something like this (from 1.8.0, numeric.json can be in the same directory as
your main.py):

keyboard = Window.request_keyboard(
 self._keyboard_close, self)
if keyboard.widget:
 vkeyboard = self._keyboard.widget
 vkeyboard.layout = 'numeric.json'

	
class kivy.uix.vkeyboard.VKeyboard(**kwargs)

	Bases: kivy.uix.scatter.Scatter

VKeyboard is an onscreen keyboard with multitouch support.
Its layout is entirely customizable and you can switch between available
layouts using a button in the bottom right of the widget.

	Events:

	
	on_key_down: keycode, internal, modifiers
	Fired when the keyboard received a key down event (key press).

	on_key_up: keycode, internal, modifiers
	Fired when the keyboard received a key up event (key release).

	
available_layouts

	Dictionary of all available layouts. Keys are the layout ID, and the
value is the JSON (translated into a Python object).

available_layouts is a DictProperty and
defaults to {}.

	
background

	Filename of the background image.

background is a StringProperty and
defaults to atlas://data/images/defaulttheme/vkeyboard_background.

	
background_border

	Background image border. Used for controlling the
border property of
the background.

background_border is a ListProperty and
defaults to [16, 16, 16, 16]

	
background_color

	Background color, in the format (r, g, b, a). If a background is
set, the color will be combined with the background texture.

background_color is a ColorProperty and
defaults to [1, 1, 1, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
background_disabled

	Filename of the background image when the vkeyboard is disabled.

New in version 1.8.0.

background_disabled is a
StringProperty and defaults to
atlas://data/images/defaulttheme/vkeyboard__disabled_background.

	
callback

	Callback can be set to a function that will be called if the
VKeyboard is closed by the user.

target is an ObjectProperty instance and
defaults to None.

	
collide_margin(x, y)

	Do a collision test, and return True if the (x, y) is inside the
vkeyboard margin.

	
docked

	Indicate whether the VKeyboard is docked on the screen or not. If you
change it, you must manually call setup_mode() otherwise it will have
no impact. If the VKeyboard is created by the Window, the docked mode will
be automatically set by the configuration, using the keyboard_mode token
in [kivy] section.

docked is a BooleanProperty and defaults
to False.

	
font_size

	font_size, specifies the size of the text on the virtual keyboard keys.
It should be kept within limits to ensure the text does not extend beyond
the bounds of the key or become too small to read.

New in version 1.10.0.

font_size is a NumericProperty and
defaults to 20.

	
key_background_color

	Key background color, in the format (r, g, b, a). If a key background is
set, the color will be combined with the key background texture.

key_background_color is a ColorProperty
and defaults to [1, 1, 1, 1].

Changed in version 2.0.0: Changed from ListProperty to
ColorProperty.

	
key_background_down

	Filename of the key background image for use when a touch is active
on the widget.

key_background_down is a StringProperty
and defaults to
atlas://data/images/defaulttheme/vkeyboard_key_down.

	
key_background_normal

	Filename of the key background image for use when no touches are active
on the widget.

key_background_normal is a StringProperty
and defaults to
atlas://data/images/defaulttheme/vkeyboard_key_normal.

	
key_border

	Key image border. Used for controlling the
border property of
the key.

key_border is a ListProperty and
defaults to [16, 16, 16, 16]

	
key_disabled_background_normal

	Filename of the key background image for use when no touches are active
on the widget and vkeyboard is disabled.

New in version 1.8.0.

key_disabled_background_normal is a
StringProperty and defaults to
atlas://data/images/defaulttheme/vkeyboard_disabled_key_normal.

	
key_margin

	Key margin, used to create space between keys. The margin is composed of
four values, in pixels:

key_margin = [top, right, bottom, left]

key_margin is a ListProperty and defaults
to [2, 2, 2, 2]

	
layout

	Layout to use for the VKeyboard. By default, it will be the
layout set in the configuration, according to the keyboard_layout
in [kivy] section.

Changed in version 1.8.0: If layout is a .json filename, it will loaded and added to the
available_layouts.

layout is a StringProperty and defaults
to None.

	
layout_path

	Path from which layouts are read.

layout is a StringProperty and
defaults to <kivy_data_dir>/keyboards/

	
margin_hint

	Margin hint, used as spacing between keyboard background and keys
content. The margin is composed of four values, between 0 and 1:

margin_hint = [top, right, bottom, left]

The margin hints will be multiplied by width and height, according to their
position.

margin_hint is a ListProperty and
defaults to [.05, .06, .05, .06]

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
refresh(force=False)

	(internal) Recreate the entire widget and graphics according to the
selected layout.

	
setup_mode(*largs)

	Call this method when you want to readjust the keyboard according to
options: docked or not, with attached target or not:

	If docked is True, it will call setup_mode_dock()

	If docked is False, it will call setup_mode_free()

Feel free to overload these methods to create new
positioning behavior.

	
setup_mode_dock(*largs)

	Setup the keyboard in docked mode.

Dock mode will reset the rotation, disable translation, rotation and
scale. Scale and position will be automatically adjusted to attach the
keyboard to the bottom of the screen.

Note

Don’t call this method directly, use setup_mode() instead.

	
setup_mode_free()

	Setup the keyboard in free mode.

Free mode is designed to let the user control the position and
orientation of the keyboard. The only real usage is for a multiuser
environment, but you might found other ways to use it.
If a target is set, it will place the vkeyboard under the
target.

Note

Don’t call this method directly, use setup_mode() instead.

	
target

	Target widget associated with the VKeyboard. If set, it will be used to
send keyboard events. If the VKeyboard mode is “free”, it will also be used
to set the initial position.

target is an ObjectProperty instance and
defaults to None.

Widget class

The Widget class is the base class required for creating Widgets.
This widget class was designed with a couple of principles in mind:

	Event Driven

Widget interaction is built on top of events that occur. If a property
changes, the widget can respond to the change in the ‘on_<propname>’
callback. If nothing changes, nothing will be done. That’s the main
goal of the Property class.

	Separation Of Concerns (the widget and its graphical representation)

Widgets don’t have a draw() method. This is done on purpose: The idea
is to allow you to create your own graphical representation outside the
widget class.
Obviously you can still use all the available properties to do that, so
that your representation properly reflects the widget’s current state.
Every widget has its own Canvas that you
can use to draw. This separation allows Kivy to run your
application in a very efficient manner.

	Bounding Box / Collision

Often you want to know if a certain point is within the bounds of your
widget. An example would be a button widget where you only want to
trigger an action when the button itself is actually touched.
For this, you can use the collide_point() method, which
will return True if the point you pass to it is inside the axis-aligned
bounding box defined by the widget’s position and size.
If a simple AABB is not sufficient, you can override the method to
perform the collision checks with more complex shapes, e.g. a polygon.
You can also check if a widget collides with another widget with
collide_widget().

We also have some default values and behaviors that you should be aware of:

	A Widget is not a Layout: it will not
change the position or the size of its children. If you want control over
positioning or sizing, use a Layout.

	The default size of a widget is (100, 100). This is only changed if the
parent is a Layout.
For example, if you add a Label inside a
Button, the label will not inherit the button’s size or position
because the button is not a Layout: it’s just another Widget.

	The default size_hint is (1, 1). If the parent is a Layout, then the
widget size will be the parent layout’s size.

	on_touch_down(), on_touch_move(),
on_touch_up() don’t do any sort of collisions. If you want to
know if the touch is inside your widget, use collide_point().

Using Properties

When you read the documentation, all properties are described in the format:

<name> is a <property class> and defaults to <default value>.

e.g.

text is a
StringProperty and defaults to ‘’.

If you want to be notified when the pos attribute changes, i.e. when the
widget moves, you can bind your own callback function like this:

def callback_pos(instance, value):
 print('The widget', instance, 'moved to', value)

wid = Widget()
wid.bind(pos=callback_pos)

Read more about Properties.

Basic drawing

Widgets support a range of drawing instructions that you can use to customize
the look of your widgets and layouts. For example, to draw a background image
for your widget, you can do the following:

def redraw(self, args):
 self.bg_rect.size = self.size
 self.bg_rect.pos = self.pos

widget = Widget()
with widget.canvas:
 widget.bg_rect = Rectangle(source="cover.jpg", pos=self.pos, size=self.size)
widget.bind(pos=redraw, size=redraw)

To draw a background in kv:

Widget:
 canvas:
 Rectangle:
 source: "cover.jpg"
 size: self.size
 pos: self.pos

These examples only scratch the surface. Please see the kivy.graphics
documentation for more information.

Widget touch event bubbling

When you catch touch events between multiple widgets, you often
need to be aware of the order in which these events are propagated. In Kivy,
events bubble up from the first child upwards through the other children.
If a widget has children, the event is passed through its children before
being passed on to the widget after it.

As the add_widget() method inserts widgets at
index 0 by default, this means the event goes from the most recently added
widget back to the first one added. Consider the following:

box = BoxLayout()
box.add_widget(Label(text="a"))
box.add_widget(Label(text="b"))
box.add_widget(Label(text="c"))

The label with text “c” gets the event first, “b” second and “a” last. You can
reverse this order by manually specifying the index:

box = BoxLayout()
box.add_widget(Label(text="a"), index=0)
box.add_widget(Label(text="b"), index=1)
box.add_widget(Label(text="c"), index=2)

Now the order would be “a”, “b” then “c”. One thing to keep in mind when using
kv is that declaring a widget uses the
add_widget() method for insertion. Hence, using

BoxLayout:
 MyLabel:
 text: "a"
 MyLabel:
 text: "b"
 MyLabel:
 text: "c"

would result in the event order “c”, “b” then “a” as “c” was actually the last
added widget. It thus has index 0, “b” index 1 and “a” index 2. Effectively,
the child order is the reverse of its listed order.

This ordering is the same for the on_touch_move()
and on_touch_up() events.

In order to stop this event bubbling, a method can return True. This tells
Kivy the event has been handled and the event propagation stops. For example:

class MyWidget(Widget):
 def on_touch_down(self, touch):
 If <some_condition>:
 # Do stuff here and kill the event
 return True
 else:
 return super(MyWidget, self).on_touch_down(touch)

This approach gives you good control over exactly how events are dispatched
and managed. Sometimes, however, you may wish to let the event be completely
propagated before taking action. You can use the
Clock to help you here:

class MyWidget(Label):
 def on_touch_down(self, touch, after=False):
 if after:
 print "Fired after the event has been dispatched!"
 else:
 Clock.schedule_once(lambda dt: self.on_touch_down(touch, True))
 return super(MyWidget, self).on_touch_down(touch)

Usage of Widget.center, Widget.right, and Widget.top

A common mistake when using one of the computed properties such as
Widget.right is to use it to make a widget follow its parent with a
KV rule such as right: self.parent.right. Consider, for example:

FloatLayout:
 id: layout
 width: 100
 Widget:
 id: wid
 right: layout.right

The (mistaken) expectation is that this rule ensures that wid’s right will
always be whatever layout’s right is - that is wid.right and layout.right will
always be identical. In actual fact, this rule only says that “whenever
layout’s right changes, wid’s right will be set to that value”. The
difference being that as long as layout.right doesn’t change, wid.right
could be anything, even a value that will make them different.

Specifically, for the KV code above, consider the following example:

>>> print(layout.right, wid.right)
(100, 100)
>>> wid.x = 200
>>> print(layout.right, wid.right)
(100, 300)

As can be seen, initially they are in sync, however, when we change wid.x
they go out of sync because layout.right is not changed and the rule is not
triggered.

The proper way to make the widget follow its parent’s right is to use
Widget.pos_hint. If instead of right: layout.right we did
pos_hint: {‘right’: 1}, then the widgets right will always be set to be
at the parent’s right at each layout update.

	
class kivy.uix.widget.Widget(**kwargs)

	Bases: kivy.uix.widget.WidgetBase

Widget class. See module documentation for more information.

	Events:

	
	on_touch_down: (touch,)
	Fired when a new touch event occurs. touch is the touch object.

	on_touch_move: (touch,)
	Fired when an existing touch moves. touch is the touch object.

	on_touch_up: (touch,)
	Fired when an existing touch disappears. touch is the touch
object.

	on_kv_post: (base_widget,)
	Fired after all the kv rules associated with the widget
and all other widgets that are in any of those rules have had
all their kv rules applied. base_widget is the base-most widget
whose instantiation triggered the kv rules (i.e. the widget
instantiated from Python, e.g. MyWidget()).

Changed in version 1.11.0.

Warning

Adding a __del__ method to a class derived from Widget with Python
prior to 3.4 will disable automatic garbage collection for instances
of that class. This is because the Widget class creates reference
cycles, thereby preventing garbage collection [https://docs.python.org/2/library/gc.html#gc.garbage].

Changed in version 1.0.9: Everything related to event properties has been moved to the
EventDispatcher. Event properties can now be used
when constructing a simple class without subclassing Widget.

Changed in version 1.5.0: The constructor now accepts on_* arguments to automatically bind
callbacks to properties or events, as in the Kv language.

	
add_widget(widget, index=0, canvas=None)

	Add a new widget as a child of this widget.

	Parameters:

	
	widget: Widget
	Widget to add to our list of children.

	index: int, defaults to 0
	Index to insert the widget in the list. Notice that the default
of 0 means the widget is inserted at the beginning of the list
and will thus be drawn on top of other sibling widgets. For a
full discussion of the index and widget hierarchy, please see
the Widgets Programming Guide.

New in version 1.0.5.

	canvas: str, defaults to None
	Canvas to add widget’s canvas to. Can be ‘before’, ‘after’ or
None for the default canvas.

New in version 1.9.0.

>>> from kivy.uix.button import Button
>>> from kivy.uix.slider import Slider
>>> root = Widget()
>>> root.add_widget(Button())
>>> slider = Slider()
>>> root.add_widget(slider)

	
apply_class_lang_rules(root=None, ignored_consts={}, rule_children=None)

	Method that is called by kivy to apply the kv rules of this widget’s
class.

	Parameters:

	
	root: Widget
	The root widget that instantiated this widget in kv, if the
widget was instantiated in kv, otherwise None.

	ignored_consts: set
	(internal) See apply().

	rule_children: list
	(internal) See apply().

This is useful to be able to execute code before/after the class kv
rules are applied to the widget. E.g. if the kv code requires some
properties to be initialized before it is used in a binding rule.
If overwriting remember to call super, otherwise the kv rules will
not be applied.

In the following example,

class MyWidget(Widget):
 pass

class OtherWidget(MyWidget):
 pass

	<MyWidget>:
	my_prop: some_value

	<OtherWidget>:
	other_prop: some_value

When OtherWidget is instantiated with OtherWidget(), the
widget’s apply_class_lang_rules() is called and it applies the
kv rules of this class - <MyWidget> and <OtherWidget>.

Similarly, when the widget is instantiated from kv, e.g.

<MyBox@BoxLayout>:
 height: 55
 OtherWidget:
 width: 124

OtherWidget’s apply_class_lang_rules() is called and it
applies the kv rules of this class - <MyWidget> and
<OtherWidget>.

Note

It applies only the class rules not the instance rules. I.e. in the
above kv example in the MyBox rule when OtherWidget is
instantiated, its apply_class_lang_rules() applies the
<MyWidget> and <OtherWidget> rules to it - it does not
apply the width: 124 rule. The width: 124 rule is part of
the MyBox rule and is applied by the MyBox’s instance’s
apply_class_lang_rules().

Changed in version 1.11.0.

	
canvas = None

	Canvas of the widget.

The canvas is a graphics object that contains all the drawing instructions
for the graphical representation of the widget.

There are no general properties for the Widget class, such as background
color, to keep the design simple and lean. Some derived classes, such as
Button, do add such convenience properties but generally the developer is
responsible for implementing the graphics representation for a custom
widget from the ground up. See the derived widget classes for patterns to
follow and extend.

See Canvas for more information about the usage.

	
center

	Center position of the widget.

center is a ReferenceListProperty of
(center_x, center_y) properties.

	
center_x

	X center position of the widget.

center_x is an AliasProperty of
(x + width / 2.).

	
center_y

	Y center position of the widget.

center_y is an AliasProperty of
(y + height / 2.).

	
children

	List of children of this widget.

children is a ListProperty and
defaults to an empty list.

Use add_widget() and remove_widget() for manipulating the
children list. Don’t manipulate the children list directly unless you know
what you are doing.

	
clear_widgets(children=None)

	Remove all (or the specified) children of this widget.
If the ‘children’ argument is specified, it should be a list (or
filtered list) of children of the current widget.

Changed in version 1.8.0: The children argument can be used to specify the children you
want to remove.

Changed in version 2.1.0: Specifying an empty children list leaves the widgets unchanged.
Previously it was treated like None and all children were
removed.

	
cls

	Class of the widget, used for styling.

	
collide_point(x, y)

	Check if a point (x, y) is inside the widget’s axis aligned bounding
box.

	Parameters:

	
	x: numeric
	x position of the point (in parent coordinates)

	y: numeric
	y position of the point (in parent coordinates)

	Returns:

	A bool. True if the point is inside the bounding box, False
otherwise.

>>> Widget(pos=(10, 10), size=(50, 50)).collide_point(40, 40)
True

	
collide_widget(wid)

	Check if another widget collides with this widget. This function
performs an axis-aligned bounding box intersection test by default.

	Parameters:

	
	wid: Widget class
	Widget to test collision with.

	Returns:

	bool. True if the other widget collides with this widget, False
otherwise.

>>> wid = Widget(size=(50, 50))
>>> wid2 = Widget(size=(50, 50), pos=(25, 25))
>>> wid.collide_widget(wid2)
True
>>> wid2.pos = (55, 55)
>>> wid.collide_widget(wid2)
False

	
disabled

	Indicates whether this widget can interact with input or not.

disabled is an AliasProperty and
defaults to False.

Note

	Child Widgets, when added to a disabled widget, will be disabled
automatically.

	Disabling/enabling a parent disables/enables all
of its children.

New in version 1.8.0.

Changed in version 1.10.1: disabled was changed from a
BooleanProperty to an
AliasProperty to allow access to its
previous state when a parent’s disabled state is changed.

	
export_as_image(*args, **kwargs)

	Return an core Image of the actual
widget.

New in version 1.11.0.

	
export_to_png(filename, *args, **kwargs)

	Saves an image of the widget and its children in png format at the
specified filename. Works by removing the widget canvas from its
parent, rendering to an Fbo, and calling
save().

Note

The image includes only this widget and its children. If you want
to include widgets elsewhere in the tree, you must call
export_to_png() from their common parent, or use
screenshot() to capture the
whole window.

Note

The image will be saved in png format, you should include the
extension in your filename.

New in version 1.9.0.

	Parameters:

	
	filename: str
	The filename with which to save the png.

	scale: float
	The amount by which to scale the saved image, defaults to 1.

New in version 1.11.0.

	
get_parent_window()

	Return the parent window.

	Returns:

	Instance of the parent window. Can be a
WindowBase or
Widget.

	
get_root_window()

	Return the root window.

	Returns:

	Instance of the root window. Can be a
WindowBase or
Widget.

	
get_window_matrix(x=0, y=0)

	Calculate the transformation matrix to convert between window and
widget coordinates.

	Parameters:

	
	x: float, defaults to 0
	Translates the matrix on the x axis.

	y: float, defaults to 0
	Translates the matrix on the y axis.

	
height

	Height of the widget.

height is a NumericProperty and defaults
to 100.

Warning

Keep in mind that the height property is subject to layout logic and
that this has not yet happened at the time of the widget’s __init__
method.

Warning

A negative height is not supported.

	
ids

	This is a dictionary of ids defined in your kv language. This will only
be populated if you use ids in your kv language code.

New in version 1.7.0.

ids is a DictProperty and defaults to an
empty dict {}.

The ids are populated for each root level widget definition. For
example:

in kv
<MyWidget@Widget>:
 id: my_widget
 Label:
 id: label_widget
 Widget:
 id: inner_widget
 Label:
 id: inner_label
 TextInput:
 id: text_input
 OtherWidget:
 id: other_widget

<OtherWidget@Widget>
 id: other_widget
 Label:
 id: other_label
 TextInput:
 id: other_textinput

Then, in python:

>>> widget = MyWidget()
>>> print(widget.ids)
{'other_widget': <weakproxy at 041CFED0 to OtherWidget at 041BEC38>,
'inner_widget': <weakproxy at 04137EA0 to Widget at 04138228>,
'inner_label': <weakproxy at 04143540 to Label at 04138260>,
'label_widget': <weakproxy at 04137B70 to Label at 040F97A0>,
'text_input': <weakproxy at 041BB5D0 to TextInput at 041BEC00>}
>>> print(widget.ids['other_widget'].ids)
{'other_textinput': <weakproxy at 041DBB40 to TextInput at 041BEF48>,
'other_label': <weakproxy at 041DB570 to Label at 041BEEA0>}
>>> print(widget.ids['label_widget'].ids)
{}

	
motion_filter

	Holds a dict of type_id to list of child widgets registered to
receive motion events of type_id.

Don’t change the property directly but use
register_for_motion_event() and unregister_for_motion_event()
to register and unregister for motion events. If self is registered it
will always be the first element in the list.

New in version 2.1.0.

Warning

This is an experimental property and it remains so while this warning
is present.

	
on_motion(etype, me)

	Called when a motion event is received.

	Parameters:

	
	etype: str
	Event type, one of “begin”, “update” or “end”

	me: MotionEvent
	Received motion event

	Returns:

	bool
True to stop event dispatching

New in version 2.1.0.

Warning

This is an experimental method and it remains so while this warning
is present.

	
on_touch_down(touch)

	Receive a touch down event.

	Parameters:

	
	touch: MotionEvent class
	Touch received. The touch is in parent coordinates. See
relativelayout for a discussion on
coordinate systems.

	Returns:

	bool
If True, the dispatching of the touch event will stop.
If False, the event will continue to be dispatched to the rest
of the widget tree.

	
on_touch_move(touch)

	Receive a touch move event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
on_touch_up(touch)

	Receive a touch up event. The touch is in parent coordinates.

See on_touch_down() for more information.

	
opacity

	Opacity of the widget and all its children.

New in version 1.4.1.

The opacity attribute controls the opacity of the widget and its children.
Be careful, it’s a cumulative attribute: the value is multiplied by the
current global opacity and the result is applied to the current context
color.

For example, if the parent has an opacity of 0.5 and a child has an
opacity of 0.2, the real opacity of the child will be 0.5 * 0.2 = 0.1.

Then, the opacity is applied by the shader as:

frag_color = color * vec4(1.0, 1.0, 1.0, opacity);

opacity is a NumericProperty and defaults
to 1.0.

	
parent

	Parent of this widget. The parent of a widget is set when the widget
is added to another widget and unset when the widget is removed from its
parent.

parent is an ObjectProperty and
defaults to None.

	
pos

	Position of the widget.

pos is a ReferenceListProperty of
(x, y) properties.

	
pos_hint

	Position hint. This property allows you to set the position of
the widget inside its parent layout (similar to
size_hint).

For example, if you want to set the top of the widget to be at 90%
height of its parent layout, you can write:

widget = Widget(pos_hint={'top': 0.9})

The keys ‘x’, ‘right’ and ‘center_x’ will use the parent width.
The keys ‘y’, ‘top’ and ‘center_y’ will use the parent height.

See Float Layout for further reference.

Note

pos_hint is not used by all layouts. Check the documentation
of the layout in question to see if it supports pos_hint.

pos_hint is an ObjectProperty
containing a dict.

	
property proxy_ref

	Return a proxy reference to the widget, i.e. without creating a
reference to the widget. See weakref.proxy [http://docs.python.org/2/library/weakref.html?highlight=proxy#weakref.proxy] for more information.

New in version 1.7.2.

	
register_for_motion_event(type_id, widget=None)

	Register to receive motion events of type_id.

Override on_motion() or bind to on_motion event to handle
the incoming motion events.

	Parameters:

	
	type_id: str
	Motion event type id (eg. “touch”, “hover”, etc.)

	widget: Widget
	Child widget or self if omitted

New in version 2.1.0.

Note

Method can be called multiple times with the same arguments.

Warning

This is an experimental method and it remains so while this warning
is present.

	
remove_widget(widget)

	Remove a widget from the children of this widget.

	Parameters:

	
	widget: Widget
	Widget to remove from our children list.

>>> from kivy.uix.button import Button
>>> root = Widget()
>>> button = Button()
>>> root.add_widget(button)
>>> root.remove_widget(button)

	
right

	Right position of the widget.

right is an AliasProperty of
(x + width).

	
size

	Size of the widget.

size is a ReferenceListProperty of
(width, height) properties.

	
size_hint

	Size hint.

size_hint is a ReferenceListProperty of
(size_hint_x, size_hint_y) properties.

See size_hint_x for more information.

	
size_hint_max

	Maximum size when using size_hint.

size_hint_max is a ReferenceListProperty
of (size_hint_max_x, size_hint_max_y) properties.

New in version 1.10.0.

	
size_hint_max_x

	When not None, the x-direction maximum size (in pixels,
like width) when size_hint_x is also not None.

Similar to size_hint_min_x, except that it sets the maximum width.

size_hint_max_x is a NumericProperty and
defaults to None.

New in version 1.10.0.

	
size_hint_max_y

	When not None, the y-direction maximum size (in pixels,
like height) when size_hint_y is also not None.

Similar to size_hint_min_y, except that it sets the maximum height.

size_hint_max_y is a NumericProperty and
defaults to None.

New in version 1.10.0.

	
size_hint_min

	Minimum size when using size_hint.

size_hint_min is a ReferenceListProperty
of (size_hint_min_x, size_hint_min_y) properties.

New in version 1.10.0.

	
size_hint_min_x

	When not None, the x-direction minimum size (in pixels,
like width) when size_hint_x is also not None.

When size_hint_x is not None, it is the minimum width that the
widget will be set due to the size_hint_x. I.e. when a smaller size
would be set, size_hint_min_x is the value used instead for the
widget width. When None, or when size_hint_x is None,
size_hint_min_x doesn’t do anything.

Only the Layout and
Window classes make use of the hint.

size_hint_min_x is a NumericProperty and
defaults to None.

New in version 1.10.0.

	
size_hint_min_y

	When not None, the y-direction minimum size (in pixels,
like height) when size_hint_y is also not None.

When size_hint_y is not None, it is the minimum height that the
widget will be set due to the size_hint_y. I.e. when a smaller size
would be set, size_hint_min_y is the value used instead for the
widget height. When None, or when size_hint_y is None,
size_hint_min_y doesn’t do anything.

Only the Layout and
Window classes make use of the hint.

size_hint_min_y is a NumericProperty and
defaults to None.

New in version 1.10.0.

	
size_hint_x

	x size hint. Represents how much space the widget should use in the
direction of the x axis relative to its parent’s width.
Only the Layout and
Window classes make use of the hint.

The size_hint is used by layouts for two purposes:

	When the layout considers widgets on their own rather than in
relation to its other children, the size_hint_x is a direct proportion
of the parent width, normally between 0.0 and 1.0. For instance, a
widget with size_hint_x=0.5 in
a vertical BoxLayout will take up half the BoxLayout’s width, or
a widget in a FloatLayout with size_hint_x=0.2 will take up 20%
of the FloatLayout width. If the size_hint is greater than 1, the
widget will be wider than the parent.

	When multiple widgets can share a row of a layout, such as in a
horizontal BoxLayout, their widths will be their size_hint_x as a
fraction of the sum of widget size_hints. For instance, if the
size_hint_xs are (0.5, 1.0, 0.5), the first widget will have a
width of 25% of the parent width.

size_hint_x is a NumericProperty and
defaults to 1.

	
size_hint_y

	y size hint.

size_hint_y is a NumericProperty and
defaults to 1.

See size_hint_x for more information, but with widths and heights
swapped.

	
to_local(x, y, relative=False)

	Transform parent coordinates to local (current widget) coordinates.

See relativelayout for details on the coordinate
systems.

	Parameters:

	
	relative: bool, defaults to False
	Change to True if you want to translate coordinates to
relative widget coordinates.

	
to_parent(x, y, relative=False)

	Transform local (current widget) coordinates to parent coordinates.

See relativelayout for details on the coordinate
systems.

	Parameters:

	
	relative: bool, defaults to False
	Change to True if you want to translate relative positions from
a widget to its parent coordinates.

	
to_widget(x, y, relative=False)

	Convert the coordinate from window to local (current widget)
coordinates.

See relativelayout for details on the coordinate
systems.

	
to_window(x, y, initial=True, relative=False)

	If initial is True, the default, it transforms parent
coordinates to window coordinates. Otherwise, it transforms local
(current widget) coordinates to window coordinates.

See relativelayout for details on the coordinate
systems.

	
top

	Top position of the widget.

top is an AliasProperty of
(y + height).

	
unregister_for_motion_event(type_id, widget=None)

	Unregister to receive motion events of type_id.

	Parameters:

	
	type_id: str
	Motion event type id (eg. “touch”, “hover”, etc.)

	widget: Widget
	Child widget or self if omitted

New in version 2.1.0.

Note

Method can be called multiple times with the same arguments.

Warning

This is an experimental method and it remains so while this warning
is present.

	
walk(restrict=False, loopback=False)

	Iterator that walks the widget tree starting with this widget and
goes forward returning widgets in the order in which layouts display
them.

	Parameters:

	
	restrict: bool, defaults to False
	If True, it will only iterate through the widget and its
children (or children of its children etc.). Defaults to False.

	loopback: bool, defaults to False
	If True, when the last widget in the tree is reached,
it’ll loop back to the uppermost root and start walking until
we hit this widget again. Naturally, it can only loop back when
restrict is False. Defaults to False.

	Returns:

	A generator that walks the tree, returning widgets in the
forward layout order.

For example, given a tree with the following structure:

GridLayout:
 Button
 BoxLayout:
 id: box
 Widget
 Button
 Widget

walking this tree:

>>> # Call walk on box with loopback True, and restrict False
>>> [type(widget) for widget in box.walk(loopback=True)]
[<class 'BoxLayout'>, <class 'Widget'>, <class 'Button'>,
 <class 'Widget'>, <class 'GridLayout'>, <class 'Button'>]
>>> # Now with loopback False, and restrict False
>>> [type(widget) for widget in box.walk()]
[<class 'BoxLayout'>, <class 'Widget'>, <class 'Button'>,
 <class 'Widget'>]
>>> # Now with restrict True
>>> [type(widget) for widget in box.walk(restrict=True)]
[<class 'BoxLayout'>, <class 'Widget'>, <class 'Button'>]

New in version 1.9.0.

	
walk_reverse(loopback=False)

	Iterator that walks the widget tree backwards starting with the
widget before this, and going backwards returning widgets in the
reverse order in which layouts display them.

This walks in the opposite direction of walk(), so a list of the
tree generated with walk() will be in reverse order compared
to the list generated with this, provided loopback is True.

	Parameters:

	
	loopback: bool, defaults to False
	If True, when the uppermost root in the tree is
reached, it’ll loop back to the last widget and start walking
back until after we hit widget again. Defaults to False.

	Returns:

	A generator that walks the tree, returning widgets in the
reverse layout order.

For example, given a tree with the following structure:

GridLayout:
 Button
 BoxLayout:
 id: box
 Widget
 Button
 Widget

walking this tree:

>>> # Call walk on box with loopback True
>>> [type(widget) for widget in box.walk_reverse(loopback=True)]
[<class 'Button'>, <class 'GridLayout'>, <class 'Widget'>,
 <class 'Button'>, <class 'Widget'>, <class 'BoxLayout'>]
>>> # Now with loopback False
>>> [type(widget) for widget in box.walk_reverse()]
[<class 'Button'>, <class 'GridLayout'>]
>>> forward = [w for w in box.walk(loopback=True)]
>>> backward = [w for w in box.walk_reverse(loopback=True)]
>>> forward == backward[::-1]
True

New in version 1.9.0.

	
width

	Width of the widget.

width is a NumericProperty and defaults
to 100.

Warning

Keep in mind that the width property is subject to layout logic and
that this has not yet happened at the time of the widget’s __init__
method.

Warning

A negative width is not supported.

	
x

	X position of the widget.

x is a NumericProperty and defaults to 0.

	
y

	Y position of the widget.

y is a NumericProperty and defaults to 0.

	
exception kivy.uix.widget.WidgetException

	Bases: Exception

Fired when the widget gets an exception.

Utils

The Utils module provides a selection of general utility functions and classes
that may be useful for various applications. These include maths, color,
algebraic and platform functions.

Changed in version 1.6.0: The OrderedDict class has been removed. Use collections.OrderedDict
instead.

	
class kivy.utils.QueryDict

	Bases: builtins.dict

QueryDict is a dict() that can be queried with dot.

d = QueryDict()
create a key named toto, with the value 1
d.toto = 1
it's the same as
d['toto'] = 1

New in version 1.0.4.

	
class kivy.utils.SafeList(*args, **kwargs)

	Bases: builtins.list

List with a clear() method.

Warning

Usage of the iterate() function will decrease your performance.

	
clear()

	Remove all items from list.

	
kivy.utils.boundary(value, minvalue, maxvalue)

	Limit a value between a minvalue and maxvalue.

	
kivy.utils.deprecated(func=None, msg='')

	This is a decorator which can be used to mark functions
as deprecated. It will result in a warning being emitted the first time
the function is used.

	
kivy.utils.difference(set1, set2)

	Return the difference between 2 lists.

	
kivy.utils.escape_markup(text)

	Escape markup characters found in the text. Intended to be used when markup
text is activated on the Label:

untrusted_text = escape_markup('Look at the example [1]')
text = '[color=ff0000]' + untrusted_text + '[/color]'
w = Label(text=text, markup=True)

New in version 1.3.0.

	
kivy.utils.get_color_from_hex(s)

	Transform a hex string color to a kivy
Color.

	
kivy.utils.get_hex_from_color(color)

	Transform a kivy Color to a hex value:

>>> get_hex_from_color((0, 1, 0))
'#00ff00'
>>> get_hex_from_color((.25, .77, .90, .5))
'#3fc4e57f'

New in version 1.5.0.

	
kivy.utils.get_random_color(alpha=1.0)

	Returns a random color (4 tuple).

	Parameters:

	
	alpha: float, defaults to 1.0
	If alpha == ‘random’, a random alpha value is generated.

	
kivy.utils.interpolate(value_from, value_to, step=10)

	Interpolate between two values. This can be useful for smoothing some
transitions. For example:

instead of setting directly
self.pos = pos

use interpolate, and you'll have a nicer transition
self.pos = interpolate(self.pos, new_pos)

Warning

These interpolations work only on lists/tuples/doubles with the same
dimensions. No test is done to check the dimensions are the same.

	
kivy.utils.intersection(set1, set2)

	Return the intersection of 2 lists.

	
kivy.utils.is_color_transparent(c)

	Return True if the alpha channel is 0.

	
kivy.utils.platform = 'linux'

	A string identifying the current operating system. It is one
of: ‘win’, ‘linux’, ‘android’, ‘macosx’, ‘ios’ or ‘unknown’.
You can use it as follows:

from kivy.utils import platform
if platform == 'linux':
 do_linux_things()

New in version 1.3.0.

Changed in version 1.8.0: platform is now a variable instead of a function.

	
class kivy.utils.reify(func)

	Bases: builtins.object

Put the result of a method which uses this (non-data) descriptor decorator
in the instance dict after the first call, effectively replacing the
decorator with an instance variable.

It acts like @property, except that the function is only ever called once;
after that, the value is cached as a regular attribute. This gives you lazy
attribute creation on objects that are meant to be immutable.

Taken from the Pyramid project [https://pypi.python.org/pypi/pyramid/].

To use this as a decorator:

@reify
def lazy(self):
 ...
 return hard_to_compute_int
first_time = self.lazy # lazy is reify obj, reify.__get__() runs
second_time = self.lazy # lazy is hard_to_compute_int

	
kivy.utils.rgba(s, *args)

	Return a Kivy color (4 value from 0-1 range) from either a hex string or
a list of 0-255 values.

New in version 1.10.0.

	
kivy.utils.strtotuple(s)

	Convert a tuple string into a tuple
with some security checks. Designed to be used
with the eval() function:

a = (12, 54, 68)
b = str(a) # return '(12, 54, 68)'
c = strtotuple(b) # return (12, 54, 68)

Vector

The Vector represents a 2D vector (x, y).
Our implementation is built on top of a Python list.

An example of constructing a Vector:

>>> # Construct a point at 82,34
>>> v = Vector(82, 34)
>>> v[0]
82
>>> v.x
82
>>> v[1]
34
>>> v.y
34

>>> # Construct by giving a list of 2 values
>>> pos = (93, 45)
>>> v = Vector(pos)
>>> v[0]
93
>>> v.x
93
>>> v[1]
45
>>> v.y
45

Optimized usage

Most of the time, you can use a list for arguments instead of using a
Vector. For example, if you want to calculate the distance between 2
points:

a = (10, 10)
b = (87, 34)

optimized method
print('distance between a and b:', Vector(a).distance(b))

non-optimized method
va = Vector(a)
vb = Vector(b)
print('distance between a and b:', va.distance(vb))

Vector operators

The Vector supports some numeric operators such as +, -, /:

>>> Vector(1, 1) + Vector(9, 5)
[10, 6]

>>> Vector(9, 5) - Vector(5, 5)
[4, 0]

>>> Vector(10, 10) / Vector(2., 4.)
[5.0, 2.5]

>>> Vector(10, 10) / 5.
[2.0, 2.0]

You can also use in-place operators:

>>> v = Vector(1, 1)
>>> v += 2
>>> v
[3, 3]
>>> v *= 5
[15, 15]
>>> v /= 2.
[7.5, 7.5]

	
class kivy.vector.Vector(*largs)

	Bases: builtins.list

Vector class. See module documentation for more information.

	
angle(a)

	Computes the angle between a and b, and returns the angle in
degrees.

>>> Vector(100, 0).angle((0, 100))
-90.0
>>> Vector(87, 23).angle((-77, 10))
-157.7920283010705

	
distance(to)

	Returns the distance between two points.

>>> Vector(10, 10).distance((5, 10))
5.
>>> a = (90, 33)
>>> b = (76, 34)
>>> Vector(a).distance(b)
14.035668847618199

	
distance2(to)

	Returns the distance between two points squared.

>>> Vector(10, 10).distance2((5, 10))
25

	
dot(a)

	Computes the dot product of a and b.

>>> Vector(2, 4).dot((2, 2))
12

	
static in_bbox(point, a, b)

	Return True if point is in the bounding box defined by a
and b.

>>> bmin = (0, 0)
>>> bmax = (100, 100)
>>> Vector.in_bbox((50, 50), bmin, bmax)
True
>>> Vector.in_bbox((647, -10), bmin, bmax)
False

	
length()

	Returns the length of a vector.

>>> Vector(10, 10).length()
14.142135623730951
>>> pos = (10, 10)
>>> Vector(pos).length()
14.142135623730951

	
length2()

	Returns the length of a vector squared.

>>> Vector(10, 10).length2()
200
>>> pos = (10, 10)
>>> Vector(pos).length2()
200

	
static line_intersection(v1, v2, v3, v4)

	Finds the intersection point between the lines (1)v1->v2 and (2)v3->v4
and returns it as a vector object.

>>> a = (98, 28)
>>> b = (72, 33)
>>> c = (10, -5)
>>> d = (20, 88)
>>> Vector.line_intersection(a, b, c, d)
[15.25931928687196, 43.911669367909241]

Warning

This is a line intersection method, not a segment intersection.

For math see: http://en.wikipedia.org/wiki/Line-line_intersection

	
normalize()

	Returns a new vector that has the same direction as vec,
but has a length of one.

>>> v = Vector(88, 33).normalize()
>>> v
[0.93632917756904444, 0.3511234415883917]
>>> v.length()
1.0

	
rotate(angle)

	Rotate the vector with an angle in degrees.

>>> v = Vector(100, 0)
>>> v.rotate(45)
[70.71067811865476, 70.71067811865474]

	
static segment_intersection(v1, v2, v3, v4)

	Finds the intersection point between segments (1)v1->v2 and (2)v3->v4
and returns it as a vector object.

>>> a = (98, 28)
>>> b = (72, 33)
>>> c = (10, -5)
>>> d = (20, 88)
>>> Vector.segment_intersection(a, b, c, d)
None

>>> a = (0, 0)
>>> b = (10, 10)
>>> c = (0, 10)
>>> d = (10, 0)
>>> Vector.segment_intersection(a, b, c, d)
[5, 5]

	
property x

	x represents the first element in the list.

>>> v = Vector(12, 23)
>>> v[0]
12
>>> v.x
12

	
property y

	y represents the second element in the list.

>>> v = Vector(12, 23)
>>> v[1]
23
>>> v.y
23

Weak Method

The WeakMethod is used by the Clock class to
allow references to a bound method that permits the associated object to
be garbage collected. Please refer to
examples/core/clock_method.py for more information.

This WeakMethod class is taken from the recipe
http://code.activestate.com/recipes/81253/, based on the nicodemus version.
Many thanks nicodemus!

	
class kivy.weakmethod.WeakMethod(method)

	Bases: builtins.object

Implementation of a
weakref [http://en.wikipedia.org/wiki/Weak_reference]
for functions and bound methods.

	
is_dead()

	Returns True if the referenced callable was a bound method and
the instance no longer exists. Otherwise, return False.

Weak Proxy

In order to allow garbage collection, the weak proxy provides
weak references [https://en.wikipedia.org/wiki/Weak_reference] to objects.
It effectively enhances the
weakref.proxy [https://docs.python.org/2/library/weakref.html#weakref.proxy]
by adding comparison support.

	
class kivy.weakproxy.WeakProxy(obj, destructor=None)

	Bases: builtins.object

Replacement for weakref.proxy to support comparisons

 Python Module Index

 k

 		 	

 		
 k	

 	[image: -]
 	
 kivy	

 	
 	
 kivy.animation	

 	
 	
 kivy.app	

 	
 	
 kivy.atlas	

 	
 	
 kivy.base	

 	
 	
 kivy.cache	

 	
 	
 kivy.clock	

 	
 	
 kivy.compat	

 	
 	
 kivy.config	

 	
 	
 kivy.context	

 	
 	
 kivy.core	

 	
 	
 kivy.core.audio	

 	
 	
 kivy.core.camera	

 	
 	
 kivy.core.clipboard	

 	
 	
 kivy.core.gl	

 	
 	
 kivy.core.image	

 	
 	
 kivy.core.spelling	

 	
 	
 kivy.core.text	

 	
 	
 kivy.core.text.markup	

 	
 	
 kivy.core.text.text_layout	

 	
 	
 kivy.core.video	

 	
 	
 kivy.core.window	

 	
 	
 kivy.deps	

 	
 	
 kivy.effects	

 	
 	
 kivy.effects.dampedscroll	

 	
 	
 kivy.effects.kinetic	

 	
 	
 kivy.effects.opacityscroll	

 	
 	
 kivy.effects.scroll	

 	
 	
 kivy.event	

 	
 	
 kivy.eventmanager	

 	
 	
 kivy.factory	

 	
 	
 kivy.garden	

 	
 	
 kivy.geometry	

 	
 	
 kivy.gesture	

 	
 	
 kivy.graphics	

 	
 	
 kivy.graphics.boxshadow	

 	
 	
 kivy.graphics.cgl	

 	
 	
 kivy.graphics.compiler	

 	
 	
 kivy.graphics.context	

 	
 	
 kivy.graphics.context_instructions	

 	
 	
 kivy.graphics.fbo	

 	
 	
 kivy.graphics.gl_instructions	

 	
 	
 kivy.graphics.instructions	

 	
 	
 kivy.graphics.opengl	

 	
 	
 kivy.graphics.opengl_utils	

 	
 	
 kivy.graphics.scissor_instructions	

 	
 	
 kivy.graphics.shader	

 	
 	
 kivy.graphics.stencil_instructions	

 	
 	
 kivy.graphics.svg	

 	
 	
 kivy.graphics.tesselator	

 	
 	
 kivy.graphics.texture	

 	
 	
 kivy.graphics.transformation	

 	
 	
 kivy.graphics.vertex_instructions	

 	
 	
 kivy.input	

 	
 	
 kivy.input.factory	

 	
 	
 kivy.input.motionevent	

 	
 	
 kivy.input.postproc	

 	
 	
 kivy.input.postproc.calibration	

 	
 	
 kivy.input.postproc.dejitter	

 	
 	
 kivy.input.postproc.doubletap	

 	
 	
 kivy.input.postproc.ignorelist	

 	
 	
 kivy.input.postproc.retaintouch	

 	
 	
 kivy.input.postproc.tripletap	

 	
 	
 kivy.input.provider	

 	
 	
 kivy.input.providers	

 	
 	
 kivy.input.providers.androidjoystick	

 	
 	
 kivy.input.providers.hidinput	

 	
 	
 kivy.input.providers.leapfinger	

 	
 	
 kivy.input.providers.linuxwacom	

 	
 	
 kivy.input.providers.mactouch	

 	
 	
 kivy.input.providers.mouse	

 	
 	
 kivy.input.providers.mtdev	

 	
 	
 kivy.input.providers.probesysfs	

 	
 	
 kivy.input.providers.tuio	

 	
 	
 kivy.input.providers.wm_common	

 	
 	
 kivy.input.recorder	

 	
 	
 kivy.input.shape	

 	
 	
 kivy.interactive	

 	
 	
 kivy.lang	

 	
 	
 kivy.lang.builder	

 	
 	
 kivy.lang.parser	

 	
 	
 kivy.lib	

 	
 	
 kivy.lib.ddsfile	

 	
 	
 kivy.lib.gstplayer	

 	
 	
 kivy.lib.mtdev	

 	
 	
 kivy.loader	

 	
 	
 kivy.logger	

 	
 	
 kivy.metrics	

 	
 	
 kivy.modules	

 	
 	
 kivy.modules.console	

 	
 	
 kivy.modules.inspector	

 	
 	
 kivy.modules.joycursor	

 	
 	
 kivy.modules.keybinding	

 	
 	
 kivy.modules.monitor	

 	
 	
 kivy.modules.recorder	

 	
 	
 kivy.modules.screen	

 	
 	
 kivy.modules.touchring	

 	
 	
 kivy.modules.webdebugger	

 	
 	
 kivy.multistroke	

 	
 	
 kivy.network	

 	
 	
 kivy.network.urlrequest	

 	
 	
 kivy.parser	

 	
 	
 kivy.properties	

 	
 	
 kivy.resources	

 	
 	
 kivy.storage	

 	
 	
 kivy.storage.dictstore	

 	
 	
 kivy.storage.jsonstore	

 	
 	
 kivy.storage.redisstore	

 	
 	
 kivy.support	

 	
 	
 kivy.tools	

 	
 	
 kivy.tools.packaging	

 	
 	
 kivy.uix	

 	
 	
 kivy.uix.accordion	

 	
 	
 kivy.uix.actionbar	

 	
 	
 kivy.uix.anchorlayout	

 	
 	
 kivy.uix.behaviors	

 	
 	
 kivy.uix.behaviors.button	

 	
 	
 kivy.uix.behaviors.codenavigation	

 	
 	
 kivy.uix.behaviors.compoundselection	

 	
 	
 kivy.uix.behaviors.cover	

 	
 	
 kivy.uix.behaviors.drag	

 	
 	
 kivy.uix.behaviors.emacs	

 	
 	
 kivy.uix.behaviors.focus	

 	
 	
 kivy.uix.behaviors.knspace	

 	
 	
 kivy.uix.behaviors.togglebutton	

 	
 	
 kivy.uix.behaviors.touchripple	

 	
 	
 kivy.uix.boxlayout	

 	
 	
 kivy.uix.bubble	

 	
 	
 kivy.uix.button	

 	
 	
 kivy.uix.camera	

 	
 	
 kivy.uix.carousel	

 	
 	
 kivy.uix.checkbox	

 	
 	
 kivy.uix.codeinput	

 	
 	
 kivy.uix.colorpicker	

 	
 	
 kivy.uix.dropdown	

 	
 	
 kivy.uix.effectwidget	

 	
 	
 kivy.uix.filechooser	

 	
 	
 kivy.uix.floatlayout	

 	
 	
 kivy.uix.gesturesurface	

 	
 	
 kivy.uix.gridlayout	

 	
 	
 kivy.uix.image	

 	
 	
 kivy.uix.label	

 	
 	
 kivy.uix.layout	

 	
 	
 kivy.uix.modalview	

 	
 	
 kivy.uix.pagelayout	

 	
 	
 kivy.uix.popup	

 	
 	
 kivy.uix.progressbar	

 	
 	
 kivy.uix.recycleboxlayout	

 	
 	
 kivy.uix.recyclegridlayout	

 	
 	
 kivy.uix.recyclelayout	

 	
 	
 kivy.uix.recycleview	

 	
 	
 kivy.uix.recycleview.datamodel	

 	
 	
 kivy.uix.recycleview.layout	

 	
 	
 kivy.uix.recycleview.views	

 	
 	
 kivy.uix.relativelayout	

 	
 	
 kivy.uix.rst	

 	
 	
 kivy.uix.sandbox	

 	
 	
 kivy.uix.scatter	

 	
 	
 kivy.uix.scatterlayout	

 	
 	
 kivy.uix.screenmanager	

 	
 	
 kivy.uix.scrollview	

 	
 	
 kivy.uix.settings	

 	
 	
 kivy.uix.slider	

 	
 	
 kivy.uix.spinner	

 	
 	
 kivy.uix.splitter	

 	
 	
 kivy.uix.stacklayout	

 	
 	
 kivy.uix.stencilview	

 	
 	
 kivy.uix.switch	

 	
 	
 kivy.uix.tabbedpanel	

 	
 	
 kivy.uix.textinput	

 	
 	
 kivy.uix.togglebutton	

 	
 	
 kivy.uix.treeview	

 	
 	
 kivy.uix.video	

 	
 	
 kivy.uix.videoplayer	

 	
 	
 kivy.uix.vkeyboard	

 	
 	
 kivy.uix.widget	

 	
 	
 kivy.utils	

 	
 	
 kivy.vector	

 	
 	
 kivy.weakmethod	

 	
 	
 kivy.weakproxy	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

A

 	
 	a (kivy.graphics.ClearColor attribute)

 	(kivy.graphics.Color attribute)

 	(kivy.graphics.context_instructions.Color attribute)

 	(kivy.graphics.gl_instructions.ClearColor attribute)

 	(kivy.uix.colorpicker.ColorWheel attribute)

 	AbstractStore (class in kivy.storage)

 	accept_stroke() (kivy.uix.gesturesurface.GestureContainer method)

 	Accordion (class in kivy.uix.accordion)

 	accordion (kivy.uix.accordion.AccordionItem attribute)

 	AccordionException

 	AccordionItem (class in kivy.uix.accordion)

 	action_previous (kivy.uix.actionbar.ActionView attribute)

 	action_view (kivy.uix.actionbar.ActionBar attribute)

 	ActionBar (class in kivy.uix.actionbar)

 	ActionBarException

 	ActionButton (class in kivy.uix.actionbar)

 	ActionCheck (class in kivy.uix.actionbar)

 	ActionDropDown (class in kivy.uix.actionbar)

 	ActionGroup (class in kivy.uix.actionbar)

 	ActionItem (class in kivy.uix.actionbar)

 	ActionOverflow (class in kivy.uix.actionbar)

 	ActionPrevious (class in kivy.uix.actionbar)

 	ActionSeparator (class in kivy.uix.actionbar)

 	ActionToggleButton (class in kivy.uix.actionbar)

 	ActionView (class in kivy.uix.actionbar)

 	activate() (kivy.modules.console.ConsoleAddon method)

 	activated (kivy.modules.console.Console attribute)

 	active (kivy.uix.checkbox.CheckBox attribute)

 	(kivy.uix.switch.Switch attribute)

 	active_norm_pos (kivy.uix.switch.Switch attribute)

 	add() (kivy.graphics.Canvas method)

 	(kivy.graphics.InstructionGroup method)

 	(kivy.graphics.instructions.Canvas method)

 	(kivy.graphics.instructions.InstructionGroup method)

 	add_callback() (kivy.config.ConfigParser method)

 	add_contour() (kivy.graphics.tesselator.Tesselator method)

 	add_event_listener() (kivy.base.EventLoopBase method)

 	add_gesture() (kivy.gesture.GestureDatabase method)

 	(kivy.multistroke.Recognizer method)

 	add_handler() (kivy.base.ExceptionManagerBase method)

 	add_input_provider() (kivy.base.EventLoopBase method)

 	add_interface() (kivy.uix.settings.Settings method)

 	add_item() (kivy.uix.settings.MenuSidebar method)

 	add_json_panel() (kivy.uix.settings.Settings method)

 	add_kivy_handlers() (in module kivy.logger)

 	add_kivy_panel() (kivy.uix.settings.Settings method)

 	add_mipmap() (kivy.core.image.ImageData method)

 	add_node() (kivy.uix.treeview.TreeView method)

 	add_panel() (kivy.modules.console.Console method)

 	(kivy.uix.settings.ContentPanel method)

 	(kivy.uix.settings.InterfaceWithSidebar method)

 	add_point() (kivy.gesture.GestureStroke method)

 	(kivy.graphics.Point method)

 	(kivy.graphics.vertex_instructions.Point method)

 	(kivy.multistroke.UnistrokeTemplate method)

 	add_postproc_module() (kivy.base.EventLoopBase method)

 	add_reload_observer() (kivy.graphics.context.Context method)

 	(kivy.graphics.Fbo method)

 	(kivy.graphics.fbo.Fbo method)

 	(kivy.graphics.texture.Texture method)

 	add_screen() (kivy.uix.screenmanager.ShaderTransition method)

 	(kivy.uix.screenmanager.SwapTransition method)

 	(kivy.uix.screenmanager.TransitionBase method)

 	add_stroke() (kivy.gesture.Gesture method)

 	(kivy.multistroke.Candidate method)

 	(kivy.multistroke.MultistrokeGesture method)

 	(kivy.uix.gesturesurface.GestureContainer method)

 	add_toolbar_widget() (kivy.modules.console.Console method)

 	add_widget() (kivy.core.window.WindowBase method)

 	(kivy.uix.accordion.Accordion method)

 	(kivy.uix.accordion.AccordionItem method)

 	(kivy.uix.actionbar.ActionBar method)

 	(kivy.uix.actionbar.ActionGroup method)

 	(kivy.uix.actionbar.ActionOverflow method)

 	(kivy.uix.actionbar.ActionView method)

 	(kivy.uix.boxlayout.BoxLayout method)

 	(kivy.uix.bubble.Bubble method)

 	(kivy.uix.carousel.Carousel method)

 	(kivy.uix.dropdown.DropDown method)

 	(kivy.uix.effectwidget.EffectWidget method)

 	(kivy.uix.filechooser.FileChooser method)

 	(kivy.uix.floatlayout.FloatLayout method)

 	(kivy.uix.layout.Layout method)

 	(kivy.uix.popup.Popup method)

 	(kivy.uix.recycleview.RecycleView method)

 	(kivy.uix.sandbox.Sandbox method)

 	(kivy.uix.scatterlayout.ScatterLayout method)

 	(kivy.uix.screenmanager.ScreenManager method)

 	(kivy.uix.scrollview.ScrollView method)

 	(kivy.uix.settings.ContentPanel method)

 	(kivy.uix.settings.SettingItem method)

 	(kivy.uix.splitter.Splitter method)

 	(kivy.uix.tabbedpanel.TabbedPanel method)

 	(kivy.uix.tabbedpanel.TabbedPanelItem method)

 	(kivy.uix.widget.Widget method)

 	adddefaultsection() (kivy.config.ConfigParser method)

 	addons (kivy.modules.console.Console attribute)

 	AdvancedEffectBase (class in kivy.uix.effectwidget)

 	after (kivy.graphics.Canvas attribute)

 	(kivy.graphics.instructions.Canvas attribute)

 	AliasProperty (class in kivy.properties)

 	allow_copy (kivy.uix.textinput.TextInput attribute)

 	
 	allow_fullscreen (kivy.uix.videoplayer.VideoPlayer attribute)

 	allow_no_selection (kivy.uix.behaviors.togglebutton.ToggleButtonBehavior attribute)

 	(kivy.uix.behaviors.ToggleButtonBehavior attribute)

 	allow_screensaver (kivy.core.window.WindowBase attribute)

 	allow_stretch (kivy.uix.image.Image attribute)

 	always_on_top (kivy.core.window.WindowBase attribute)

 	always_overscroll (kivy.uix.scrollview.ScrollView attribute)

 	always_release (kivy.uix.behaviors.button.ButtonBehavior attribute)

 	(kivy.uix.behaviors.ButtonBehavior attribute)

 	(kivy.uix.behaviors.touchripple.TouchRippleButtonBehavior attribute)

 	(kivy.uix.behaviors.TouchRippleButtonBehavior attribute)

 	anchor_x (kivy.graphics.svg.Svg attribute)

 	(kivy.uix.anchorlayout.AnchorLayout attribute)

 	anchor_y (kivy.graphics.svg.Svg attribute)

 	(kivy.uix.anchorlayout.AnchorLayout attribute)

 	AnchorLayout (class in kivy.uix.anchorlayout)

 	anchors (kivy.core.text.markup.MarkupLabel property)

 	(kivy.uix.label.Label attribute)

 	AndroidMotionEventProvider (class in kivy.input.providers.androidjoystick)

 	angle (kivy.graphics.context_instructions.Rotate attribute)

 	(kivy.graphics.Rotate attribute)

 	angle() (kivy.vector.Vector method)

 	angle_end (kivy.graphics.Ellipse attribute)

 	(kivy.graphics.vertex_instructions.Ellipse attribute)

 	angle_start (kivy.graphics.Ellipse attribute)

 	(kivy.graphics.vertex_instructions.Ellipse attribute)

 	anim_available (kivy.core.image.Image property)

 	anim_cancel_duration (kivy.uix.carousel.Carousel attribute)

 	anim_delay (kivy.core.image.Image property)

 	(kivy.uix.image.Image attribute)

 	anim_duration (kivy.uix.accordion.Accordion attribute)

 	anim_func (kivy.uix.accordion.Accordion attribute)

 	anim_index (kivy.core.image.Image property)

 	anim_kwargs (kivy.uix.pagelayout.PageLayout attribute)

 	anim_loop (kivy.uix.image.Image attribute)

 	anim_move_duration (kivy.uix.carousel.Carousel attribute)

 	anim_reset() (kivy.core.image.Image method)

 	anim_type (kivy.uix.carousel.Carousel attribute)

 	animated_properties (kivy.animation.Animation property)

 	Animation (class in kivy.animation)

 	AnimationTransition (class in kivy.animation)

 	annotations (kivy.uix.videoplayer.VideoPlayer attribute)

 	App (class in kivy.app)

 	app_icon (kivy.uix.actionbar.ActionPrevious attribute)

 	app_icon_height (kivy.uix.actionbar.ActionPrevious attribute)

 	app_icon_width (kivy.uix.actionbar.ActionPrevious attribute)

 	append() (kivy.cache.Cache static method)

 	apply() (kivy.lang.builder.BuilderBase method)

 	(kivy.lang.BuilderBase method)

 	apply_class_lang_rules() (kivy.uix.widget.Widget method)

 	apply_property() (kivy.event.EventDispatcher method)

 	apply_rules() (kivy.lang.builder.BuilderBase method)

 	(kivy.lang.BuilderBase method)

 	apply_selection() (kivy.uix.recycleview.layout.LayoutSelectionBehavior method)

 	apply_transform() (kivy.uix.scatter.Scatter method)

 	apply_transform_2d() (kivy.input.MotionEvent method)

 	(kivy.input.motionevent.MotionEvent method)

 	ApplyContextMatrix (class in kivy.graphics)

 	arrow_color (kivy.uix.bubble.Bubble attribute)

 	arrow_image (kivy.uix.bubble.Bubble attribute)

 	arrow_margin (kivy.uix.bubble.Bubble attribute)

 	arrow_margin_x (kivy.uix.bubble.Bubble attribute)

 	arrow_margin_y (kivy.uix.bubble.Bubble attribute)

 	arrow_pos (kivy.uix.bubble.Bubble attribute)

 	ask_update() (kivy.graphics.Callback method)

 	(kivy.graphics.Canvas method)

 	(kivy.graphics.instructions.Callback method)

 	(kivy.graphics.instructions.Canvas method)

 	(kivy.graphics.texture.Texture method)

 	(kivy.graphics.texture.TextureRegion method)

 	async_clear() (kivy.storage.AbstractStore method)

 	async_count() (kivy.storage.AbstractStore method)

 	async_delete() (kivy.storage.AbstractStore method)

 	async_exists() (kivy.storage.AbstractStore method)

 	async_find() (kivy.storage.AbstractStore method)

 	async_get() (kivy.storage.AbstractStore method)

 	async_idle() (kivy.base.EventLoopBase method)

 	(kivy.clock.ClockBaseBehavior method)

 	(kivy.clock.ClockBaseFreeInterruptOnly method)

 	(kivy.clock.ClockBaseInterruptBehavior method)

 	async_keys() (kivy.storage.AbstractStore method)

 	async_put() (kivy.storage.AbstractStore method)

 	async_run() (kivy.app.App method)

 	async_runTouchApp() (in module kivy.app)

 	(in module kivy.base)

 	async_tick() (kivy.clock.ClockBaseBehavior method)

 	AsyncImage (class in kivy.uix.image)

 	Atlas (class in kivy.atlas)

 	attach_recycleview() (kivy.uix.recycleview.datamodel.RecycleDataModel method)

 	(kivy.uix.recycleview.datamodel.RecycleDataModelBehavior method)

 	(kivy.uix.recycleview.views.RecycleDataAdapter method)

 	attach_to (kivy.uix.dropdown.DropDown attribute)

 	(kivy.uix.modalview.ModalView attribute)

 	auto_bring_to_front (kivy.uix.scatter.Scatter attribute)

 	auto_dismiss (kivy.uix.dropdown.DropDown attribute)

 	(kivy.uix.modalview.ModalView attribute)

 	auto_indent (kivy.uix.textinput.TextInput attribute)

 	auto_scale (kivy.graphics.BorderImage attribute)

 	(kivy.graphics.vertex_instructions.BorderImage attribute)

 	auto_width (kivy.uix.dropdown.DropDown attribute)

 	available_layouts (kivy.uix.vkeyboard.VKeyboard attribute)

 	axis (kivy.graphics.context_instructions.Rotate attribute)

 	(kivy.graphics.Rotate attribute)

B

 	
 	b (kivy.graphics.ClearColor attribute)

 	(kivy.graphics.Color attribute)

 	(kivy.graphics.context_instructions.Color attribute)

 	(kivy.graphics.gl_instructions.ClearColor attribute)

 	(kivy.uix.colorpicker.ColorWheel attribute)

 	background (kivy.uix.modalview.ModalView attribute)

 	(kivy.uix.vkeyboard.VKeyboard attribute)

 	background_active (kivy.uix.textinput.TextInput attribute)

 	background_border (kivy.uix.vkeyboard.VKeyboard attribute)

 	background_checkbox_disabled_down (kivy.uix.checkbox.CheckBox attribute)

 	background_checkbox_disabled_normal (kivy.uix.checkbox.CheckBox attribute)

 	background_checkbox_down (kivy.uix.checkbox.CheckBox attribute)

 	background_checkbox_normal (kivy.uix.checkbox.CheckBox attribute)

 	background_color (kivy.uix.actionbar.ActionBar attribute)

 	(kivy.uix.actionbar.ActionView attribute)

 	(kivy.uix.bubble.BubbleContent attribute)

 	(kivy.uix.button.Button attribute)

 	(kivy.uix.effectwidget.EffectWidget attribute)

 	(kivy.uix.modalview.ModalView attribute)

 	(kivy.uix.rst.RstDocument attribute)

 	(kivy.uix.tabbedpanel.TabbedPanel attribute)

 	(kivy.uix.textinput.TextInput attribute)

 	(kivy.uix.vkeyboard.VKeyboard attribute)

 	background_disabled (kivy.uix.vkeyboard.VKeyboard attribute)

 	background_disabled_down (kivy.uix.button.Button attribute)

 	background_disabled_horizontal (kivy.uix.slider.Slider attribute)

 	background_disabled_image (kivy.uix.tabbedpanel.TabbedPanel attribute)

 	background_disabled_normal (kivy.uix.accordion.AccordionItem attribute)

 	(kivy.uix.button.Button attribute)

 	(kivy.uix.textinput.TextInput attribute)

 	background_disabled_selected (kivy.uix.accordion.AccordionItem attribute)

 	background_disabled_vertical (kivy.uix.slider.Slider attribute)

 	background_down (kivy.uix.actionbar.ActionItem attribute)

 	(kivy.uix.button.Button attribute)

 	background_horizontal (kivy.uix.slider.Slider attribute)

 	background_image (kivy.uix.actionbar.ActionBar attribute)

 	(kivy.uix.actionbar.ActionSeparator attribute)

 	(kivy.uix.actionbar.ActionView attribute)

 	(kivy.uix.bubble.BubbleContent attribute)

 	(kivy.uix.tabbedpanel.StripLayout attribute)

 	(kivy.uix.tabbedpanel.TabbedPanel attribute)

 	background_normal (kivy.uix.accordion.AccordionItem attribute)

 	(kivy.uix.actionbar.ActionItem attribute)

 	(kivy.uix.button.Button attribute)

 	(kivy.uix.textinput.TextInput attribute)

 	background_radio_disabled_down (kivy.uix.checkbox.CheckBox attribute)

 	background_radio_disabled_normal (kivy.uix.checkbox.CheckBox attribute)

 	background_radio_down (kivy.uix.checkbox.CheckBox attribute)

 	background_radio_normal (kivy.uix.checkbox.CheckBox attribute)

 	background_selected (kivy.uix.accordion.AccordionItem attribute)

 	background_vertical (kivy.uix.slider.Slider attribute)

 	background_width (kivy.uix.slider.Slider attribute)

 	bar_color (kivy.uix.scrollview.ScrollView attribute)

 	bar_inactive_color (kivy.uix.scrollview.ScrollView attribute)

 	bar_margin (kivy.uix.scrollview.ScrollView attribute)

 	bar_pos (kivy.uix.scrollview.ScrollView attribute)

 	bar_pos_x (kivy.uix.scrollview.ScrollView attribute)

 	bar_pos_y (kivy.uix.scrollview.ScrollView attribute)

 	bar_width (kivy.uix.scrollview.ScrollView attribute)

 	(kivy.uix.tabbedpanel.TabbedPanel attribute)

 	base_direction (kivy.uix.label.Label attribute)

 	(kivy.uix.textinput.TextInput attribute)

 	base_font_size (kivy.uix.rst.RstDocument attribute)

 	bbox (kivy.uix.scatter.Scatter attribute)

 	before (kivy.graphics.Canvas attribute)

 	(kivy.graphics.instructions.Canvas attribute)

 	
 	best (kivy.multistroke.ProgressTracker property)

 	Bezier (class in kivy.graphics)

 	(class in kivy.graphics.vertex_instructions)

 	bezier (kivy.graphics.Line attribute)

 	(kivy.graphics.vertex_instructions.Line attribute)

 	bezier_precision (kivy.graphics.Line attribute)

 	(kivy.graphics.vertex_instructions.Line attribute)

 	bind() (kivy.event.EventDispatcher method)

 	(kivy.event.Observable method)

 	(kivy.graphics.Fbo method)

 	(kivy.graphics.fbo.Fbo method)

 	(kivy.graphics.texture.Texture method)

 	(kivy.graphics.texture.TextureRegion method)

 	(kivy.lang.builder.Observable method)

 	(kivy.lang.Observable method)

 	(kivy.properties.Property method)

 	BindTexture (class in kivy.graphics)

 	(class in kivy.graphics.context_instructions)

 	blit_buffer() (kivy.graphics.texture.Texture method)

 	blit_data() (kivy.graphics.texture.Texture method)

 	blur_radius (kivy.graphics.BoxShadow attribute)

 	(kivy.graphics.boxshadow.BoxShadow attribute)

 	bold (kivy.uix.label.Label attribute)

 	BooleanProperty (class in kivy.properties)

 	border (kivy.graphics.BorderImage attribute)

 	(kivy.graphics.vertex_instructions.BorderImage attribute)

 	(kivy.uix.actionbar.ActionBar attribute)

 	(kivy.uix.bubble.BubbleContent attribute)

 	(kivy.uix.button.Button attribute)

 	(kivy.uix.modalview.ModalView attribute)

 	(kivy.uix.pagelayout.PageLayout attribute)

 	(kivy.uix.splitter.Splitter attribute)

 	(kivy.uix.tabbedpanel.StripLayout attribute)

 	(kivy.uix.tabbedpanel.TabbedPanel attribute)

 	(kivy.uix.textinput.TextInput attribute)

 	border_auto_scale (kivy.uix.bubble.BubbleContent attribute)

 	border_horizontal (kivy.uix.slider.Slider attribute)

 	border_radius (kivy.graphics.BoxShadow attribute)

 	(kivy.graphics.boxshadow.BoxShadow attribute)

 	border_vertical (kivy.uix.slider.Slider attribute)

 	BorderImage (class in kivy.graphics)

 	(class in kivy.graphics.vertex_instructions)

 	borderless (kivy.core.window.WindowBase attribute)

 	boundary() (in module kivy.utils)

 	BoundedNumericProperty (class in kivy.properties)

 	bounds (kivy.properties.BoundedNumericProperty attribute)

 	BoxLayout (class in kivy.uix.boxlayout)

 	BoxShadow (class in kivy.graphics)

 	(class in kivy.graphics.boxshadow)

 	Bubble (class in kivy.uix.bubble)

 	BubbleButton (class in kivy.uix.bubble)

 	BubbleContent (class in kivy.uix.bubble)

 	bufferfmt (kivy.graphics.texture.Texture attribute)

 	build() (kivy.app.App method)

 	build_config() (kivy.app.App method)

 	build_settings() (kivy.app.App method)

 	Builder (in module kivy.lang.builder)

 	BuilderBase (class in kivy.lang)

 	(class in kivy.lang.builder)

 	BuilderException, [1]

 	Button (class in kivy.uix.button)

 	button (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	ButtonBehavior (class in kivy.uix.behaviors)

 	(class in kivy.uix.behaviors.button)

 	buttons_layout (kivy.uix.settings.MenuSidebar attribute)

C

 	
 	Cache (class in kivy.cache)

 	Callback (class in kivy.graphics)

 	(class in kivy.graphics.instructions)

 	callback (kivy.clock.ClockEvent attribute)

 	(kivy.core.window.Keyboard attribute)

 	(kivy.graphics.Callback attribute)

 	(kivy.graphics.instructions.Callback attribute)

 	(kivy.uix.vkeyboard.VKeyboard attribute)

 	Camera (class in kivy.uix.camera)

 	CameraBase (class in kivy.core.camera)

 	cancel() (kivy.animation.Animation method)

 	(kivy.clock.ClockEvent method)

 	(kivy.effects.kinetic.KineticEffect method)

 	(kivy.network.urlrequest.UrlRequestBase method)

 	(kivy.uix.filechooser.FileChooserController method)

 	(kivy.uix.filechooser.FileChooserProgressBase method)

 	cancel_all() (kivy.animation.Animation static method)

 	cancel_property() (kivy.animation.Animation method)

 	cancel_selection() (kivy.uix.textinput.TextInput method)

 	Candidate (class in kivy.multistroke)

 	Canvas (class in kivy.graphics)

 	(class in kivy.graphics.instructions)

 	canvas (kivy.uix.widget.Widget attribute)

 	CanvasBase (class in kivy.graphics)

 	(class in kivy.graphics.instructions)

 	cap (kivy.graphics.Line attribute)

 	(kivy.graphics.vertex_instructions.Line attribute)

 	cap_precision (kivy.graphics.Line attribute)

 	(kivy.graphics.vertex_instructions.Line attribute)

 	CardTransition (class in kivy.uix.screenmanager)

 	Carousel (class in kivy.uix.carousel)

 	center (kivy.core.window.WindowBase attribute)

 	(kivy.uix.scatter.Scatter attribute)

 	(kivy.uix.widget.Widget attribute)

 	center_stroke() (kivy.gesture.GestureStroke method)

 	center_x (kivy.uix.scatter.Scatter attribute)

 	(kivy.uix.widget.Widget attribute)

 	center_y (kivy.uix.scatter.Scatter attribute)

 	(kivy.uix.widget.Widget attribute)

 	cgl_get_backend_name() (in module kivy.graphics.cgl)

 	cgl_get_initialized_backend_name() (in module kivy.graphics.cgl)

 	cgl_init() (in module kivy.graphics.cgl)

 	ChangeState (class in kivy.graphics)

 	ChannelMixEffect (class in kivy.uix.effectwidget)

 	check() (kivy.core.spelling.SpellingBase method)

 	CheckBox (class in kivy.uix.checkbox)

 	children (kivy.core.window.WindowBase attribute)

 	(kivy.graphics.InstructionGroup attribute)

 	(kivy.graphics.instructions.InstructionGroup attribute)

 	(kivy.uix.widget.Widget attribute)

 	chunk_size (kivy.network.urlrequest.UrlRequestBase property)

 	cid (kivy.clock.ClockEvent attribute)

 	circle (kivy.graphics.Line attribute)

 	(kivy.graphics.vertex_instructions.Line attribute)

 	circumcircle() (in module kivy.geometry)

 	clear() (kivy.core.window.WindowBase method)

 	(kivy.graphics.Canvas method)

 	(kivy.graphics.InstructionGroup method)

 	(kivy.graphics.instructions.Canvas method)

 	(kivy.graphics.instructions.InstructionGroup method)

 	(kivy.storage.AbstractStore method)

 	(kivy.utils.SafeList method)

 	clear_buffer() (kivy.graphics.Fbo method)

 	(kivy.graphics.fbo.Fbo method)

 	clear_color (kivy.graphics.ClearBuffers attribute)

 	(kivy.graphics.Fbo attribute)

 	(kivy.graphics.fbo.Fbo attribute)

 	(kivy.graphics.gl_instructions.ClearBuffers attribute)

 	clear_depth (kivy.graphics.ClearBuffers attribute)

 	(kivy.graphics.gl_instructions.ClearBuffers attribute)

 	clear_selection() (kivy.uix.behaviors.compoundselection.CompoundSelectionBehavior method)

 	(kivy.uix.behaviors.CompoundSelectionBehavior method)

 	clear_stencil (kivy.graphics.ClearBuffers attribute)

 	(kivy.graphics.gl_instructions.ClearBuffers attribute)

 	clear_widgets() (kivy.uix.actionbar.ActionGroup method)

 	(kivy.uix.carousel.Carousel method)

 	(kivy.uix.dropdown.DropDown method)

 	(kivy.uix.effectwidget.EffectWidget method)

 	(kivy.uix.sandbox.Sandbox method)

 	(kivy.uix.scatterlayout.ScatterLayout method)

 	(kivy.uix.screenmanager.ScreenManager method)

 	(kivy.uix.splitter.Splitter method)

 	(kivy.uix.tabbedpanel.TabbedPanel method)

 	(kivy.uix.widget.Widget method)

 	ClearBuffers (class in kivy.graphics)

 	(class in kivy.graphics.gl_instructions)

 	ClearColor (class in kivy.graphics)

 	(class in kivy.graphics.gl_instructions)

 	clearcolor (kivy.core.window.WindowBase attribute)

 	(kivy.uix.screenmanager.ShaderTransition attribute)

 	Clock (in module kivy.clock)

 	clock (kivy.clock.ClockEvent attribute)

 	clock() (in module kivy.compat)

 	clock_ended_callback (kivy.clock.ClockEvent attribute)

 	clock_resolution (kivy.clock.CyClockBase attribute)

 	ClockBase (class in kivy.clock)

 	ClockBaseBehavior (class in kivy.clock)

 	ClockBaseFreeInterruptAll (class in kivy.clock)

 	ClockBaseFreeInterruptOnly (class in kivy.clock)

 	ClockBaseInterrupt (class in kivy.clock)

 	ClockBaseInterruptBehavior (class in kivy.clock)

 	ClockBaseInterruptFreeBehavior (class in kivy.clock)

 	ClockEvent (class in kivy.clock)

 	ClockNotRunningError

 	close (kivy.graphics.Line attribute)

 	(kivy.graphics.vertex_instructions.Line attribute)

 	close() (kivy.base.EventLoopBase method)

 	(kivy.core.window.WindowBase method)

 	close_button (kivy.uix.settings.MenuSidebar attribute)

 	close_mode (kivy.graphics.Line attribute)

 	(kivy.graphics.vertex_instructions.Line attribute)

 	close_settings() (kivy.app.App method)

 	cls (kivy.uix.widget.Widget attribute)

 	cm (kivy.metrics.MetricsBase attribute)

 	cm() (in module kivy.metrics)

 	CodeInput (class in kivy.uix.codeinput)

 	CodeNavigationBehavior (class in kivy.uix.behaviors)

 	(class in kivy.uix.behaviors.codenavigation)

 	col_default_width (kivy.uix.gridlayout.GridLayout attribute)

 	col_force_default (kivy.uix.gridlayout.GridLayout attribute)

 	collapse (kivy.uix.accordion.AccordionItem attribute)

 	collapse_alpha (kivy.uix.accordion.AccordionItem attribute)

 	
 	collide_margin() (kivy.uix.vkeyboard.VKeyboard method)

 	collide_point() (kivy.uix.scatter.Scatter method)

 	(kivy.uix.scatter.ScatterPlane method)

 	(kivy.uix.scatterlayout.ScatterPlaneLayout method)

 	(kivy.uix.widget.Widget method)

 	collide_widget() (kivy.uix.widget.Widget method)

 	ColonSplittingLogRecord (class in kivy.logger)

 	Color (class in kivy.graphics)

 	(class in kivy.graphics.context_instructions)

 	color (kivy.graphics.svg.Svg attribute)

 	(kivy.uix.actionbar.ActionPrevious attribute)

 	(kivy.uix.checkbox.CheckBox attribute)

 	(kivy.uix.colorpicker.ColorPicker attribute)

 	(kivy.uix.colorpicker.ColorWheel attribute)

 	(kivy.uix.image.Image attribute)

 	(kivy.uix.label.Label attribute)

 	color_selected (kivy.uix.treeview.TreeViewNode attribute)

 	ColoredLogRecord (class in kivy.logger)

 	colorfmt (kivy.graphics.texture.Texture attribute)

 	ColorPicker (class in kivy.uix.colorpicker)

 	ColorProperty (class in kivy.properties)

 	colors (kivy.uix.rst.RstDocument attribute)

 	ColorWheel (class in kivy.uix.colorpicker)

 	cols (kivy.uix.gridlayout.GridLayout attribute)

 	cols_minimum (kivy.uix.gridlayout.GridLayout attribute)

 	complete_stroke() (kivy.uix.gesturesurface.GestureContainer method)

 	CompoundSelectionBehavior (class in kivy.uix.behaviors)

 	(class in kivy.uix.behaviors.compoundselection)

 	compute_visible_views() (kivy.uix.recycleboxlayout.RecycleBoxLayout method)

 	(kivy.uix.recyclegridlayout.RecycleGridLayout method)

 	(kivy.uix.recycleview.layout.RecycleLayoutManagerBehavior method)

 	Config (in module kivy.config)

 	config (kivy.app.App attribute)

 	(kivy.uix.settings.SettingsPanel attribute)

 	ConfigParser (class in kivy.config)

 	ConfigParserProperty (class in kivy.properties)

 	Console (class in kivy.modules.console)

 	console (kivy.modules.console.ConsoleAddon attribute)

 	ConsoleAddon (class in kivy.modules.console)

 	ConsoleButton (class in kivy.modules.console)

 	ConsoleHandler (class in kivy.logger)

 	ConsoleLabel (class in kivy.modules.console)

 	ConsoleToggleButton (class in kivy.modules.console)

 	container (kivy.uix.accordion.AccordionItem attribute)

 	(kivy.uix.dropdown.DropDown attribute)

 	(kivy.uix.settings.ContentPanel attribute)

 	container_title (kivy.uix.accordion.AccordionItem attribute)

 	content (kivy.uix.bubble.Bubble attribute)

 	(kivy.uix.popup.Popup attribute)

 	(kivy.uix.settings.InterfaceWithSidebar attribute)

 	(kivy.uix.settings.SettingItem attribute)

 	(kivy.uix.tabbedpanel.TabbedPanel attribute)

 	(kivy.uix.tabbedpanel.TabbedPanelHeader attribute)

 	content_height (kivy.core.text.LabelBase property)

 	(kivy.uix.bubble.Bubble attribute)

 	content_size (kivy.core.text.LabelBase property)

 	(kivy.uix.accordion.AccordionItem attribute)

 	(kivy.uix.bubble.Bubble attribute)

 	content_width (kivy.core.text.LabelBase property)

 	(kivy.uix.bubble.Bubble attribute)

 	ContentPanel (class in kivy.uix.settings)

 	Context (class in kivy.context)

 	(class in kivy.graphics.context)

 	ContextInstruction (class in kivy.graphics)

 	(class in kivy.graphics.instructions)

 	ContextualActionView (class in kivy.uix.actionbar)

 	convert_distance_to_scroll() (kivy.uix.scrollview.ScrollView method)

 	copy() (kivy.uix.textinput.TextInput method)

 	copy_to() (kivy.input.MotionEvent method)

 	(kivy.input.motionevent.MotionEvent method)

 	CoreCriticalException

 	count() (kivy.storage.AbstractStore method)

 	counter (kivy.input.recorder.Recorder attribute)

 	cover_pos (kivy.uix.behaviors.cover.CoverBehavior attribute)

 	(kivy.uix.behaviors.CoverBehavior attribute)

 	cover_size (kivy.uix.behaviors.cover.CoverBehavior attribute)

 	(kivy.uix.behaviors.CoverBehavior attribute)

 	CoverBehavior (class in kivy.uix.behaviors)

 	(class in kivy.uix.behaviors.cover)

 	create() (kivy.atlas.Atlas static method)

 	(kivy.graphics.texture.Texture static method)

 	(kivy.input.providers.tuio.TuioMotionEventProvider static method)

 	create_from() (kivy.lang.builder.BuilderBase class method)

 	(kivy.lang.BuilderBase class method)

 	create_from_data() (kivy.graphics.texture.Texture static method)

 	create_inspector() (in module kivy.modules.inspector)

 	create_joycursor() (in module kivy.modules.joycursor)

 	create_json_panel() (kivy.uix.settings.Settings method)

 	create_lifecycle_aware_trigger() (kivy.clock.CyClockBase method)

 	(kivy.clock.CyClockBaseFree method)

 	create_lifecycle_aware_trigger_free() (kivy.clock.CyClockBaseFree method)

 	create_property() (kivy.event.EventDispatcher method)

 	create_settings() (kivy.app.App method)

 	create_trigger() (kivy.clock.CyClockBase method)

 	(kivy.clock.CyClockBaseFree method)

 	create_trigger_free() (kivy.clock.CyClockBaseFree method)

 	create_view() (kivy.uix.recycleview.views.RecycleDataAdapter method)

 	create_window() (kivy.core.window.WindowBase method)

 	current (kivy.uix.screenmanager.ScreenManager attribute)

 	current_color (kivy.graphics.svg.Svg attribute)

 	current_panel (kivy.uix.settings.ContentPanel attribute)

 	current_screen (kivy.uix.screenmanager.ScreenManager attribute)

 	current_slide (kivy.uix.carousel.Carousel attribute)

 	current_tab (kivy.uix.tabbedpanel.TabbedPanel attribute)

 	current_uid (kivy.uix.settings.ContentPanel attribute)

 	cursor (kivy.uix.textinput.TextInput attribute)

 	cursor_blink (kivy.uix.textinput.TextInput attribute)

 	cursor_col (kivy.uix.textinput.TextInput attribute)

 	cursor_color (kivy.uix.textinput.TextInput attribute)

 	cursor_disabled_image (kivy.uix.slider.Slider attribute)

 	cursor_height (kivy.uix.slider.Slider attribute)

 	cursor_image (kivy.uix.slider.Slider attribute)

 	cursor_index() (kivy.uix.textinput.TextInput method)

 	cursor_offset() (kivy.uix.textinput.TextInput method)

 	cursor_pos (kivy.uix.textinput.TextInput attribute)

 	cursor_row (kivy.uix.textinput.TextInput attribute)

 	cursor_size (kivy.uix.slider.Slider attribute)

 	cursor_width (kivy.uix.slider.Slider attribute)

 	(kivy.uix.textinput.TextInput attribute)

 	custom_titlebar (kivy.core.window.WindowBase attribute)

 	cut() (kivy.uix.textinput.TextInput method)

 	CyClockBase (class in kivy.clock)

 	CyClockBaseFree (class in kivy.clock)

D

 	
 	DampedScrollEffect (class in kivy.effects.dampedscroll)

 	dash_length (kivy.graphics.Bezier attribute)

 	(kivy.graphics.Line attribute)

 	(kivy.graphics.vertex_instructions.Bezier attribute)

 	(kivy.graphics.vertex_instructions.Line attribute)

 	dash_offset (kivy.graphics.Bezier attribute)

 	(kivy.graphics.Line attribute)

 	(kivy.graphics.vertex_instructions.Bezier attribute)

 	(kivy.graphics.vertex_instructions.Line attribute)

 	dashes (kivy.graphics.Line attribute)

 	(kivy.graphics.vertex_instructions.Line attribute)

 	data (kivy.core.image.ImageData property)

 	(kivy.uix.recycleview.datamodel.RecycleDataModel attribute)

 	(kivy.uix.recycleview.RecycleView attribute)

 	data_model (kivy.uix.recycleview.RecycleViewBehavior attribute)

 	DDSException

 	deactivate() (kivy.modules.console.ConsoleAddon method)

 	decode_result() (kivy.network.urlrequest.UrlRequestBase method)

 	default_height (kivy.uix.recyclelayout.RecycleLayout attribute)

 	default_pos_hint (kivy.uix.recyclelayout.RecycleLayout attribute)

 	default_size (kivy.uix.recyclelayout.RecycleLayout attribute)

 	default_size_hint (kivy.uix.recyclelayout.RecycleLayout attribute)

 	default_size_hint_max (kivy.uix.recyclelayout.RecycleLayout attribute)

 	default_size_hint_min (kivy.uix.recyclelayout.RecycleLayout attribute)

 	default_size_hint_x (kivy.uix.recyclelayout.RecycleLayout attribute)

 	default_size_hint_x_max (kivy.uix.recyclelayout.RecycleLayout attribute)

 	default_size_hint_x_min (kivy.uix.recyclelayout.RecycleLayout attribute)

 	default_size_hint_y (kivy.uix.recyclelayout.RecycleLayout attribute)

 	default_size_hint_y_max (kivy.uix.recyclelayout.RecycleLayout attribute)

 	default_size_hint_y_min (kivy.uix.recyclelayout.RecycleLayout attribute)

 	default_tab (kivy.uix.tabbedpanel.TabbedPanel attribute)

 	default_tab_cls (kivy.uix.tabbedpanel.TabbedPanel attribute)

 	default_tab_content (kivy.uix.tabbedpanel.TabbedPanel attribute)

 	default_tab_text (kivy.uix.tabbedpanel.TabbedPanel attribute)

 	default_width (kivy.uix.recyclelayout.RecycleLayout attribute)

 	defaultvalue (kivy.properties.Property attribute)

 	delete() (kivy.storage.AbstractStore method)

 	delete_selection() (kivy.uix.textinput.TextInput method)

 	delete_word_left() (kivy.uix.behaviors.emacs.EmacsBehavior method)

 	(kivy.uix.behaviors.EmacsBehavior method)

 	delete_word_right() (kivy.uix.behaviors.emacs.EmacsBehavior method)

 	(kivy.uix.behaviors.EmacsBehavior method)

 	density (kivy.metrics.MetricsBase attribute)

 	depack() (kivy.input.MotionEvent method)

 	(kivy.input.motionevent.MotionEvent method)

 	(kivy.input.providers.hidinput.HIDMotionEvent method)

 	(kivy.input.providers.leapfinger.LeapFingerEvent method)

 	(kivy.input.providers.linuxwacom.LinuxWacomMotionEvent method)

 	(kivy.input.providers.mtdev.MTDMotionEvent method)

 	(kivy.input.providers.tuio.Tuio2dCurMotionEvent method)

 	(kivy.input.providers.tuio.Tuio2dObjMotionEvent method)

 	deprecated() (in module kivy.utils)

 	desc (kivy.uix.settings.SettingItem attribute)

 	deselect_node() (kivy.uix.behaviors.compoundselection.CompoundSelectionBehavior method)

 	(kivy.uix.behaviors.CompoundSelectionBehavior method)

 	(kivy.uix.recycleview.layout.LayoutSelectionBehavior method)

 	(kivy.uix.treeview.TreeView method)

 	destroy_settings() (kivy.app.App method)

 	detach_recycleview() (kivy.uix.recycleview.datamodel.RecycleDataModel method)

 	(kivy.uix.recycleview.datamodel.RecycleDataModelBehavior method)

 	(kivy.uix.recycleview.views.RecycleDataAdapter method)

 	device (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	DictProperty (class in kivy.properties)

 	DictStore (class in kivy.storage.dictstore)

 	difference() (in module kivy.utils)

 	direction (kivy.uix.carousel.Carousel attribute)

 	(kivy.uix.screenmanager.SlideTransition attribute)

 	directory (kivy.app.App property)

 	dirselect (kivy.uix.filechooser.FileChooserController attribute)

 	(kivy.uix.settings.SettingPath attribute)

 	disable_hover (kivy.input.providers.mouse.MouseMotionEventProvider property)

 	disabled (kivy.uix.settings.SettingItem attribute)

 	(kivy.uix.widget.Widget attribute)

 	disabled_color (kivy.uix.label.Label attribute)

 	disabled_foreground_color (kivy.uix.textinput.TextInput attribute)

 	disabled_outline_color (kivy.uix.label.Label attribute)

 	dismiss() (kivy.uix.dropdown.DropDown method)

 	(kivy.uix.modalview.ModalView method)

 	dismiss_on_select (kivy.uix.dropdown.DropDown attribute)

 	dispatch() (kivy.event.EventDispatcher method)

 	(kivy.eventmanager.EventManagerBase method)

 	(kivy.properties.Property method)

 	dispatch_children() (kivy.event.EventDispatcher method)

 	dispatch_done() (kivy.input.MotionEvent method)

 	(kivy.input.motionevent.MotionEvent method)

 	dispatch_generic() (kivy.event.EventDispatcher method)

 	dispatch_input() (kivy.base.EventLoopBase method)

 	dispatch_mode (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	
 	displacement (kivy.effects.scroll.ScrollEffect attribute)

 	display_border (kivy.graphics.BorderImage attribute)

 	(kivy.graphics.vertex_instructions.BorderImage attribute)

 	display_settings() (kivy.app.App method)

 	distance() (kivy.input.MotionEvent method)

 	(kivy.input.motionevent.MotionEvent method)

 	(kivy.vector.Vector method)

 	distance2() (kivy.vector.Vector method)

 	do_backspace() (kivy.uix.textinput.TextInput method)

 	do_collide_after_children (kivy.uix.scatter.Scatter attribute)

 	do_cursor_movement() (kivy.uix.textinput.TextInput method)

 	do_default_tab (kivy.uix.tabbedpanel.TabbedPanel attribute)

 	do_layout() (kivy.uix.anchorlayout.AnchorLayout method)

 	(kivy.uix.boxlayout.BoxLayout method)

 	(kivy.uix.floatlayout.FloatLayout method)

 	(kivy.uix.gridlayout.GridLayout method)

 	(kivy.uix.layout.Layout method)

 	(kivy.uix.pagelayout.PageLayout method)

 	(kivy.uix.recyclelayout.RecycleLayout method)

 	(kivy.uix.relativelayout.RelativeLayout method)

 	(kivy.uix.stacklayout.StackLayout method)

 	do_redo() (kivy.uix.textinput.TextInput method)

 	do_rotation (kivy.uix.scatter.Scatter attribute)

 	do_scale (kivy.uix.scatter.Scatter attribute)

 	do_scroll (kivy.uix.scrollview.ScrollView attribute)

 	do_scroll_x (kivy.uix.scrollview.ScrollView attribute)

 	do_scroll_y (kivy.uix.scrollview.ScrollView attribute)

 	do_translation (kivy.uix.scatter.Scatter attribute)

 	do_translation_x (kivy.uix.scatter.Scatter attribute)

 	do_translation_y (kivy.uix.scatter.Scatter attribute)

 	do_undo() (kivy.uix.textinput.TextInput method)

 	do_wrap (kivy.uix.textinput.TextInput attribute)

 	docked (kivy.uix.vkeyboard.VKeyboard attribute)

 	document_root (kivy.uix.rst.RstDocument attribute)

 	dot() (kivy.vector.Vector method)

 	dot_product() (kivy.gesture.Gesture method)

 	double_tap_time (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	dp (kivy.metrics.MetricsBase attribute)

 	dp() (in module kivy.metrics)

 	dpi (kivy.core.window.WindowBase attribute)

 	(kivy.metrics.MetricsBase attribute)

 	dpi2px() (in module kivy.metrics)

 	dpi_rounded (kivy.metrics.MetricsBase attribute)

 	dpos (kivy.input.MotionEvent property)

 	(kivy.input.motionevent.MotionEvent property)

 	drag_distance (kivy.uix.behaviors.drag.DragBehavior attribute)

 	(kivy.uix.behaviors.DragBehavior attribute)

 	drag_rect_height (kivy.uix.behaviors.drag.DragBehavior attribute)

 	(kivy.uix.behaviors.DragBehavior attribute)

 	drag_rect_width (kivy.uix.behaviors.drag.DragBehavior attribute)

 	(kivy.uix.behaviors.DragBehavior attribute)

 	drag_rect_x (kivy.uix.behaviors.drag.DragBehavior attribute)

 	(kivy.uix.behaviors.DragBehavior attribute)

 	drag_rect_y (kivy.uix.behaviors.drag.DragBehavior attribute)

 	(kivy.uix.behaviors.DragBehavior attribute)

 	drag_rectangle (kivy.uix.behaviors.drag.DragBehavior attribute)

 	(kivy.uix.behaviors.DragBehavior attribute)

 	drag_threshold (kivy.effects.scroll.ScrollEffect attribute)

 	drag_timeout (kivy.uix.behaviors.drag.DragBehavior attribute)

 	(kivy.uix.behaviors.DragBehavior attribute)

 	DragBehavior (class in kivy.uix.behaviors)

 	(class in kivy.uix.behaviors.drag)

 	draw() (kivy.graphics.Canvas method)

 	(kivy.graphics.instructions.Canvas method)

 	DropDown (class in kivy.uix.dropdown)

 	dropdown_cls (kivy.uix.spinner.Spinner attribute)

 	dropdown_width (kivy.uix.actionbar.ActionGroup attribute)

 	dsx (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	dsy (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	dsz (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	duration (kivy.animation.Animation property)

 	(kivy.core.video.VideoBase property)

 	(kivy.uix.screenmanager.FallOutTransition attribute)

 	(kivy.uix.screenmanager.NoTransition attribute)

 	(kivy.uix.screenmanager.RiseInTransition attribute)

 	(kivy.uix.screenmanager.TransitionBase attribute)

 	(kivy.uix.video.Video attribute)

 	(kivy.uix.videoplayer.VideoPlayer attribute)

 	(kivy.uix.videoplayer.VideoPlayerAnnotation attribute)

 	dx (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	dy (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	dz (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

E

 	
 	edge_damping (kivy.effects.dampedscroll.DampedScrollEffect attribute)

 	effect_cls (kivy.uix.scrollview.ScrollView attribute)

 	effect_x (kivy.uix.scrollview.ScrollView attribute)

 	effect_y (kivy.uix.scrollview.ScrollView attribute)

 	EffectBase (class in kivy.uix.effectwidget)

 	effects (kivy.uix.effectwidget.EffectWidget attribute)

 	EffectWidget (class in kivy.uix.effectwidget)

 	element_count (kivy.graphics.tesselator.Tesselator attribute)

 	Ellipse (class in kivy.graphics)

 	(class in kivy.graphics.vertex_instructions)

 	ellipse (kivy.graphics.Line attribute)

 	(kivy.graphics.vertex_instructions.Line attribute)

 	ellipsis_options (kivy.uix.label.Label attribute)

 	EmacsBehavior (class in kivy.uix.behaviors)

 	(class in kivy.uix.behaviors.emacs)

 	emit() (kivy.logger.FileHandler method)

 	(kivy.logger.LoggerHistory method)

 	ensure_window() (kivy.base.EventLoopBase method)

 	entry_released() (kivy.uix.filechooser.FileChooserController method)

 	entry_touched() (kivy.uix.filechooser.FileChooserController method)

 	
 	eos (kivy.uix.video.Video attribute)

 	error (kivy.network.urlrequest.UrlRequestBase property)

 	error_image (kivy.loader.LoaderBase property)

 	escape_markup() (in module kivy.utils)

 	even_color (kivy.uix.treeview.TreeViewNode attribute)

 	event_managers (kivy.core.window.WindowBase attribute)

 	event_managers_dict (kivy.core.window.WindowBase attribute)

 	EventDispatcher (class in kivy.event)

 	EventLoop (in module kivy.base)

 	EventLoopBase (class in kivy.base)

 	EventManagerBase (class in kivy.eventmanager)

 	events() (kivy.event.EventDispatcher method)

 	ExceptionHandler (class in kivy.base)

 	ExceptionManager (in module kivy.base)

 	ExceptionManagerBase (class in kivy.base)

 	exists() (kivy.storage.AbstractStore method)

 	exit() (kivy.base.EventLoopBase method)

 	export_as_image() (kivy.uix.widget.Widget method)

 	export_gesture() (kivy.multistroke.Recognizer method)

 	export_to_png() (kivy.uix.widget.Widget method)

F

 	
 	Factory (in module kivy.factory)

 	FactoryException

 	FadeTransition (class in kivy.uix.screenmanager)

 	FallOutTransition (class in kivy.uix.screenmanager)

 	fbind() (kivy.event.EventDispatcher method)

 	(kivy.event.Observable method)

 	(kivy.lang.builder.Observable method)

 	(kivy.lang.Observable method)

 	Fbo (class in kivy.graphics)

 	(class in kivy.graphics.fbo)

 	fbo (kivy.uix.effectwidget.EffectBase attribute)

 	fbo_list (kivy.uix.effectwidget.EffectWidget attribute)

 	file_encodings (kivy.uix.filechooser.FileChooserController attribute)

 	file_system (kivy.uix.filechooser.FileChooserController attribute)

 	FileChooser (class in kivy.uix.filechooser)

 	FileChooserController (class in kivy.uix.filechooser)

 	FileChooserIconLayout (class in kivy.uix.filechooser)

 	FileChooserIconView (class in kivy.uix.filechooser)

 	FileChooserListLayout (class in kivy.uix.filechooser)

 	FileChooserListView (class in kivy.uix.filechooser)

 	FileChooserProgressBase (class in kivy.uix.filechooser)

 	FileHandler (class in kivy.logger)

 	filename (kivy.atlas.Atlas attribute)

 	(kivy.core.audio.Sound attribute)

 	(kivy.core.image.Image property)

 	(kivy.core.video.VideoBase property)

 	(kivy.input.recorder.Recorder attribute)

 	files (kivy.uix.filechooser.FileChooserController attribute)

 	FileSystemAbstract (class in kivy.uix.filechooser)

 	FileSystemLocal (class in kivy.uix.filechooser)

 	filter() (kivy.logger.ConsoleHandler method)

 	(kivy.multistroke.Recognizer method)

 	filter_dirs (kivy.uix.filechooser.FileChooserController attribute)

 	filters (kivy.uix.filechooser.FileChooserController attribute)

 	find() (kivy.gesture.GestureDatabase method)

 	(kivy.storage.AbstractStore method)

 	find_base_direction() (kivy.core.text.LabelBase static method)

 	find_colliding_gesture() (kivy.uix.gesturesurface.GestureSurface method)

 	find_double_tap() (kivy.input.postproc.doubletap.InputPostprocDoubleTap method)

 	find_triple_tap() (kivy.input.postproc.tripletap.InputPostprocTripleTap method)

 	fit_mode (kivy.uix.image.Image attribute)

 	flag_data_update() (kivy.graphics.Instruction method)

 	(kivy.graphics.instructions.Instruction method)

 	flag_update() (kivy.graphics.Instruction method)

 	(kivy.graphics.instructions.Instruction method)

 	flag_update_canvas() (kivy.graphics.context.Context method)

 	flex_arrow_pos (kivy.uix.bubble.Bubble attribute)

 	flip() (kivy.core.window.WindowBase method)

 	flip_horizontal() (kivy.graphics.texture.Texture method)

 	flip_vertical (kivy.core.image.ImageData attribute)

 	flip_vertical() (kivy.graphics.texture.Texture method)

 	FloatLayout (class in kivy.uix.floatlayout)

 	flush() (kivy.graphics.context.Context method)

 	(kivy.logger.LoggerHistory method)

 	
 	fmt (kivy.core.image.ImageData attribute)

 	focus (kivy.core.window.WindowBase attribute)

 	(kivy.uix.behaviors.focus.FocusBehavior attribute)

 	(kivy.uix.behaviors.FocusBehavior attribute)

 	focus_next (kivy.uix.behaviors.focus.FocusBehavior attribute)

 	(kivy.uix.behaviors.FocusBehavior attribute)

 	focus_previous (kivy.uix.behaviors.focus.FocusBehavior attribute)

 	(kivy.uix.behaviors.FocusBehavior attribute)

 	FocusBehavior (class in kivy.uix.behaviors)

 	(class in kivy.uix.behaviors.focus)

 	focused (kivy.uix.behaviors.focus.FocusBehavior attribute)

 	(kivy.uix.behaviors.FocusBehavior attribute)

 	font_blended (kivy.uix.label.Label attribute)

 	font_context (kivy.uix.label.Label attribute)

 	(kivy.uix.textinput.TextInput attribute)

 	font_direction (kivy.uix.label.Label attribute)

 	font_family (kivy.uix.label.Label attribute)

 	(kivy.uix.textinput.TextInput attribute)

 	font_features (kivy.uix.label.Label attribute)

 	font_hinting (kivy.uix.label.Label attribute)

 	font_kerning (kivy.uix.label.Label attribute)

 	font_name (kivy.uix.colorpicker.ColorPicker attribute)

 	(kivy.uix.filechooser.FileChooserController attribute)

 	(kivy.uix.label.Label attribute)

 	(kivy.uix.textinput.TextInput attribute)

 	font_script_name (kivy.uix.label.Label attribute)

 	font_size (kivy.uix.label.Label attribute)

 	(kivy.uix.textinput.TextInput attribute)

 	(kivy.uix.vkeyboard.VKeyboard attribute)

 	fontid (kivy.core.text.LabelBase property)

 	fontscale (kivy.metrics.MetricsBase attribute)

 	foreground_color (kivy.uix.textinput.TextInput attribute)

 	fork() (kivy.uix.behaviors.knspace.KNSpace method)

 	format() (kivy.logger.KivyFormatter method)

 	frames (kivy.clock.ClockBaseBehavior property)

 	frames_displayed (kivy.clock.ClockBaseBehavior property)

 	frametime (kivy.clock.ClockBaseBehavior property)

 	free (kivy.clock.FreeClockEvent attribute)

 	FreeClockEvent (class in kivy.clock)

 	friction (kivy.effects.kinetic.KineticEffect attribute)

 	fs (kivy.graphics.shader.Shader attribute)

 	(kivy.uix.screenmanager.FadeTransition attribute)

 	(kivy.uix.screenmanager.FallOutTransition attribute)

 	(kivy.uix.screenmanager.RiseInTransition attribute)

 	(kivy.uix.screenmanager.ShaderTransition attribute)

 	(kivy.uix.screenmanager.WipeTransition attribute)

 	fullscreen (kivy.core.window.WindowBase attribute)

 	(kivy.uix.videoplayer.VideoPlayer attribute)

 	funbind() (kivy.event.EventDispatcher method)

 	(kivy.event.Observable method)

 	(kivy.lang.builder.Observable method)

 	(kivy.lang.Observable method)

 	func_op (kivy.graphics.stencil_instructions.StencilUse attribute)

 	(kivy.graphics.StencilUse attribute)

 	FXAAEffect (class in kivy.uix.effectwidget)

G

 	
 	g (kivy.graphics.ClearColor attribute)

 	(kivy.graphics.Color attribute)

 	(kivy.graphics.context_instructions.Color attribute)

 	(kivy.graphics.gl_instructions.ClearColor attribute)

 	(kivy.uix.colorpicker.ColorWheel attribute)

 	garden_system_dir (in module kivy.garden)

 	Gesture (class in kivy.gesture)

 	gesture_to_str() (kivy.gesture.GestureDatabase method)

 	GestureContainer (class in kivy.uix.gesturesurface)

 	GestureDatabase (class in kivy.gesture)

 	GestureStroke (class in kivy.gesture)

 	GestureSurface (class in kivy.uix.gesturesurface)

 	get() (kivy.cache.Cache static method)

 	(kivy.config.ConfigParser method)

 	(kivy.graphics.transformation.Matrix method)

 	(kivy.input.factory.MotionEventFactory static method)

 	(kivy.input.MotionEventFactory static method)

 	(kivy.properties.AliasProperty method)

 	(kivy.properties.Property method)

 	(kivy.properties.ReferenceListProperty method)

 	(kivy.storage.AbstractStore method)

 	get_angle_similarity() (kivy.multistroke.Candidate method)

 	get_application_config() (kivy.app.App method)

 	get_application_icon() (kivy.app.App method)

 	get_application_name() (kivy.app.App method)

 	get_before_frame_events() (kivy.clock.CyClockBase method)

 	get_boottime() (kivy.clock.ClockBaseBehavior method)

 	get_cached_extents() (kivy.core.text.LabelBase method)

 	get_callback() (kivy.clock.ClockEvent method)

 	get_clock_ended_callback() (kivy.clock.ClockEvent method)

 	get_color_from_hex() (in module kivy.utils)

 	get_configparser() (kivy.config.ConfigParser static method)

 	get_current_context() (in module kivy.context)

 	get_cursor_from_index() (kivy.uix.textinput.TextInput method)

 	get_cursor_from_xy() (kivy.uix.textinput.TextInput method)

 	get_distance() (kivy.multistroke.MultistrokeGesture method)

 	get_events() (kivy.clock.CyClockBase method)

 	get_extents() (kivy.core.text.LabelBase method)

 	get_focus_next() (kivy.uix.behaviors.focus.FocusBehavior method)

 	(kivy.uix.behaviors.FocusBehavior method)

 	get_focus_previous() (kivy.uix.behaviors.focus.FocusBehavior method)

 	(kivy.uix.behaviors.FocusBehavior method)

 	get_format() (kivy.properties.NumericProperty method)

 	get_fps() (kivy.clock.ClockBaseBehavior method)

 	get_gesture() (kivy.uix.gesturesurface.GestureSurface method)

 	get_gl_backend_name() (kivy.core.window.WindowBase method)

 	get_group() (kivy.graphics.InstructionGroup method)

 	(kivy.graphics.instructions.InstructionGroup method)

 	get_hex_from_color() (in module kivy.utils)

 	get_index_of_node() (kivy.uix.behaviors.compoundselection.CompoundSelectionBehavior method)

 	(kivy.uix.behaviors.CompoundSelectionBehavior method)

 	(kivy.uix.recycleview.layout.LayoutSelectionBehavior method)

 	get_lastaccess() (kivy.cache.Cache static method)

 	get_max() (kivy.properties.BoundedNumericProperty method)

 	get_min() (kivy.properties.BoundedNumericProperty method)

 	get_min_free_timeout() (kivy.clock.CyClockBaseFree method)

 	get_min_timeout() (kivy.clock.CyClockBase method)

 	get_mipmap() (kivy.core.image.ImageData method)

 	get_nice_size() (kivy.uix.filechooser.FileChooserController method)

 	get_node_at_pos() (kivy.uix.treeview.TreeView method)

 	get_parent_window() (kivy.uix.widget.Widget method)

 	get_pixel_color() (kivy.graphics.Fbo method)

 	(kivy.graphics.fbo.Fbo method)

 	get_pos() (kivy.core.audio.Sound method)

 	get_property_observers() (kivy.event.EventDispatcher method)

 	get_protractor_vector() (kivy.multistroke.Candidate method)

 	get_random_color() (in module kivy.utils)

 	get_region() (kivy.graphics.texture.Texture method)

 	get_resolution() (kivy.clock.CyClockBase method)

 	get_rfps() (kivy.clock.ClockBaseBehavior method)

 	get_rigid_rotation() (kivy.gesture.Gesture method)

 	get_root_window() (kivy.uix.widget.Widget method)

 	get_running_app() (kivy.app.App static method)

 	get_score() (kivy.gesture.Gesture method)

 	get_screen() (kivy.uix.screenmanager.ScreenManager method)

 	get_selectable_nodes() (kivy.uix.behaviors.compoundselection.CompoundSelectionBehavior method)

 	(kivy.uix.behaviors.CompoundSelectionBehavior method)

 	(kivy.uix.recycleview.layout.LayoutSelectionBehavior method)

 	get_start_unit_vector() (kivy.multistroke.Candidate method)

 	get_system_fonts_dir() (kivy.core.text.LabelBase static method)

 	get_time() (kivy.clock.ClockBaseBehavior method)

 	get_timestamp() (kivy.cache.Cache static method)

 	get_value() (kivy.uix.settings.SettingsPanel method)

 	get_vectors() (kivy.uix.gesturesurface.GestureContainer method)

 	get_view() (kivy.uix.recycleview.views.RecycleDataAdapter method)

 	get_view_index_at() (kivy.uix.recycleboxlayout.RecycleBoxLayout method)

 	(kivy.uix.recyclegridlayout.RecycleGridLayout method)

 	(kivy.uix.recycleview.layout.RecycleLayoutManagerBehavior method)

 	get_visible_view() (kivy.uix.recycleview.views.RecycleDataAdapter method)

 	get_widgets() (kivy.uix.behaviors.togglebutton.ToggleButtonBehavior static method)

 	(kivy.uix.behaviors.ToggleButtonBehavior static method)

 	get_window_matrix() (kivy.uix.widget.Widget method)

 	getdefault() (kivy.config.ConfigParser method)

 	getdefaultint() (kivy.config.ConfigParser method)

 	getsize() (kivy.uix.filechooser.FileSystemAbstract method)

 	(kivy.uix.filechooser.FileSystemLocal method)

 	getter() (kivy.event.EventDispatcher method)

 	gl_backends_allowed (kivy.core.window.WindowBase attribute)

 	gl_backends_ignored (kivy.core.window.WindowBase attribute)

 	gl_dealloc() (kivy.graphics.context.Context method)

 	gl_get_extensions() (in module kivy.graphics.opengl_utils)

 	gl_get_texture_formats() (in module kivy.graphics.opengl_utils)

 	gl_get_version() (in module kivy.graphics.opengl_utils)

 	gl_get_version_major() (in module kivy.graphics.opengl_utils)

 	gl_get_version_minor() (in module kivy.graphics.opengl_utils)

 	gl_has_capability() (in module kivy.graphics.opengl_utils)

 	gl_has_extension() (in module kivy.graphics.opengl_utils)

 	gl_has_texture_conversion() (in module kivy.graphics.opengl_utils)

 	gl_has_texture_format() (in module kivy.graphics.opengl_utils)

 	gl_has_texture_native_format() (in module kivy.graphics.opengl_utils)

 	gl_init_resources() (in module kivy.graphics)

 	(in module kivy.graphics.context_instructions)

 	gl_init_symbols() (in module kivy.graphics.opengl)

 	gl_register_get_size() (in module kivy.graphics.opengl_utils)

 	glActiveTexture() (in module kivy.graphics.opengl)

 	glAttachShader() (in module kivy.graphics.opengl)

 	glBindAttribLocation() (in module kivy.graphics.opengl)

 	glBindBuffer() (in module kivy.graphics.opengl)

 	glBindFramebuffer() (in module kivy.graphics.opengl)

 	glBindRenderbuffer() (in module kivy.graphics.opengl)

 	glBindTexture() (in module kivy.graphics.opengl)

 	glBlendColor() (in module kivy.graphics.opengl)

 	glBlendEquation() (in module kivy.graphics.opengl)

 	glBlendEquationSeparate() (in module kivy.graphics.opengl)

 	glBlendFunc() (in module kivy.graphics.opengl)

 	glBlendFuncSeparate() (in module kivy.graphics.opengl)

 	glBufferData() (in module kivy.graphics.opengl)

 	glBufferSubData() (in module kivy.graphics.opengl)

 	glCheckFramebufferStatus() (in module kivy.graphics.opengl)

 	glClear() (in module kivy.graphics.opengl)

 	glClearColor() (in module kivy.graphics.opengl)

 	glClearStencil() (in module kivy.graphics.opengl)

 	glColorMask() (in module kivy.graphics.opengl)

 	glCompileShader() (in module kivy.graphics.opengl)

 	glCompressedTexImage2D() (in module kivy.graphics.opengl)

 	glCompressedTexSubImage2D() (in module kivy.graphics.opengl)

 	
 	glCopyTexImage2D() (in module kivy.graphics.opengl)

 	glCopyTexSubImage2D() (in module kivy.graphics.opengl)

 	glCreateProgram() (in module kivy.graphics.opengl)

 	glCreateShader() (in module kivy.graphics.opengl)

 	glCullFace() (in module kivy.graphics.opengl)

 	glDeleteBuffers() (in module kivy.graphics.opengl)

 	glDeleteFramebuffers() (in module kivy.graphics.opengl)

 	glDeleteProgram() (in module kivy.graphics.opengl)

 	glDeleteRenderbuffers() (in module kivy.graphics.opengl)

 	glDeleteShader() (in module kivy.graphics.opengl)

 	glDeleteTextures() (in module kivy.graphics.opengl)

 	glDepthFunc() (in module kivy.graphics.opengl)

 	glDepthMask() (in module kivy.graphics.opengl)

 	glDetachShader() (in module kivy.graphics.opengl)

 	glDisable() (in module kivy.graphics.opengl)

 	glDisableVertexAttribArray() (in module kivy.graphics.opengl)

 	glDrawArrays() (in module kivy.graphics.opengl)

 	glDrawElements() (in module kivy.graphics.opengl)

 	glEnable() (in module kivy.graphics.opengl)

 	glEnableVertexAttribArray() (in module kivy.graphics.opengl)

 	glFinish() (in module kivy.graphics.opengl)

 	glFlush() (in module kivy.graphics.opengl)

 	glFramebufferRenderbuffer() (in module kivy.graphics.opengl)

 	glFramebufferTexture2D() (in module kivy.graphics.opengl)

 	glFrontFace() (in module kivy.graphics.opengl)

 	glGenBuffers() (in module kivy.graphics.opengl)

 	glGenerateMipmap() (in module kivy.graphics.opengl)

 	glGenFramebuffers() (in module kivy.graphics.opengl)

 	glGenRenderbuffers() (in module kivy.graphics.opengl)

 	glGenTextures() (in module kivy.graphics.opengl)

 	glGetActiveAttrib() (in module kivy.graphics.opengl)

 	glGetActiveUniform() (in module kivy.graphics.opengl)

 	glGetAttachedShaders() (in module kivy.graphics.opengl)

 	glGetAttribLocation() (in module kivy.graphics.opengl)

 	glGetBooleanv() (in module kivy.graphics.opengl)

 	glGetBufferParameteriv() (in module kivy.graphics.opengl)

 	glGetError() (in module kivy.graphics.opengl)

 	glGetFloatv() (in module kivy.graphics.opengl)

 	glGetFramebufferAttachmentParameteriv() (in module kivy.graphics.opengl)

 	glGetIntegerv() (in module kivy.graphics.opengl)

 	glGetProgramInfoLog() (in module kivy.graphics.opengl)

 	glGetProgramiv() (in module kivy.graphics.opengl)

 	glGetRenderbufferParameteriv() (in module kivy.graphics.opengl)

 	glGetShaderInfoLog() (in module kivy.graphics.opengl)

 	glGetShaderiv() (in module kivy.graphics.opengl)

 	glGetShaderPrecisionFormat() (in module kivy.graphics.opengl)

 	glGetShaderSource() (in module kivy.graphics.opengl)

 	glGetString() (in module kivy.graphics.opengl)

 	glGetTexParameterfv() (in module kivy.graphics.opengl)

 	glGetTexParameteriv() (in module kivy.graphics.opengl)

 	glGetUniformfv() (in module kivy.graphics.opengl)

 	glGetUniformiv() (in module kivy.graphics.opengl)

 	glGetUniformLocation() (in module kivy.graphics.opengl)

 	glGetVertexAttribfv() (in module kivy.graphics.opengl)

 	glGetVertexAttribiv() (in module kivy.graphics.opengl)

 	glGetVertexAttribPointerv() (in module kivy.graphics.opengl)

 	glHint() (in module kivy.graphics.opengl)

 	glIsBuffer() (in module kivy.graphics.opengl)

 	glIsEnabled() (in module kivy.graphics.opengl)

 	glIsFramebuffer() (in module kivy.graphics.opengl)

 	glIsProgram() (in module kivy.graphics.opengl)

 	glIsRenderbuffer() (in module kivy.graphics.opengl)

 	glIsShader() (in module kivy.graphics.opengl)

 	glIsTexture() (in module kivy.graphics.opengl)

 	glLineWidth() (in module kivy.graphics.opengl)

 	glLinkProgram() (in module kivy.graphics.opengl)

 	glPixelStorei() (in module kivy.graphics.opengl)

 	glPolygonOffset() (in module kivy.graphics.opengl)

 	glReadPixels() (in module kivy.graphics.opengl)

 	glReleaseShaderCompiler() (in module kivy.graphics.opengl)

 	glRenderbufferStorage() (in module kivy.graphics.opengl)

 	glSampleCoverage() (in module kivy.graphics.opengl)

 	glScissor() (in module kivy.graphics.opengl)

 	glShaderBinary() (in module kivy.graphics.opengl)

 	glShaderSource() (in module kivy.graphics.opengl)

 	glsl (kivy.uix.effectwidget.EffectBase attribute)

 	glStencilFunc() (in module kivy.graphics.opengl)

 	glStencilFuncSeparate() (in module kivy.graphics.opengl)

 	glStencilMask() (in module kivy.graphics.opengl)

 	glStencilMaskSeparate() (in module kivy.graphics.opengl)

 	glStencilOp() (in module kivy.graphics.opengl)

 	glStencilOpSeparate() (in module kivy.graphics.opengl)

 	glTexImage2D() (in module kivy.graphics.opengl)

 	glTexParameterf() (in module kivy.graphics.opengl)

 	glTexParameterfv() (in module kivy.graphics.opengl)

 	glTexParameteri() (in module kivy.graphics.opengl)

 	glTexParameteriv() (in module kivy.graphics.opengl)

 	glTexSubImage2D() (in module kivy.graphics.opengl)

 	glUniform1f() (in module kivy.graphics.opengl)

 	glUniform1fv() (in module kivy.graphics.opengl)

 	glUniform1i() (in module kivy.graphics.opengl)

 	glUniform1iv() (in module kivy.graphics.opengl)

 	glUniform2f() (in module kivy.graphics.opengl)

 	glUniform2fv() (in module kivy.graphics.opengl)

 	glUniform2i() (in module kivy.graphics.opengl)

 	glUniform2iv() (in module kivy.graphics.opengl)

 	glUniform3f() (in module kivy.graphics.opengl)

 	glUniform3fv() (in module kivy.graphics.opengl)

 	glUniform3i() (in module kivy.graphics.opengl)

 	glUniform3iv() (in module kivy.graphics.opengl)

 	glUniform4f() (in module kivy.graphics.opengl)

 	glUniform4fv() (in module kivy.graphics.opengl)

 	glUniform4i() (in module kivy.graphics.opengl)

 	glUniform4iv() (in module kivy.graphics.opengl)

 	glUniformMatrix2fv() (in module kivy.graphics.opengl)

 	glUniformMatrix3fv() (in module kivy.graphics.opengl)

 	glUniformMatrix4fv() (in module kivy.graphics.opengl)

 	glUseProgram() (in module kivy.graphics.opengl)

 	glValidateProgram() (in module kivy.graphics.opengl)

 	glVertexAttrib1f() (in module kivy.graphics.opengl)

 	glVertexAttrib1fv() (in module kivy.graphics.opengl)

 	glVertexAttrib2f() (in module kivy.graphics.opengl)

 	glVertexAttrib2fv() (in module kivy.graphics.opengl)

 	glVertexAttrib3f() (in module kivy.graphics.opengl)

 	glVertexAttrib3fv() (in module kivy.graphics.opengl)

 	glVertexAttrib4f() (in module kivy.graphics.opengl)

 	glVertexAttrib4fv() (in module kivy.graphics.opengl)

 	glVertexAttribPointer() (in module kivy.graphics.opengl)

 	glViewport() (in module kivy.graphics.opengl)

 	goto() (kivy.uix.rst.RstDocument method)

 	goto_node() (kivy.uix.behaviors.compoundselection.CompoundSelectionBehavior method)

 	(kivy.uix.behaviors.CompoundSelectionBehavior method)

 	(kivy.uix.recycleview.layout.LayoutSelectionBehavior method)

 	goto_view() (kivy.uix.recycleview.layout.RecycleLayoutManagerBehavior method)

 	grab() (kivy.input.MotionEvent method)

 	(kivy.input.motionevent.MotionEvent method)

 	grab_current (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	grab_mouse() (kivy.core.window.WindowBase method)

 	gradients (kivy.graphics.svg.Svg attribute)

 	GraphicException, [1]

 	GridLayout (class in kivy.uix.gridlayout)

 	GridLayoutException

 	group (kivy.graphics.Instruction attribute)

 	(kivy.graphics.instructions.Instruction attribute)

 	(kivy.uix.behaviors.togglebutton.ToggleButtonBehavior attribute)

 	(kivy.uix.behaviors.ToggleButtonBehavior attribute)

H

 	
 	h (kivy.core.text.text_layout.LayoutLine attribute)

 	(kivy.graphics.Color attribute)

 	(kivy.graphics.context_instructions.Color attribute)

 	halign (kivy.uix.label.Label attribute)

 	(kivy.uix.textinput.TextInput attribute)

 	handle_exception() (kivy.base.ExceptionHandler method)

 	(kivy.base.ExceptionManagerBase method)

 	(kivy.clock.CyClockBase method)

 	handle_image_left (kivy.uix.textinput.TextInput attribute)

 	handle_image_middle (kivy.uix.textinput.TextInput attribute)

 	handle_image_right (kivy.uix.textinput.TextInput attribute)

 	handles() (kivy.uix.gesturesurface.GestureContainer method)

 	has_after (kivy.graphics.Canvas attribute)

 	(kivy.graphics.instructions.Canvas attribute)

 	has_before (kivy.graphics.Canvas attribute)

 	(kivy.graphics.instructions.Canvas attribute)

 	has_ended (kivy.clock.CyClockBase attribute)

 	has_screen() (kivy.uix.screenmanager.ScreenManager method)

 	has_started (kivy.clock.CyClockBase attribute)

 	have_properties_to_animate() (kivy.animation.Animation method)

 	
 	hbar (kivy.uix.scrollview.ScrollView attribute)

 	height (kivy.core.image.Image property)

 	(kivy.core.image.ImageData property)

 	(kivy.core.window.WindowBase attribute)

 	(kivy.graphics.svg.Svg attribute)

 	(kivy.graphics.texture.Texture attribute)

 	(kivy.input.shape.ShapeRect attribute)

 	(kivy.uix.widget.Widget attribute)

 	hex_color (kivy.uix.colorpicker.ColorPicker attribute)

 	hide() (kivy.core.window.WindowBase method)

 	hide_keyboard() (kivy.uix.behaviors.focus.FocusBehavior method)

 	(kivy.uix.behaviors.FocusBehavior method)

 	hide_root (kivy.uix.treeview.TreeView attribute)

 	HIDMotionEvent (class in kivy.input.providers.hidinput)

 	highlight_at() (kivy.modules.console.Console method)

 	hint_text (kivy.uix.textinput.TextInput attribute)

 	hint_text_color (kivy.uix.textinput.TextInput attribute)

 	HorizontalBlurEffect (class in kivy.uix.effectwidget)

 	hsv (kivy.graphics.Color attribute)

 	(kivy.graphics.context_instructions.Color attribute)

 	(kivy.uix.colorpicker.ColorPicker attribute)

I

 	
 	icon (kivy.app.App attribute)

 	(kivy.core.window.WindowBase attribute)

 	(kivy.uix.actionbar.ActionButton attribute)

 	(kivy.uix.actionbar.ActionToggleButton attribute)

 	id (kivy.graphics.texture.Texture attribute)

 	(kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	identity() (kivy.graphics.transformation.Matrix method)

 	idle() (kivy.base.EventLoopBase method)

 	(kivy.clock.ClockBaseBehavior method)

 	(kivy.clock.ClockBaseFreeInterruptOnly method)

 	(kivy.clock.ClockBaseInterruptBehavior method)

 	ids (kivy.uix.widget.Widget attribute)

 	ignore_perpendicular_swipes (kivy.uix.carousel.Carousel attribute)

 	ignored_touch (kivy.uix.behaviors.focus.FocusBehavior attribute)

 	(kivy.uix.behaviors.FocusBehavior attribute)

 	Image (class in kivy.core.image)

 	(class in kivy.uix.image)

 	image (kivy.core.image.Image property)

 	image() (kivy.loader.LoaderBase method)

 	image_loading (kivy.uix.videoplayer.VideoPlayer attribute)

 	image_overlay_play (kivy.uix.videoplayer.VideoPlayer attribute)

 	image_pause (kivy.uix.videoplayer.VideoPlayer attribute)

 	image_play (kivy.uix.videoplayer.VideoPlayer attribute)

 	image_ratio (kivy.uix.image.Image attribute)

 	image_stop (kivy.uix.videoplayer.VideoPlayer attribute)

 	image_volumehigh (kivy.uix.videoplayer.VideoPlayer attribute)

 	image_volumelow (kivy.uix.videoplayer.VideoPlayer attribute)

 	image_volumemedium (kivy.uix.videoplayer.VideoPlayer attribute)

 	image_volumemuted (kivy.uix.videoplayer.VideoPlayer attribute)

 	ImageData (class in kivy.core.image)

 	import_gesture() (kivy.multistroke.Recognizer method)

 	important (kivy.uix.actionbar.ActionItem attribute)

 	in_back() (kivy.animation.AnimationTransition static method)

 	in_bbox() (kivy.vector.Vector static method)

 	in_bounce() (kivy.animation.AnimationTransition static method)

 	in_circ() (kivy.animation.AnimationTransition static method)

 	in_cubic() (kivy.animation.AnimationTransition static method)

 	in_elastic() (kivy.animation.AnimationTransition static method)

 	in_expo() (kivy.animation.AnimationTransition static method)

 	in_out_back() (kivy.animation.AnimationTransition static method)

 	in_out_bounce() (kivy.animation.AnimationTransition static method)

 	in_out_circ() (kivy.animation.AnimationTransition static method)

 	in_out_cubic() (kivy.animation.AnimationTransition static method)

 	in_out_elastic() (kivy.animation.AnimationTransition static method)

 	in_out_expo() (kivy.animation.AnimationTransition static method)

 	in_out_quad() (kivy.animation.AnimationTransition static method)

 	in_out_quart() (kivy.animation.AnimationTransition static method)

 	in_out_quint() (kivy.animation.AnimationTransition static method)

 	in_out_sine() (kivy.animation.AnimationTransition static method)

 	in_quad() (kivy.animation.AnimationTransition static method)

 	in_quart() (kivy.animation.AnimationTransition static method)

 	in_quint() (kivy.animation.AnimationTransition static method)

 	in_sine() (kivy.animation.AnimationTransition static method)

 	inch (kivy.metrics.MetricsBase attribute)

 	inch() (in module kivy.metrics)

 	indent_level (kivy.uix.treeview.TreeView attribute)

 	indent_start (kivy.uix.treeview.TreeView attribute)

 	index (kivy.core.camera.CameraBase property)

 	(kivy.uix.camera.Camera attribute)

 	(kivy.uix.carousel.Carousel attribute)

 	(kivy.uix.filechooser.FileChooserProgressBase attribute)

 	indexof() (kivy.graphics.InstructionGroup method)

 	(kivy.graphics.instructions.InstructionGroup method)

 	indices (kivy.graphics.Mesh attribute)

 	(kivy.graphics.vertex_instructions.Mesh attribute)

 	init() (kivy.modules.console.ConsoleAddon method)

 	init_async_lib() (kivy.clock.ClockBaseBehavior method)

 	(kivy.clock.ClockBaseInterruptBehavior method)

 	init_camera() (kivy.core.camera.CameraBase method)

 	init_gesture() (kivy.uix.gesturesurface.GestureSurface method)

 	initial_height (kivy.uix.recyclelayout.RecycleLayout attribute)

 	
 	initial_size (kivy.uix.recyclelayout.RecycleLayout attribute)

 	initial_width (kivy.uix.recyclelayout.RecycleLayout attribute)

 	input_absinfo (class in kivy.lib.mtdev)

 	input_event (class in kivy.lib.mtdev)

 	input_filter (kivy.uix.textinput.TextInput attribute)

 	input_type (kivy.uix.behaviors.focus.FocusBehavior attribute)

 	(kivy.uix.behaviors.FocusBehavior attribute)

 	InputPostprocCalibration (class in kivy.input.postproc.calibration)

 	InputPostprocDejitter (class in kivy.input.postproc.dejitter)

 	InputPostprocDoubleTap (class in kivy.input.postproc.doubletap)

 	InputPostprocIgnoreList (class in kivy.input.postproc.ignorelist)

 	InputPostprocRetainTouch (class in kivy.input.postproc.retaintouch)

 	InputPostprocTripleTap (class in kivy.input.postproc.tripletap)

 	insert() (kivy.graphics.InstructionGroup method)

 	(kivy.graphics.instructions.InstructionGroup method)

 	insert_text() (kivy.uix.textinput.TextInput method)

 	inset (kivy.graphics.BoxShadow attribute)

 	(kivy.graphics.boxshadow.BoxShadow attribute)

 	inside_group (kivy.uix.actionbar.ActionItem attribute)

 	inspect_enabled (kivy.modules.console.Console attribute)

 	install_android() (in module kivy.support)

 	install_gobject_iteration() (in module kivy.support)

 	install_twisted_reactor() (in module kivy.support)

 	Instruction (class in kivy.graphics)

 	(class in kivy.graphics.instructions)

 	InstructionGroup (class in kivy.graphics)

 	(class in kivy.graphics.instructions)

 	InteractiveLauncher (class in kivy.interactive)

 	interface (kivy.uix.settings.Settings attribute)

 	interface_cls (kivy.uix.settings.Settings attribute)

 	InterfaceWithSidebar (class in kivy.uix.settings)

 	interpolate() (in module kivy.utils)

 	intersect() (kivy.graphics.scissor_instructions.Rect method)

 	intersection() (in module kivy.utils)

 	invalidate() (kivy.uix.recycleview.views.RecycleDataAdapter method)

 	inverse() (kivy.graphics.transformation.Matrix method)

 	InvertEffect (class in kivy.uix.effectwidget)

 	is_active (kivy.uix.screenmanager.TransitionBase attribute)

 	is_color_terminal() (in module kivy.logger)

 	is_color_transparent() (in module kivy.utils)

 	is_dead() (kivy.weakmethod.WeakMethod method)

 	is_dir() (kivy.uix.filechooser.FileSystemAbstract method)

 	(kivy.uix.filechooser.FileSystemLocal method)

 	is_double_tap (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	is_event_type() (kivy.event.EventDispatcher method)

 	is_finished (kivy.network.urlrequest.UrlRequestBase property)

 	is_focusable (kivy.uix.behaviors.focus.FocusBehavior attribute)

 	(kivy.uix.behaviors.FocusBehavior attribute)

 	is_hidden() (kivy.uix.filechooser.FileSystemAbstract method)

 	(kivy.uix.filechooser.FileSystemLocal method)

 	is_last_line (kivy.core.text.text_layout.LayoutLine attribute)

 	is_leaf (kivy.uix.treeview.TreeViewNode attribute)

 	is_loaded (kivy.uix.treeview.TreeViewNode attribute)

 	is_manual (kivy.effects.kinetic.KineticEffect attribute)

 	is_mouse_scrolling (kivy.input.MotionEvent property)

 	(kivy.input.motionevent.MotionEvent property)

 	is_open (kivy.uix.actionbar.ActionGroup attribute)

 	(kivy.uix.spinner.Spinner attribute)

 	(kivy.uix.treeview.TreeViewNode attribute)

 	is_selected (kivy.uix.treeview.TreeViewNode attribute)

 	is_shortened (kivy.uix.label.Label attribute)

 	is_touch (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	is_triggered (kivy.clock.ClockEvent attribute)

 	is_triple_tap (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	isclose() (in module kivy.compat)

 	italic (kivy.uix.label.Label attribute)

 	iterate_all_nodes() (kivy.uix.treeview.TreeView method)

 	iterate_mipmaps() (kivy.core.image.ImageData method)

 	iterate_open_nodes() (kivy.uix.treeview.TreeView method)

J

 	
 	joint (kivy.graphics.Line attribute)

 	(kivy.graphics.vertex_instructions.Line attribute)

 	
 	joint_precision (kivy.graphics.Line attribute)

 	(kivy.graphics.vertex_instructions.Line attribute)

 	JsonStore (class in kivy.storage.jsonstore)

K

 	
 	keep_data (kivy.uix.image.Image attribute)

 	keep_ratio (kivy.uix.image.Image attribute)

 	keep_ref (kivy.uix.behaviors.knspace.KNSpace attribute)

 	keep_within_parent (kivy.uix.splitter.Splitter attribute)

 	key (kivy.uix.settings.SettingItem attribute)

 	key_background_color (kivy.uix.vkeyboard.VKeyboard attribute)

 	key_background_down (kivy.uix.vkeyboard.VKeyboard attribute)

 	key_background_normal (kivy.uix.vkeyboard.VKeyboard attribute)

 	key_bindings (kivy.uix.behaviors.emacs.EmacsBehavior attribute)

 	(kivy.uix.behaviors.EmacsBehavior attribute)

 	key_border (kivy.uix.vkeyboard.VKeyboard attribute)

 	key_disabled_background_normal (kivy.uix.vkeyboard.VKeyboard attribute)

 	key_margin (kivy.uix.vkeyboard.VKeyboard attribute)

 	key_pos_hint (kivy.uix.recyclelayout.RecycleLayout attribute)

 	key_selection (kivy.uix.recycleview.layout.LayoutSelectionBehavior attribute)

 	key_size (kivy.uix.recyclelayout.RecycleLayout attribute)

 	key_size_hint (kivy.uix.recyclelayout.RecycleLayout attribute)

 	key_size_hint_max (kivy.uix.recyclelayout.RecycleLayout attribute)

 	key_size_hint_min (kivy.uix.recyclelayout.RecycleLayout attribute)

 	key_viewclass (kivy.uix.recycleview.layout.RecycleLayoutManagerBehavior attribute)

 	(kivy.uix.recycleview.RecycleView attribute)

 	Keyboard (class in kivy.core.window)

 	keyboard (kivy.uix.behaviors.focus.FocusBehavior attribute)

 	(kivy.uix.behaviors.FocusBehavior attribute)

 	keyboard_anim_args (kivy.core.window.WindowBase attribute)

 	keyboard_height (kivy.core.window.WindowBase attribute)

 	keyboard_mode (kivy.uix.behaviors.focus.FocusBehavior attribute)

 	(kivy.uix.behaviors.FocusBehavior attribute)

 	keyboard_on_key_down() (kivy.uix.behaviors.focus.FocusBehavior method)

 	(kivy.uix.behaviors.FocusBehavior method)

 	(kivy.uix.textinput.TextInput method)

 	keyboard_on_key_up() (kivy.uix.behaviors.focus.FocusBehavior method)

 	(kivy.uix.behaviors.FocusBehavior method)

 	(kivy.uix.textinput.TextInput method)

 	keyboard_padding (kivy.core.window.WindowBase attribute)

 	keyboard_select (kivy.uix.behaviors.compoundselection.CompoundSelectionBehavior attribute)

 	(kivy.uix.behaviors.CompoundSelectionBehavior attribute)

 	keyboard_suggestions (kivy.uix.behaviors.focus.FocusBehavior attribute)

 	(kivy.uix.behaviors.FocusBehavior attribute)

 	keycode_to_string() (kivy.core.window.Keyboard method)

 	keys() (kivy.storage.AbstractStore method)

 	KineticEffect (class in kivy.effects.kinetic)

 	
 kivy

 	module

 	
 kivy.animation

 	module

 	
 kivy.app

 	module

 	
 kivy.atlas

 	module

 	
 kivy.base

 	module

 	
 kivy.cache

 	module

 	
 kivy.clock

 	module

 	
 kivy.compat

 	module

 	
 kivy.config

 	module

 	
 kivy.context

 	module

 	
 kivy.core

 	module

 	
 kivy.core.audio

 	module

 	
 kivy.core.camera

 	module

 	
 kivy.core.clipboard

 	module

 	
 kivy.core.gl

 	module

 	
 kivy.core.image

 	module

 	
 kivy.core.spelling

 	module

 	
 kivy.core.text

 	module

 	
 kivy.core.text.markup

 	module

 	
 kivy.core.text.text_layout

 	module

 	
 kivy.core.video

 	module

 	
 kivy.core.window

 	module

 	
 kivy.deps

 	module

 	
 kivy.effects

 	module

 	
 kivy.effects.dampedscroll

 	module

 	
 kivy.effects.kinetic

 	module

 	
 kivy.effects.opacityscroll

 	module

 	
 kivy.effects.scroll

 	module

 	
 kivy.event

 	module

 	
 kivy.eventmanager

 	module

 	
 kivy.factory

 	module

 	
 kivy.garden

 	module

 	
 kivy.geometry

 	module

 	
 kivy.gesture

 	module

 	
 kivy.graphics

 	module

 	
 kivy.graphics.boxshadow

 	module

 	
 kivy.graphics.cgl

 	module

 	
 kivy.graphics.compiler

 	module

 	
 kivy.graphics.context

 	module

 	
 kivy.graphics.context_instructions

 	module

 	
 kivy.graphics.fbo

 	module

 	
 kivy.graphics.gl_instructions

 	module

 	
 kivy.graphics.instructions

 	module

 	
 kivy.graphics.opengl

 	module

 	
 kivy.graphics.opengl_utils

 	module

 	
 kivy.graphics.scissor_instructions

 	module

 	
 kivy.graphics.shader

 	module

 	
 kivy.graphics.stencil_instructions

 	module

 	
 kivy.graphics.svg

 	module

 	
 kivy.graphics.tesselator

 	module

 	
 kivy.graphics.texture

 	module

 	
 kivy.graphics.transformation

 	module

 	
 kivy.graphics.vertex_instructions

 	module

 	
 kivy.input

 	module

 	
 kivy.input.factory

 	module

 	
 kivy.input.motionevent

 	module

 	
 kivy.input.postproc

 	module

 	
 kivy.input.postproc.calibration

 	module

 	
 kivy.input.postproc.dejitter

 	module

 	
 kivy.input.postproc.doubletap

 	module

 	
 kivy.input.postproc.ignorelist

 	module

 	
 kivy.input.postproc.retaintouch

 	module

 	
 kivy.input.postproc.tripletap

 	module

 	
 kivy.input.provider

 	module

 	
 kivy.input.providers

 	module

 	
 kivy.input.providers.androidjoystick

 	module

 	
 kivy.input.providers.hidinput

 	module

 	
 kivy.input.providers.leapfinger

 	module

 	
 kivy.input.providers.linuxwacom

 	module

 	
 kivy.input.providers.mactouch

 	module

 	
 kivy.input.providers.mouse

 	module

 	
 kivy.input.providers.mtdev

 	module

 	
 kivy.input.providers.probesysfs

 	module

 	
 kivy.input.providers.tuio

 	module

 	
 kivy.input.providers.wm_common

 	module

 	
 kivy.input.recorder

 	module

 	
 kivy.input.shape

 	module

 	
 kivy.interactive

 	module

 	
 kivy.lang

 	module

 	
 kivy.lang.builder

 	module

 	
 kivy.lang.parser

 	module

 	
 kivy.lib

 	module

 	
 kivy.lib.ddsfile

 	module

 	
 kivy.lib.gstplayer

 	module

 	
 kivy.lib.mtdev

 	module

 	
 	
 kivy.loader

 	module

 	
 kivy.logger

 	module

 	
 kivy.metrics

 	module

 	
 kivy.modules

 	module

 	
 kivy.modules.console

 	module

 	
 kivy.modules.inspector

 	module

 	
 kivy.modules.joycursor

 	module

 	
 kivy.modules.keybinding

 	module

 	
 kivy.modules.monitor

 	module

 	
 kivy.modules.recorder

 	module

 	
 kivy.modules.screen

 	module

 	
 kivy.modules.touchring

 	module

 	
 kivy.modules.webdebugger

 	module

 	
 kivy.multistroke

 	module

 	
 kivy.network

 	module

 	
 kivy.network.urlrequest

 	module

 	
 kivy.parser

 	module

 	
 kivy.properties

 	module

 	
 kivy.resources

 	module

 	
 kivy.storage

 	module

 	
 kivy.storage.dictstore

 	module

 	
 kivy.storage.jsonstore

 	module

 	
 kivy.storage.redisstore

 	module

 	
 kivy.support

 	module

 	
 kivy.tools

 	module

 	
 kivy.tools.packaging

 	module

 	
 kivy.uix

 	module

 	
 kivy.uix.accordion

 	module

 	
 kivy.uix.actionbar

 	module

 	
 kivy.uix.anchorlayout

 	module

 	
 kivy.uix.behaviors

 	module

 	
 kivy.uix.behaviors.button

 	module

 	
 kivy.uix.behaviors.codenavigation

 	module

 	
 kivy.uix.behaviors.compoundselection

 	module

 	
 kivy.uix.behaviors.cover

 	module

 	
 kivy.uix.behaviors.drag

 	module

 	
 kivy.uix.behaviors.emacs

 	module

 	
 kivy.uix.behaviors.focus

 	module

 	
 kivy.uix.behaviors.knspace

 	module

 	
 kivy.uix.behaviors.togglebutton

 	module

 	
 kivy.uix.behaviors.touchripple

 	module

 	
 kivy.uix.boxlayout

 	module

 	
 kivy.uix.bubble

 	module

 	
 kivy.uix.button

 	module

 	
 kivy.uix.camera

 	module

 	
 kivy.uix.carousel

 	module

 	
 kivy.uix.checkbox

 	module

 	
 kivy.uix.codeinput

 	module

 	
 kivy.uix.colorpicker

 	module

 	
 kivy.uix.dropdown

 	module

 	
 kivy.uix.effectwidget

 	module

 	
 kivy.uix.filechooser

 	module

 	
 kivy.uix.floatlayout

 	module

 	
 kivy.uix.gesturesurface

 	module

 	
 kivy.uix.gridlayout

 	module

 	
 kivy.uix.image

 	module

 	
 kivy.uix.label

 	module

 	
 kivy.uix.layout

 	module

 	
 kivy.uix.modalview

 	module

 	
 kivy.uix.pagelayout

 	module

 	
 kivy.uix.popup

 	module

 	
 kivy.uix.progressbar

 	module

 	
 kivy.uix.recycleboxlayout

 	module

 	
 kivy.uix.recyclegridlayout

 	module

 	
 kivy.uix.recyclelayout

 	module

 	
 kivy.uix.recycleview

 	module

 	
 kivy.uix.recycleview.datamodel

 	module

 	
 kivy.uix.recycleview.layout

 	module

 	
 kivy.uix.recycleview.views

 	module

 	
 kivy.uix.relativelayout

 	module

 	
 kivy.uix.rst

 	module

 	
 kivy.uix.sandbox

 	module

 	
 kivy.uix.scatter

 	module

 	
 kivy.uix.scatterlayout

 	module

 	
 kivy.uix.screenmanager

 	module

 	
 kivy.uix.scrollview

 	module

 	
 kivy.uix.settings

 	module

 	
 kivy.uix.slider

 	module

 	
 kivy.uix.spinner

 	module

 	
 kivy.uix.splitter

 	module

 	
 kivy.uix.stacklayout

 	module

 	
 kivy.uix.stencilview

 	module

 	
 kivy.uix.switch

 	module

 	
 kivy.uix.tabbedpanel

 	module

 	
 kivy.uix.textinput

 	module

 	
 kivy.uix.togglebutton

 	module

 	
 kivy.uix.treeview

 	module

 	
 kivy.uix.video

 	module

 	
 kivy.uix.videoplayer

 	module

 	
 kivy.uix.vkeyboard

 	module

 	
 kivy.uix.widget

 	module

 	
 kivy.utils

 	module

 	
 kivy.vector

 	module

 	
 kivy.weakmethod

 	module

 	
 kivy.weakproxy

 	module

 	kivy_base_dir (in module kivy)

 	kivy_config_fn (in module kivy)

 	kivy_configure() (in module kivy)

 	kivy_data_dir (in module kivy)

 	kivy_examples_dir (in module kivy)

 	kivy_home_dir (in module kivy)

 	kivy_icons_dir (in module kivy)

 	kivy_options (in module kivy)

 	kivy_register_post_configuration() (in module kivy)

 	kivy_shader_dir (in module kivy)

 	kivy_usermodules_dir (in module kivy)

 	KivyFormatter (class in kivy.logger)

 	knsname (kivy.uix.behaviors.knspace.KNSpaceBehavior attribute)

 	KNSpace (class in kivy.uix.behaviors.knspace)

 	knspace (in module kivy.uix.behaviors.knspace)

 	(kivy.uix.behaviors.knspace.KNSpaceBehavior attribute)

 	knspace_key (kivy.uix.behaviors.knspace.KNSpaceBehavior attribute)

 	KNSpaceBehavior (class in kivy.uix.behaviors.knspace)

 	kv_directory (kivy.app.App attribute)

 	kv_file (kivy.app.App attribute)

L

 	
 	Label (class in kivy.uix.label)

 	label (kivy.core.text.LabelBase property)

 	LabelBase (class in kivy.core.text)

 	last_touch (kivy.uix.behaviors.button.ButtonBehavior attribute)

 	(kivy.uix.behaviors.ButtonBehavior attribute)

 	(kivy.uix.behaviors.touchripple.TouchRippleButtonBehavior attribute)

 	(kivy.uix.behaviors.TouchRippleButtonBehavior attribute)

 	Layout (class in kivy.uix.layout)

 	layout (kivy.uix.filechooser.FileChooserController attribute)

 	(kivy.uix.vkeyboard.VKeyboard attribute)

 	layout_hint_with_bounds() (kivy.uix.layout.Layout method)

 	layout_manager (kivy.uix.recycleview.RecycleViewBehavior attribute)

 	layout_path (kivy.uix.vkeyboard.VKeyboard attribute)

 	layout_text() (in module kivy.core.text.text_layout)

 	LayoutChangeException

 	LayoutLine (class in kivy.core.text.text_layout)

 	LayoutSelectionBehavior (class in kivy.uix.recycleview.layout)

 	LayoutWord (class in kivy.core.text.text_layout)

 	LeapFingerEvent (class in kivy.input.providers.leapfinger)

 	LeapFingerEventProvider (class in kivy.input.providers.leapfinger)

 	left (kivy.core.window.WindowBase attribute)

 	length (kivy.core.audio.Sound property)

 	(kivy.properties.VariableListProperty attribute)

 	length() (kivy.graphics.InstructionGroup method)

 	(kivy.graphics.instructions.InstructionGroup method)

 	(kivy.vector.Vector method)

 	length2() (kivy.vector.Vector method)

 	level (kivy.uix.treeview.TreeViewNode attribute)

 	lexer (kivy.uix.codeinput.CodeInput attribute)

 	lh (kivy.core.text.text_layout.LayoutWord attribute)

 	limit_to (kivy.uix.bubble.Bubble attribute)

 	Line (class in kivy.graphics)

 	(class in kivy.graphics.vertex_instructions)

 	line_height (kivy.uix.label.Label attribute)

 	(kivy.uix.textinput.TextInput attribute)

 	line_intersection() (kivy.vector.Vector static method)

 	line_spacing (kivy.uix.textinput.TextInput attribute)

 	line_wrap (kivy.core.text.text_layout.LayoutLine attribute)

 	linear() (kivy.animation.AnimationTransition static method)

 	lines_to_scroll (kivy.uix.textinput.TextInput attribute)

 	link() (kivy.properties.DictProperty method)

 	(kivy.properties.ListProperty method)

 	(kivy.properties.Property method)

 	(kivy.properties.ReferenceListProperty method)

 	(kivy.properties.VariableListProperty method)

 	
 	link_deps() (kivy.properties.AliasProperty method)

 	(kivy.properties.ConfigParserProperty method)

 	(kivy.properties.Property method)

 	(kivy.properties.ReferenceListProperty method)

 	link_eagerly() (kivy.properties.AliasProperty method)

 	(kivy.properties.Property method)

 	LinuxWacomMotionEvent (class in kivy.input.providers.linuxwacom)

 	list() (kivy.input.factory.MotionEventFactory static method)

 	(kivy.input.MotionEventFactory static method)

 	list_languages() (kivy.core.spelling.SpellingBase method)

 	listdir() (kivy.uix.filechooser.FileSystemAbstract method)

 	(kivy.uix.filechooser.FileSystemLocal method)

 	ListProperty (class in kivy.properties)

 	load() (kivy.core.audio.Sound method)

 	(kivy.core.audio.SoundLoader static method)

 	(kivy.core.image.Image static method)

 	(kivy.core.video.VideoBase method)

 	load_config() (kivy.app.App method)

 	load_file() (kivy.lang.builder.BuilderBase method)

 	(kivy.lang.BuilderBase method)

 	load_func (kivy.uix.treeview.TreeView attribute)

 	load_kv() (kivy.app.App method)

 	load_memory() (kivy.core.image.Image method)

 	load_next() (kivy.uix.carousel.Carousel method)

 	load_previous() (kivy.uix.carousel.Carousel method)

 	load_slide() (kivy.uix.carousel.Carousel method)

 	load_string() (kivy.lang.builder.BuilderBase method)

 	(kivy.lang.BuilderBase method)

 	loaded (kivy.uix.video.Video attribute)

 	LoaderBase (class in kivy.loader)

 	LoadIdentity (class in kivy.graphics)

 	loading_image (kivy.loader.LoaderBase property)

 	LoggerHistory (class in kivy.logger)

 	look_at() (kivy.graphics.transformation.Matrix method)

 	loop (kivy.clock.ClockEvent attribute)

 	(kivy.core.audio.Sound attribute)

 	(kivy.uix.carousel.Carousel attribute)

 	lw (kivy.core.text.text_layout.LayoutWord attribute)

M

 	
 	MacMotionEventProvider (class in kivy.input.providers.mactouch)

 	mag_filter (kivy.graphics.texture.Texture attribute)

 	mainloop() (kivy.core.window.WindowBase method)

 	mainthread() (in module kivy.clock)

 	make_view_dirty() (kivy.uix.recycleview.views.RecycleDataAdapter method)

 	make_views_dirty() (kivy.uix.recycleview.views.RecycleDataAdapter method)

 	managed_textinput (kivy.core.window.WindowBase attribute)

 	manager (kivy.uix.filechooser.FileChooser attribute)

 	(kivy.uix.screenmanager.Screen attribute)

 	(kivy.uix.screenmanager.TransitionBase attribute)

 	margin_hint (kivy.uix.vkeyboard.VKeyboard attribute)

 	markup (kivy.core.text.markup.MarkupLabel property)

 	(kivy.uix.actionbar.ActionPrevious attribute)

 	(kivy.uix.label.Label attribute)

 	MarkupLabel (class in kivy.core.text.markup)

 	match() (kivy.lang.builder.BuilderBase method)

 	(kivy.lang.BuilderBase method)

 	match_candidate() (kivy.multistroke.MultistrokeGesture method)

 	match_rule_name() (kivy.lang.builder.BuilderBase method)

 	(kivy.lang.BuilderBase method)

 	Matrix (class in kivy.graphics.transformation)

 	matrix (kivy.graphics.context_instructions.MatrixInstruction attribute)

 	(kivy.graphics.MatrixInstruction attribute)

 	MatrixInstruction (class in kivy.graphics)

 	(class in kivy.graphics.context_instructions)

 	max (kivy.effects.scroll.ScrollEffect attribute)

 	(kivy.uix.progressbar.ProgressBar attribute)

 	(kivy.uix.slider.Slider attribute)

 	max_height (kivy.uix.dropdown.DropDown attribute)

 	max_history (kivy.effects.kinetic.KineticEffect attribute)

 	max_iteration (kivy.clock.CyClockBase attribute)

 	max_lines (kivy.uix.label.Label attribute)

 	max_size (kivy.uix.splitter.Splitter attribute)

 	max_upload_per_frame (kivy.loader.LoaderBase property)

 	maximize() (kivy.core.window.WindowBase method)

 	menu (kivy.uix.settings.InterfaceWithSidebar attribute)

 	MenuSidebar (class in kivy.uix.settings)

 	merge_gestures() (kivy.uix.gesturesurface.GestureSurface method)

 	Mesh (class in kivy.graphics)

 	(class in kivy.graphics.vertex_instructions)

 	meshes (kivy.graphics.tesselator.Tesselator attribute)

 	Metrics (in module kivy.metrics)

 	MetricsBase (class in kivy.metrics)

 	min (kivy.effects.scroll.ScrollEffect attribute)

 	(kivy.uix.slider.Slider attribute)

 	min_distance (kivy.effects.kinetic.KineticEffect attribute)

 	min_filter (kivy.graphics.texture.Texture attribute)

 	min_move (kivy.uix.carousel.Carousel attribute)

 	min_overscroll (kivy.effects.dampedscroll.DampedScrollEffect attribute)

 	min_size (kivy.uix.splitter.Splitter attribute)

 	MIN_SLEEP (kivy.clock.ClockBaseBehavior attribute)

 	min_space (kivy.uix.accordion.Accordion attribute)

 	(kivy.uix.accordion.AccordionItem attribute)

 	min_state_time (kivy.uix.behaviors.button.ButtonBehavior attribute)

 	(kivy.uix.behaviors.ButtonBehavior attribute)

 	(kivy.uix.dropdown.DropDown attribute)

 	min_velocity (kivy.effects.kinetic.KineticEffect attribute)

 	minimize() (kivy.core.window.WindowBase method)

 	minimum_bounding_circle() (in module kivy.geometry)

 	minimum_height (kivy.core.window.WindowBase attribute)

 	(kivy.uix.boxlayout.BoxLayout attribute)

 	(kivy.uix.gridlayout.GridLayout attribute)

 	(kivy.uix.stacklayout.StackLayout attribute)

 	(kivy.uix.textinput.TextInput attribute)

 	(kivy.uix.treeview.TreeView attribute)

 	minimum_size (kivy.uix.boxlayout.BoxLayout attribute)

 	(kivy.uix.gridlayout.GridLayout attribute)

 	(kivy.uix.stacklayout.StackLayout attribute)

 	(kivy.uix.treeview.TreeView attribute)

 	minimum_width (kivy.core.window.WindowBase attribute)

 	(kivy.uix.actionbar.ActionItem attribute)

 	(kivy.uix.boxlayout.BoxLayout attribute)

 	(kivy.uix.gridlayout.GridLayout attribute)

 	(kivy.uix.stacklayout.StackLayout attribute)

 	(kivy.uix.treeview.TreeView attribute)

 	mipmap (kivy.graphics.texture.Texture attribute)

 	(kivy.uix.actionbar.ActionItem attribute)

 	(kivy.uix.image.Image attribute)

 	(kivy.uix.label.Label attribute)

 	mipmaps (kivy.core.image.ImageData attribute)

 	mm (kivy.metrics.MetricsBase attribute)

 	mm() (in module kivy.metrics)

 	ModalView (class in kivy.uix.modalview)

 	mode (kivy.graphics.Mesh attribute)

 	(kivy.graphics.vertex_instructions.Mesh attribute)

 	(kivy.modules.console.Console attribute)

 	(kivy.uix.actionbar.ActionGroup attribute)

 	(kivy.uix.screenmanager.CardTransition attribute)

 	MODE_DEFAULT_DISPATCH (in module kivy.eventmanager)

 	MODE_DONT_DISPATCH (in module kivy.eventmanager)

 	MODE_FILTERED_DISPATCH (in module kivy.eventmanager)

 	modifiers (kivy.core.window.WindowBase attribute)

 	
 module

 	kivy

 	kivy.animation

 	kivy.app

 	kivy.atlas

 	kivy.base

 	kivy.cache

 	kivy.clock

 	kivy.compat

 	kivy.config

 	kivy.context

 	kivy.core

 	kivy.core.audio

 	kivy.core.camera

 	kivy.core.clipboard

 	kivy.core.gl

 	kivy.core.image

 	kivy.core.spelling

 	kivy.core.text

 	kivy.core.text.markup

 	kivy.core.text.text_layout

 	kivy.core.video

 	kivy.core.window

 	kivy.deps

 	kivy.effects

 	kivy.effects.dampedscroll

 	kivy.effects.kinetic

 	kivy.effects.opacityscroll

 	kivy.effects.scroll

 	kivy.event

 	kivy.eventmanager

 	kivy.factory

 	kivy.garden

 	kivy.geometry

 	kivy.gesture

 	kivy.graphics

 	kivy.graphics.boxshadow

 	kivy.graphics.cgl

 	kivy.graphics.compiler

 	kivy.graphics.context

 	kivy.graphics.context_instructions

 	kivy.graphics.fbo

 	kivy.graphics.gl_instructions

 	kivy.graphics.instructions

 	kivy.graphics.opengl

 	kivy.graphics.opengl_utils

 	kivy.graphics.scissor_instructions

 	kivy.graphics.shader

 	kivy.graphics.stencil_instructions

 	kivy.graphics.svg

 	kivy.graphics.tesselator

 	kivy.graphics.texture

 	kivy.graphics.transformation

 	kivy.graphics.vertex_instructions

 	kivy.input

 	kivy.input.factory

 	kivy.input.motionevent

 	kivy.input.postproc

 	kivy.input.postproc.calibration

 	kivy.input.postproc.dejitter

 	kivy.input.postproc.doubletap

 	kivy.input.postproc.ignorelist

 	kivy.input.postproc.retaintouch

 	kivy.input.postproc.tripletap

 	kivy.input.provider

 	kivy.input.providers

 	kivy.input.providers.androidjoystick

 	kivy.input.providers.hidinput

 	kivy.input.providers.leapfinger

 	kivy.input.providers.linuxwacom

 	kivy.input.providers.mactouch

 	kivy.input.providers.mouse

 	kivy.input.providers.mtdev

 	kivy.input.providers.probesysfs

 	kivy.input.providers.tuio

 	kivy.input.providers.wm_common

 	kivy.input.recorder

 	kivy.input.shape

 	kivy.interactive

 	kivy.lang

 	kivy.lang.builder

 	kivy.lang.parser

 	kivy.lib

 	kivy.lib.ddsfile

 	kivy.lib.gstplayer

 	kivy.lib.mtdev

 	kivy.loader

 	kivy.logger

 	kivy.metrics

 	kivy.modules

 	kivy.modules.console

 	kivy.modules.inspector

 	kivy.modules.joycursor

 	kivy.modules.keybinding

 	kivy.modules.monitor

 	kivy.modules.recorder

 	kivy.modules.screen

 	kivy.modules.touchring

 	kivy.modules.webdebugger

 	kivy.multistroke

 	kivy.network

 	kivy.network.urlrequest

 	kivy.parser

 	kivy.properties

 	kivy.resources

 	kivy.storage

 	kivy.storage.dictstore

 	kivy.storage.jsonstore

 	kivy.storage.redisstore

 	kivy.support

 	kivy.tools

 	kivy.tools.packaging

 	kivy.uix

 	kivy.uix.accordion

 	kivy.uix.actionbar

 	kivy.uix.anchorlayout

 	kivy.uix.behaviors

 	kivy.uix.behaviors.button

 	kivy.uix.behaviors.codenavigation

 	kivy.uix.behaviors.compoundselection

 	kivy.uix.behaviors.cover

 	kivy.uix.behaviors.drag

 	kivy.uix.behaviors.emacs

 	kivy.uix.behaviors.focus

 	kivy.uix.behaviors.knspace

 	kivy.uix.behaviors.togglebutton

 	kivy.uix.behaviors.touchripple

 	kivy.uix.boxlayout

 	kivy.uix.bubble

 	kivy.uix.button

 	kivy.uix.camera

 	kivy.uix.carousel

 	kivy.uix.checkbox

 	kivy.uix.codeinput

 	kivy.uix.colorpicker

 	kivy.uix.dropdown

 	kivy.uix.effectwidget

 	kivy.uix.filechooser

 	kivy.uix.floatlayout

 	kivy.uix.gesturesurface

 	kivy.uix.gridlayout

 	kivy.uix.image

 	kivy.uix.label

 	kivy.uix.layout

 	kivy.uix.modalview

 	kivy.uix.pagelayout

 	kivy.uix.popup

 	kivy.uix.progressbar

 	kivy.uix.recycleboxlayout

 	kivy.uix.recyclegridlayout

 	kivy.uix.recyclelayout

 	kivy.uix.recycleview

 	kivy.uix.recycleview.datamodel

 	kivy.uix.recycleview.layout

 	kivy.uix.recycleview.views

 	kivy.uix.relativelayout

 	kivy.uix.rst

 	kivy.uix.sandbox

 	kivy.uix.scatter

 	kivy.uix.scatterlayout

 	kivy.uix.screenmanager

 	kivy.uix.scrollview

 	kivy.uix.settings

 	kivy.uix.slider

 	kivy.uix.spinner

 	kivy.uix.splitter

 	kivy.uix.stacklayout

 	kivy.uix.stencilview

 	kivy.uix.switch

 	kivy.uix.tabbedpanel

 	kivy.uix.textinput

 	kivy.uix.togglebutton

 	kivy.uix.treeview

 	kivy.uix.video

 	kivy.uix.videoplayer

 	kivy.uix.vkeyboard

 	kivy.uix.widget

 	kivy.utils

 	kivy.vector

 	kivy.weakmethod

 	kivy.weakproxy

 	
 	MonochromeEffect (class in kivy.uix.effectwidget)

 	motion_filter (kivy.uix.widget.Widget attribute)

 	MotionEvent (class in kivy.input)

 	(class in kivy.input.motionevent)

 	MotionEventFactory (class in kivy.input)

 	(class in kivy.input.factory)

 	MotionEventProvider (class in kivy.input)

 	(class in kivy.input.provider)

 	mouse_pos (kivy.core.window.WindowBase attribute)

 	MouseMotionEventProvider (class in kivy.input.providers.mouse)

 	move() (kivy.input.MotionEvent method)

 	(kivy.input.motionevent.MotionEvent method)

 	mtdev (class in kivy.lib.mtdev)

 	mtdev_caps (class in kivy.lib.mtdev)

 	MTDMotionEvent (class in kivy.input.providers.mtdev)

 	multiline (kivy.uix.textinput.TextInput attribute)

 	multiply() (kivy.graphics.transformation.Matrix method)

 	multiselect (kivy.uix.behaviors.compoundselection.CompoundSelectionBehavior attribute)

 	(kivy.uix.behaviors.CompoundSelectionBehavior attribute)

 	(kivy.uix.filechooser.FileChooserController attribute)

 	MultistrokeGesture (class in kivy.multistroke)

N

 	
 	name (kivy.app.App property)

 	(kivy.config.ConfigParser property)

 	(kivy.uix.screenmanager.Screen attribute)

 	next (kivy.clock.ClockEvent attribute)

 	next() (kivy.uix.screenmanager.ScreenManager method)

 	next_slide (kivy.uix.carousel.Carousel attribute)

 	no_selection (kivy.uix.treeview.TreeViewNode attribute)

 	nocache (kivy.core.image.Image property)

 	(kivy.uix.image.Image attribute)

 	nodes (kivy.uix.treeview.TreeViewNode attribute)

 	nodes_order_reversed (kivy.uix.behaviors.compoundselection.CompoundSelectionBehavior attribute)

 	(kivy.uix.behaviors.CompoundSelectionBehavior attribute)

 	
 	NoLanguageSelectedError

 	norm_image_size (kivy.uix.image.Image attribute)

 	normal_matrix() (kivy.graphics.transformation.Matrix method)

 	normalize() (kivy.gesture.Gesture method)

 	(kivy.vector.Vector method)

 	normalize_stroke() (kivy.gesture.GestureStroke method)

 	NoSuchLangError

 	NoTransition (class in kivy.uix.screenmanager)

 	num_workers (kivy.loader.LoaderBase property)

 	NumericProperty (class in kivy.properties)

O

 	
 	ObjectProperty (class in kivy.properties)

 	ObjectWithUid (class in kivy.event)

 	Observable (class in kivy.event)

 	(class in kivy.lang)

 	(class in kivy.lang.builder)

 	observable_dict (kivy.uix.recycleview.datamodel.RecycleDataModel property)

 	odd (kivy.uix.treeview.TreeViewNode attribute)

 	odd_color (kivy.uix.treeview.TreeViewNode attribute)

 	offset (kivy.graphics.BoxShadow attribute)

 	(kivy.graphics.boxshadow.BoxShadow attribute)

 	on__anim_alpha() (kivy.uix.modalview.ModalView method)

 	on_bring_to_front() (kivy.uix.scatter.Scatter method)

 	on_close() (kivy.core.window.WindowBase method)

 	on_config_change() (kivy.app.App method)

 	on_context_created() (kivy.uix.sandbox.Sandbox method)

 	on_current_uid() (kivy.uix.settings.ContentPanel method)

 	on_cursor() (kivy.uix.textinput.TextInput method)

 	on_cursor_blink() (kivy.uix.textinput.TextInput method)

 	on_cursor_enter() (kivy.core.window.WindowBase method)

 	on_cursor_leave() (kivy.core.window.WindowBase method)

 	on_dismiss() (kivy.uix.modalview.ModalView method)

 	on_double_tap() (kivy.uix.textinput.TextInput method)

 	on_drop_begin() (kivy.core.window.WindowBase method)

 	on_drop_end() (kivy.core.window.WindowBase method)

 	on_drop_file() (kivy.core.window.WindowBase method)

 	on_drop_text() (kivy.core.window.WindowBase method)

 	on_exception() (kivy.uix.sandbox.Sandbox method)

 	on_flip() (kivy.core.window.WindowBase method)

 	on_hide() (kivy.core.window.WindowBase method)

 	on_joy_axis() (kivy.core.window.WindowBase method)

 	on_joy_ball() (kivy.core.window.WindowBase method)

 	on_joy_button_down() (kivy.core.window.WindowBase method)

 	on_joy_button_up() (kivy.core.window.WindowBase method)

 	on_joy_hat() (kivy.core.window.WindowBase method)

 	on_key_down() (kivy.core.window.WindowBase method)

 	on_key_up() (kivy.core.window.WindowBase method)

 	on_keyboard() (kivy.core.window.WindowBase method)

 	on_maximize() (kivy.core.window.WindowBase method)

 	on_memorywarning() (kivy.core.window.WindowBase method)

 	on_minimize() (kivy.core.window.WindowBase method)

 	on_motion() (kivy.core.window.WindowBase method)

 	(kivy.uix.dropdown.DropDown method)

 	(kivy.uix.modalview.ModalView method)

 	(kivy.uix.relativelayout.RelativeLayout method)

 	(kivy.uix.sandbox.Sandbox method)

 	(kivy.uix.scatter.Scatter method)

 	(kivy.uix.screenmanager.ScreenManager method)

 	(kivy.uix.scrollview.ScrollView method)

 	(kivy.uix.widget.Widget method)

 	on_mouse_down() (kivy.core.window.WindowBase method)

 	on_mouse_move() (kivy.core.window.WindowBase method)

 	on_mouse_up() (kivy.core.window.WindowBase method)

 	on_open() (kivy.uix.modalview.ModalView method)

 	on_pause() (kivy.app.App method)

 	(kivy.base.EventLoopBase method)

 	on_pre_dismiss() (kivy.uix.modalview.ModalView method)

 	on_pre_open() (kivy.uix.modalview.ModalView method)

 	on_quad_touch() (kivy.uix.textinput.TextInput method)

 	on_request_close() (kivy.core.window.WindowBase method)

 	on_resize() (kivy.core.window.WindowBase method)

 	on_restore() (kivy.core.window.WindowBase method)

 	on_resume() (kivy.app.App method)

 	on_rotate() (kivy.core.window.WindowBase method)

 	on_schedule() (kivy.clock.CyClockBase method)

 	on_selected_uid() (kivy.uix.settings.MenuSidebar method)

 	on_show() (kivy.core.window.WindowBase method)

 	on_start() (kivy.app.App method)

 	(kivy.base.EventLoopBase method)

 	on_stop() (kivy.app.App method)

 	(kivy.base.EventLoopBase method)

 	on_textedit() (kivy.core.window.WindowBase method)

 	on_textinput() (kivy.core.window.WindowBase method)

 	on_texture() (kivy.core.image.Image method)

 	on_touch_down() (kivy.core.window.WindowBase method)

 	(kivy.modules.console.Console method)

 	(kivy.uix.accordion.AccordionItem method)

 	(kivy.uix.carousel.Carousel method)

 	(kivy.uix.colorpicker.ColorWheel method)

 	(kivy.uix.dropdown.DropDown method)

 	(kivy.uix.filechooser.FileChooserController method)

 	(kivy.uix.filechooser.FileChooserProgressBase method)

 	(kivy.uix.gesturesurface.GestureSurface method)

 	(kivy.uix.label.Label method)

 	(kivy.uix.modalview.ModalView method)

 	(kivy.uix.pagelayout.PageLayout method)

 	(kivy.uix.popup.Popup method)

 	(kivy.uix.relativelayout.RelativeLayout method)

 	(kivy.uix.sandbox.Sandbox method)

 	(kivy.uix.scatter.Scatter method)

 	(kivy.uix.screenmanager.ScreenManager method)

 	(kivy.uix.scrollview.ScrollView method)

 	(kivy.uix.settings.SettingItem method)

 	(kivy.uix.settings.Settings method)

 	(kivy.uix.slider.Slider method)

 	(kivy.uix.switch.Switch method)

 	(kivy.uix.tabbedpanel.TabbedPanelHeader method)

 	(kivy.uix.textinput.TextInput method)

 	(kivy.uix.treeview.TreeView method)

 	(kivy.uix.videoplayer.VideoPlayer method)

 	(kivy.uix.vkeyboard.VKeyboard method)

 	(kivy.uix.widget.Widget method)

 	
 	on_touch_move() (kivy.core.window.WindowBase method)

 	(kivy.modules.console.Console method)

 	(kivy.uix.carousel.Carousel method)

 	(kivy.uix.colorpicker.ColorWheel method)

 	(kivy.uix.dropdown.DropDown method)

 	(kivy.uix.filechooser.FileChooserProgressBase method)

 	(kivy.uix.gesturesurface.GestureSurface method)

 	(kivy.uix.modalview.ModalView method)

 	(kivy.uix.pagelayout.PageLayout method)

 	(kivy.uix.relativelayout.RelativeLayout method)

 	(kivy.uix.sandbox.Sandbox method)

 	(kivy.uix.scatter.Scatter method)

 	(kivy.uix.screenmanager.ScreenManager method)

 	(kivy.uix.scrollview.ScrollView method)

 	(kivy.uix.slider.Slider method)

 	(kivy.uix.switch.Switch method)

 	(kivy.uix.textinput.TextInput method)

 	(kivy.uix.widget.Widget method)

 	on_touch_up() (kivy.core.window.WindowBase method)

 	(kivy.modules.console.Console method)

 	(kivy.uix.carousel.Carousel method)

 	(kivy.uix.colorpicker.ColorWheel method)

 	(kivy.uix.dropdown.DropDown method)

 	(kivy.uix.filechooser.FileChooserController method)

 	(kivy.uix.filechooser.FileChooserProgressBase method)

 	(kivy.uix.gesturesurface.GestureSurface method)

 	(kivy.uix.modalview.ModalView method)

 	(kivy.uix.pagelayout.PageLayout method)

 	(kivy.uix.relativelayout.RelativeLayout method)

 	(kivy.uix.sandbox.Sandbox method)

 	(kivy.uix.scatter.Scatter method)

 	(kivy.uix.screenmanager.ScreenManager method)

 	(kivy.uix.scrollview.ScrollView method)

 	(kivy.uix.settings.SettingItem method)

 	(kivy.uix.slider.Slider method)

 	(kivy.uix.switch.Switch method)

 	(kivy.uix.textinput.TextInput method)

 	(kivy.uix.vkeyboard.VKeyboard method)

 	(kivy.uix.widget.Widget method)

 	on_transform_with_touch() (kivy.uix.scatter.Scatter method)

 	on_triple_tap() (kivy.uix.textinput.TextInput method)

 	opacity (kivy.graphics.Canvas attribute)

 	(kivy.graphics.instructions.Canvas attribute)

 	(kivy.uix.widget.Widget attribute)

 	OpacityScrollEffect (class in kivy.effects.opacityscroll)

 	open() (kivy.uix.dropdown.DropDown method)

 	(kivy.uix.modalview.ModalView method)

 	open_settings() (kivy.app.App method)

 	opos (kivy.input.MotionEvent property)

 	(kivy.input.motionevent.MotionEvent property)

 	option_cls (kivy.uix.spinner.Spinner attribute)

 	OptionProperty (class in kivy.properties)

 	options (kivy.app.App attribute)

 	(kivy.core.text.text_layout.LayoutWord attribute)

 	(kivy.properties.OptionProperty attribute)

 	(kivy.uix.settings.SettingOptions attribute)

 	(kivy.uix.video.Video attribute)

 	(kivy.uix.videoplayer.VideoPlayer attribute)

 	order (kivy.uix.effectwidget.ChannelMixEffect attribute)

 	orientation (kivy.uix.accordion.Accordion attribute)

 	(kivy.uix.accordion.AccordionItem attribute)

 	(kivy.uix.boxlayout.BoxLayout attribute)

 	(kivy.uix.gridlayout.GridLayout attribute)

 	(kivy.uix.slider.Slider attribute)

 	(kivy.uix.stacklayout.StackLayout attribute)

 	origin (kivy.graphics.context_instructions.Rotate attribute)

 	(kivy.graphics.context_instructions.Scale attribute)

 	(kivy.graphics.Rotate attribute)

 	(kivy.graphics.Scale attribute)

 	original_textures (kivy.atlas.Atlas attribute)

 	osx (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	osy (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	osz (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	out_back() (kivy.animation.AnimationTransition static method)

 	out_bounce() (kivy.animation.AnimationTransition static method)

 	out_circ() (kivy.animation.AnimationTransition static method)

 	out_cubic() (kivy.animation.AnimationTransition static method)

 	out_elastic() (kivy.animation.AnimationTransition static method)

 	out_expo() (kivy.animation.AnimationTransition static method)

 	out_quad() (kivy.animation.AnimationTransition static method)

 	out_quart() (kivy.animation.AnimationTransition static method)

 	out_quint() (kivy.animation.AnimationTransition static method)

 	out_sine() (kivy.animation.AnimationTransition static method)

 	outline_color (kivy.uix.label.Label attribute)

 	outline_width (kivy.uix.label.Label attribute)

 	overdraw_width (kivy.graphics.SmoothLine attribute)

 	(kivy.graphics.vertex_instructions.SmoothLine attribute)

 	overflow_group (kivy.uix.actionbar.ActionView attribute)

 	overflow_image (kivy.uix.actionbar.ActionOverflow attribute)

 	overlay_color (kivy.uix.modalview.ModalView attribute)

 	overscroll (kivy.effects.scroll.ScrollEffect attribute)

 	ox (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	oy (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	oz (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

P

 	
 	pack_width (kivy.uix.actionbar.ActionItem attribute)

 	padding (kivy.uix.anchorlayout.AnchorLayout attribute)

 	(kivy.uix.boxlayout.BoxLayout attribute)

 	(kivy.uix.gridlayout.GridLayout attribute)

 	(kivy.uix.label.Label attribute)

 	(kivy.uix.slider.Slider attribute)

 	(kivy.uix.stacklayout.StackLayout attribute)

 	(kivy.uix.textinput.TextInput attribute)

 	padding_x (kivy.uix.label.Label attribute)

 	(kivy.uix.textinput.TextInput attribute)

 	padding_y (kivy.uix.label.Label attribute)

 	(kivy.uix.textinput.TextInput attribute)

 	page (kivy.uix.pagelayout.PageLayout attribute)

 	page_count (kivy.uix.behaviors.compoundselection.CompoundSelectionBehavior attribute)

 	(kivy.uix.behaviors.CompoundSelectionBehavior attribute)

 	PageLayout (class in kivy.uix.pagelayout)

 	panel (kivy.uix.settings.SettingItem attribute)

 	panels (kivy.uix.settings.ContentPanel attribute)

 	parent (kivy.core.window.WindowBase attribute)

 	(kivy.uix.behaviors.knspace.KNSpace attribute)

 	(kivy.uix.widget.Widget attribute)

 	parent_node (kivy.uix.treeview.TreeViewNode attribute)

 	parse() (kivy.lang.Parser method)

 	(kivy.lang.parser.Parser method)

 	parse_bool() (in module kivy.parser)

 	parse_color() (in module kivy.parser)

 	parse_filename() (in module kivy.parser)

 	parse_float (in module kivy.parser)

 	parse_float4() (in module kivy.parser)

 	parse_gesture() (kivy.multistroke.Recognizer method)

 	parse_int (in module kivy.parser)

 	parse_int2() (in module kivy.parser)

 	parse_kivy_version() (in module kivy)

 	parse_level() (kivy.lang.Parser method)

 	(kivy.lang.parser.Parser method)

 	parse_string() (in module kivy.parser)

 	Parser (class in kivy.lang)

 	(class in kivy.lang.parser)

 	ParserException, [1]

 	PASS (kivy.base.ExceptionManagerBase attribute)

 	password (kivy.uix.textinput.TextInput attribute)

 	password_mask (kivy.uix.textinput.TextInput attribute)

 	paste() (kivy.uix.textinput.TextInput method)

 	path (kivy.uix.filechooser.FileChooserController attribute)

 	(kivy.uix.filechooser.FileChooserProgressBase attribute)

 	pause() (kivy.app.App method)

 	(kivy.core.video.VideoBase method)

 	(kivy.loader.LoaderBase method)

 	permute() (kivy.multistroke.MultistrokeGesture method)

 	perspective() (kivy.graphics.transformation.Matrix method)

 	pgmove_speed (kivy.uix.textinput.TextInput property)

 	pick() (kivy.modules.console.Console method)

 	pitch (kivy.core.audio.Sound attribute)

 	pixel_size (kivy.uix.effectwidget.PixelateEffect attribute)

 	PixelateEffect (class in kivy.uix.effectwidget)

 	pixels (kivy.graphics.Fbo attribute)

 	(kivy.graphics.fbo.Fbo attribute)

 	(kivy.graphics.texture.Texture attribute)

 	(kivy.graphics.texture.TextureRegion attribute)

 	platform (in module kivy.utils)

 	play (kivy.input.recorder.Recorder attribute)

 	(kivy.uix.camera.Camera attribute)

 	(kivy.uix.video.Video attribute)

 	(kivy.uix.videoplayer.VideoPlayer attribute)

 	play() (kivy.core.audio.Sound method)

 	(kivy.core.video.VideoBase method)

 	Point (class in kivy.graphics)

 	(class in kivy.graphics.vertex_instructions)

 	points (kivy.graphics.Bezier attribute)

 	(kivy.graphics.Line attribute)

 	(kivy.graphics.Point attribute)

 	(kivy.graphics.Quad attribute)

 	(kivy.graphics.Triangle attribute)

 	(kivy.graphics.vertex_instructions.Bezier attribute)

 	(kivy.graphics.vertex_instructions.Line attribute)

 	(kivy.graphics.vertex_instructions.Point attribute)

 	(kivy.graphics.vertex_instructions.Quad attribute)

 	(kivy.graphics.vertex_instructions.Triangle attribute)

 	points_distance() (kivy.gesture.GestureStroke method)

 	pointsize (kivy.graphics.Point attribute)

 	(kivy.graphics.vertex_instructions.Point attribute)

 	pop() (kivy.context.Context method)

 	(kivy.graphics.scissor_instructions.ScissorStack method)

 	(kivy.input.MotionEvent method)

 	(kivy.input.motionevent.MotionEvent method)

 	
 	PopMatrix (class in kivy.graphics)

 	(class in kivy.graphics.context_instructions)

 	PopState (class in kivy.graphics)

 	Popup (class in kivy.uix.popup)

 	popup (kivy.uix.settings.SettingOptions attribute)

 	(kivy.uix.settings.SettingPath attribute)

 	(kivy.uix.settings.SettingString attribute)

 	PopupException

 	pos (kivy.graphics.BoxShadow attribute)

 	(kivy.graphics.boxshadow.BoxShadow attribute)

 	(kivy.graphics.Rectangle attribute)

 	(kivy.graphics.vertex_instructions.Rectangle attribute)

 	(kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	(kivy.uix.scatter.Scatter attribute)

 	(kivy.uix.widget.Widget attribute)

 	pos_hint (kivy.uix.widget.Widget attribute)

 	position (kivy.core.video.VideoBase property)

 	(kivy.uix.video.Video attribute)

 	(kivy.uix.videoplayer.VideoPlayer attribute)

 	post_dispatch_input() (kivy.base.EventLoopBase method)

 	post_idle() (kivy.clock.ClockBaseBehavior method)

 	ppos (kivy.input.MotionEvent property)

 	(kivy.input.motionevent.MotionEvent property)

 	pre_idle() (kivy.clock.ClockBaseBehavior method)

 	preload() (kivy.uix.rst.RstDocument method)

 	premultiplied_texture() (kivy.graphics.SmoothLine method)

 	(kivy.graphics.vertex_instructions.SmoothLine method)

 	prepare() (kivy.multistroke.Candidate method)

 	(kivy.multistroke.UnistrokeTemplate method)

 	prepare_templates() (kivy.multistroke.Recognizer method)

 	prev (kivy.clock.ClockEvent attribute)

 	preview (kivy.uix.video.Video attribute)

 	previous() (kivy.uix.screenmanager.ScreenManager method)

 	previous_image (kivy.uix.actionbar.ActionPrevious attribute)

 	previous_image_height (kivy.uix.actionbar.ActionPrevious attribute)

 	previous_image_width (kivy.uix.actionbar.ActionPrevious attribute)

 	previous_slide (kivy.uix.carousel.Carousel attribute)

 	print_usage() (kivy.cache.Cache static method)

 	ProcessingStream (class in kivy.logger)

 	profile (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	progress (kivy.multistroke.ProgressTracker property)

 	progress_cls (kivy.uix.filechooser.FileChooserController attribute)

 	ProgressBar (class in kivy.uix.progressbar)

 	ProgressTracker (class in kivy.multistroke)

 	project() (kivy.graphics.transformation.Matrix method)

 	properties() (kivy.event.EventDispatcher method)

 	Property (class in kivy.properties)

 	property() (kivy.event.EventDispatcher method)

 	(kivy.uix.behaviors.knspace.KNSpace method)

 	proxy_ref (kivy.event.EventDispatcher attribute)

 	(kivy.graphics.Instruction attribute)

 	(kivy.graphics.instructions.Instruction attribute)

 	(kivy.uix.widget.Widget property)

 	ProxyImage (class in kivy.loader)

 	psx (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	psy (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	psz (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	pt (kivy.metrics.MetricsBase attribute)

 	pt() (in module kivy.metrics)

 	purge_logs() (kivy.logger.FileHandler method)

 	push() (kivy.graphics.scissor_instructions.ScissorStack method)

 	(kivy.input.MotionEvent method)

 	(kivy.input.motionevent.MotionEvent method)

 	push_attrs_stack (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	PushMatrix (class in kivy.graphics)

 	(class in kivy.graphics.context_instructions)

 	PushState (class in kivy.graphics)

 	put() (kivy.storage.AbstractStore method)

 	px (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	py (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	PY2 (in module kivy.compat)

 	pz (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

Q

 	
 	Quad (class in kivy.graphics)

 	(class in kivy.graphics.vertex_instructions)

 	
 	QueryDict (class in kivy.lib.ddsfile)

 	(class in kivy.utils)

R

 	
 	r (kivy.graphics.ClearColor attribute)

 	(kivy.graphics.Color attribute)

 	(kivy.graphics.context_instructions.Color attribute)

 	(kivy.graphics.gl_instructions.ClearColor attribute)

 	(kivy.uix.colorpicker.ColorWheel attribute)

 	radius (kivy.graphics.vertex_instructions.RoundedRectangle attribute)

 	RAISE (kivy.base.ExceptionManagerBase attribute)

 	raise_window() (kivy.core.window.WindowBase method)

 	range (kivy.uix.slider.Slider attribute)

 	read() (kivy.config.ConfigParser method)

 	read_pixel() (kivy.core.image.Image method)

 	readonly (kivy.uix.textinput.TextInput attribute)

 	rebind (kivy.properties.AliasProperty attribute)

 	(kivy.properties.DictProperty attribute)

 	(kivy.properties.ObjectProperty attribute)

 	recognize() (kivy.multistroke.Recognizer method)

 	Recognizer (class in kivy.multistroke)

 	record (kivy.input.recorder.Recorder attribute)

 	record_attrs (kivy.input.recorder.Recorder attribute)

 	record_profile_mask (kivy.input.recorder.Recorder attribute)

 	Recorder (class in kivy.input.recorder)

 	Rect (class in kivy.graphics.scissor_instructions)

 	Rectangle (class in kivy.graphics)

 	(class in kivy.graphics.vertex_instructions)

 	rectangle (kivy.graphics.Line attribute)

 	(kivy.graphics.vertex_instructions.Line attribute)

 	RecycleBoxLayout (class in kivy.uix.recycleboxlayout)

 	RecycleDataAdapter (class in kivy.uix.recycleview.views)

 	RecycleDataModel (class in kivy.uix.recycleview.datamodel)

 	RecycleDataModelBehavior (class in kivy.uix.recycleview.datamodel)

 	RecycleDataViewBehavior (class in kivy.uix.recycleview.views)

 	RecycleGridLayout (class in kivy.uix.recyclegridlayout)

 	RecycleKVIDsDataViewBehavior (class in kivy.uix.recycleview.views)

 	RecycleLayout (class in kivy.uix.recyclelayout)

 	RecycleLayoutManagerBehavior (class in kivy.uix.recycleview.layout)

 	RecycleView (class in kivy.uix.recycleview)

 	recycleview (kivy.uix.recycleview.datamodel.RecycleDataModelBehavior attribute)

 	(kivy.uix.recycleview.views.RecycleDataAdapter attribute)

 	RecycleViewBehavior (class in kivy.uix.recycleview)

 	RedisStore (class in kivy.storage.redisstore)

 	reference_size (kivy.uix.behaviors.cover.CoverBehavior attribute)

 	(kivy.uix.behaviors.CoverBehavior attribute)

 	ReferenceListProperty (class in kivy.properties)

 	refresh() (kivy.core.text.LabelBase method)

 	(kivy.uix.vkeyboard.VKeyboard method)

 	refresh_fbo_setup() (kivy.uix.effectwidget.EffectWidget method)

 	refresh_from_data() (kivy.uix.recycleview.RecycleViewBehavior method)

 	refresh_from_layout() (kivy.uix.recycleview.RecycleViewBehavior method)

 	refresh_from_viewport() (kivy.uix.recycleview.RecycleViewBehavior method)

 	refresh_view_attrs() (kivy.uix.recycleview.views.RecycleDataAdapter method)

 	(kivy.uix.recycleview.views.RecycleDataViewBehavior method)

 	(kivy.uix.recycleview.views.RecycleKVIDsDataViewBehavior method)

 	refresh_view_layout() (kivy.uix.recyclelayout.RecycleLayout method)

 	(kivy.uix.recycleview.layout.RecycleLayoutManagerBehavior method)

 	(kivy.uix.recycleview.views.RecycleDataAdapter method)

 	(kivy.uix.recycleview.views.RecycleDataViewBehavior method)

 	refs (kivy.core.text.markup.MarkupLabel property)

 	(kivy.uix.label.Label attribute)

 	register() (kivy.cache.Cache static method)

 	(kivy.core.audio.SoundLoader static method)

 	(kivy.core.text.LabelBase static method)

 	(kivy.input.factory.MotionEventFactory static method)

 	(kivy.input.MotionEventFactory static method)

 	(kivy.input.providers.tuio.TuioMotionEventProvider static method)

 	register_context() (in module kivy.context)

 	register_event_manager() (kivy.core.window.WindowBase method)

 	register_event_type() (kivy.event.EventDispatcher method)

 	register_for_motion_event() (kivy.uix.widget.Widget method)

 	register_type() (kivy.uix.settings.Settings method)

 	reify (class in kivy.utils)

 	RelativeLayout (class in kivy.uix.relativelayout)

 	release() (kivy.clock.ClockEvent method)

 	(kivy.core.window.Keyboard method)

 	(kivy.graphics.Fbo method)

 	(kivy.graphics.fbo.Fbo method)

 	release_all_keyboards() (kivy.core.window.WindowBase method)

 	release_keyboard() (kivy.core.window.WindowBase method)

 	release_ref (kivy.clock.ClockEvent attribute)

 	reload() (kivy.graphics.context.Context method)

 	(kivy.uix.image.Image method)

 	remove() (kivy.cache.Cache static method)

 	(kivy.graphics.Canvas method)

 	(kivy.graphics.InstructionGroup method)

 	(kivy.graphics.instructions.Canvas method)

 	(kivy.graphics.instructions.InstructionGroup method)

 	remove_android_splash() (kivy.base.EventLoopBase method)

 	remove_callback() (kivy.config.ConfigParser method)

 	remove_event_listener() (kivy.base.EventLoopBase method)

 	remove_from_cache() (kivy.core.image.Image method)

 	(kivy.uix.image.AsyncImage method)

 	(kivy.uix.image.Image method)

 	remove_group() (kivy.graphics.InstructionGroup method)

 	(kivy.graphics.instructions.InstructionGroup method)

 	remove_handler() (kivy.base.ExceptionManagerBase method)

 	remove_input_provider() (kivy.base.EventLoopBase method)

 	remove_node() (kivy.uix.treeview.TreeView method)

 	remove_postproc_module() (kivy.base.EventLoopBase method)

 	remove_reload_observer() (kivy.graphics.context.Context method)

 	(kivy.graphics.Fbo method)

 	(kivy.graphics.fbo.Fbo method)

 	(kivy.graphics.texture.Texture method)

 	remove_screen() (kivy.uix.screenmanager.ShaderTransition method)

 	(kivy.uix.screenmanager.TransitionBase method)

 	remove_toolbar_widget() (kivy.modules.console.Console method)

 	remove_widget() (kivy.core.window.WindowBase method)

 	(kivy.uix.accordion.AccordionItem method)

 	(kivy.uix.actionbar.ActionView method)

 	(kivy.uix.boxlayout.BoxLayout method)

 	(kivy.uix.bubble.Bubble method)

 	(kivy.uix.carousel.Carousel method)

 	(kivy.uix.dropdown.DropDown method)

 	(kivy.uix.effectwidget.EffectWidget method)

 	(kivy.uix.floatlayout.FloatLayout method)

 	(kivy.uix.layout.Layout method)

 	(kivy.uix.recycleview.RecycleView method)

 	(kivy.uix.sandbox.Sandbox method)

 	(kivy.uix.scatterlayout.ScatterLayout method)

 	(kivy.uix.screenmanager.ScreenManager method)

 	(kivy.uix.scrollview.ScrollView method)

 	(kivy.uix.settings.ContentPanel method)

 	(kivy.uix.splitter.Splitter method)

 	(kivy.uix.tabbedpanel.TabbedPanel method)

 	(kivy.uix.tabbedpanel.TabbedPanelItem method)

 	(kivy.uix.widget.Widget method)

 	
 	render() (kivy.core.text.LabelBase method)

 	(kivy.core.text.markup.MarkupLabel method)

 	(kivy.uix.rst.RstDocument method)

 	RenderContext (class in kivy.graphics)

 	(class in kivy.graphics.instructions)

 	replace_crlf (kivy.uix.textinput.TextInput attribute)

 	req_body (kivy.network.urlrequest.UrlRequestBase attribute)

 	req_headers (kivy.network.urlrequest.UrlRequestBase attribute)

 	request_keyboard() (kivy.core.window.WindowBase method)

 	require() (in module kivy)

 	rescale_with_parent (kivy.uix.splitter.Splitter attribute)

 	reset() (kivy.effects.scroll.ScrollEffect method)

 	reset_context (kivy.graphics.Callback attribute)

 	(kivy.graphics.instructions.Callback attribute)

 	reset_dpi() (kivy.metrics.MetricsBase method)

 	reset_metrics() (kivy.metrics.MetricsBase method)

 	reset_undo() (kivy.uix.textinput.TextInput method)

 	resolution (kivy.core.camera.CameraBase property)

 	(kivy.uix.camera.Camera attribute)

 	resolve_path() (kivy.uix.rst.RstDocument method)

 	resource_add_path() (in module kivy.resources)

 	resource_find() (in module kivy.resources)

 	resource_remove_path() (in module kivy.resources)

 	resp_headers (kivy.network.urlrequest.UrlRequestBase property)

 	resp_status (kivy.network.urlrequest.UrlRequestBase property)

 	restore() (kivy.core.window.WindowBase method)

 	result (kivy.network.urlrequest.UrlRequestBase property)

 	resume() (kivy.loader.LoaderBase method)

 	rgb (kivy.graphics.ClearColor attribute)

 	(kivy.graphics.Color attribute)

 	(kivy.graphics.context_instructions.Color attribute)

 	(kivy.graphics.gl_instructions.ClearColor attribute)

 	rgba (kivy.graphics.ClearColor attribute)

 	(kivy.graphics.Color attribute)

 	(kivy.graphics.context_instructions.Color attribute)

 	(kivy.graphics.gl_instructions.ClearColor attribute)

 	rgba() (in module kivy.utils)

 	right (kivy.uix.scatter.Scatter attribute)

 	(kivy.uix.widget.Widget attribute)

 	right_count (kivy.uix.behaviors.compoundselection.CompoundSelectionBehavior attribute)

 	(kivy.uix.behaviors.CompoundSelectionBehavior attribute)

 	ripple_duration_in (kivy.uix.behaviors.touchripple.TouchRippleBehavior attribute)

 	(kivy.uix.behaviors.TouchRippleBehavior attribute)

 	ripple_duration_out (kivy.uix.behaviors.touchripple.TouchRippleBehavior attribute)

 	(kivy.uix.behaviors.TouchRippleBehavior attribute)

 	ripple_fade() (kivy.uix.behaviors.touchripple.TouchRippleBehavior method)

 	(kivy.uix.behaviors.TouchRippleBehavior method)

 	ripple_fade_from_alpha (kivy.uix.behaviors.touchripple.TouchRippleBehavior attribute)

 	(kivy.uix.behaviors.TouchRippleBehavior attribute)

 	ripple_fade_to_alpha (kivy.uix.behaviors.touchripple.TouchRippleBehavior attribute)

 	(kivy.uix.behaviors.TouchRippleBehavior attribute)

 	ripple_func_in (kivy.uix.behaviors.touchripple.TouchRippleBehavior attribute)

 	(kivy.uix.behaviors.TouchRippleBehavior attribute)

 	ripple_func_out (kivy.uix.behaviors.touchripple.TouchRippleBehavior attribute)

 	(kivy.uix.behaviors.TouchRippleBehavior attribute)

 	ripple_rad_default (kivy.uix.behaviors.touchripple.TouchRippleBehavior attribute)

 	(kivy.uix.behaviors.TouchRippleBehavior attribute)

 	ripple_scale (kivy.uix.behaviors.touchripple.TouchRippleBehavior attribute)

 	(kivy.uix.behaviors.TouchRippleBehavior attribute)

 	ripple_show() (kivy.uix.behaviors.touchripple.TouchRippleBehavior method)

 	(kivy.uix.behaviors.TouchRippleBehavior method)

 	RiseInTransition (class in kivy.uix.screenmanager)

 	root (kivy.app.App attribute)

 	(kivy.uix.treeview.TreeView attribute)

 	root_options (kivy.uix.treeview.TreeView attribute)

 	root_window (kivy.app.App property)

 	rootpath (kivy.uix.filechooser.FileChooserController attribute)

 	Rotate (class in kivy.graphics)

 	(class in kivy.graphics.context_instructions)

 	rotate() (kivy.graphics.transformation.Matrix method)

 	(kivy.vector.Vector method)

 	rotation (kivy.core.window.WindowBase attribute)

 	(kivy.uix.scatter.Scatter attribute)

 	round_value (kivy.effects.dampedscroll.DampedScrollEffect attribute)

 	rounded_rectangle (kivy.graphics.Line attribute)

 	(kivy.graphics.vertex_instructions.Line attribute)

 	RoundedRectangle (class in kivy.graphics.vertex_instructions)

 	row_default_height (kivy.uix.gridlayout.GridLayout attribute)

 	row_force_default (kivy.uix.gridlayout.GridLayout attribute)

 	rowlength (kivy.core.image.ImageData property)

 	rows (kivy.uix.gridlayout.GridLayout attribute)

 	rows_minimum (kivy.uix.gridlayout.GridLayout attribute)

 	RstDocument (class in kivy.uix.rst)

 	run() (kivy.app.App method)

 	(kivy.base.EventLoopBase method)

 	(kivy.loader.LoaderBase method)

 	(kivy.network.urlrequest.UrlRequestBase method)

 	runTouchApp() (in module kivy.app)

 	(in module kivy.base)

S

 	
 	s (kivy.graphics.Color attribute)

 	(kivy.graphics.context_instructions.Color attribute)

 	safeIn() (kivy.interactive.SafeMembrane method)

 	SafeList (class in kivy.utils)

 	SafeMembrane (class in kivy.interactive)

 	safeOut() (kivy.interactive.SafeMembrane method)

 	Sandbox (class in kivy.uix.sandbox)

 	save() (kivy.core.image.Image method)

 	(kivy.graphics.texture.Texture method)

 	Scale (class in kivy.graphics)

 	(class in kivy.graphics.context_instructions)

 	scale (kivy.graphics.context_instructions.Scale attribute)

 	(kivy.graphics.Scale attribute)

 	(kivy.uix.scatter.Scatter attribute)

 	scale() (kivy.graphics.transformation.Matrix method)

 	scale_for_screen() (kivy.input.MotionEvent method)

 	(kivy.input.motionevent.MotionEvent method)

 	scale_max (kivy.uix.scatter.Scatter attribute)

 	scale_min (kivy.uix.scatter.Scatter attribute)

 	scale_stroke() (kivy.gesture.GestureStroke method)

 	ScanlinesEffect (class in kivy.uix.effectwidget)

 	Scatter (class in kivy.uix.scatter)

 	ScatterLayout (class in kivy.uix.scatterlayout)

 	ScatterPlane (class in kivy.uix.scatter)

 	ScatterPlaneLayout (class in kivy.uix.scatterlayout)

 	schedule_del_safe() (kivy.clock.CyClockBase method)

 	schedule_interval() (kivy.clock.CyClockBase method)

 	(kivy.clock.CyClockBaseFree method)

 	schedule_interval_free() (kivy.clock.CyClockBaseFree method)

 	schedule_lifecycle_aware_del_safe() (kivy.clock.CyClockBase method)

 	schedule_once() (kivy.clock.CyClockBase method)

 	(kivy.clock.CyClockBaseFree method)

 	schedule_once_free() (kivy.clock.CyClockBaseFree method)

 	ScissorPop (class in kivy.graphics.scissor_instructions)

 	ScissorPush (class in kivy.graphics.scissor_instructions)

 	ScissorStack (class in kivy.graphics.scissor_instructions)

 	Screen (class in kivy.uix.screenmanager)

 	screen_in (kivy.uix.screenmanager.TransitionBase attribute)

 	screen_names (kivy.uix.screenmanager.ScreenManager attribute)

 	screen_out (kivy.uix.screenmanager.TransitionBase attribute)

 	ScreenManager (class in kivy.uix.screenmanager)

 	ScreenManagerException

 	screens (kivy.uix.screenmanager.ScreenManager attribute)

 	screenshot() (kivy.core.window.WindowBase method)

 	scroll (kivy.effects.scroll.ScrollEffect attribute)

 	scroll_count (kivy.uix.behaviors.compoundselection.CompoundSelectionBehavior attribute)

 	(kivy.uix.behaviors.CompoundSelectionBehavior attribute)

 	scroll_distance (kivy.uix.carousel.Carousel attribute)

 	(kivy.uix.scrollview.ScrollView attribute)

 	(kivy.uix.textinput.TextInput attribute)

 	scroll_from_swipe (kivy.uix.textinput.TextInput attribute)

 	scroll_timeout (kivy.uix.carousel.Carousel attribute)

 	(kivy.uix.scrollview.ScrollView attribute)

 	(kivy.uix.textinput.TextInput attribute)

 	scroll_to() (kivy.uix.scrollview.ScrollView method)

 	scroll_type (kivy.uix.scrollview.ScrollView attribute)

 	(kivy.uix.tabbedpanel.TabbedPanel attribute)

 	scroll_wheel_distance (kivy.uix.scrollview.ScrollView attribute)

 	scroll_x (kivy.uix.scrollview.ScrollView attribute)

 	(kivy.uix.textinput.TextInput attribute)

 	scroll_y (kivy.uix.scrollview.ScrollView attribute)

 	(kivy.uix.textinput.TextInput attribute)

 	ScrollEffect (class in kivy.effects.scroll)

 	ScrollView (class in kivy.uix.scrollview)

 	section (kivy.uix.settings.SettingItem attribute)

 	seek() (kivy.core.audio.Sound method)

 	(kivy.core.video.VideoBase method)

 	(kivy.uix.video.Video method)

 	(kivy.uix.videoplayer.VideoPlayer method)

 	segment_intersection() (kivy.vector.Vector static method)

 	segments (kivy.graphics.Bezier attribute)

 	(kivy.graphics.Ellipse attribute)

 	(kivy.graphics.vertex_instructions.Bezier attribute)

 	(kivy.graphics.vertex_instructions.Ellipse attribute)

 	(kivy.graphics.vertex_instructions.RoundedRectangle attribute)

 	select() (kivy.uix.dropdown.DropDown method)

 	select_all() (kivy.uix.textinput.TextInput method)

 	select_language() (kivy.core.spelling.SpellingBase method)

 	select_node() (kivy.uix.behaviors.compoundselection.CompoundSelectionBehavior method)

 	(kivy.uix.behaviors.CompoundSelectionBehavior method)

 	(kivy.uix.recycleview.layout.LayoutSelectionBehavior method)

 	(kivy.uix.treeview.TreeView method)

 	select_text() (kivy.uix.textinput.TextInput method)

 	select_with_key_down() (kivy.uix.behaviors.compoundselection.CompoundSelectionBehavior method)

 	(kivy.uix.behaviors.CompoundSelectionBehavior method)

 	select_with_key_up() (kivy.uix.behaviors.compoundselection.CompoundSelectionBehavior method)

 	(kivy.uix.behaviors.CompoundSelectionBehavior method)

 	select_with_touch() (kivy.uix.behaviors.compoundselection.CompoundSelectionBehavior method)

 	(kivy.uix.behaviors.CompoundSelectionBehavior method)

 	selected_alpha (kivy.uix.settings.SettingItem attribute)

 	selected_node (kivy.uix.treeview.TreeView attribute)

 	selected_nodes (kivy.uix.behaviors.compoundselection.CompoundSelectionBehavior attribute)

 	(kivy.uix.behaviors.CompoundSelectionBehavior attribute)

 	selected_uid (kivy.uix.settings.MenuSidebar attribute)

 	selection (kivy.uix.filechooser.FileChooserController attribute)

 	selection_color (kivy.uix.textinput.TextInput attribute)

 	selection_from (kivy.uix.textinput.TextInput attribute)

 	selection_text (kivy.uix.textinput.TextInput attribute)

 	selection_to (kivy.uix.textinput.TextInput attribute)

 	sensitivity (kivy.uix.slider.Slider attribute)

 	separator_color (kivy.uix.popup.Popup attribute)

 	separator_height (kivy.uix.popup.Popup attribute)

 	separator_image (kivy.uix.actionbar.ActionGroup attribute)

 	separator_width (kivy.uix.actionbar.ActionGroup attribute)

 	set() (kivy.config.ConfigParser method)

 	(kivy.graphics.context_instructions.Rotate method)

 	(kivy.graphics.Rotate method)

 	(kivy.graphics.transformation.Matrix method)

 	(kivy.properties.AliasProperty method)

 	(kivy.properties.ConfigParserProperty method)

 	(kivy.properties.DictProperty method)

 	(kivy.properties.ListProperty method)

 	(kivy.properties.Property method)

 	(kivy.properties.ReferenceListProperty method)

 	set_config() (kivy.properties.ConfigParserProperty method)

 	set_content() (kivy.modules.console.Console method)

 	set_custom_titlebar() (kivy.core.window.WindowBase method)

 	set_fbo_shader() (kivy.uix.effectwidget.AdvancedEffectBase method)

 	(kivy.uix.effectwidget.EffectBase method)

 	set_icon() (kivy.core.window.WindowBase method)

 	set_max() (kivy.properties.BoundedNumericProperty method)

 	set_min() (kivy.properties.BoundedNumericProperty method)

 	set_name() (kivy.properties.Property method)

 	set_system_cursor() (kivy.core.window.WindowBase method)

 	set_title() (kivy.core.window.WindowBase method)

 	set_tree() (kivy.graphics.svg.Svg method)

 	set_visible_views() (kivy.uix.recyclelayout.RecycleLayout method)

 	(kivy.uix.recycleview.layout.RecycleLayoutManagerBehavior method)

 	(kivy.uix.recycleview.views.RecycleDataAdapter method)

 	set_vkeyboard_class() (kivy.core.window.WindowBase method)

 	set_window() (kivy.base.EventLoopBase method)

 	setall() (kivy.config.ConfigParser method)

 	setdefault() (kivy.config.ConfigParser method)

 	setdefaults() (kivy.config.ConfigParser method)

 	setitem() (kivy.properties.ReferenceListProperty method)

 	setter() (kivy.event.EventDispatcher method)

 	SettingBoolean (class in kivy.uix.settings)

 	SettingItem (class in kivy.uix.settings)

 	SettingNumeric (class in kivy.uix.settings)

 	SettingOptions (class in kivy.uix.settings)

 	SettingPath (class in kivy.uix.settings)

 	Settings (class in kivy.uix.settings)

 	settings (kivy.uix.settings.SettingsPanel attribute)

 	settings_cls (kivy.app.App attribute)

 	SettingsPanel (class in kivy.uix.settings)

 	SettingString (class in kivy.uix.settings)

 	SettingsWithNoMenu (class in kivy.uix.settings)

 	SettingsWithSidebar (class in kivy.uix.settings)

 	SettingsWithSpinner (class in kivy.uix.settings)

 	SettingsWithTabbedPanel (class in kivy.uix.settings)

 	SettingTitle (class in kivy.uix.settings)

 	setup_mode() (kivy.uix.vkeyboard.VKeyboard method)

 	setup_mode_dock() (kivy.uix.vkeyboard.VKeyboard method)

 	setup_mode_free() (kivy.uix.vkeyboard.VKeyboard method)

 	Shader (class in kivy.graphics.shader)

 	shader (kivy.graphics.instructions.RenderContext attribute)

 	(kivy.graphics.RenderContext attribute)

 	ShaderTransition (class in kivy.uix.screenmanager)

 	Shape (class in kivy.input.shape)

 	shape (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	shape_color_key (kivy.core.window.WindowBase attribute)

 	shape_cutoff (kivy.core.window.WindowBase attribute)

 	shape_image (kivy.core.window.WindowBase attribute)

 	shape_mode (kivy.core.window.WindowBase attribute)

 	shaped (kivy.core.window.WindowBase attribute)

 	ShapeRect (class in kivy.input.shape)

 	shorten (kivy.uix.label.Label attribute)

 	shorten() (kivy.core.text.LabelBase method)

 	shorten_from (kivy.uix.label.Label attribute)

 	shorten_post() (kivy.core.text.markup.MarkupLabel method)

 	show() (kivy.core.window.WindowBase method)

 	show_arrow (kivy.uix.bubble.Bubble attribute)

 	show_cursor (kivy.core.window.WindowBase attribute)

 	show_errors (kivy.uix.rst.RstDocument attribute)

 	show_hidden (kivy.uix.filechooser.FileChooserController attribute)

 	(kivy.uix.settings.SettingPath attribute)

 	
 	show_keyboard() (kivy.uix.behaviors.focus.FocusBehavior method)

 	(kivy.uix.behaviors.FocusBehavior method)

 	single_points_test() (kivy.uix.gesturesurface.GestureContainer method)

 	sizable_from (kivy.uix.splitter.Splitter attribute)

 	size (kivy.core.image.Image property)

 	(kivy.core.image.ImageData property)

 	(kivy.core.window.WindowBase attribute)

 	(kivy.graphics.BoxShadow attribute)

 	(kivy.graphics.boxshadow.BoxShadow attribute)

 	(kivy.graphics.Fbo attribute)

 	(kivy.graphics.fbo.Fbo attribute)

 	(kivy.graphics.Rectangle attribute)

 	(kivy.graphics.texture.Texture attribute)

 	(kivy.graphics.vertex_instructions.Rectangle attribute)

 	(kivy.uix.effectwidget.HorizontalBlurEffect attribute)

 	(kivy.uix.effectwidget.VerticalBlurEffect attribute)

 	(kivy.uix.widget.Widget attribute)

 	size_hint (kivy.uix.widget.Widget attribute)

 	size_hint_max (kivy.uix.widget.Widget attribute)

 	size_hint_max_x (kivy.uix.widget.Widget attribute)

 	size_hint_max_y (kivy.uix.widget.Widget attribute)

 	size_hint_min (kivy.uix.widget.Widget attribute)

 	size_hint_min_x (kivy.uix.widget.Widget attribute)

 	size_hint_min_y (kivy.uix.widget.Widget attribute)

 	size_hint_x (kivy.uix.widget.Widget attribute)

 	size_hint_y (kivy.uix.widget.Widget attribute)

 	Slider (class in kivy.uix.slider)

 	slides (kivy.uix.carousel.Carousel attribute)

 	SlideTransition (class in kivy.uix.screenmanager)

 	smooth_scroll_end (kivy.uix.scrollview.ScrollView attribute)

 	SmoothLine (class in kivy.graphics)

 	(class in kivy.graphics.vertex_instructions)

 	softinput_mode (kivy.core.window.WindowBase attribute)

 	sort_func (kivy.uix.filechooser.FileChooserController attribute)

 	Sound (class in kivy.core.audio)

 	SoundLoader (class in kivy.core.audio)

 	source (kivy.core.audio.Sound attribute)

 	(kivy.core.image.ImageData attribute)

 	(kivy.graphics.BindTexture attribute)

 	(kivy.graphics.context_instructions.BindTexture attribute)

 	(kivy.graphics.instructions.VertexInstruction attribute)

 	(kivy.graphics.shader.Shader attribute)

 	(kivy.graphics.svg.Svg attribute)

 	(kivy.graphics.VertexInstruction attribute)

 	(kivy.uix.effectwidget.EffectBase attribute)

 	(kivy.uix.image.Image attribute)

 	(kivy.uix.rst.RstDocument attribute)

 	(kivy.uix.videoplayer.VideoPlayer attribute)

 	source_encoding (kivy.uix.rst.RstDocument attribute)

 	source_error (kivy.uix.rst.RstDocument attribute)

 	source_stack (kivy.graphics.ApplyContextMatrix attribute)

 	sp (kivy.metrics.MetricsBase attribute)

 	sp() (in module kivy.metrics)

 	spacing (kivy.uix.boxlayout.BoxLayout attribute)

 	(kivy.uix.gridlayout.GridLayout attribute)

 	(kivy.uix.stacklayout.StackLayout attribute)

 	SpellingBase (class in kivy.core.spelling)

 	Spinner (class in kivy.uix.spinner)

 	SpinnerOption (class in kivy.uix.spinner)

 	split_str (kivy.uix.label.Label attribute)

 	Splitter (class in kivy.uix.splitter)

 	spos (kivy.input.MotionEvent property)

 	(kivy.input.motionevent.MotionEvent property)

 	spread_radius (kivy.graphics.BoxShadow attribute)

 	(kivy.graphics.boxshadow.BoxShadow attribute)

 	spring_constant (kivy.effects.dampedscroll.DampedScrollEffect attribute)

 	stack (kivy.graphics.context_instructions.MatrixInstruction attribute)

 	(kivy.graphics.context_instructions.PopMatrix attribute)

 	(kivy.graphics.context_instructions.PushMatrix attribute)

 	(kivy.graphics.LoadIdentity attribute)

 	(kivy.graphics.MatrixInstruction attribute)

 	(kivy.graphics.PopMatrix attribute)

 	(kivy.graphics.PushMatrix attribute)

 	StackLayout (class in kivy.uix.stacklayout)

 	start (kivy.uix.videoplayer.VideoPlayerAnnotation attribute)

 	start() (in module kivy.modules.console)

 	(kivy.animation.Animation method)

 	(kivy.base.EventLoopBase method)

 	(kivy.core.camera.CameraBase method)

 	(kivy.effects.kinetic.KineticEffect method)

 	(kivy.effects.scroll.ScrollEffect method)

 	(kivy.eventmanager.EventManagerBase method)

 	(kivy.input.MotionEventProvider method)

 	(kivy.input.provider.MotionEventProvider method)

 	(kivy.input.providers.androidjoystick.AndroidMotionEventProvider method)

 	(kivy.input.providers.leapfinger.LeapFingerEventProvider method)

 	(kivy.input.providers.mactouch.MacMotionEventProvider method)

 	(kivy.input.providers.mouse.MouseMotionEventProvider method)

 	(kivy.input.providers.tuio.TuioMotionEventProvider method)

 	(kivy.loader.LoaderBase method)

 	(kivy.uix.screenmanager.CardTransition method)

 	(kivy.uix.screenmanager.SwapTransition method)

 	(kivy.uix.screenmanager.TransitionBase method)

 	start_clock() (kivy.clock.CyClockBase method)

 	state (kivy.core.audio.Sound attribute)

 	(kivy.core.video.VideoBase property)

 	(kivy.uix.behaviors.button.ButtonBehavior attribute)

 	(kivy.uix.behaviors.ButtonBehavior attribute)

 	(kivy.uix.video.Video attribute)

 	(kivy.uix.videoplayer.VideoPlayer attribute)

 	status (kivy.core.audio.Sound attribute)

 	std_dt (kivy.effects.kinetic.KineticEffect attribute)

 	StencilPop (class in kivy.graphics)

 	(class in kivy.graphics.stencil_instructions)

 	StencilPush (class in kivy.graphics)

 	(class in kivy.graphics.stencil_instructions)

 	StencilUnUse (class in kivy.graphics)

 	(class in kivy.graphics.stencil_instructions)

 	StencilUse (class in kivy.graphics)

 	(class in kivy.graphics.stencil_instructions)

 	StencilView (class in kivy.uix.stencilview)

 	step (kivy.uix.slider.Slider attribute)

 	stop() (in module kivy.modules.console)

 	(in module kivy.modules.inspector)

 	(in module kivy.modules.joycursor)

 	(kivy.animation.Animation method)

 	(kivy.app.App method)

 	(kivy.base.EventLoopBase method)

 	(kivy.core.audio.Sound method)

 	(kivy.core.camera.CameraBase method)

 	(kivy.core.video.VideoBase method)

 	(kivy.effects.kinetic.KineticEffect method)

 	(kivy.effects.scroll.ScrollEffect method)

 	(kivy.eventmanager.EventManagerBase method)

 	(kivy.input.MotionEventProvider method)

 	(kivy.input.provider.MotionEventProvider method)

 	(kivy.input.providers.androidjoystick.AndroidMotionEventProvider method)

 	(kivy.input.providers.mactouch.MacMotionEventProvider method)

 	(kivy.input.providers.mouse.MouseMotionEventProvider method)

 	(kivy.input.providers.tuio.TuioMotionEventProvider method)

 	(kivy.loader.LoaderBase method)

 	(kivy.multistroke.ProgressTracker method)

 	(kivy.uix.screenmanager.ShaderTransition method)

 	(kivy.uix.screenmanager.TransitionBase method)

 	stop_all() (kivy.animation.Animation static method)

 	stop_clock() (kivy.clock.CyClockBase method)

 	stop_property() (kivy.animation.Animation method)

 	stopTouchApp() (in module kivy.app)

 	(in module kivy.base)

 	str_to_gesture() (kivy.gesture.GestureDatabase method)

 	strikethrough (kivy.uix.label.Label attribute)

 	string_to_keycode() (kivy.core.window.Keyboard method)

 	string_types (in module kivy.compat)

 	StringProperty (class in kivy.properties)

 	strip (kivy.uix.label.Label attribute)

 	strip_border (kivy.uix.tabbedpanel.TabbedPanel attribute)

 	strip_cls (kivy.uix.splitter.Splitter attribute)

 	strip_comments() (kivy.lang.Parser method)

 	(kivy.lang.parser.Parser method)

 	strip_image (kivy.uix.tabbedpanel.TabbedPanel attribute)

 	strip_size (kivy.uix.splitter.Splitter attribute)

 	StripLayout (class in kivy.uix.tabbedpanel)

 	stroke_length() (kivy.gesture.GestureStroke method)

 	strtotuple() (in module kivy.utils)

 	style (kivy.uix.codeinput.CodeInput attribute)

 	style_name (kivy.uix.codeinput.CodeInput attribute)

 	success (kivy.graphics.shader.Shader attribute)

 	suggest() (kivy.core.spelling.SpellingBase method)

 	Svg (class in kivy.graphics.svg)

 	SwapTransition (class in kivy.uix.screenmanager)

 	swipe_threshold (kivy.uix.pagelayout.PageLayout attribute)

 	Switch (class in kivy.uix.switch)

 	switch_to() (kivy.uix.screenmanager.ScreenManager method)

 	(kivy.uix.tabbedpanel.TabbedPanel method)

 	sx (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	sy (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	sync() (kivy.lang.builder.BuilderBase method)

 	(kivy.lang.BuilderBase method)

 	sync_height (kivy.uix.spinner.Spinner attribute)

 	sync_with_dispatch (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	system_size (kivy.core.window.WindowBase attribute)

 	sz (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

T

 	
 	tab_height (kivy.uix.tabbedpanel.TabbedPanel attribute)

 	tab_list (kivy.uix.tabbedpanel.TabbedPanel attribute)

 	tab_pos (kivy.uix.tabbedpanel.TabbedPanel attribute)

 	tab_width (kivy.uix.tabbedpanel.TabbedPanel attribute)

 	(kivy.uix.textinput.TextInput attribute)

 	tabbed_panel (kivy.uix.tabbedpanel.TabbedPanelStrip attribute)

 	TabbedPanel (class in kivy.uix.tabbedpanel)

 	TabbedPanelContent (class in kivy.uix.tabbedpanel)

 	TabbedPanelException

 	TabbedPanelHeader (class in kivy.uix.tabbedpanel)

 	TabbedPanelItem (class in kivy.uix.tabbedpanel)

 	TabbedPanelStrip (class in kivy.uix.tabbedpanel)

 	target (kivy.core.window.Keyboard attribute)

 	(kivy.graphics.texture.Texture attribute)

 	(kivy.uix.vkeyboard.VKeyboard attribute)

 	target_stack (kivy.graphics.ApplyContextMatrix attribute)

 	target_widget (kivy.effects.scroll.ScrollEffect attribute)

 	template() (kivy.lang.builder.BuilderBase method)

 	(kivy.lang.BuilderBase method)

 	tesselate() (kivy.graphics.tesselator.Tesselator method)

 	Tesselator (class in kivy.graphics.tesselator)

 	tex_coords (kivy.graphics.instructions.VertexInstruction attribute)

 	(kivy.graphics.texture.Texture attribute)

 	(kivy.graphics.VertexInstruction attribute)

 	text (kivy.core.text.LabelBase property)

 	(kivy.core.text.text_layout.LayoutWord attribute)

 	(kivy.uix.label.Label attribute)

 	(kivy.uix.rst.RstDocument attribute)

 	(kivy.uix.textinput.TextInput attribute)

 	text_autoupdate (kivy.uix.spinner.Spinner attribute)

 	text_entry_timeout (kivy.uix.behaviors.compoundselection.CompoundSelectionBehavior attribute)

 	(kivy.uix.behaviors.CompoundSelectionBehavior attribute)

 	text_language (kivy.uix.label.Label attribute)

 	(kivy.uix.textinput.TextInput attribute)

 	text_size (kivy.core.text.LabelBase property)

 	(kivy.uix.label.Label attribute)

 	text_validate_unfocus (kivy.uix.textinput.TextInput attribute)

 	TextInput (class in kivy.uix.textinput)

 	textinput (kivy.uix.settings.SettingPath attribute)

 	(kivy.uix.settings.SettingString attribute)

 	Texture (class in kivy.graphics.texture)

 	texture (kivy.core.camera.CameraBase property)

 	(kivy.core.image.Image property)

 	(kivy.core.video.VideoBase property)

 	(kivy.graphics.Fbo attribute)

 	(kivy.graphics.fbo.Fbo attribute)

 	(kivy.graphics.instructions.VertexInstruction attribute)

 	(kivy.graphics.VertexInstruction attribute)

 	(kivy.uix.effectwidget.EffectWidget attribute)

 	(kivy.uix.image.Image attribute)

 	(kivy.uix.label.Label attribute)

 	texture_size (kivy.uix.image.Image attribute)

 	(kivy.uix.label.Label attribute)

 	texture_update() (kivy.uix.label.Label method)

 	TextureRegion (class in kivy.graphics.texture)

 	textures (kivy.atlas.Atlas attribute)

 	thumbnail (kivy.uix.videoplayer.VideoPlayer attribute)

 	tick() (kivy.clock.ClockBaseBehavior method)

 	(kivy.clock.ClockEvent method)

 	tick_draw() (kivy.clock.ClockBaseBehavior method)

 	time() (kivy.clock.ClockBaseBehavior static method)

 	time_end (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	time_start (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	time_update (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	timeout (kivy.clock.ClockEvent attribute)

 	timeval (class in kivy.lib.mtdev)

 	title (kivy.app.App attribute)

 	(kivy.uix.accordion.AccordionItem attribute)

 	(kivy.uix.actionbar.ActionPrevious attribute)

 	(kivy.uix.popup.Popup attribute)

 	(kivy.uix.rst.RstDocument attribute)

 	(kivy.uix.settings.SettingItem attribute)

 	(kivy.uix.settings.SettingsPanel attribute)

 	
 	title_align (kivy.uix.popup.Popup attribute)

 	title_args (kivy.uix.accordion.AccordionItem attribute)

 	title_color (kivy.uix.popup.Popup attribute)

 	title_font (kivy.uix.popup.Popup attribute)

 	title_size (kivy.uix.popup.Popup attribute)

 	title_template (kivy.uix.accordion.AccordionItem attribute)

 	to_absolute_pos() (kivy.input.MotionEvent method)

 	(kivy.input.motionevent.MotionEvent method)

 	to_local() (kivy.uix.relativelayout.RelativeLayout method)

 	(kivy.uix.scatter.Scatter method)

 	(kivy.uix.scrollview.ScrollView method)

 	(kivy.uix.widget.Widget method)

 	to_normalized_pos() (kivy.core.window.WindowBase method)

 	to_parent() (kivy.uix.relativelayout.RelativeLayout method)

 	(kivy.uix.scatter.Scatter method)

 	(kivy.uix.scrollview.ScrollView method)

 	(kivy.uix.widget.Widget method)

 	to_widget() (kivy.uix.widget.Widget method)

 	to_window() (kivy.uix.widget.Widget method)

 	toctrees (kivy.uix.rst.RstDocument attribute)

 	toggle_fullscreen() (kivy.core.window.WindowBase method)

 	toggle_node() (kivy.uix.treeview.TreeView method)

 	ToggleButton (class in kivy.uix.togglebutton)

 	ToggleButtonBehavior (class in kivy.uix.behaviors)

 	(class in kivy.uix.behaviors.togglebutton)

 	tolist() (kivy.graphics.transformation.Matrix method)

 	top (kivy.core.window.WindowBase attribute)

 	(kivy.uix.scatter.Scatter attribute)

 	(kivy.uix.widget.Widget attribute)

 	total (kivy.uix.filechooser.FileChooserProgressBase attribute)

 	touch_control (kivy.uix.switch.Switch attribute)

 	touch_deselect_last (kivy.uix.behaviors.compoundselection.CompoundSelectionBehavior attribute)

 	(kivy.uix.behaviors.CompoundSelectionBehavior attribute)

 	touch_distance (kivy.uix.switch.Switch attribute)

 	touch_multiselect (kivy.uix.behaviors.compoundselection.CompoundSelectionBehavior attribute)

 	(kivy.uix.behaviors.CompoundSelectionBehavior attribute)

 	touches (kivy.base.EventLoopBase property)

 	TouchRippleBehavior (class in kivy.uix.behaviors)

 	(class in kivy.uix.behaviors.touchripple)

 	TouchRippleButtonBehavior (class in kivy.uix.behaviors)

 	(class in kivy.uix.behaviors.touchripple)

 	transfer_gesture() (kivy.multistroke.Recognizer method)

 	transform (kivy.uix.scatter.Scatter attribute)

 	transform_inv (kivy.uix.scatter.Scatter attribute)

 	transform_motion_event_2d() (kivy.core.window.WindowBase method)

 	transform_point() (kivy.graphics.transformation.Matrix method)

 	transition (kivy.animation.Animation property)

 	(kivy.uix.screenmanager.ScreenManager attribute)

 	transition_progress (kivy.uix.screenmanager.Screen attribute)

 	transition_state (kivy.uix.screenmanager.Screen attribute)

 	TransitionBase (class in kivy.uix.screenmanager)

 	Translate (class in kivy.graphics)

 	(class in kivy.graphics.context_instructions)

 	translate() (kivy.graphics.transformation.Matrix method)

 	translation_touches (kivy.uix.scatter.Scatter attribute)

 	transpose() (kivy.graphics.transformation.Matrix method)

 	TreeView (class in kivy.uix.treeview)

 	TreeViewException

 	TreeViewLabel (class in kivy.uix.treeview)

 	TreeViewNode (class in kivy.uix.treeview)

 	Triangle (class in kivy.graphics)

 	(class in kivy.graphics.vertex_instructions)

 	trigger_action() (kivy.uix.behaviors.button.ButtonBehavior method)

 	(kivy.uix.behaviors.ButtonBehavior method)

 	trigger_change() (kivy.properties.AliasProperty method)

 	(kivy.properties.ReferenceListProperty method)

 	trigger_gl_dealloc() (kivy.graphics.context.Context method)

 	triggered() (in module kivy.clock)

 	triple_tap_time (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	Tuio2dCurMotionEvent (class in kivy.input.providers.tuio)

 	Tuio2dObjMotionEvent (class in kivy.input.providers.tuio)

 	TuioMotionEventProvider (class in kivy.input.providers.tuio)

 	type_id (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	type_ids (kivy.eventmanager.EventManagerBase attribute)

U

 	
 	ud (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	uid (kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	unbind() (kivy.event.EventDispatcher method)

 	(kivy.event.Observable method)

 	(kivy.lang.builder.Observable method)

 	(kivy.lang.Observable method)

 	(kivy.properties.Property method)

 	unbind_property() (kivy.lang.builder.BuilderBase method)

 	(kivy.lang.BuilderBase method)

 	unbind_uid() (kivy.event.EventDispatcher method)

 	(kivy.event.Observable method)

 	(kivy.lang.builder.Observable method)

 	(kivy.lang.Observable method)

 	(kivy.properties.Property method)

 	unbind_widget() (kivy.lang.builder.BuilderBase method)

 	(kivy.lang.BuilderBase method)

 	UncoloredLogRecord (class in kivy.logger)

 	underline (kivy.uix.label.Label attribute)

 	underline_color (kivy.uix.rst.RstDocument attribute)

 	unfocus_on_touch (kivy.uix.behaviors.focus.FocusBehavior attribute)

 	(kivy.uix.behaviors.FocusBehavior attribute)

 	ungrab() (kivy.input.MotionEvent method)

 	(kivy.input.motionevent.MotionEvent method)

 	ungrab_mouse() (kivy.core.window.WindowBase method)

 	unicode_errors (kivy.uix.label.Label attribute)

 	uniforms (kivy.uix.effectwidget.AdvancedEffectBase attribute)

 	uninstall_twisted_reactor() (in module kivy.support)

 	UnistrokeTemplate (class in kivy.multistroke)

 	unload() (kivy.core.audio.Sound method)

 	(kivy.core.video.VideoBase method)

 	(kivy.uix.video.Video method)

 	unload_file() (kivy.lang.builder.BuilderBase method)

 	(kivy.lang.BuilderBase method)

 	unregister() (kivy.input.providers.tuio.TuioMotionEventProvider static method)

 	unregister_event_manager() (kivy.core.window.WindowBase method)

 	unregister_event_type() (kivy.event.EventDispatcher method)

 	unregister_event_types() (kivy.event.EventDispatcher method)

 	unregister_for_motion_event() (kivy.uix.widget.Widget method)

 	
 	unschedule() (kivy.clock.CyClockBase method)

 	up_count (kivy.uix.behaviors.compoundselection.CompoundSelectionBehavior attribute)

 	(kivy.uix.behaviors.CompoundSelectionBehavior attribute)

 	update() (kivy.effects.kinetic.KineticEffect method)

 	(kivy.effects.scroll.ScrollEffect method)

 	(kivy.input.MotionEventProvider method)

 	(kivy.input.provider.MotionEventProvider method)

 	(kivy.input.providers.androidjoystick.AndroidMotionEventProvider method)

 	(kivy.input.providers.leapfinger.LeapFingerEventProvider method)

 	(kivy.input.providers.mactouch.MacMotionEventProvider method)

 	(kivy.input.providers.mouse.MouseMotionEventProvider method)

 	(kivy.input.providers.tuio.TuioMotionEventProvider method)

 	update_bbox() (kivy.uix.gesturesurface.GestureContainer method)

 	update_config() (kivy.config.ConfigParser method)

 	update_from_scroll() (kivy.uix.scrollview.ScrollView method)

 	update_velocity() (kivy.effects.dampedscroll.DampedScrollEffect method)

 	(kivy.effects.kinetic.KineticEffect method)

 	UpdateNormalMatrix (class in kivy.graphics)

 	url (kivy.network.urlrequest.UrlRequestBase attribute)

 	UrlRequest (in module kivy.network.urlrequest)

 	UrlRequestBase (class in kivy.network.urlrequest)

 	UrlRequestRequests (class in kivy.network.urlrequest)

 	UrlRequestUrllib (class in kivy.network.urlrequest)

 	use_bubble (kivy.uix.textinput.TextInput attribute)

 	use_handles (kivy.uix.textinput.TextInput attribute)

 	use_kivy_settings (kivy.app.App attribute)

 	use_parent_frag_modelview (kivy.graphics.instructions.RenderContext attribute)

 	(kivy.graphics.RenderContext attribute)

 	use_parent_modelview (kivy.graphics.instructions.RenderContext attribute)

 	(kivy.graphics.RenderContext attribute)

 	use_parent_projection (kivy.graphics.instructions.RenderContext attribute)

 	(kivy.graphics.RenderContext attribute)

 	use_separator (kivy.uix.actionbar.ActionGroup attribute)

 	(kivy.uix.actionbar.ActionView attribute)

 	user_data_dir (kivy.app.App property)

 	usersize (kivy.core.text.LabelBase property)

 	usleep() (kivy.clock.ClockBase method)

 	(kivy.clock.ClockBaseBehavior method)

 	(kivy.clock.ClockBaseInterruptBehavior method)

 	uvpos (kivy.graphics.texture.Texture attribute)

 	uvsize (kivy.graphics.texture.Texture attribute)

V

 	
 	v (kivy.graphics.Color attribute)

 	(kivy.graphics.context_instructions.Color attribute)

 	valign (kivy.uix.label.Label attribute)

 	value (kivy.effects.kinetic.KineticEffect attribute)

 	(kivy.uix.progressbar.ProgressBar attribute)

 	(kivy.uix.settings.SettingItem attribute)

 	(kivy.uix.slider.Slider attribute)

 	value_normalized (kivy.uix.progressbar.ProgressBar attribute)

 	(kivy.uix.slider.Slider attribute)

 	value_pos (kivy.uix.slider.Slider attribute)

 	value_track (kivy.uix.slider.Slider attribute)

 	value_track_color (kivy.uix.slider.Slider attribute)

 	value_track_width (kivy.uix.slider.Slider attribute)

 	values (kivy.uix.settings.SettingBoolean attribute)

 	(kivy.uix.spinner.Spinner attribute)

 	VariableListProperty (class in kivy.properties)

 	vbar (kivy.uix.scrollview.ScrollView attribute)

 	Vector (class in kivy.vector)

 	velocity (kivy.effects.kinetic.KineticEffect attribute)

 	vertex_count (kivy.graphics.tesselator.Tesselator attribute)

 	VertexInstruction (class in kivy.graphics)

 	(class in kivy.graphics.instructions)

 	
 	VerticalBlurEffect (class in kivy.uix.effectwidget)

 	vertices (kivy.graphics.Mesh attribute)

 	(kivy.graphics.tesselator.Tesselator attribute)

 	(kivy.graphics.vertex_instructions.Mesh attribute)

 	Video (class in kivy.uix.video)

 	VideoBase (class in kivy.core.video)

 	VideoPlayer (class in kivy.uix.videoplayer)

 	VideoPlayerAnnotation (class in kivy.uix.videoplayer)

 	view_adapter (kivy.uix.recycleview.RecycleViewBehavior attribute)

 	view_clip() (kivy.graphics.transformation.Matrix method)

 	view_list (kivy.uix.filechooser.FileChooser attribute)

 	view_mode (kivy.uix.filechooser.FileChooser attribute)

 	viewclass (kivy.uix.recycleview.layout.RecycleLayoutManagerBehavior attribute)

 	(kivy.uix.recycleview.RecycleView attribute)

 	viewport_size (kivy.uix.scrollview.ScrollView attribute)

 	VKeyboard (class in kivy.uix.vkeyboard)

 	volume (kivy.core.audio.Sound attribute)

 	(kivy.core.video.VideoBase property)

 	(kivy.uix.video.Video attribute)

 	(kivy.uix.videoplayer.VideoPlayer attribute)

 	vs (kivy.graphics.shader.Shader attribute)

 	(kivy.uix.screenmanager.ShaderTransition attribute)

W

 	
 	w (kivy.core.text.text_layout.LayoutLine attribute)

 	wait() (kivy.network.urlrequest.UrlRequestBase method)

 	walk() (kivy.uix.widget.Widget method)

 	walk_reverse() (kivy.uix.widget.Widget method)

 	weak_callback (kivy.clock.ClockEvent attribute)

 	weak_clock_ended_callback (kivy.clock.ClockEvent attribute)

 	WeakMethod (class in kivy.weakmethod)

 	WeakProxy (class in kivy.weakproxy)

 	wheel (kivy.uix.colorpicker.ColorPicker attribute)

 	Widget (class in kivy.uix.widget)

 	widget (kivy.core.window.Keyboard attribute)

 	(kivy.modules.console.Console attribute)

 	WidgetException

 	width (kivy.core.image.Image property)

 	(kivy.core.image.ImageData property)

 	(kivy.core.window.WindowBase attribute)

 	(kivy.graphics.Line attribute)

 	(kivy.graphics.svg.Svg attribute)

 	(kivy.graphics.texture.Texture attribute)

 	(kivy.graphics.vertex_instructions.Line attribute)

 	(kivy.input.shape.ShapeRect attribute)

 	(kivy.uix.widget.Widget attribute)

 	
 	window (kivy.core.window.Keyboard attribute)

 	(kivy.eventmanager.EventManagerBase attribute)

 	(kivy.input.recorder.Recorder attribute)

 	WindowBase (class in kivy.core.window)

 	WipeTransition (class in kivy.uix.screenmanager)

 	with_previous (kivy.uix.actionbar.ActionPrevious attribute)

 	words (kivy.core.text.text_layout.LayoutLine attribute)

 	wrap (kivy.graphics.texture.Texture attribute)

 	write() (kivy.config.ConfigParser method)

 	write_tab (kivy.uix.textinput.TextInput attribute)

X

 	
 	x (kivy.core.text.text_layout.LayoutLine attribute)

 	(kivy.graphics.context_instructions.Scale attribute)

 	(kivy.graphics.context_instructions.Translate attribute)

 	(kivy.graphics.Scale attribute)

 	(kivy.graphics.Translate attribute)

 	(kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	(kivy.uix.scatter.Scatter attribute)

 	(kivy.uix.widget.Widget attribute)

 	(kivy.vector.Vector property)

 	
 	xy (kivy.graphics.context_instructions.Translate attribute)

 	(kivy.graphics.Translate attribute)

 	xyz (kivy.graphics.context_instructions.Scale attribute)

 	(kivy.graphics.context_instructions.Translate attribute)

 	(kivy.graphics.Scale attribute)

 	(kivy.graphics.Translate attribute)

Y

 	
 	y (kivy.core.text.text_layout.LayoutLine attribute)

 	(kivy.graphics.context_instructions.Scale attribute)

 	(kivy.graphics.context_instructions.Translate attribute)

 	(kivy.graphics.Scale attribute)

 	(kivy.graphics.Translate attribute)

 	(kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

 	(kivy.uix.scatter.Scatter attribute)

 	(kivy.uix.widget.Widget attribute)

 	(kivy.vector.Vector property)

Z

 	
 	z (kivy.graphics.context_instructions.Scale attribute)

 	(kivy.graphics.context_instructions.Translate attribute)

 	(kivy.graphics.Scale attribute)

 	(kivy.graphics.Translate attribute)

 	(kivy.input.MotionEvent attribute)

 	(kivy.input.motionevent.MotionEvent attribute)

Changelog

2.2.0

Highlights

	[#7876 [https://github.com/kivy/kivy/issues/7876]]: Line/SmoothLine: Fixes rendering issues related to corner radius and updates its order (rounded_rectangle) + add getter methods for rounded_rectangle, rectangle, ellipse, circle.

	[#7882 [https://github.com/kivy/kivy/issues/7882]]: Re-implements the Bubble widget.

	[#7908 [https://github.com/kivy/kivy/issues/7908]]: Speed up SmoothLine creation by ~2.5x

	[#7942 [https://github.com/kivy/kivy/issues/7942]]: Config unicode support on Windows

	[#7988 [https://github.com/kivy/kivy/issues/7988]]: Added support for KIVY_LOG_MODE

	[#8044 [https://github.com/kivy/kivy/issues/8044]]: Add support for Python 3.11

	[#8056 [https://github.com/kivy/kivy/issues/8056]]: New Feature: Add BoxShadow graphic instruction 🎉

	[#8115 [https://github.com/kivy/kivy/issues/8115]]: Use font_direction and font_script_name from SDL2_ttf

	[#8144 [https://github.com/kivy/kivy/issues/8144]]: Added property for mouse draggable tab scrollbar to TabbedPanel

	[#8162 [https://github.com/kivy/kivy/issues/8162]]: Label: allow different values of left, top, right and bottom for padding.

	[#8169 [https://github.com/kivy/kivy/issues/8169]]: Image: add fit_mode feature

	[#8096 [https://github.com/kivy/kivy/issues/8096]]: Introduce build script for SDL dependencies and KIVY_DEPS_ROOT

Deprecated

	[#7882 [https://github.com/kivy/kivy/issues/7882]]: Re-implements the Bubble widget.

Breaking changes

	[#7876 [https://github.com/kivy/kivy/issues/7876]]: Line/SmoothLine: Fixes rendering issues related to corner radius and updates its order (rounded_rectangle) + add getter methods for rounded_rectangle, rectangle, ellipse, circle.

Kv-lang

	[#8021 [https://github.com/kivy/kivy/issues/8021]]: Update builder.py

Misc

	[#7906 [https://github.com/kivy/kivy/issues/7906]]: Replace deprecated logging.warn with logging.warning

	[#7913 [https://github.com/kivy/kivy/issues/7913]]: fix(UrlRequest): Add “on_finish” and add alternative implementation

	[#7943 [https://github.com/kivy/kivy/issues/7943]]: Fixes some E275 - assert is a keyword. + other minor PEP8 fixes

	[#7969 [https://github.com/kivy/kivy/issues/7969]]: Config is not available when generating docs + Use getdefault instead of has_option + get

Widgets

	[#7626 [https://github.com/kivy/kivy/issues/7626]]: New Feature: Allow control how many lines to scroll at once using the mouse wheel on TextInput

	[#7882 [https://github.com/kivy/kivy/issues/7882]]: Re-implements the Bubble widget.

	[#7905 [https://github.com/kivy/kivy/issues/7905]]: Fix TextInputCutCopyPaste widget

	[#7925 [https://github.com/kivy/kivy/issues/7925]]: Qwerty VKeyboard button fix(z, Q and W and]) on Linux(Ubuntu Focal Fossa)

	[#8109 [https://github.com/kivy/kivy/issues/8109]]: Fix for changes of Splitter.strip_cls having no effect

	[#8144 [https://github.com/kivy/kivy/issues/8144]]: Added property for mouse draggable tab scrollbar to TabbedPanel

	[#8169 [https://github.com/kivy/kivy/issues/8169]]: Image: add fit_mode feature

	[#8202 [https://github.com/kivy/kivy/issues/8202]]: Migrate allow_stretch and keep_ratio in widgets/examples by corresponding fit_mode

Core-app

	[#7942 [https://github.com/kivy/kivy/issues/7942]]: Config unicode support on Windows

	[#7958 [https://github.com/kivy/kivy/issues/7958]]: Use AddLevelName in kivy.Logger to define TRACE

	[#7962 [https://github.com/kivy/kivy/issues/7962]]: Refactored logging.ColoredFormatter to avoid deepcopy.

	[#7971 [https://github.com/kivy/kivy/issues/7971]]: Support KivyLogMode environment variable for logging testing

	[#7973 [https://github.com/kivy/kivy/issues/7973]]: Bump KIVY_CONFIG_VERSION and add a warning for future changes.

	[#7975 [https://github.com/kivy/kivy/issues/7975]]: Light clean up of stderr handling code.

	[#7979 [https://github.com/kivy/kivy/issues/7979]]: #7978: Don’t monkey-patch logging.root

	[#7985 [https://github.com/kivy/kivy/issues/7985]]: Handle non-strings in logs.

	[#7988 [https://github.com/kivy/kivy/issues/7988]]: Added support for KIVY_LOG_MODE

	[#7989 [https://github.com/kivy/kivy/issues/7989]]: Android Lifecycle convergence

	[#7994 [https://github.com/kivy/kivy/issues/7994]]: Use urlopen instead of build_opener when fetching files from ‘internet’. Removes some PY2 compat.

	[#8062 [https://github.com/kivy/kivy/issues/8062]]: Use find_spec, module_from_spec and exec_module instead of find_module and load_module since are deprecated.

Core-providers

	[#7846 [https://github.com/kivy/kivy/issues/7846]]: Fix VKeyboard missing with custom keyboard class

	[#7857 [https://github.com/kivy/kivy/issues/7857]]: iOS camera provider enhancements

	[#7982 [https://github.com/kivy/kivy/issues/7982]]: Use SDL_WINDOWEVENT_DISPLAY_CHANGED to notice about window switching display to update _density an dpi

	[#7999 [https://github.com/kivy/kivy/issues/7999]]: Modify layout fix bug in how long text without space is cut

	[#8025 [https://github.com/kivy/kivy/issues/8025]]: Release the GIL when performing SDL_GL_SwapWindow call.

	[#8058 [https://github.com/kivy/kivy/issues/8058]]: Makes Windows DPI aware of scale changes

	[#8076 [https://github.com/kivy/kivy/issues/8076]]: New Feature: Always On Top

	[#8083 [https://github.com/kivy/kivy/issues/8083]]: Allow changing Window.fullscreen and Window.borderless options after setup on iOS

	[#8115 [https://github.com/kivy/kivy/issues/8115]]: Use font_direction and font_script_name from SDL2_ttf

	[#8142 [https://github.com/kivy/kivy/issues/8142]]: New Feature: Allows to hide the taskbar icon

	[#8146 [https://github.com/kivy/kivy/issues/8146]]: Fix memory issue on iOS 16.2 for AVMetadataObject (during QRCode scan)

	[#8147 [https://github.com/kivy/kivy/issues/8147]]: Detect High DPI on Linux Desktop

	[#8162 [https://github.com/kivy/kivy/issues/8162]]: Label: allow different values of left, top, right and bottom for padding.

	[#8171 [https://github.com/kivy/kivy/issues/8171]]: Make VideoFFPy work with RTSP streams.

	[#8184 [https://github.com/kivy/kivy/issues/8184]]: Revert “Detect High DPI on Linux Desktop”

Core-widget

	[#8035 [https://github.com/kivy/kivy/issues/8035]]: Simplify Animation._unregister

Distribution

	[#7837 [https://github.com/kivy/kivy/issues/7837]]: Bump to 2.2.0.dev0

	[#7852 [https://github.com/kivy/kivy/issues/7852]]: Build python 3.9 wheels for RPi

	[#7974 [https://github.com/kivy/kivy/issues/7974]]: Bump SDL2, SDL_image, SDL_mixer, SDL_ttf versions to latest stable release

	[#8004 [https://github.com/kivy/kivy/issues/8004]]: Bump kivy_deps.sdl2 and kivy_deps.sdl2_dev to 0.5.0

	[#8006 [https://github.com/kivy/kivy/issues/8006]]: Use Platypus 5.4

	[#8043 [https://github.com/kivy/kivy/issues/8043]]: Bump SDL2 to 2.24.1 on Linux and macOS

	[#8044 [https://github.com/kivy/kivy/issues/8044]]: Add support for Python 3.11

	[#8050 [https://github.com/kivy/kivy/issues/8050]]: Bump again SDL2 to 2.24.2 on Linux and macOS

	[#8070 [https://github.com/kivy/kivy/issues/8070]]: Remove usage of distutils module which is deprecated and slated for removal in 3.12

	[#8096 [https://github.com/kivy/kivy/issues/8096]]: Introduce build script for SDL dependencies and KIVY_DEPS_ROOT

	[#8155 [https://github.com/kivy/kivy/issues/8155]]: Dependencies build tool: exit immediately on fail and allows to debug easier

	[#8173 [https://github.com/kivy/kivy/issues/8173]]: Bump macOS dependencies versions on tools/build_macos_dependencies.sh

	[#8174 [https://github.com/kivy/kivy/issues/8174]]: Bump Linux dependencies versions on tools/build_linux_dependencies.sh

	[#8176 [https://github.com/kivy/kivy/issues/8176]]: Bump Windows dependencies via kivy_deps packages

	[#8178 [https://github.com/kivy/kivy/issues/8178]]: Bump cython_max version

	[#8191 [https://github.com/kivy/kivy/issues/8191]]: XCode 14.3 fails to build SDL if MACOSX_DEPLOYMENT_TARGET < 10.13

	[#8203 [https://github.com/kivy/kivy/issues/8203]]: Migrate from autotools to cmake for SDL2 linux dependencies

	[#8223 [https://github.com/kivy/kivy/issues/8223]]: Perform RPi builds on balenalib/raspberrypi3-* images and skip DISPMANX API usage if can’t be used [build wheel armv7l]

	[#8231 [https://github.com/kivy/kivy/issues/8231]]: Bump version to 2.2.0rc1

Documentation

	[#7870 [https://github.com/kivy/kivy/issues/7870]]: Documentation: bump Gentoo install instructions

	[#7916 [https://github.com/kivy/kivy/issues/7916]]: Fixes NO DOCUMENTATION (module kivy.uix.recycleview)

	[#7927 [https://github.com/kivy/kivy/issues/7927]]: Fix minor typo in pong tutorial code comments

	[#7928 [https://github.com/kivy/kivy/issues/7928]]: Add missing closing paren in hint text

	[#7929 [https://github.com/kivy/kivy/issues/7929]]: Use consistent source code notes in pong tutorial

	[#7930 [https://github.com/kivy/kivy/issues/7930]]: Purge trailing whitespace in docs source files

	[#7946 [https://github.com/kivy/kivy/issues/7946]]: Add doc for Canvas.add()

	[#8026 [https://github.com/kivy/kivy/issues/8026]]: Typo : missing coma in the doc

	[#8032 [https://github.com/kivy/kivy/issues/8032]]: doc: Initial remarks on BSD compatibility.

	[#8034 [https://github.com/kivy/kivy/issues/8034]]: Fix backticks typo in pong tutorial

	[#8039 [https://github.com/kivy/kivy/issues/8039]]: Link to buildozer installation instructions instead of duplicating them

	[#8041 [https://github.com/kivy/kivy/issues/8041]]: installation-osx.rst: Minor code formatting

	[#8088 [https://github.com/kivy/kivy/issues/8088]]: Add support for sphinx 6.0.0

	[#8089 [https://github.com/kivy/kivy/issues/8089]]: Add a warning about keyboard_suggestions usage on Android

	[#8139 [https://github.com/kivy/kivy/issues/8139]]: Improve docs about BoxShadow behavior and usage.

	[#8156 [https://github.com/kivy/kivy/issues/8156]]: Docs: Update the Ubuntu prerequisites to build Kivy and its dependencies

	[#8175 [https://github.com/kivy/kivy/issues/8175]]: Update Copyright and LICENSE dates

	[#8179 [https://github.com/kivy/kivy/issues/8179]]: Update Python supported versions

	[#8181 [https://github.com/kivy/kivy/issues/8181]]: :book: Grammar tweaks to focus docstrings

	[#8183 [https://github.com/kivy/kivy/issues/8183]]: Docs: Fixes a typo (issue #7838)

	[#8229 [https://github.com/kivy/kivy/issues/8229]]: Sphinx 7.0.0 is incompatible, use <=6.2.1 for now

	[#8234 [https://github.com/kivy/kivy/issues/8234]]: Docs review for RPi installation and build instructions

Graphics

	[#7860 [https://github.com/kivy/kivy/issues/7860]]: Ellipse: update angle_start, angle_end to explicit floats

	[#7876 [https://github.com/kivy/kivy/issues/7876]]: Line/SmoothLine: Fixes rendering issues related to corner radius and updates its order (rounded_rectangle) + add getter methods for rounded_rectangle, rectangle, ellipse, circle.

	[#7908 [https://github.com/kivy/kivy/issues/7908]]: Speed up SmoothLine creation by ~2.5x

	[#8056 [https://github.com/kivy/kivy/issues/8056]]: New Feature: Add BoxShadow graphic instruction 🎉

	[#8098 [https://github.com/kivy/kivy/issues/8098]]: Fix BoxShadow shader crashing issue on Adreno GPUs

	[#8132 [https://github.com/kivy/kivy/issues/8132]]: BoxShadow: Add inset feature

	[#8138 [https://github.com/kivy/kivy/issues/8138]]: BoxShadow: Accept values for vertical and horizontal spread_radius

	[#8163 [https://github.com/kivy/kivy/issues/8163]]: Line/SmoothLine: ellipse - fix behavior and add feature to allow closing line through center of ellipse

	[#8164 [https://github.com/kivy/kivy/issues/8164]]: Ellipse: Handle the number of segments and avoid division by zero

	[#8170 [https://github.com/kivy/kivy/issues/8170]]: Add svg rotation transform support

	[#8187 [https://github.com/kivy/kivy/issues/8187]]: Line/SmoothLine - ellipse: Handle the number of segments to match Ellipse

Input

	[#8027 [https://github.com/kivy/kivy/issues/8027]]: Typo : German Keyboard is QWERTZ

Tests/ci

	[#7847 [https://github.com/kivy/kivy/issues/7847]]: Tests: ffpyplayer now ships cp310-* and Apple Silicon compatible wheels, so tests on the full version can be re-introduced.

	[#7854 [https://github.com/kivy/kivy/issues/7854]]: Fixes 3.8.x pyenv install due to a recent change in clang [build wheel osx]

	[#7885 [https://github.com/kivy/kivy/issues/7885]]: Our self-hosted Apple Silicon runner now has been migrated to actions/runner v2.292.0 which now supports arm64 natively

	[#7903 [https://github.com/kivy/kivy/issues/7903]]: Migrate from probot/no-response to lee-dohm/no-response

	[#7917 [https://github.com/kivy/kivy/issues/7917]]: When using pytest_asyncio for tests, function should be decorated with pytest_asyncio.fixture

	[#7972 [https://github.com/kivy/kivy/issues/7972]]: Fix trivial typo in workflow.

	[#7987 [https://github.com/kivy/kivy/issues/7987]]: Fix source typo in test_uix_bubbles.py

	[#8084 [https://github.com/kivy/kivy/issues/8084]]: Switch from ubuntu-18.04 to ubuntu-latest as 18.04 runners will be removed on 2023-01-12

	[#8093 [https://github.com/kivy/kivy/issues/8093]]: Add gstreamer1.0-plugins-good for autoaudiosink availability during tests

	[#8099 [https://github.com/kivy/kivy/issues/8099]]: Install twine only when needed [build wheel]

	[#8117 [https://github.com/kivy/kivy/issues/8117]]: Upgrade GitHub Actions

	[#8120 [https://github.com/kivy/kivy/issues/8120]]: [build wheel] Upgrade more GitHub Actions

	[#8121 [https://github.com/kivy/kivy/issues/8121]]: GitHub Actions: Use current Python instead of hardcoded v3.9

	[#8126 [https://github.com/kivy/kivy/issues/8126]]: Switch back to macos-latest instead of macos-11

	[#8129 [https://github.com/kivy/kivy/issues/8129]]: Remove remaining nosetest settings in favor of pytest

	[#8157 [https://github.com/kivy/kivy/issues/8157]]: Correct the flake8 pre-commit URL

	[#8217 [https://github.com/kivy/kivy/issues/8217]]: Generate-sdist needs packaging as a dependency [build wheel win]

2.1.0

Highlights

	[#7270 [https://github.com/kivy/kivy/issues/7270]]: Graphics: Check whether user updated GL instructions from external thread.

	[#7293 [https://github.com/kivy/kivy/issues/7293]]: Properties: Add dynamic screen density/dpi support

	[#7371 [https://github.com/kivy/kivy/issues/7371]]: KV: Allow using f-strings in KV-lang

	[#7424 [https://github.com/kivy/kivy/issues/7424]]: Properties: Speed up bare widget creation (3X) and property dispatching/setting

	[#7587 [https://github.com/kivy/kivy/issues/7587]]: Fix PermissionError when reconnecting mtdev input devices

	[#7637 [https://github.com/kivy/kivy/issues/7637]]: Added Custom titlebar support

	[#7642 [https://github.com/kivy/kivy/issues/7642]]: TextInput loading time optimisation for large texts

	[#7658 [https://github.com/kivy/kivy/issues/7658]]: Feature: EventManagerBase

	[#7663 [https://github.com/kivy/kivy/issues/7663]]: Add python3.10 in the ci configuration

	[#7678 [https://github.com/kivy/kivy/issues/7678]]: Add support for Apple Silicon on CI/CD

Deprecated

	[#7701 [https://github.com/kivy/kivy/issues/7701]]: deprecate ‘kivy.utils.SafeList’

	[#7786 [https://github.com/kivy/kivy/issues/7786]]: WindowBase: Add on_drop_begin, on_droptext and on_drop_end events

Breaking changes

	[#6290 [https://github.com/kivy/kivy/issues/6290]]: Widget: Fix signature of add/remove/clear_widget to be consistent with base class

	[#7264 [https://github.com/kivy/kivy/issues/7264]]: Camera: Change play default to False

	[#7356 [https://github.com/kivy/kivy/issues/7356]]: Widget: Widget.clear_widgets empty widget list does not remove all children

	[#7437 [https://github.com/kivy/kivy/issues/7437]]: TextInput: Remove broken and confusing suggestion_text property

	[#7744 [https://github.com/kivy/kivy/issues/7744]]: Change default input_type to null. Add some warning regarding TYPE_TEXT_FLAG_NO_SUGGESTIONS

	[#7763 [https://github.com/kivy/kivy/issues/7763]]: Removed Python3.6 from the supported ones, it reached EOL

	[#7820 [https://github.com/kivy/kivy/issues/7820]]: Patch gst current release to look for dlls in correct place for win store

Kv-lang

	[#7371 [https://github.com/kivy/kivy/issues/7371]]: KV: Allow using f-strings in KV-lang

	[#7703 [https://github.com/kivy/kivy/issues/7703]]: refactor kivy.lang

Misc

	[#7204 [https://github.com/kivy/kivy/issues/7204]]: Kivy: print kivy’s version even when not a release.

	[#7271 [https://github.com/kivy/kivy/issues/7271]]: Inspector: Prevent circular import breaking Window

	[#7403 [https://github.com/kivy/kivy/issues/7403]]: Exceptions: Fix typos in message

	[#7433 [https://github.com/kivy/kivy/issues/7433]]: Source: Fix typos in source code

	[#7453 [https://github.com/kivy/kivy/issues/7453]]: Screen: Added Oneplus 6t in screen module

	[#7701 [https://github.com/kivy/kivy/issues/7701]]: deprecate ‘kivy.utils.SafeList’

Packaging

	[#7341 [https://github.com/kivy/kivy/issues/7341]]: OSX: Use platform.machine() for osx version detection

	[#7605 [https://github.com/kivy/kivy/issues/7605]]: PyInstaller hook: Replace modname_tkinter with ‘tkinter’

	[#7781 [https://github.com/kivy/kivy/issues/7781]]: PyInstaller develop version isn’t needed anymore

Widgets

	[#7049 [https://github.com/kivy/kivy/issues/7049]]: Camera: Fix GI camera provider crash when no texture is available after loading

	[#7213 [https://github.com/kivy/kivy/issues/7213]]: ScrollView: Match scroll effect stop condition to start condition.

	[#7261 [https://github.com/kivy/kivy/issues/7261]]: Camera: Revert “Fixes crash during camera configuration”

	[#7262 [https://github.com/kivy/kivy/issues/7262]]: RecycleGridLayout : Fix layout when number of widgets match number of columns

	[#7264 [https://github.com/kivy/kivy/issues/7264]]: Camera: Change play default to False

	[#7322 [https://github.com/kivy/kivy/issues/7322]]: Widget: fix export_to_png not passing arguments through

	[#7353 [https://github.com/kivy/kivy/issues/7353]]: RecycleLayout: Allow setting x, y sizing of views independently

	[#7372 [https://github.com/kivy/kivy/issues/7372]]: Focus: Allow modifiers (e.g. numlock) be present to tab cycle focus

	[#7383 [https://github.com/kivy/kivy/issues/7383]]: Dropdown: Fix reposition in scrollview/recycleview

	[#7391 [https://github.com/kivy/kivy/issues/7391]]: Factory: Registered TouchRippleBehavior and TouchRippleButtonBehavior with Factory

	[#7426 [https://github.com/kivy/kivy/issues/7426]]: Dropdown: Ensure visibility on reposition

	[#7434 [https://github.com/kivy/kivy/issues/7434]]: ModalView: code cleanup regarding detection of main-Window:

	[#7437 [https://github.com/kivy/kivy/issues/7437]]: TextInput: Remove broken and confusing suggestion_text property

	[#7457 [https://github.com/kivy/kivy/issues/7457]]: ScrollView: Fix for scroll bar areas blocking clicks when scroll is disabled with overscroll

	[#7471 [https://github.com/kivy/kivy/issues/7471]]: Video: Add support for preview image

	[#7488 [https://github.com/kivy/kivy/issues/7488]]: FocusBehavior: Fix assumption that modifiers is always a set.

	[#7520 [https://github.com/kivy/kivy/issues/7520]]: Video: Fixed handling eos after unloading

	[#7527 [https://github.com/kivy/kivy/issues/7527]]: Label: Fix label not displaying as disabled if it is disabled when created

	[#7548 [https://github.com/kivy/kivy/issues/7548]]: Fixes issue #7514 (‘auto_halign_r’ referenced before assignment)

	[#7610 [https://github.com/kivy/kivy/issues/7610]]: Added scroll from swipe feature in TextInput

	[#7612 [https://github.com/kivy/kivy/issues/7612]]: Fixed unexpected overscrolling bug when using mouse wheel

	[#7615 [https://github.com/kivy/kivy/issues/7615]]: Fixed unexpected overscrolling bug when using mouse wheel, complement to #7612

	[#7618 [https://github.com/kivy/kivy/issues/7618]]: Fixed TextInput visual selection bugs while scrolling

	[#7621 [https://github.com/kivy/kivy/issues/7621]]: Fixed inconsistent behavior of TextInput bubble and handles

	[#7622 [https://github.com/kivy/kivy/issues/7622]]: Fixes TextInput cursor issues when resizing/scrolling

	[#7631 [https://github.com/kivy/kivy/issues/7631]]: Fixes some bugs in the TextInput if the text is right-aligned or center-aligned and not multiline.

	[#7636 [https://github.com/kivy/kivy/issues/7636]]: Textinput on double tap improvement

	[#7641 [https://github.com/kivy/kivy/issues/7641]]: Textinput: Fixes issues #7165, #7236, #7235

	[#7642 [https://github.com/kivy/kivy/issues/7642]]: TextInput loading time optimisation for large texts

	[#7706 [https://github.com/kivy/kivy/issues/7706]]: SettingColor: Change method name to get_color_from_hex

	[#7737 [https://github.com/kivy/kivy/issues/7737]]: CodeInput: fixed disappearing lines after inserting text

	[#7740 [https://github.com/kivy/kivy/issues/7740]]: TextInput: easier tokenize delimiters setting; quotes removed from default delimiters

	[#7775 [https://github.com/kivy/kivy/issues/7775]]: Don’t let ‘ScrollEffect.reset()’ set ‘is_manual’ to True

	[#7796 [https://github.com/kivy/kivy/issues/7796]]: EventManagerBase: Fix indentation and typos in the doc

	[#7807 [https://github.com/kivy/kivy/issues/7807]]: Textinput: Simplified the swipe feature logic. Fixed a bug that was preventing to show the select all / paste bubble

	[#7814 [https://github.com/kivy/kivy/issues/7814]]: :zap: Prevent crash (overflow error) when scrollbar is hidden

	[#7816 [https://github.com/kivy/kivy/issues/7816]]: VideoPlayer: Defer before the next frame the default thumbnail and annotations loading

Core-app

	[#7173 [https://github.com/kivy/kivy/issues/7173]]: Logger: Do not mutate log record, fixes #7062

	[#7245 [https://github.com/kivy/kivy/issues/7245]]: Resources: Add a cache for resource_find

	[#7293 [https://github.com/kivy/kivy/issues/7293]]: Properties: Add dynamic screen density/dpi support

	[#7300 [https://github.com/kivy/kivy/issues/7300]]: Logger: Remove refactoring artifact

	[#7307 [https://github.com/kivy/kivy/issues/7307]]: Logger: Remove purge log’s randomized behavior

	[#7326 [https://github.com/kivy/kivy/issues/7326]]: Command line: Fix disabling kivy cmd args

	[#7429 [https://github.com/kivy/kivy/issues/7429]]: Clock: Print remaining events before next frame upon too much iteration error

	[#7505 [https://github.com/kivy/kivy/issues/7505]]: EventLoopBase: Remove provider from auto-remove list

	[#7508 [https://github.com/kivy/kivy/issues/7508]]: App: Process app quit event while paused

	[#7512 [https://github.com/kivy/kivy/issues/7512]]: EventLoopBase: Start/stop event loop only once

	[#7749 [https://github.com/kivy/kivy/issues/7749]]: collections fix for python 3.10

	[#7763 [https://github.com/kivy/kivy/issues/7763]]: Removed Python3.6 from the supported ones, it reached EOL

	[#7771 [https://github.com/kivy/kivy/issues/7771]]: Explain the ‘–’ separator for option parsing.

	[#7810 [https://github.com/kivy/kivy/issues/7810]]: Track whether the clock has started

Core-providers

	[#7228 [https://github.com/kivy/kivy/issues/7228]]: Image: Fix PIL label rendering shadow

	[#7231 [https://github.com/kivy/kivy/issues/7231]]: Keyboard: Add keyboard suggestions and fix input type on android

	[#7260 [https://github.com/kivy/kivy/issues/7260]]: Camera: Use NSString instead of AVCaptureSessionPreset in order to support MacOS < 10.13

	[#7263 [https://github.com/kivy/kivy/issues/7263]]: Camera: Added API to change avfoundation camera provider orientation

	[#7279 [https://github.com/kivy/kivy/issues/7279]]: Window: prevent “empty” mousewheel events from breaking scrollview

	[#7290 [https://github.com/kivy/kivy/issues/7290]]: Camera: improve avfoundation by using memoryview and re-scheduling the interval on framerate change

	[#7299 [https://github.com/kivy/kivy/issues/7299]]: Window: Handle DPI Windows messages until SDL2 handles them

	[#7303 [https://github.com/kivy/kivy/issues/7303]]: Camera: Fix AVFoundation provider to release the camera, start it async, and check if started before stopping it

	[#7339 [https://github.com/kivy/kivy/issues/7339]]: Camera: Android camera focus mode fix

	[#7347 [https://github.com/kivy/kivy/issues/7347]]: Window: Delay binding dpi until window is ready.

	[#7389 [https://github.com/kivy/kivy/issues/7389]]: Mouse: Fix mouse being offset by 2 pixels vertically

	[#7390 [https://github.com/kivy/kivy/issues/7390]]: SoundAndroidPlayer: Properly stop after playback completion

	[#7409 [https://github.com/kivy/kivy/issues/7409]]: Window: Fix logging message

	[#7418 [https://github.com/kivy/kivy/issues/7418]]: Video: Reduce latency from user interaction for ffpyplayer

	[#7467 [https://github.com/kivy/kivy/issues/7467]]: Text: Raise when registering a font_regular with None

	[#7484 [https://github.com/kivy/kivy/issues/7484]]: WindowBase: Add to_normalized_pos method

	[#7517 [https://github.com/kivy/kivy/issues/7517]]: Core: Use importlib’s __import__ for compatibility with patching

	[#7541 [https://github.com/kivy/kivy/issues/7541]]: SoundLoader: Fix play calls not working in ffpyplayer after the first

	[#7620 [https://github.com/kivy/kivy/issues/7620]]: removed print and added logging to flipVert

	[#7637 [https://github.com/kivy/kivy/issues/7637]]: Added Custom titlebar support

	[#7647 [https://github.com/kivy/kivy/issues/7647]]: WindowBase: Change type of clearcolor property to ColorProperty

	[#7648 [https://github.com/kivy/kivy/issues/7648]]: WindowBase: Add transform_motion_event_2d method

	[#7688 [https://github.com/kivy/kivy/issues/7688]]: Fix dds header comparison

	[#7726 [https://github.com/kivy/kivy/issues/7726]]: Window.softinput_mode fix for “pan” and “below_target” modes when using kivy virtual keyboard.

	[#7744 [https://github.com/kivy/kivy/issues/7744]]: Change default input_type to null. Add some warning regarding TYPE_TEXT_FLAG_NO_SUGGESTIONS

	[#7770 [https://github.com/kivy/kivy/issues/7770]]: WindowBase: Update bind list of properties: system_size, size, width, height and center

	[#7778 [https://github.com/kivy/kivy/issues/7778]]: WindowBase: Don’t return motion event in transform_motion_event_2d method

	[#7786 [https://github.com/kivy/kivy/issues/7786]]: WindowBase: Add on_drop_begin, on_droptext and on_drop_end events

	[#7793 [https://github.com/kivy/kivy/issues/7793]]: WindowBase|WindowSDL: Add drop position for all on_drop_xxx events

	[#7795 [https://github.com/kivy/kivy/issues/7795]]: WindowBase: Add *args to on_drop_xxx events

Core-widget

	[#6290 [https://github.com/kivy/kivy/issues/6290]]: Widget: Fix signature of add/remove/clear_widget to be consistent with base class

	[#7209 [https://github.com/kivy/kivy/issues/7209]]: Animation: Allow canceling all animated widgets

	[#7356 [https://github.com/kivy/kivy/issues/7356]]: Widget: Widget.clear_widgets empty widget list does not remove all children

	[#7424 [https://github.com/kivy/kivy/issues/7424]]: Properties: Speed up bare widget creation (3X) and property dispatching/setting

	[#7439 [https://github.com/kivy/kivy/issues/7439]]: Properties: Drop long number type and document numpy issues with NumericProperty

	[#7442 [https://github.com/kivy/kivy/issues/7442]]: EventDispatcher: Removed/replaced all basestring occurrences with str

	[#7445 [https://github.com/kivy/kivy/issues/7445]]: EventDispatcher: Rename method unregister_event_types to unregister_event_type

	[#7449 [https://github.com/kivy/kivy/issues/7449]]: TextInput: Fix readonly mode preventing using cursor keys, wrapping, and more

	[#7459 [https://github.com/kivy/kivy/issues/7459]]: Properties: Accept str-subclass where we accept strings

	[#7536 [https://github.com/kivy/kivy/issues/7536]]: EventDispatcher: Add nicer error message for non-existing properties

	[#7658 [https://github.com/kivy/kivy/issues/7658]]: Feature: EventManagerBase

	[#7774 [https://github.com/kivy/kivy/issues/7774]]: Fix widget.disabled handling of value change of equal truthiness

Distribution

	[#7257 [https://github.com/kivy/kivy/issues/7257]]: Setup: Fix buggy detection of cython module name

	[#7362 [https://github.com/kivy/kivy/issues/7362]]: Build: No oneliners in [options.extras_require]

	[#7663 [https://github.com/kivy/kivy/issues/7663]]: Add python3.10 in the ci configuration

	[#7678 [https://github.com/kivy/kivy/issues/7678]]: Add support for Apple Silicon on CI/CD

	[#7711 [https://github.com/kivy/kivy/issues/7711]]: Add an option to force a custom search path for SDL2 frameworks + fixes ARCHFLAGS

	[#7762 [https://github.com/kivy/kivy/issues/7762]]: macOS deps: Update SDL to 2.0.20 and update SDL_ttf to 2.0.18

	[#7769 [https://github.com/kivy/kivy/issues/7769]]: Add Linux AArch64 wheel build support

	[#7777 [https://github.com/kivy/kivy/issues/7777]]: Bump to 2.1.0rc1

	[#7802 [https://github.com/kivy/kivy/issues/7802]]: Bump to 2.1.0rc1

	[#7804 [https://github.com/kivy/kivy/issues/7804]]: Use the KIVY_RPI_VERSION env variable to force the build of egl_rpi in non Raspi CI builds

	[#7813 [https://github.com/kivy/kivy/issues/7813]]: Bump cython and kivy_deps versions to latest

	[#7820 [https://github.com/kivy/kivy/issues/7820]]: Patch gst current release to look for dlls in correct place for win store

	[#7821 [https://github.com/kivy/kivy/issues/7821]]: Bump to 2.1.0rc2

	[#7822 [https://github.com/kivy/kivy/issues/7822]]: Bump to 2.1.0rc3

Documentation

	[#7010 [https://github.com/kivy/kivy/issues/7010]]: Doc: Warn that decorated methods might not be bindable.

	[#7284 [https://github.com/kivy/kivy/issues/7284]]: docs: fix simple typo, expressons -> expressions

	[#7286 [https://github.com/kivy/kivy/issues/7286]]: Doc: Add negative size warning

	[#7288 [https://github.com/kivy/kivy/issues/7288]]: Documentation: Updated prerequisites and supported python version for iOS

	[#7295 [https://github.com/kivy/kivy/issues/7295]]: Doc cleanups

	[#7301 [https://github.com/kivy/kivy/issues/7301]]: Doc: Add Kivy config example for inverted mtdev events

	[#7305 [https://github.com/kivy/kivy/issues/7305]]: Slider: Fix step property docs

	[#7328 [https://github.com/kivy/kivy/issues/7328]]: Added documentation for RecycleView viewclass statefullness, including a warning, context paragraph, and minimal example

	[#7342 [https://github.com/kivy/kivy/issues/7342]]: TabbedPanel: Doc calling switch_to from __init__

	[#7344 [https://github.com/kivy/kivy/issues/7344]]: App: fix Trio example in docstring

	[#7358 [https://github.com/kivy/kivy/issues/7358]]: Doc: Fix doc code formatting

	[#7359 [https://github.com/kivy/kivy/issues/7359]]: Fix first doc line being ignored

	[#7366 [https://github.com/kivy/kivy/issues/7366]]: Docs: use print() in docs, comment and generated code

	[#7392 [https://github.com/kivy/kivy/issues/7392]]: Docs: Fix packaging-osx docs (homebrew)

	[#7432 [https://github.com/kivy/kivy/issues/7432]]: Docs: Fix codespell found typos

	[#7435 [https://github.com/kivy/kivy/issues/7435]]: Docs: check for “sphinx” in command line

	[#7441 [https://github.com/kivy/kivy/issues/7441]]: Docs: Fix creating of docs of compoundselection.py

	[#7451 [https://github.com/kivy/kivy/issues/7451]]: Docs: Fix Type Error when creating bytes from array in Python 3

	[#7481 [https://github.com/kivy/kivy/issues/7481]]: Doc: Properties spelling fix

	[#7497 [https://github.com/kivy/kivy/issues/7497]]: Docs: Use python3 super in example

	[#7560 [https://github.com/kivy/kivy/issues/7560]]: Comment references the wrong layout

	[#7561 [https://github.com/kivy/kivy/issues/7561]]: Typo on docs, missing “the”

	[#7580 [https://github.com/kivy/kivy/issues/7580]]: Fix line number references in basic.rst

	[#7581 [https://github.com/kivy/kivy/issues/7581]]: Fixes double word in docs

	[#7592 [https://github.com/kivy/kivy/issues/7592]]: Fix missing word in doc/guide/events.rst

	[#7603 [https://github.com/kivy/kivy/issues/7603]]: Fixes pong tutorial collision on the right side.

	[#7614 [https://github.com/kivy/kivy/issues/7614]]: Fix install command for zsh

	[#7623 [https://github.com/kivy/kivy/issues/7623]]: Sphinx: Use class instead of instance in add_lexer + Fixes search on sphinx>1.7.9

	[#7624 [https://github.com/kivy/kivy/issues/7624]]: Sphinx: Fixes missing documentation_options

	[#7625 [https://github.com/kivy/kivy/issues/7625]]: Update line number references in documentation

	[#7672 [https://github.com/kivy/kivy/issues/7672]]: fix various docs

	[#7693 [https://github.com/kivy/kivy/issues/7693]]: Remove wording and functions specific to Python 2

	[#7717 [https://github.com/kivy/kivy/issues/7717]]: MotionEvent: Fix docstring in dispatch_done method to reference post_dispatch_input

	[#7752 [https://github.com/kivy/kivy/issues/7752]]: Improves docs on mobile, fixes duplicated getting started

	[#7757 [https://github.com/kivy/kivy/issues/7757]]: Update README.md

	[#7764 [https://github.com/kivy/kivy/issues/7764]]: Update license year

	[#7766 [https://github.com/kivy/kivy/issues/7766]]: Add support for older Sphinx versions

	[#7773 [https://github.com/kivy/kivy/issues/7773]]: Docs review before release 2.1.0

	[#7790 [https://github.com/kivy/kivy/issues/7790]]: made code examples user friendly; fixes #7720

	[#7799 [https://github.com/kivy/kivy/issues/7799]]: Dark Theme support for docs

	[#7801 [https://github.com/kivy/kivy/issues/7801]]: made Generic Prompt unselectable

	[#7815 [https://github.com/kivy/kivy/issues/7815]]: MotionEvent: Fix indentation in module doc

	[#7826 [https://github.com/kivy/kivy/issues/7826]]: add GitHub URL for PyPi

	[#7830 [https://github.com/kivy/kivy/issues/7830]]: EventManager: Fix typo in module doc

Graphics

	[#4854 [https://github.com/kivy/kivy/issues/4854]]: Graphics: Add Sdl2 vsync

	[#7270 [https://github.com/kivy/kivy/issues/7270]]: Graphics: Check whether user updated GL instructions from external thread.

	[#7277 [https://github.com/kivy/kivy/issues/7277]]: SVG: Fix SVG instruction iteration for python 3.9.

	[#7455 [https://github.com/kivy/kivy/issues/7455]]: Graphics: Only check for threading issues once graphics is initialized

Input

	[#7387 [https://github.com/kivy/kivy/issues/7387]]: Mouse: Update MouseMotionEventProvider to dispatch hover events

	[#7425 [https://github.com/kivy/kivy/issues/7425]]: Mouse: Fix computation of relative touch position in MouseMotionEventProvider

	[#7492 [https://github.com/kivy/kivy/issues/7492]]: MouseMotionEventProvider: Refactor of provider and tests

	[#7549 [https://github.com/kivy/kivy/issues/7549]]: MouseMotionEventProvider: Add disable_hover property

	[#7587 [https://github.com/kivy/kivy/issues/7587]]: Fix PermissionError when reconnecting mtdev input devices

	[#7644 [https://github.com/kivy/kivy/issues/7644]]: MouseMotionEventProvider: Update doc of disable_hover property

	[#7659 [https://github.com/kivy/kivy/issues/7659]]: MotionEvent: Fix scale_for_screen method

	[#7679 [https://github.com/kivy/kivy/issues/7679]]: MotionEvent: Fix calculation of z values in scale_for_screen method

	[#7684 [https://github.com/kivy/kivy/issues/7684]]: Enable pressure for touches in android (and ios?)

	[#7691 [https://github.com/kivy/kivy/issues/7691]]: MotionEvent: Fix keeping of the previous normalized position

	[#7714 [https://github.com/kivy/kivy/issues/7714]]: MouseMotionEventProvider: Update simulated touch graphics on window resize or rotate

	[#7785 [https://github.com/kivy/kivy/issues/7785]]: Input providers: Assign type_id to MotionEvent subclasses

Tests/ci

	[#7176 [https://github.com/kivy/kivy/issues/7176]]: Dev: Add pre-commit.com framework hooks

	[#7292 [https://github.com/kivy/kivy/issues/7292]]: Benchmarks: Add benchmarks option measurements to pytest

	[#7461 [https://github.com/kivy/kivy/issues/7461]]: AsyncImageTestCase: Fix for test_reload_asyncimage method and cleanup

	[#7464 [https://github.com/kivy/kivy/issues/7464]]: Makefile: Add test commands to show missing coverage lines

	[#7466 [https://github.com/kivy/kivy/issues/7466]]: Tests: Increase test coverage

	[#7475 [https://github.com/kivy/kivy/issues/7475]]: MouseHoverEventTestCase: Skip testing on Windows platform

	[#7483 [https://github.com/kivy/kivy/issues/7483]]: MouseHoverEventTestCase: Enable some tests on Windows CI

	[#7493 [https://github.com/kivy/kivy/issues/7493]]: GraphicUnitTest: Add clear_window_and_event_loop method

	[#7494 [https://github.com/kivy/kivy/issues/7494]]: MouseHoverEventTestCase: Dispatching event on_cursor_leave to cleanup some tests

	[#7495 [https://github.com/kivy/kivy/issues/7495]]: CI: Removed unused id_rsa.enc. ssh keys are in the secret env

	[#7502 [https://github.com/kivy/kivy/issues/7502]]: MultitouchSimulatorTestCase: Don’t render widgets in tests

	[#7509 [https://github.com/kivy/kivy/issues/7509]]: CI: Switch rsa ssh key to ed25519 for server upload

	[#7513 [https://github.com/kivy/kivy/issues/7513]]: Tests: Latest pyinstaller includes fixes for tests

	[#7515 [https://github.com/kivy/kivy/issues/7515]]: GraphicUnitTest: Fix signature of tearDown method to use (*args, **kwargs)

	[#7516 [https://github.com/kivy/kivy/issues/7516]]: MouseHoverEventTestCase: Removed skip of test methods on Windows CI

	[#7674 [https://github.com/kivy/kivy/issues/7674]]: temporary force python3.9 use in the ci

	[#7676 [https://github.com/kivy/kivy/issues/7676]]: Bump support-request to v2. Previous integration has been shut down.

	[#7760 [https://github.com/kivy/kivy/issues/7760]]: Fixes benchmark tests on wheels

	[#7780 [https://github.com/kivy/kivy/issues/7780]]: Updates action-gh-release and use the default token

	[#7784 [https://github.com/kivy/kivy/issues/7784]]: Linux AArch64 wheel build optimization

	[#7794 [https://github.com/kivy/kivy/issues/7794]]: Bring perf_test_textinput inline with changes in TextInput

	[#7827 [https://github.com/kivy/kivy/issues/7827]]: Increase timeout to avoid failing tests on windows-2022

2.0.0

Highlights

	[#6351 [https://github.com/kivy/kivy/issues/6351]]: Core: Drop Python 2 support

	[#6368 [https://github.com/kivy/kivy/issues/6368]]: Core: Add async support to kivy App

	[#7084 [https://github.com/kivy/kivy/issues/7084]]: Dependencies: Add basic dependencies to install requirements

Breaking changes

	[#6351 [https://github.com/kivy/kivy/issues/6351]]: Core: Drop Python 2 support.

	[#6368 [https://github.com/kivy/kivy/issues/6368]]: Core: Add async support to kivy App

	[#6448 [https://github.com/kivy/kivy/issues/6448]]: EventDispatcher: Move __self__ from widget to EventDispatcher and fix tests.

	[#6467 [https://github.com/kivy/kivy/issues/6467]]: Graphics: Change filename to source

	[#6469 [https://github.com/kivy/kivy/issues/6469]]: ModalView: Updating ModalView to improve theming

	[#6607 [https://github.com/kivy/kivy/issues/6607]]: Window: Fix SDL Keycode Typo

	[#6650 [https://github.com/kivy/kivy/issues/6650]]: DropDown/ModalView: Make modal and dropdown consistent

	[#6677 [https://github.com/kivy/kivy/issues/6677]]: Widget: Remove id from Widget.

	[#6678 [https://github.com/kivy/kivy/issues/6678]]: ScrollView: Add always_enable_overscroll property on scrollview

	[#6721 [https://github.com/kivy/kivy/issues/6721]]: Image: Remove gpl gif implementation

	[#6918 [https://github.com/kivy/kivy/issues/6918]]: ColorProperty: Use ColorProperty instead of ListProperty for color property

	[#6937 [https://github.com/kivy/kivy/issues/6937]]: Base: Rename slave to embedded

	[#6950 [https://github.com/kivy/kivy/issues/6950]]: Cache: Raise KeyError if None is used as key in Cache

Kv-lang

	[#6442 [https://github.com/kivy/kivy/issues/6442]]: KV lang: Make it easy to copy Builder and Factory and make them all contexts.

	[#6548 [https://github.com/kivy/kivy/issues/6548]]: Factory: Meaningful Error Message

	[#6880 [https://github.com/kivy/kivy/issues/6880]]: KV: Use utf-8 encoding by default on reading .kv files. Fixes #5154

Misc

	[#6323 [https://github.com/kivy/kivy/issues/6323]]: Loader: User agent was not correctly resolved.

	[#6658 [https://github.com/kivy/kivy/issues/6658]]: Garden: Fixes incorrect path to kivy garden libs on iOS

	[#6703 [https://github.com/kivy/kivy/issues/6703]]: Network: Fix https in python3.x

	[#6748 [https://github.com/kivy/kivy/issues/6748]]: Network: Extend certifi usage to ios

	[#6922 [https://github.com/kivy/kivy/issues/6922]]: WeakMethod: Fx and cleanup WeakMethod usage

	[#6931 [https://github.com/kivy/kivy/issues/6931]]: VIM: Fix and improve vim syntax highlighting for kv lang

	[#6945 [https://github.com/kivy/kivy/issues/6945]]: Cache: Don’t double copy keys when purging cache by timeout

	[#6950 [https://github.com/kivy/kivy/issues/6950]]: Cache: Raise KeyError if None is used as key in Cache

	[#6954 [https://github.com/kivy/kivy/issues/6954]]: Network: Ignore ca_file on http scheme, fixes #6946

	[#7054 [https://github.com/kivy/kivy/issues/7054]]: Networking: User Agent and Cookies added to UrlRequest

Packaging

	[#6359 [https://github.com/kivy/kivy/issues/6359]]: Packaging: Fix path by setting to bytes

	[#6643 [https://github.com/kivy/kivy/issues/6643]]: PyInstaller: List kivy.weakmethod because pyinstaller doesn’t see into cython files

	[#6772 [https://github.com/kivy/kivy/issues/6772]]: PyInstaller: window_info is not included in x86 pyinstaller

	[#7080 [https://github.com/kivy/kivy/issues/7080]]: OSX: Generate Kivy.app on the CI

Widgets

	[#6288 [https://github.com/kivy/kivy/issues/6288]]: TextInput: Cache text property in TextInput

	[#6362 [https://github.com/kivy/kivy/issues/6362]]: Carousel: Let ‘Carousel._curr_slide()’ prepare for the situation where ‘index’ is None

	[#6365 [https://github.com/kivy/kivy/issues/6365]]: Carousel: Let ‘Carousel.remove_widget()’ remove the container of the widget

	[#6372 [https://github.com/kivy/kivy/issues/6372]]: Carousel: make ‘Carousel.remove_widget()’ not cause ‘IndexError’

	[#6374 [https://github.com/kivy/kivy/issues/6374]]: Carousel: Make ‘Carousel’ able to handle the case where ‘loop == True’ and ‘len(slides) == 2’

	[#6436 [https://github.com/kivy/kivy/issues/6436]]: ColorWheel: Remove bug in algorithm to compute arcs of colorwheel (#6435)

	[#6469 [https://github.com/kivy/kivy/issues/6469]]: ModalView: Updating ModalView to improve theming

	[#6481 [https://github.com/kivy/kivy/issues/6481]]: ScreenManager: Make clear_widgets correctly iterate over screens

	[#6542 [https://github.com/kivy/kivy/issues/6542]]: TextInput: Fixes TextInput Bubble from diseappering immediately after it appears

	[#6543 [https://github.com/kivy/kivy/issues/6543]]: TextInput: Fixes TextInput cursor “rendering” issue

	[#6574 [https://github.com/kivy/kivy/issues/6574]]: TreeViewNode: Fix arrow pos and size

	[#6579 [https://github.com/kivy/kivy/issues/6579]]: Slider: Horizontal value track is offset from the center of Slider

	[#6624 [https://github.com/kivy/kivy/issues/6624]]: Filechooser: Use full path

	[#6650 [https://github.com/kivy/kivy/issues/6650]]: DropDown/ModalView: Make modal and dropdown consistent

	[#6666 [https://github.com/kivy/kivy/issues/6666]]: TextInput: Fix for crashes caused by text selection outside of TextInput area

	[#6678 [https://github.com/kivy/kivy/issues/6678]]: ScrollView: Add always_enable_overscroll property on scrollview

	[#6741 [https://github.com/kivy/kivy/issues/6741]]: GridLayout: Add ‘orientation’ property to GridLayout

	[#6815 [https://github.com/kivy/kivy/issues/6815]]: Image: Fixes for Image and AsyncImage

	[#6859 [https://github.com/kivy/kivy/issues/6859]]: Slider: Adding allow_stretch to Slider in style.kv

	[#6879 [https://github.com/kivy/kivy/issues/6879]]: VKeyboard: Fix key_background_color property not used

	[#6897 [https://github.com/kivy/kivy/issues/6897]]: RecycleView: Add behavior to set RV data using kv ids

	[#6905 [https://github.com/kivy/kivy/issues/6905]]: FileChooser: Add font property

	[#6912 [https://github.com/kivy/kivy/issues/6912]]: TextInput: Remove ‘encode’ argument from getter method of ‘text’ property of TextInput

	[#6918 [https://github.com/kivy/kivy/issues/6918]]: ColorProperty: Use ColorProperty instead of ListProperty for color property

	[#6942 [https://github.com/kivy/kivy/issues/6942]]: ScrollView: Don’t crash when scrollview’s content is the same size

	[#6971 [https://github.com/kivy/kivy/issues/6971]]: Camera: Fix an inconsistency between docs and code on Camera

	[#6976 [https://github.com/kivy/kivy/issues/6976]]: ModalView: Prevent modalview dismissal without on_touch_down

	[#6985 [https://github.com/kivy/kivy/issues/6985]]: ScrollView: Fix scrollview scroll/effect recursion

	[#7009 [https://github.com/kivy/kivy/issues/7009]]: TextInput: IME support for textinput

	[#7021 [https://github.com/kivy/kivy/issues/7021]]: ColorProperty: Use ColorProperty for remaining color properites

	[#7032 [https://github.com/kivy/kivy/issues/7032]]: ScreenManager: Fix typo in SlideTransition

	[#7069 [https://github.com/kivy/kivy/issues/7069]]: ScrollView: Horizontal scrolling disabled if no overflow

	[#7074 [https://github.com/kivy/kivy/issues/7074]]: Splitter: Fix handling offset

	[#7118 [https://github.com/kivy/kivy/issues/7118]]: GridLayout : optimize GridLayout

	[#7129 [https://github.com/kivy/kivy/issues/7129]]: TabbedPanel: Stop tab buttons from scrolling around

	[#7196 [https://github.com/kivy/kivy/issues/7196]]: ScrollView: fix jumping to bottom when using scrollwheel.

Core-app

	[#6351 [https://github.com/kivy/kivy/issues/6351]]: Core: Drop Python 2 support.

	[#6368 [https://github.com/kivy/kivy/issues/6368]]: Core: Add async support to kivy App

	[#6376 [https://github.com/kivy/kivy/issues/6376]]: Cython: Set cython language_level to py3.

	[#6381 [https://github.com/kivy/kivy/issues/6381]]: Inspector: Use sets to check if inspector should be activated.

	[#6404 [https://github.com/kivy/kivy/issues/6404]]: App: Fix pausing without app instance

	[#6458 [https://github.com/kivy/kivy/issues/6458]]: Core: Fix memory leaks by cleaning up after resources

	[#6540 [https://github.com/kivy/kivy/issues/6540]]: Config: fix erroneous check of KIVY_NO_ENV_CONFIG

	[#6581 [https://github.com/kivy/kivy/issues/6581]]: Dependencies: Bump max cython version

	[#6729 [https://github.com/kivy/kivy/issues/6729]]: DDSFile: ddsfile.py fix for string/bytes comparing for py3

	[#6773 [https://github.com/kivy/kivy/issues/6773]]: Clock: Add correct value of CLOCK_MONOTONIC for OpenBSD

	[#6798 [https://github.com/kivy/kivy/issues/6798]]: Platform: Corrected platform detection on Android

	[#6910 [https://github.com/kivy/kivy/issues/6910]]: Logger: Add encoding

	[#6926 [https://github.com/kivy/kivy/issues/6926]]: Clock: Add clock lifecycle, better exception handling and other cleanup

	[#6937 [https://github.com/kivy/kivy/issues/6937]]: Base: Rename slave to embedded

	[#6994 [https://github.com/kivy/kivy/issues/6994]]: EventLoop: Don’t do event loop stuff when stopped.

	[#7083 [https://github.com/kivy/kivy/issues/7083]]: Core: Add _version.py and move updating version metadata to the CI

	[#7112 [https://github.com/kivy/kivy/issues/7112]]: Python: Require python version >=3.6

	[#7132 [https://github.com/kivy/kivy/issues/7132]]: Python: Add support for Python 3.9.

	[#7151 [https://github.com/kivy/kivy/issues/7151]]: Dependencies: Bump cython to 0.29.21

	[#7178 [https://github.com/kivy/kivy/issues/7178]]: Dependencies: Add dependency selection varaibles

	[#7181 [https://github.com/kivy/kivy/issues/7181]]: Logging: Added color support for compatible terminals

Core-providers

	[#6384 [https://github.com/kivy/kivy/issues/6384]]: Window: Allow window providers to indicate which gl backends they are compatible with

	[#6422 [https://github.com/kivy/kivy/issues/6422]]: Label: Fixes multiline label w/ line_height < 1

	[#6433 [https://github.com/kivy/kivy/issues/6433]]: Window: Center cache problem on MacOS

	[#6461 [https://github.com/kivy/kivy/issues/6461]]: Audio: Fix playing audio streams from ffpyplayer

	[#6507 [https://github.com/kivy/kivy/issues/6507]]: Text: Revert “Fixes multiline label w/ line_height < 1”

	[#6513 [https://github.com/kivy/kivy/issues/6513]]: Text: Fix issue #6508 Multiline label w/ line_height < 1 renders badly (workaround)

	[#6515 [https://github.com/kivy/kivy/issues/6515]]: Text: Fixes positioning (valign) issue when using max_lines

	[#6578 [https://github.com/kivy/kivy/issues/6578]]: Window: Revert swap forced sync (#4219) as it causes performance issue

	[#6589 [https://github.com/kivy/kivy/issues/6589]]: Window: Add the ability to show statusbar on iOS

	[#6603 [https://github.com/kivy/kivy/issues/6603]]: Audio: Native audio support for Android

	[#6607 [https://github.com/kivy/kivy/issues/6607]]: Window: Fix SDL Keycode Typo

	[#6608 [https://github.com/kivy/kivy/issues/6608]]: Audio: Replace deprecated variables in audio providers

	[#6721 [https://github.com/kivy/kivy/issues/6721]]: Image: Remove gpl gif implementation

	[#6743 [https://github.com/kivy/kivy/issues/6743]]: Clipboard: xclip less verbose Kivy startup

	[#6754 [https://github.com/kivy/kivy/issues/6754]]: Text: Properly raise errors reading a font

	[#6947 [https://github.com/kivy/kivy/issues/6947]]: Image: Remove ‘img_gif’ entry from image_libs

	[#6988 [https://github.com/kivy/kivy/issues/6988]]: Camera: Improve avfoundation camera implementation on iOS

	[#7071 [https://github.com/kivy/kivy/issues/7071]]: Camera: Fixes crash during camera configuration

	[#7102 [https://github.com/kivy/kivy/issues/7102]]: Audio: Added loop functionality for SoundAndroidPlayer

Core-widget

	[#5926 [https://github.com/kivy/kivy/issues/5926]]: Animation: Fix kivy.animation.Sequence and kivy.animation.Parallel consistency

	[#6373 [https://github.com/kivy/kivy/issues/6373]]: Properties: Allow observable list and dict dispatch to propagate exceptions.

	[#6441 [https://github.com/kivy/kivy/issues/6441]]: EventDispatcher: Move Widget proxy_ref upwards to EventDispatcher

	[#6443 [https://github.com/kivy/kivy/issues/6443]]: Property: Initialize KV created property with default value

	[#6448 [https://github.com/kivy/kivy/issues/6448]]: EventDispatcher: Move __self__ from widget to EventDispatcher and fix tests.

	[#6677 [https://github.com/kivy/kivy/issues/6677]]: Widget: Remove id from Widget.

	[#6858 [https://github.com/kivy/kivy/issues/6858]]: Effects: Fix update_velocity

	[#6917 [https://github.com/kivy/kivy/issues/6917]]: ColorProperty: Re-add ColorProperty to __all__ list in properties.pyx module

	[#6930 [https://github.com/kivy/kivy/issues/6930]]: Property: Use ObservableList as internal storage for ColorProperty

	[#6941 [https://github.com/kivy/kivy/issues/6941]]: Property: Let ColorProperty accept arbitrary list types.

	[#6965 [https://github.com/kivy/kivy/issues/6965]]: Property: Allow assignment of color names as values for ColorProperty

	[#6993 [https://github.com/kivy/kivy/issues/6993]]: Property: Add kwargs to ‘sort’ method of ObservableList

Distribution

	[#6354 [https://github.com/kivy/kivy/issues/6354]]: Dependecy: Move cython version info to setup.cfg.

	[#6355 [https://github.com/kivy/kivy/issues/6355]]: Dependency: kivy_deps need to be imported before any modules.

	[#6356 [https://github.com/kivy/kivy/issues/6356]]: Dependency: Bump cython to 0.29.10 to fix CI building.

	[#6397 [https://github.com/kivy/kivy/issues/6397]]: Install: Automatically discover kivy sub-packages

	[#6562 [https://github.com/kivy/kivy/issues/6562]]: RPi: Autodetect when we are on a Raspberry Pi 4

	[#6568 [https://github.com/kivy/kivy/issues/6568]]: CI: Cross compile wheel for armv7l (Raspberry Pi 4) using Github Actions CI

	[#6642 [https://github.com/kivy/kivy/issues/6642]]: Install: Switch to using pyproject.toml and setup.cfg for metadata

	[#6656 [https://github.com/kivy/kivy/issues/6656]]: Wheel: Don’t package examples in the wheel

	[#6662 [https://github.com/kivy/kivy/issues/6662]]: CI: Compile wheels for Raspberry Pi 1-3 using the CI

	[#6670 [https://github.com/kivy/kivy/issues/6670]]: Dependencies: Fix CI PyPI upload and pin to latest kivy_deps versions.

	[#6674 [https://github.com/kivy/kivy/issues/6674]]: Sdist: Cannot handle carriage return in description.

	[#6769 [https://github.com/kivy/kivy/issues/6769]]: RPi: Kivy now works on the Raspberry Pi 4 without X11

	[#6774 [https://github.com/kivy/kivy/issues/6774]]: Install: Build the extensions in parallel if the options has not been set

	[#6852 [https://github.com/kivy/kivy/issues/6852]]: Platform: Fix android platform detection when using p4a

	[#6854 [https://github.com/kivy/kivy/issues/6854]]: Install: Reuse kivy_build var (complements #6852)

	[#6891 [https://github.com/kivy/kivy/issues/6891]]: Cython: Update to latest cython version

	[#6990 [https://github.com/kivy/kivy/issues/6990]]: Installation: Make setuptools use its local distutils

	[#7084 [https://github.com/kivy/kivy/issues/7084]]: Dependencies: Add min basic dependencies to install requirements.

	[#7110 [https://github.com/kivy/kivy/issues/7110]]: Makefile: Detect python verion and gracefully fail on unsupported version

	[#7152 [https://github.com/kivy/kivy/issues/7152]]: RPi: Stop building wheels for RPi stretch

	[#7154 [https://github.com/kivy/kivy/issues/7154]]: Anconda: Respect SDKROOT and use_osx_frameworks

	[#7157 [https://github.com/kivy/kivy/issues/7157]]: Makefile: Try python3 first as python may point to python2.

	[#7159 [https://github.com/kivy/kivy/issues/7159]]: Makefile: Use python3 if it’s present.

	[#7195 [https://github.com/kivy/kivy/issues/7195]]: Inlcude doc in PR checklist

Documentation

	[#6352 [https://github.com/kivy/kivy/issues/6352]]: Docs: force to use sphinx 1.7.9 to restore search

	[#6377 [https://github.com/kivy/kivy/issues/6377]]: Docs: Embed func signatures in cython to help IDEs.

	[#6383 [https://github.com/kivy/kivy/issues/6383]]: Doc: Create FUNDING.yml

	[#6389 [https://github.com/kivy/kivy/issues/6389]]: Doc: Fix linux install docs and update garden instructions

	[#6398 [https://github.com/kivy/kivy/issues/6398]]: Doc: Update clock.py - Corrected typo

	[#6399 [https://github.com/kivy/kivy/issues/6399]]: Doc: Fix pip link

	[#6427 [https://github.com/kivy/kivy/issues/6427]]: Doc: Add comment on required pip version

	[#6459 [https://github.com/kivy/kivy/issues/6459]]: Docs: fix wrong highlights

	[#6466 [https://github.com/kivy/kivy/issues/6466]]: Docs: Config docs update

	[#6478 [https://github.com/kivy/kivy/issues/6478]]: Examples: Fix lack of white-space after “:” in pong.kv

	[#6479 [https://github.com/kivy/kivy/issues/6479]]: Doc: Fix typos, grammar in install instructions

	[#6485 [https://github.com/kivy/kivy/issues/6485]]: Doc: Fix KIVY_EVENTLOOP doc

	[#6491 [https://github.com/kivy/kivy/issues/6491]]: Doc: Fix Widget.pos_hint doc

	[#6510 [https://github.com/kivy/kivy/issues/6510]]: Doc: Few minor fixes in the doc.

	[#6511 [https://github.com/kivy/kivy/issues/6511]]: Doc: Update note about kivy-ios python version

	[#6523 [https://github.com/kivy/kivy/issues/6523]]: Doc: Remove reference to Kivy Designer

	[#6537 [https://github.com/kivy/kivy/issues/6537]]: Doc: fix GridLayout doc

	[#6558 [https://github.com/kivy/kivy/issues/6558]]: Examples: Fixed depreciated option for twisted, and sys.exc_call is only run in py2

	[#6625 [https://github.com/kivy/kivy/issues/6625]]: Doc: Update CONTRIBUTING.md

	[#6636 [https://github.com/kivy/kivy/issues/6636]]: Example: Missing directory replaced in colorpicker #6599

	[#6638 [https://github.com/kivy/kivy/issues/6638]]: Docs: Fix typo

	[#6641 [https://github.com/kivy/kivy/issues/6641]]: Doc: Fix TextInput typos cursor row/col

	[#6683 [https://github.com/kivy/kivy/issues/6683]]: Doc: Fix spinner kv example

	[#6694 [https://github.com/kivy/kivy/issues/6694]]: Doc: Fix css on docs

	[#6712 [https://github.com/kivy/kivy/issues/6712]]: Doc: Revisit of the Windows installation instructions

	[#6714 [https://github.com/kivy/kivy/issues/6714]]: Doc: Fix spelling errors

	[#6750 [https://github.com/kivy/kivy/issues/6750]]: Doc: Update packaging-windows.rst

	[#6775 [https://github.com/kivy/kivy/issues/6775]]: Doc: Fixed the gallery documentation

	[#6778 [https://github.com/kivy/kivy/issues/6778]]: Doc: Updated Raspberry Pi 4 doc on HW acceleration

	[#6780 [https://github.com/kivy/kivy/issues/6780]]: Doc: Make RPi SDL2 install instructions clear

	[#6813 [https://github.com/kivy/kivy/issues/6813]]: Example: bugfix for 3D rendering example

	[#6821 [https://github.com/kivy/kivy/issues/6821]]: Doc: Expand on the current logger docs

	[#6863 [https://github.com/kivy/kivy/issues/6863]]: Doc: Add missing hid input parameter

	[#6868 [https://github.com/kivy/kivy/issues/6868]]: Doc: iOS - migrates to the new install procedure

	[#6882 [https://github.com/kivy/kivy/issues/6882]]: Example: Improved ScreenManager example

	[#6895 [https://github.com/kivy/kivy/issues/6895]]: Doc: Add annotations to proxies.

	[#6924 [https://github.com/kivy/kivy/issues/6924]]: Doc: Buildozer is now in Beta.

	[#6927 [https://github.com/kivy/kivy/issues/6927]]: Doc: Improvements to kv lang docs

	[#6938 [https://github.com/kivy/kivy/issues/6938]]: Doc: trigger_action warning / documentation updates

	[#6963 [https://github.com/kivy/kivy/issues/6963]]: Doc: Correct comments to use proportion, not percent

	[#6969 [https://github.com/kivy/kivy/issues/6969]]: Doc: Fix docs for on_dropfile

	[#6975 [https://github.com/kivy/kivy/issues/6975]]: Doc: Update the dev installation instructions

	[#6977 [https://github.com/kivy/kivy/issues/6977]]: Doc: Add some typing to clock

	[#6979 [https://github.com/kivy/kivy/issues/6979]]: Doc: Remove duplicate python3-pip

	[#7002 [https://github.com/kivy/kivy/issues/7002]]: Doc: Print about KIVY_NO_ARGS when printing usage.

	[#7022 [https://github.com/kivy/kivy/issues/7022]]: Doc: Update doc for all instances of ColorProperty

	[#7038 [https://github.com/kivy/kivy/issues/7038]]: Doc: Fix on_ref_press documentation

	[#7039 [https://github.com/kivy/kivy/issues/7039]]: Doc: fixed typo in hbar doc string

	[#7043 [https://github.com/kivy/kivy/issues/7043]]: Doc: fixed doc string

	[#7160 [https://github.com/kivy/kivy/issues/7160]]: Examples: Add Recycleview examples

	[#7179 [https://github.com/kivy/kivy/issues/7179]]: Docs: Switch to staging docs on kivy-website-docs

	[#7222 [https://github.com/kivy/kivy/issues/7222]]: Docs: minor typo fix in layout docs

	[#7240 [https://github.com/kivy/kivy/issues/7240]]: Docs: Re-write install docs.

	[#7241 [https://github.com/kivy/kivy/issues/7241]]: Docs: Add changelog to docs

Graphics

	[#6457 [https://github.com/kivy/kivy/issues/6457]]: Graphics: Fix “Error in sys.excepthook”

	[#6467 [https://github.com/kivy/kivy/issues/6467]]: Graphics: Change filename to source

	[#6472 [https://github.com/kivy/kivy/issues/6472]]: Graphics: Fix relative import for the egl backend

	[#6533 [https://github.com/kivy/kivy/issues/6533]]: Graphics: Fixes fbo/renderbuffer freeze on iOS

	[#6702 [https://github.com/kivy/kivy/issues/6702]]: Graphics: Adding support for non-file SVGs

	[#6777 [https://github.com/kivy/kivy/issues/6777]]: Graphics: Also set points _mode propery to LINE_MODE_POINTS

	[#6808 [https://github.com/kivy/kivy/issues/6808]]: Graphics: Fix Svg consistency #6467

	[#6844 [https://github.com/kivy/kivy/issues/6844]]: Graphics: Use GLES context when ES2 is forced

	[#6846 [https://github.com/kivy/kivy/issues/6846]]: Graphics: Revert “Use GLES context when ES2 is forced”

	[#6978 [https://github.com/kivy/kivy/issues/6978]]: Graphics: fix ignored alpha value in hsv mode

Input

	[#6319 [https://github.com/kivy/kivy/issues/6319]]: Mouse: Fix ctypes definition to work with other packages

	[#7065 [https://github.com/kivy/kivy/issues/7065]]: Mouse: Added support for the mouse4 and mouse5 buttons

Tests/ci

	[#6375 [https://github.com/kivy/kivy/issues/6375]]: CI: Fix CI failure, 3.5.7 doesn’t have compiled binaries.

	[#6390 [https://github.com/kivy/kivy/issues/6390]]: CI: Python 3.5 doesn’t seem to work anymore on travis bionic.

	[#6403 [https://github.com/kivy/kivy/issues/6403]]: CI: Remove osx workarounds as it breaks the build.

	[#6415 [https://github.com/kivy/kivy/issues/6415]]: Test: Add tests for coordinates translation

	[#6417 [https://github.com/kivy/kivy/issues/6417]]: Test: Add preliminary support for coverage for kv files.

	[#6482 [https://github.com/kivy/kivy/issues/6482]]: CI: Remove usage of KIVY_USE_SETUPTOOLS

	[#6503 [https://github.com/kivy/kivy/issues/6503]]: CI: Fix rtd builds

	[#6514 [https://github.com/kivy/kivy/issues/6514]]: Test: Add test method for touch to follow a widget’s position

	[#6516 [https://github.com/kivy/kivy/issues/6516]]: CI: Don’t use the Window when computing dp during docs generation

	[#6554 [https://github.com/kivy/kivy/issues/6554]]: CI: Build latest .DMG for osx app

	[#6556 [https://github.com/kivy/kivy/issues/6556]]: CI: Update .travis.yml for osx app on master

	[#6565 [https://github.com/kivy/kivy/issues/6565]]: Test: Add ability to specify offset from widget pos

	[#6570 [https://github.com/kivy/kivy/issues/6570]]: CI: Enable Python 3.8 wheel generation for osx

	[#6595 [https://github.com/kivy/kivy/issues/6595]]: Tests: Fix test failures in Python 3.8 (fixes #6594)

	[#6618 [https://github.com/kivy/kivy/issues/6618]]: Test: Don’t preset async_sleep

	[#6622 [https://github.com/kivy/kivy/issues/6622]]: CI: Switch from Travis/Appveyor to GitHub Actions

	[#6659 [https://github.com/kivy/kivy/issues/6659]]: CI: Use pip to build wheel so it uses pyproject.toml.

	[#6669 [https://github.com/kivy/kivy/issues/6669]]: CI: Test generated wheels and sdist

	[#6673 [https://github.com/kivy/kivy/issues/6673]]: CI: Latest twine doesn’t support py3.5

	[#6681 [https://github.com/kivy/kivy/issues/6681]]: CI: Switch to flake8 and fix PEP8 issues

	[#6682 [https://github.com/kivy/kivy/issues/6682]]: CI: Create all the wheels before doing any uploads

	[#6771 [https://github.com/kivy/kivy/issues/6771]]: GitHub: Update issue templates to new format

	[#6845 [https://github.com/kivy/kivy/issues/6845]]: Tests: Fix failing tests

	[#6855 [https://github.com/kivy/kivy/issues/6855]]: CI: Upgrade to actions/checkout@v2 & actions/setup-python@v2

	[#6892 [https://github.com/kivy/kivy/issues/6892]]: Test: Fix failing coverage

	[#6940 [https://github.com/kivy/kivy/issues/6940]]: CI: Fix linux SDL2

	[#6951 [https://github.com/kivy/kivy/issues/6951]]: Tests: Refactors test_urlrequest.py

	[#7115 [https://github.com/kivy/kivy/issues/7115]]: CI: Remove mcnotify integration

	[#7147 [https://github.com/kivy/kivy/issues/7147]]: PEP8: Fix PEP8 issues

	[#7174 [https://github.com/kivy/kivy/issues/7174]]: Tests: Warn that async app test framewrok may be removed from kivy.

	[#7201 [https://github.com/kivy/kivy/issues/7201]]: CI: Test all wheel versions, not just one per OS

	[#7203 [https://github.com/kivy/kivy/issues/7203]]: Tests: Ensure Bubble uses it’s superclass’s valid private API

1.11.1 (June 20, 2019)

This release fixed some issues with the docs, the CI, and Kivy dependencies that was introduced in 1.11.0 (#6357 [https://github.com/kivy/kivy/issues/6357]).

1.11.0 (June 1, 2019)

Installation notes

Windows

	[#6324 [https://github.com/kivy/kivy/issues/6324]]: We are transitioning the kivy Windows dependencies from the kivy.deps.xxx namespace stored under kivy/deps/xxx to the kivy_deps.xxx namespace stored under kivy_deps/xxx. Pip is sometimes not able to distinguish between these two formats, so follow the instructions below.

	If you’re not upgrading Kivy, please make sure to pin your kivy.deps.xxx==x.y.z dependencies to the versions that was on pypi when your Kivy was released so that you don’t get newer incompatible dependencies.

	If you’re upgrading Kivy, manually uninstall all the kivy.deps.xxx dependencies because pip will not uninstall them when you’re upgrading. Then re-install the kivy_deps.xxx dependencies as instructed on the Kivy website.

	If you’re installing the first time, simply follow the instructions on Kivy’s website.

Linux and macOS

	The new Linux wheels (#6248 [https://github.com/kivy/kivy/issues/6248]) can be installed with just pip install kivy, however, just like on macOS it comes without the Gstreamer dependencies so it has no video and minor audio support. For video/audio support, please install ffpyplayer and set KIVY_VIDEO=ffpyplayer in the environment, or install kivy using an alternative method that provides these dependencies.

Highlights

Support

	[#5947 [https://github.com/kivy/kivy/issues/5947]]: We have moved from IRC to Discord. However, there’s matrix integration if you are unable to use Discord. See https://kivy.org/doc/master/contact.html#discord.

Configuration

	[#6192 [https://github.com/kivy/kivy/issues/6192]]: Support for environmental variables that control the config in the form of KCFG_SECTION_KEY has been added. E.g. setting KCFG_KIVY_LOG_LEVEL=warning in the environment is the same as calling Config.set(“kivy”, “log_level”, “warning”) or setting the log_level in the kivy section of the config to warning. Note that underscores are not allowed in the section names.

	Any key set this will way will take precedence on the loaded config.ini file. Support for this can be disabled by setting the enviornmental variable KIVY_NO_ENV_CONFIG=1 and the environment will not be read for configuration options.

KV lang

	[#6257 [https://github.com/kivy/kivy/issues/6257]]: A new KV-Python integration event that fires when all the KV rules of the widget has been applied, on_kv_post, has been added to the Widget class. This event fires for a widget when all the KV rules it participates in has been applied and ids has been initialized. Binding to this event will let you execute code for your widget without having to schedule the code for the next clock cycle.

	Similarly, a new apply_class_lang_rules method was added to Widget that is called in order to apply the KV rules of that widget class. Inheriting and overwriting that method will give you the oppertunity to execute code before any KV rules are applied.

Garden

	We are transitioning the Kivy garden flowers from the kivy.garden.flower namespace stored under kivy/garden/flower or ~/.kivy/garden to the normal python package format kivy_garden.flower namespace stored under kivy_garden/flower. With the new configuration, garden flowers will be pip installable, support cython flowers, and not require the custom garden tool.

	We’re hoping to transition all flowers to the new format, however, for now many flowers still require installation by the garden tool.

	For users, see https://kivy-garden.github.io/index.html#generalusageguidelines. For developers, see https://kivy-garden.github.io/index.html#developmentguidelines for how to start a new flower, and https://kivy-garden.github.io/index.html#guideformigratingflowersfromlegacystructure for how to migrate existing flowers to the new format.

Other

	[#6186 [https://github.com/kivy/kivy/issues/6186]]: Live resizing has been added for desktop platforms that use the SDL2 window backend.

Deprecated

	[#6313 [https://github.com/kivy/kivy/issues/6313]]: Pygame has been deprecated. We urge users who have been using pygame to try SDL2 and our other providers. If there are any reasons why Pygame is used instead of SDL2 please let us know so we can fix them.

	Deprecation warnings have also been added to everything that has been deprecated in the past.

Breaking changes

	[#6095 [https://github.com/kivy/kivy/issues/6095]]: Changed the Android version to use App.user_data_dir for the configuration and added a missing dot to the config file name.

	[#5340 [https://github.com/kivy/kivy/issues/5340]]: Removed DropDown.dismiss in on_touch_down so it is only dismissed in on_touch_up.

	[#5990 [https://github.com/kivy/kivy/issues/5990], #6169 [https://github.com/kivy/kivy/issues/6169]]: We now use pytest to run our tests rather than nose.

	[#5968 [https://github.com/kivy/kivy/issues/5968]]: Listview and all its associated modules has finally be removed in favor of RecycleView.

Base

Cache

	[#5995 [https://github.com/kivy/kivy/issues/5995]]: : use Logger.trace to prevent the purge flooding terminal in debug

	[#5988 [https://github.com/kivy/kivy/issues/5988]]: Removed cache print statements

Config

	[#6333 [https://github.com/kivy/kivy/issues/6333]]: Properly chceck that KIVY_NO_ENV_CONFIG is not set to zero.

Inspector

	[#5919 [https://github.com/kivy/kivy/issues/5919]]: Let the Inspector browse into WeakProxy’d widgets

Logger

	[#6322 [https://github.com/kivy/kivy/issues/6322]]: PermissionError is not defined in py2.

Multistroke

	[#5821 [https://github.com/kivy/kivy/issues/5821]]: Increase timeout/sleep to increase test robustness

Network

	[#6256 [https://github.com/kivy/kivy/issues/6256]]: Set cookie header workaround

	[#6083 [https://github.com/kivy/kivy/issues/6083]]: Added the ability to stop (kill) the UrlRequest thread

	[#5964 [https://github.com/kivy/kivy/issues/5964]]: Allow setting url agent for async image and urlrequest

Properties

	[#6223 [https://github.com/kivy/kivy/issues/6223]]: Fix handling None values in DictProperty and ListProperty

	[#6055 [https://github.com/kivy/kivy/issues/6055]]: Cache values of AliasProperty where possible

	[#5960 [https://github.com/kivy/kivy/issues/5960]]: Fix Cython properties syntax

	[#5856 [https://github.com/kivy/kivy/issues/5856]]: Update AliasProperty to cache value only if “cache” argument is set to True

	[#5841 [https://github.com/kivy/kivy/issues/5841]]: fix issues with disabled aliasproperty

Storage

	[#6230 [https://github.com/kivy/kivy/issues/6230]]: Update jsonstore.py

Tools

	[#6330 [https://github.com/kivy/kivy/issues/6330]]: Create changelog_parser.py

	[#5797 [https://github.com/kivy/kivy/issues/5797]]: fix syntax table for emacs kivy-mode

Utils

	[#6175 [https://github.com/kivy/kivy/issues/6175]]: kivy.utils.rgba function bug fix for python 3 (used to crash)

CI

	[#6311 [https://github.com/kivy/kivy/issues/6311]]: Fix versioning in CI and in kivy.

	[#6295 [https://github.com/kivy/kivy/issues/6295]]: Add pep8 stage and name builds on travis

	[#6250 [https://github.com/kivy/kivy/issues/6250]]: Disable wheel building on osx by not watching travis cron status.

	[#6187 [https://github.com/kivy/kivy/issues/6187]]: Make travis brew update more reliable

	[#6148 [https://github.com/kivy/kivy/issues/6148]]: Fix some travis errors

	[#5985 [https://github.com/kivy/kivy/issues/5985]]: Remove notification webhook from travis

	[#5978 [https://github.com/kivy/kivy/issues/5978]]: tell travis to use bionic instead of trusty for tests

	[#5977 [https://github.com/kivy/kivy/issues/5977]]: Fix travis flaky test

	[#5973 [https://github.com/kivy/kivy/issues/5973]]: try using xcode10 for travis, as we cannot reproduce the imageio issue locally

	[#5934 [https://github.com/kivy/kivy/issues/5934]]: Fix repo path in github app config comment

	[#5845 [https://github.com/kivy/kivy/issues/5845]]: fix osx wheels

Core

Camera

	[#6168 [https://github.com/kivy/kivy/issues/6168]]: fix broken update to avfoundation

	[#6156 [https://github.com/kivy/kivy/issues/6156]]: Adding fixes to support ios camera

	[#6119 [https://github.com/kivy/kivy/issues/6119]]: Add support for opencv 4

	[#6051 [https://github.com/kivy/kivy/issues/6051]]: Update camera_android.py; fixes camera for Python 3

	[#6033 [https://github.com/kivy/kivy/issues/6033]]: adding division future import to prevent further fps bugs

	[#6032 [https://github.com/kivy/kivy/issues/6032]]: ensure floating point math when calculating fps

	[#6027 [https://github.com/kivy/kivy/issues/6027]]: Fix 5146

	[#5940 [https://github.com/kivy/kivy/issues/5940]]: Set android camera to autofocus

	[#5922 [https://github.com/kivy/kivy/issues/5922]]: Updated camera_opencv.py to use reshape(-1) instead of tostring()

Clipboard

	[#6178 [https://github.com/kivy/kivy/issues/6178]]: Clipboard: fixes for nspaste

Image

	[#6194 [https://github.com/kivy/kivy/issues/6194]]: imageio: fix jpg/png saving

	[#6193 [https://github.com/kivy/kivy/issues/6193]]: Image: don’t force iteration if we reuse the cache

	[#6142 [https://github.com/kivy/kivy/issues/6142]]: Fixes SDL2 image loading (jpg)

	[#6122 [https://github.com/kivy/kivy/issues/6122]]: Allow saving a core Image into BytesIO

	[#5822 [https://github.com/kivy/kivy/issues/5822]]: AsyncImage test fix for Windows py2.7

Spelling

	[#5951 [https://github.com/kivy/kivy/issues/5951]]: Add a warning about support for pyenchant on windows

Text

	[#5970 [https://github.com/kivy/kivy/issues/5970]]: fix styles from latests PR

	[#5962 [https://github.com/kivy/kivy/issues/5962]]: Pango + fontconfig/freetype2 text provider

Video

	[#6270 [https://github.com/kivy/kivy/issues/6270]]: Suggest how to fix unable to create playbin error.

	[#6246 [https://github.com/kivy/kivy/issues/6246]]: Disabled set_volume() in core.video.ffpyplayer play() function. Fix for #6210

	[#5959 [https://github.com/kivy/kivy/issues/5959]]: Issue 5945

Window

	[#6283 [https://github.com/kivy/kivy/issues/6283]]: Limit live resize to desktop

	[#6179 [https://github.com/kivy/kivy/issues/6179]]: window: fix multiple resize sent, and always sent the GL size, never …

	[#6164 [https://github.com/kivy/kivy/issues/6164]]: Removed default orientation hints on Android

	[#6138 [https://github.com/kivy/kivy/issues/6138]]: Fix android’s sensor orientation

	[#6133 [https://github.com/kivy/kivy/issues/6133]]: Make top/left of window dispatch events on updates

	[#6107 [https://github.com/kivy/kivy/issues/6107]]: Fixed fullscreen and orientation handling to work with SDL-2.0.9 on Android

	[#6092 [https://github.com/kivy/kivy/issues/6092]]: Fix sdl close inconsistencies. closes #4194

Doc

	[#6343 [https://github.com/kivy/kivy/issues/6343]]: Fix docs for the release

	[#6334 [https://github.com/kivy/kivy/issues/6334]]: Add docs for linux wheels

	[#6316 [https://github.com/kivy/kivy/issues/6316]]: Update doc of AliasProperty

	[#6296 [https://github.com/kivy/kivy/issues/6296]]: Remove duplicate installation instructions.

	[#6282 [https://github.com/kivy/kivy/issues/6282]]: example for adding, background_color to Label

	[#6217 [https://github.com/kivy/kivy/issues/6217]]: add a few kv examples to widget docs

	[#6215 [https://github.com/kivy/kivy/issues/6215]]: Added pillow as a required python library

	[#6214 [https://github.com/kivy/kivy/issues/6214]]: Grammar tweaks

	[#6204 [https://github.com/kivy/kivy/issues/6204]]: Update OSX Install instructions for MakeSymlinks

	[#6199 [https://github.com/kivy/kivy/issues/6199]]: Replace “it’s” with “its” in several places

	[#6198 [https://github.com/kivy/kivy/issues/6198]]: Correct a grammar mistake in two places

	[#6189 [https://github.com/kivy/kivy/issues/6189]]: Update docs referring the change from nose tests to pytest

	[#6185 [https://github.com/kivy/kivy/issues/6185]]: Raises minimum OSX version for current DMG.

	[#6180 [https://github.com/kivy/kivy/issues/6180]]: Updated version no. for SDL building

	[#6159 [https://github.com/kivy/kivy/issues/6159]]: Update installation for RPI with notes for latest Raspian issues

	[#6129 [https://github.com/kivy/kivy/issues/6129]]: typo in doc comments

	[#6124 [https://github.com/kivy/kivy/issues/6124]]: Removed doc note about Python 3 on Android being experimental

	[#6069 [https://github.com/kivy/kivy/issues/6069]]: : explain mechanics of size property

	[#6061 [https://github.com/kivy/kivy/issues/6061]]: Fix rpi instructions

	[#6049 [https://github.com/kivy/kivy/issues/6049]]: Lang widgets need to be capitalized

	[#6047 [https://github.com/kivy/kivy/issues/6047]]: fix misspelling in docs

	[#6031 [https://github.com/kivy/kivy/issues/6031]]: rewriting of installation instructions

	[#6023 [https://github.com/kivy/kivy/issues/6023]]: Fix docstring example for Vector.rotate

	[#6016 [https://github.com/kivy/kivy/issues/6016]]: : Add doc for transform_point

	[#5971 [https://github.com/kivy/kivy/issues/5971]]: fix doc generation

	[#5953 [https://github.com/kivy/kivy/issues/5953]]: FAQ about the “Unable to get Window: abort”

	[#5943 [https://github.com/kivy/kivy/issues/5943]]: Fixed bounce

	[#5925 [https://github.com/kivy/kivy/issues/5925]]: Fix Doc ‘Input Management’

	[#5912 [https://github.com/kivy/kivy/issues/5912]]: OS X to macOS in README

	[#5911 [https://github.com/kivy/kivy/issues/5911]]: Maintain separate docs for different releases

	[#5910 [https://github.com/kivy/kivy/issues/5910]]: Versioned docs

	[#5908 [https://github.com/kivy/kivy/issues/5908]]: : corrected typo in docs

	[#5903 [https://github.com/kivy/kivy/issues/5903]]: Correct iOS docs, add ref links

	[#5900 [https://github.com/kivy/kivy/issues/5900]]: : fix typo in window docs

	[#5896 [https://github.com/kivy/kivy/issues/5896]]: add missing versionadded to pagelayout’s anim_kwargs

	[#5895 [https://github.com/kivy/kivy/issues/5895]]: add an example for using UrlRequest

	[#5887 [https://github.com/kivy/kivy/issues/5887]]: : Grammar tweaks to test docs

	[#5879 [https://github.com/kivy/kivy/issues/5879]]: add instructions for Fedora dependencies

	[#5869 [https://github.com/kivy/kivy/issues/5869]]: python basics

	[#5858 [https://github.com/kivy/kivy/issues/5858]]: Fixed PEP8 in Pong examples

	[#5850 [https://github.com/kivy/kivy/issues/5850]]: : Update for Python 3.7

	[#5848 [https://github.com/kivy/kivy/issues/5848]]: Document the data parameter for add_json_panel()

	[#5846 [https://github.com/kivy/kivy/issues/5846]]: Maintain separate docs for different releases

	[#5840 [https://github.com/kivy/kivy/issues/5840]]: : Remove py34 substitutions in nightly lists

	[#5839 [https://github.com/kivy/kivy/issues/5839]]: Docs: Fix Windows nightly wheel links

	[#5833 [https://github.com/kivy/kivy/issues/5833]]: Docs: Add note about not yet available py3.7 packages

	[#5790 [https://github.com/kivy/kivy/issues/5790]]: Removed checkbox doc info about colours outside 0-1 range

	[#5765 [https://github.com/kivy/kivy/issues/5765]]: Update documentation for Clock.triggered decorator

Graphics

	[#6269 [https://github.com/kivy/kivy/issues/6269]]: Add ability to specify dash offsets for Line

	[#6267 [https://github.com/kivy/kivy/issues/6267]]: actually return value of wrapped gil_dbgGetAttribLocation

	[#6247 [https://github.com/kivy/kivy/issues/6247]]: Fixes broken lines vertices

	[#6232 [https://github.com/kivy/kivy/issues/6232]]: Respect the alpha value when setting rgb.

	[#6112 [https://github.com/kivy/kivy/issues/6112]]: declare _filename in svg.pxd

	[#6026 [https://github.com/kivy/kivy/issues/6026]]: Support building against mesa video core drivers.

	[#6003 [https://github.com/kivy/kivy/issues/6003]]: : fix invalid offset calculation if attribute is optimized out

	[#6000 [https://github.com/kivy/kivy/issues/6000]]: : Prevent enabling vertex attribute that are not in the shader

	[#5999 [https://github.com/kivy/kivy/issues/5999]]: : Fixes KIVY_GL_DEBUG=1

	[#5980 [https://github.com/kivy/kivy/issues/5980]]: Issue #5956: Fix casts in texture.blit_buffer for ushort and uint types.

	[#5969 [https://github.com/kivy/kivy/issues/5969]]: Fix version number and supports ARGB/BGRA

	[#5957 [https://github.com/kivy/kivy/issues/5957]]: Fix matrix transformation for orthographic projection

	[#5952 [https://github.com/kivy/kivy/issues/5952]]: Change order of CGL backend to prefer dynamic GL symbol loading

	[#5907 [https://github.com/kivy/kivy/issues/5907]]: Better #4752 fix

	[#6145 [https://github.com/kivy/kivy/issues/6145]]: img_tools.pxi: Support pitch alignment in bgr->rgb conversion

Highlight

	[#6062 [https://github.com/kivy/kivy/issues/6062]]: Activating Open Collective

Input

	[#6286 [https://github.com/kivy/kivy/issues/6286]]: Add caps and numlock to the modifiers

	[#6281 [https://github.com/kivy/kivy/issues/6281]]: SetWindowLongPtrW ctypes prototype bug

	[#6264 [https://github.com/kivy/kivy/issues/6264]]: Fix the ctrl bug in hidinput (Issue #4007)

	[#6153 [https://github.com/kivy/kivy/issues/6153]]: MTDMotionEventProvider, set thread name

	[#6152 [https://github.com/kivy/kivy/issues/6152]]: HIDInputMotionEventProvider, set thread name

	[#6012 [https://github.com/kivy/kivy/issues/6012]]: Fix HIDMotionEvent log formatting

	[#5870 [https://github.com/kivy/kivy/issues/5870]]: Provider matching for input postproc calibration

	[#5855 [https://github.com/kivy/kivy/issues/5855]]: add missing mapping for numpaddecimal

Lang

	[#5878 [https://github.com/kivy/kivy/issues/5878]]: Make kivy.graphics.instructions.Callback available from within Kv lan…

Lib

Osc

	[#5982 [https://github.com/kivy/kivy/issues/5982]]: Removed kivy.lib.osc from setup.py packages

	[#5967 [https://github.com/kivy/kivy/issues/5967]]: Since osc is now available through oscpy, remove old crappy oscapi code

Modules

Screen

	[#6048 [https://github.com/kivy/kivy/issues/6048]]: screen: add definition for OnePlus 3t

	[#5928 [https://github.com/kivy/kivy/issues/5928]]: Add definition for the HUAWEI MediaPad M3 Lite 10 tablet

Showborder

	[#6005 [https://github.com/kivy/kivy/issues/6005]]: add modules/showborder

Other

	[#6303 [https://github.com/kivy/kivy/issues/6303]]: Update license file year.

Packaging

	[#6341 [https://github.com/kivy/kivy/issues/6341]]: Bump cython max version.

	[#6329 [https://github.com/kivy/kivy/issues/6329]]: Add Pyinstaller tests

	[#6310 [https://github.com/kivy/kivy/issues/6310]]: Only delete files in kivy, properly detect git.

	[#6306 [https://github.com/kivy/kivy/issues/6306]]: Fixes for PPA and CI

	[#6305 [https://github.com/kivy/kivy/issues/6305]]: Re-enable building osx wheels and app

	[#6275 [https://github.com/kivy/kivy/issues/6275]]: Add windows gst support without pkg-config.

	[#6268 [https://github.com/kivy/kivy/issues/6268]]: Tested with cython 0.29.7

	[#6182 [https://github.com/kivy/kivy/issues/6182]]: Update OSX SDL2/Image/Mixer/TTF to latest version

	[#6165 [https://github.com/kivy/kivy/issues/6165]]: Include GStreamer in PyInstaller package

	[#6130 [https://github.com/kivy/kivy/issues/6130]]: Removed python version specification from buildozer install

	[#6128 [https://github.com/kivy/kivy/issues/6128]]: Fix reading description #6127

	[#6054 [https://github.com/kivy/kivy/issues/6054]]: Add new “canonical” path for binary Mali driver

	[#6046 [https://github.com/kivy/kivy/issues/6046]]: Added Arch Linux (ARM)

	[#6008 [https://github.com/kivy/kivy/issues/6008]]: Allow to override build date with SOURCE_DATE_EPOCH

	[#5998 [https://github.com/kivy/kivy/issues/5998]]: Change check for Cython to attempt fallback to setuptools on supporte…

	[#5966 [https://github.com/kivy/kivy/issues/5966]]: Update with Cython 0.28.5

	[#5866 [https://github.com/kivy/kivy/issues/5866]]: Add support for cross-compiling for the raspberry pi

	[#5834 [https://github.com/kivy/kivy/issues/5834]]: Fix missing requirements for Python 3.6 64bit

	[#5826 [https://github.com/kivy/kivy/issues/5826]]: Drop support for py3.3, which is EOL

	[#5820 [https://github.com/kivy/kivy/issues/5820]]: automate .app/dmg creatio for both python2 and 3 on osx

	[#5793 [https://github.com/kivy/kivy/issues/5793]]: Improve Makefile debug configuration

	[#5777 [https://github.com/kivy/kivy/issues/5777]]: Update Cython to 0.28.3

Widgets

Bubble

	[#6043 [https://github.com/kivy/kivy/issues/6043]]: Configure Bubble’s BackgroundImage’s auto scale property

Carousel

	[#5975 [https://github.com/kivy/kivy/issues/5975]]: fix missing touchModeChange renaming to touch_mode_change

	[#5958 [https://github.com/kivy/kivy/issues/5958]]: Fix 5783 carousel looping

	[#5837 [https://github.com/kivy/kivy/issues/5837]]: carousel - update add_widget with ‘canvas’ parameter

Checkbox

	[#6317 [https://github.com/kivy/kivy/issues/6317]]: Fix checkbox state issues.

	[#6287 [https://github.com/kivy/kivy/issues/6287]]: Fix CheckBox Python2 compatibility.

	[#6273 [https://github.com/kivy/kivy/issues/6273]]: Fix “Object no attribute active” (Bug introduced via PR #4898)

Colorpicker

	[#5961 [https://github.com/kivy/kivy/issues/5961]]: ColorPicker refactor to prevent multiples event firing

Filechooser

	[#6050 [https://github.com/kivy/kivy/issues/6050]]: correction of a malfunctioning with ..in Windows platforms (function _generate_file_entries)

	[#6044 [https://github.com/kivy/kivy/issues/6044]]: Limited FileChooserProgress text size to widget size

Modalview

	[#5781 [https://github.com/kivy/kivy/issues/5781]]: Add ‘on_pre_open’ and ‘on_pre_dismiss’ events to ModalView

Pagelayout

	[#5868 [https://github.com/kivy/kivy/issues/5868]]: anim_kwargs in PageLayout

Recycleview

	[#5963 [https://github.com/kivy/kivy/issues/5963]]: Fix 5913 recycle view steals data

Scatter

	[#5983 [https://github.com/kivy/kivy/issues/5983]]: Issue #5773: Ensure to dispatch on_transform_with_touch event when the angle change

Screen

	[#6347 [https://github.com/kivy/kivy/issues/6347]]: add tests for #6338

	[#6346 [https://github.com/kivy/kivy/issues/6346]]: Make switch_to accept already added screens.

	[#6344 [https://github.com/kivy/kivy/issues/6344]]: Revert “[widgets/screen]Fix #3143”

	[#6279 [https://github.com/kivy/kivy/issues/6279]]: Fix #3143

Scrollview

	[#6294 [https://github.com/kivy/kivy/issues/6294]]: [ScrollView] Touch is in wrong coordinates

	[#6255 [https://github.com/kivy/kivy/issues/6255]]: Fix “ object has no attribute ‘startswith’ “

	[#6252 [https://github.com/kivy/kivy/issues/6252]]: Attempt to fix nested scrollviews

	[#6020 [https://github.com/kivy/kivy/issues/6020]]: Add smooth_scroll_end

Tabbedpanel

	[#6291 [https://github.com/kivy/kivy/issues/6291]]: Fix bug in TabbedPanel.remove_widget method

Textinput

	[#6309 [https://github.com/kivy/kivy/issues/6309]]: Fix TextInput shortcuts

	[#6249 [https://github.com/kivy/kivy/issues/6249]]: Fix issues #6226 and #6227 in multiline-enabled TextInput

	[#6120 [https://github.com/kivy/kivy/issues/6120]]: Corrected textinput key input detection to only use on_textinput

	[#6113 [https://github.com/kivy/kivy/issues/6113]]: Made textinput ignore space keydown/keyup for space input

Treeview

	[#5844 [https://github.com/kivy/kivy/issues/5844]]: fix #5815 uncomplete node unselection in treeview

Widget

	[#5972 [https://github.com/kivy/kivy/issues/5972]]: fix widget tests for python2

	[#5954 [https://github.com/kivy/kivy/issues/5954]]: Scale export to png

1.10.1 (July 8, 2018)

Core

	[#4974 [https://github.com/kivy/kivy/issues/4974]]: Video: update ‘loaded’ on new video, unload previous video

	[#5053 [https://github.com/kivy/kivy/issues/5053]]: ffpyplayer video: update frame/position on seek if video paused

	[#5109 [https://github.com/kivy/kivy/issues/5109]]: Add textedit event for text editing by IME

	[#5187 [https://github.com/kivy/kivy/issues/5187]]: Fix Windows clipboard when pasting a file

	[#5206 [https://github.com/kivy/kivy/issues/5206]]: Touchscreen fixes

	[#5220 [https://github.com/kivy/kivy/issues/5220]]: Redeclare Svg.reload as throwing an exception.

	[#5222 [https://github.com/kivy/kivy/issues/5222]]: Fix typo in SVG

	[#5233 [https://github.com/kivy/kivy/issues/5233]]: svg improvements

	[#5252 [https://github.com/kivy/kivy/issues/5252]]: Add support for shaped windows

	[#5264 [https://github.com/kivy/kivy/issues/5264]]: Remove double list copy in Animation._update

	[#5265 [https://github.com/kivy/kivy/issues/5265]]: Remove dead code for SDL2 windowresized event

	[#5281 [https://github.com/kivy/kivy/issues/5281]]: Make App.on_config_change an event

	[#5298 [https://github.com/kivy/kivy/issues/5298]]: Add support for saving flipped Textures

	[#5305 [https://github.com/kivy/kivy/issues/5305]]: img_pygame: Fix loading of binary alpha formats

	[#5312 [https://github.com/kivy/kivy/issues/5312]]: ffpyplayer video: disable builtin subtitles by default

	[#5313 [https://github.com/kivy/kivy/issues/5313]]: ffpyplayer video: better video seek

	[#5324 [https://github.com/kivy/kivy/issues/5324]]: window_sdl2: Fix memory leak in screenshot

	[#5325 [https://github.com/kivy/kivy/issues/5325]]: text_sdl2: Fix very unlikely memory leak

	[#5328 [https://github.com/kivy/kivy/issues/5328]]: Fix build with cython 0.26

	[#5355 [https://github.com/kivy/kivy/issues/5355]]: handle_exception defaults to RAISE, not STOP

	[#5362 [https://github.com/kivy/kivy/issues/5362]]: Raspbian stretch egl library fix

	[#5377 [https://github.com/kivy/kivy/issues/5377]]: Let dpi formatting exceptions in kv propagate out from cython.

	[#5382 [https://github.com/kivy/kivy/issues/5382]]: Fix Json+DictStore not raising error for non-existing folder + unittest

	[#5387 [https://github.com/kivy/kivy/issues/5387]]: _text_sdl2.pyx: Don’t clear pixel memory twice

	[#5389 [https://github.com/kivy/kivy/issues/5389]]: Don t drop SDL_Dropfile event while in pause #5388

	[#5393 [https://github.com/kivy/kivy/issues/5393]]: Forward kwargs to config parser.

	[#5396 [https://github.com/kivy/kivy/issues/5396]]: Actually display multitouch emulation if sim set to True.

	[#5421 [https://github.com/kivy/kivy/issues/5421]]: Fix host/port handling in UrlRequest

	[#5423 [https://github.com/kivy/kivy/issues/5423]]: Add probesysfs option to include devices that offer core pointer functionality

	[#5435 [https://github.com/kivy/kivy/issues/5435]]: Changed Logger.error to Logger.warning on android import

	[#5437 [https://github.com/kivy/kivy/issues/5437]]: Purge KV lang TRACE logs on demand with environment variable

	[#5459 [https://github.com/kivy/kivy/issues/5459]]: audio_sdl2: Update for mixer v2.0.2 support

	[#5461 [https://github.com/kivy/kivy/issues/5461]]: Monkey patch PIL frombytes & tobytes, fixes #5460

	[#5470 [https://github.com/kivy/kivy/issues/5470]]: Added ‘frag_modelview_mat’ uniform to address #180

	[#5535 [https://github.com/kivy/kivy/issues/5535]]: Fix FileNotFoundError when sys path doesn’t exist

	[#5539 [https://github.com/kivy/kivy/issues/5539]]: Window info

	[#5555 [https://github.com/kivy/kivy/issues/5555]]: python3 package of Pillow needs a updated Import

	[#5556 [https://github.com/kivy/kivy/issues/5556]]: Fixed loading fonts with dot in name, fixed spelling in Russisn examle

	[#5576 [https://github.com/kivy/kivy/issues/5576]]: window_x11: implement get_window_info()

	[#5577 [https://github.com/kivy/kivy/issues/5577]]: window_x11: fix python3 TypeError

	[#5579 [https://github.com/kivy/kivy/issues/5579]]: Fix Ctypes Clipboard error with embeded null character

	[#5593 [https://github.com/kivy/kivy/issues/5593]]: Fix float division by zero

	[#5612 [https://github.com/kivy/kivy/issues/5612]]: raise exception when trying to add Widget with a parent to Window

	[#5621 [https://github.com/kivy/kivy/issues/5621]]: do not use the clock in __dealloc__ to prevent deadlock

	[#5624 [https://github.com/kivy/kivy/issues/5624]]: Update LICENSE

	[#5664 [https://github.com/kivy/kivy/issues/5664]]: Fixes renderbuffer leaking when creating Fbo

	[#5693 [https://github.com/kivy/kivy/issues/5693]]: PiCamera-based camera provider for Raspberry Pi

	[#5703 [https://github.com/kivy/kivy/issues/5703]]: Fixed format string mistake in Error Message

	[#5705 [https://github.com/kivy/kivy/issues/5705]]: Check for activation before attaching to window. references #5645

	[#5716 [https://github.com/kivy/kivy/issues/5716]]: Replace vendored lib/OSC and lib/oscAPI with oscpy.

	[#5778 [https://github.com/kivy/kivy/issues/5778]]: Update extensions for ImageLoaderPIL

	fc2c3824a: Update properties.pxd

	5bf0ff056: Properties: Allow custom comparator.

	cf7b55c1b: change opengl ids to unsigned ints

	87897c489: Add on_textedit event to SDL2 Window (#5597)

	4d9f19d08: Expose “absolute” options in HIDInputMotionEventProvider class

	ae3665c32: camera: fix __all__ export

	53c2b4d63: picamera: fix for python2. Closes #5698

	d3d517dd2: Re-add gi camera provider.

	d175cf82c: Fix Inspector crash if shaped window is disabled

	4deb3606d: Add sdl2 system cursors (#5308)

	f5161a248: Clean hanging code (#5232)

	b7906e745: Fix py2/py3 iteritems (#5194)

	5961169c5: add versionadded tag for KIVY_BCM_DISPMANX_LAYER

	ebeb6c486: cache.py bug fixes (#5107)

	b4ab896b0: input: probesysfs: remove getconf dependency

	58b9685da: @triggered: add cancel method

	f8194bb69: Add test units to ClockTestCase

	dafc07c0e: @triggered: Set default timeout=0

	061891ce1: Add decorator for Clock.create_trigger()

	1c855eb14: on_joy_ball is called with 2 position valuesc

	1a20a3aef: Prioritize XClip for clipboard on Linux

Widgets

	[#4905 [https://github.com/kivy/kivy/issues/4905]]: Removed textinput cursor bug #3237

	[#5167 [https://github.com/kivy/kivy/issues/5167]]: Add support for RST replace

	[#5200 [https://github.com/kivy/kivy/issues/5200]]: Added abs_tol argument to isclose call to ensure no float edge cases

	[#5212 [https://github.com/kivy/kivy/issues/5212]]: fix [#5184 [https://github.com/kivy/kivy/issues/5184]]: ScrollView bar_margin affects also touch position

	[#5218 [https://github.com/kivy/kivy/issues/5218]]: Add support for footnotes to RST

	[#5243 [https://github.com/kivy/kivy/issues/5243]]: Fix for crash when setting is_focusable property in issue #5242

	[#5255 [https://github.com/kivy/kivy/issues/5255]]: Fix race condition in AsyncImage

	[#5260 [https://github.com/kivy/kivy/issues/5260]]: Disable emacs bindings for Alt-Gr (Ctrl+Alt) key

	[#5263 [https://github.com/kivy/kivy/issues/5263]]: Avoid Animation.cancel_all(Window) that interfers with user animations

	[#5268 [https://github.com/kivy/kivy/issues/5268]]: Fix crash when instantiating ActionView(use_separator=True)

	[#5335 [https://github.com/kivy/kivy/issues/5335]]: issue #5333 - actionbar throws exception when resized

	[#5339 [https://github.com/kivy/kivy/issues/5339]]: Rewrite ActionGroup from Spinner to Button+DropDown

	[#5370 [https://github.com/kivy/kivy/issues/5370]]: Fix all ScreenManagers sharing the same transition

	[#5379 [https://github.com/kivy/kivy/issues/5379]]: Allow negative values in textinput with filters.

	[#5413 [https://github.com/kivy/kivy/issues/5413]]: Don’t pass touch to children when outside the ScrollView.

	[#5418 [https://github.com/kivy/kivy/issues/5418]]: Add text_validate_unfocus option to TextInput

	[#5445 [https://github.com/kivy/kivy/issues/5445]]: Resize treeview collapse. closes #5426

	[#5455 [https://github.com/kivy/kivy/issues/5455]]: Add TextInput cursor blinking control

	[#5472 [https://github.com/kivy/kivy/issues/5472]]: export widget canvas to png including alpha values

	[#5484 [https://github.com/kivy/kivy/issues/5484]]: DragBehavior: Transform window coordinates to parent coordinates befo…

	[#5567 [https://github.com/kivy/kivy/issues/5567]]: EffectWidget: Correct typo ‘setdefaults’ to ‘setdefault’

	[#5641 [https://github.com/kivy/kivy/issues/5641]]: Fix LabelBase.register() to behave as documented

	[#5715 [https://github.com/kivy/kivy/issues/5715]]: Let Layout.add_widget use the canvas argument

	[#5748 [https://github.com/kivy/kivy/issues/5748]]: Add canvas argument to FloatLayout.add_widget

	[#5764 [https://github.com/kivy/kivy/issues/5764]]: Fix #5761 AsyncImage reload() doesn’t invalidate Loader Cache

	[#5632 [https://github.com/kivy/kivy/issues/5632]]: Fixes #5632, typo of col instead of row.

	9a8603d54: hotfix: Stop AccordionItem collapse animation

	a432e0d73: Let BoxLayout.add_widget use the canvas argument

	37ccbfac2: pass an empty list for “buttons” param to create_touch

	8da2272e5: Remove ineffective changes

	2faa6a993: doc: Added default value to Scatter ‘do_collide_after_children’ property

	faa03f7e4: Gridlayout min size bounds check (#5278)

	27e3b90ea: Fix touch passing down when overlapping TextInputs (#5189)

	5e2b71840: Fix image size and comment handling in RST (#5197)

	b505b1d13: Add on_load to AsyncImage (#5195)

	873427dbb: Add Slider.sensitivity (#5145)

	d06ea4da2: Deprecate the Widget’s id property

Tests

	[#5226 [https://github.com/kivy/kivy/issues/5226]]: Add test for ScrollView bars

	[#5282 [https://github.com/kivy/kivy/issues/5282]]: Add test for _init_rows_cols_sizes

	[#5346 [https://github.com/kivy/kivy/issues/5346]]: Add unittest for ActionBar

	[#5368 [https://github.com/kivy/kivy/issues/5368]]: Unittesting features

	[#5372 [https://github.com/kivy/kivy/issues/5372]]: test_video.py: Fix misleading class name

	[#5374 [https://github.com/kivy/kivy/issues/5374]]: Fix creating ‘results’ folder in GraphicUnitTest if not making screenshots

	[#5378 [https://github.com/kivy/kivy/issues/5378]]: Add test for Inspector module, fix children order for ModalView

	[#5381 [https://github.com/kivy/kivy/issues/5381]]: Add test for KV event/property + trailing space

	[#5399 [https://github.com/kivy/kivy/issues/5399]]: Add unittest for Mouse multitouch simulator

	[#5433 [https://github.com/kivy/kivy/issues/5433]]: Add simple guide for GraphicUnitTest

	[#5446 [https://github.com/kivy/kivy/issues/5446]]: Add unittest for AsyncImage + remote .zip sequence

	[#5489 [https://github.com/kivy/kivy/issues/5489]]: Add unittest for TextInput selection overwrite

	[#5607 [https://github.com/kivy/kivy/issues/5607]]: Add unittest for Vector.segment_intersection floatingpoint error

	6b93d8aa4: Fix unicode error

	c9ecb4017: Add test for RST replace

Docs

	[#5170 [https://github.com/kivy/kivy/issues/5170]]: Fix typo in installation/windows.rst

	[#5177 [https://github.com/kivy/kivy/issues/5177]]: Fix comments for paste in textinput.py

	[#5221 [https://github.com/kivy/kivy/issues/5221]]: Docs: Link methods, remove empty title

	[#5227 [https://github.com/kivy/kivy/issues/5227]]: Add gstreamer to ubuntu install

	[#5240 [https://github.com/kivy/kivy/issues/5240]]: Settings in example are faulty

	[#5270 [https://github.com/kivy/kivy/issues/5270]]: doc: add missing escape characters into Linux installation instructions

	[#5307 [https://github.com/kivy/kivy/issues/5307]]: Docs: Explain handling Popup in KV

	[#5330 [https://github.com/kivy/kivy/issues/5330]]: Docs: Rewrite system cursor

	[#5424 [https://github.com/kivy/kivy/issues/5424]]: Add notice about Kivy.app not being available for download

	[#5439 [https://github.com/kivy/kivy/issues/5439]]: OSX Install Instruction Update - Cython explicit version

	[#5458 [https://github.com/kivy/kivy/issues/5458]]: Add docs for setting Window.shape_mode

	[#5518 [https://github.com/kivy/kivy/issues/5518]]: less renaming

	[#5519 [https://github.com/kivy/kivy/issues/5519]]: oxford

	[#5520 [https://github.com/kivy/kivy/issues/5520]]: Documentation consistency

	[#5521 [https://github.com/kivy/kivy/issues/5521]]: redundant ‘as’

	[#5522 [https://github.com/kivy/kivy/issues/5522]]: widget’s

	[#5523 [https://github.com/kivy/kivy/issues/5523]]: terser

	[#5524 [https://github.com/kivy/kivy/issues/5524]]: tighten

	[#5559 [https://github.com/kivy/kivy/issues/5559]]: Docs: Add note about MemoryError for kivy.deps.gstreamer

	[#5600 [https://github.com/kivy/kivy/issues/5600]]: Fixed one letter documentation typo (in example)

	[#5626 [https://github.com/kivy/kivy/issues/5626]]: Fix typo in docs.

	[#5695 [https://github.com/kivy/kivy/issues/5695]]: Docs: Add warning about using Texture before application start

	12487a24f: Remove tree; doesn’t look good with website CSS

	bb07d95e9: Clarify Windows alternate location installation

	d6d8a2405: Doc: Fix parsed literal block in installation docs

	4d4ee413c: Doc: added 18.04 to dev install docs

	5f6c66eba: Doc: Fixed typo in animation.py

	285162be5: Kivy is available on Macports directly

	94d623f91: Doc: changed disabled state docs for widget to more standard form

	e029bed41: Doc: tweak to uix/spinner.py docs

	86b6e19d8: Doc: tweaks to cython version installation instructions

	ef745c2fe: Doc: remove specifying cython version, list working cython vs. kivy versions. references #5674

	0ccd8ccd9: Doc: tweaks to modules/console.py

	90448cbfa: Doc: revisions to modules/console.py

	73f99351c: Doc: added explanation for Builder.unload filename parameter

	67fb972ee: Doc: refinements to actionbar.py

	96252c9ad: Doc: refinements to actionbar docs

	917a1b4a2: Update installation-osx.rst

	a3251fd79: Doc: clarified angle offering for python 3.5+

	0fbac3bdb: Doc: tweaks to actionbar docs

	0ec9530b3: Doc: additions to ActionBar docs

	1aa431539: Fix stencil’s documentation

	51d172500: Doc: corrected typo in recycleview layout docs

	6af68c41f: Doc: Added link to toggle button image

	e7d171393: Doc: Added togglebutton image to docs

	0ea6e95df: Doc: Added 16.04 dependencies listing

	0cc3a9812: Update debian installation doc

	22aa73f55: Docs: Remove “-dev” version in versionchanged

	c07f97179: Docs: Fetch cython version from setup.py (#5302)

	2ad58a9a0: Doc: cleanup, added doc strign for RecycleLayout to make linkable

	493a4a985: Doc: tweaks to the recycleview docs

	114c1a026: Doc: Grammer tweaks to /doc/sources/guide/graphics.rst and kivy/core/window/__init__.py

	3d243629f: Doc: petty grammar tweaks to kicy/core/window/__init__.py

	7cdf9b3fd: Doc: corrected the kkivy/core/window/keyboard_anim_args docs to more accurately reflect defaults

	c5eb87974: Docs: removed the ‘None’ default value as it is actualy ‘’

	c090c6370: Doc: corrected path for AliasProperty in RecycleViewBehavior

	24647bd9c: Doc: added heirarchical namespacing to treeview items

	6f0639a25: Docs: Fix note indentation after code block

	7daea785f: Doc: added description of rotation property value for kivy.uix.scatter

	ac0d28f1f: Reorder osx packaging methods

	19d9d9d81: Doc: tweaks to grammar for RoundedRectangle graphics instruction

	cdee22eaa: Doc: tweaks to grammar for RoundedRectangle graphics instruction

	c6b2fe309: Fix nightly links.

	242beb39a: Update android virtual machine documentation

	fa1e0b283: Deprecate the vm.

	bd392abca: Remove vm link.

	a6ee7605c: Add info about kivy_examples.

	97f3096cc: Doc: remove leftover USE_OSX_FRAMEWORKS env var

	b4ce25698: doc: setting KIVY_OSX_FRAMEWORKS=0 during installation is not needed anymore

	e5126afce: doc: use latest Cython version for macOS and do not force reinstallation

	bd98d81bc: docs: remove warning about unavailable wheels on Windows

	f1b412d9a: Docs: Fix examples PPA command; Cython for v1.10.0

	333f15845: Doc: Fix Mesh docstring (#5806)

Examples:

	[#5026 [https://github.com/kivy/kivy/issues/5026]]: Update Twisted Framework Example to Py3

	[#5173 [https://github.com/kivy/kivy/issues/5173]]: Fix shapecollisions example for py2

	[#5486 [https://github.com/kivy/kivy/issues/5486]]: Rotate monkey head smoothly

	[#5487 [https://github.com/kivy/kivy/issues/5487]]: Update codeinput.kv

	[#5564 [https://github.com/kivy/kivy/issues/5564]]: Update basic.rst

	[#5611 [https://github.com/kivy/kivy/issues/5611]]: typo fix in docs example

	e658c65ce: Fix animation transition around the unit circle in Android compass example

	4de0599a8: Update joystick example

Misc:

	[#4984 [https://github.com/kivy/kivy/issues/4984]]: Allow changing kivy dispmanx layer in the Raspberry Pi

	[#5285 [https://github.com/kivy/kivy/issues/5285]]: fix install_twisted_reactor for python3 (_threadedselect is now inclu…

	[#5350 [https://github.com/kivy/kivy/issues/5350]]: tools/kviewer: Fixed it working on python3

	[#5525 [https://github.com/kivy/kivy/issues/5525]]: Switch to manual KV trace purging

	[#5763 [https://github.com/kivy/kivy/issues/5763]]: Add kivy/core/window/window_info.c to .gitignore

	98e944277: Updated copyright year in doc index

	b39c84bc0: pep8 fixes

	8143c6be9: Add – to separate Atlas module options

	d054d5665: Add – to –use-path option in documentation

	38ed32f2b: Create CODE_OF_CONDUCT.md

	fa01246c8: long overdue update to the kv syntax highlight for vim

	0c63c698f Fix licensing issues (#5786)

Packaging:

	[#5366 [https://github.com/kivy/kivy/issues/5366]]: Fix ‘git’ not found in setup.py

	[#5392 [https://github.com/kivy/kivy/issues/5392]]: Fix setup.py under python2

	[#5466 [https://github.com/kivy/kivy/issues/5466]]: Introduce no support for Cython 0.27 - 0.27.2

	[#5584 [https://github.com/kivy/kivy/issues/5584]]: Added Python 3.6 to setup.py categories

	[#5627 [https://github.com/kivy/kivy/issues/5627]]: Add setupconfig.py to packagedata

	[#5747 [https://github.com/kivy/kivy/issues/5747]]: Updated minimum cython version

	10530bbfc: Added missing comma in package_data list

	f66f34023: setup: fix error about gl_mock that doesn’t exist anymore

	d462a70f9: setup: fix cython rebuilding all graphics even if it has been already done. Closes #4849

	aaca07b20: Fix missing kivy.tools in setup.py (#5230)

CI:

	[#5229 [https://github.com/kivy/kivy/issues/5229]]: Appveyor: switch DO_WHEELS to True

	[#5406 [https://github.com/kivy/kivy/issues/5406]]: Fixes for Cython 0.27

	d5e0ccc00: comment out failing mingw appveyor builds

	71cbd4c40: fixes for osx builders in travis

	55200ee1a: workaround to make inspector tests pass without blocking window

	002e46f7d: travis.yml: add semi-colon

	f1693863e: travis.yml: add sudo to easy_install

	9f71b38a4: travis.yml: try easy_install pip to fix missing command error

	bae09d913: travis.yml: Make TRAVIS_OS_NAME detection consistent

	94db03ed3: Prevented warnings for repeated loading for travis Inspector test cases

	61e05c113: Fix travis build error in inpector.py, line 382

	cd592c1e8: Fixed Pep8 violations (fix travis build 3676 moans)

	a736f287a: Remove fixed version of cython from .travis.yml

	87ae2145c: Removed outdated line from .travis.yml

	30fd00fa8: Restore cython=-=0.26.1 for appveyor builds

	5c4b8ed14: Downgrade Cython to 0.26.1 for builds

	484b2f788: Upload wheels directly to server (#5175)

	e2c309416: travis.yml add back missing “;”

	2fc9cf521: add back pip installation in osx travis build

	7f5d9a4b4: use travis_retry for coveralls, in case it fails randomly

	e12d21667: fix again osx travis build (pip command not found)

	3d41f1da1: Update .travis.yml

	642e029a8: Add docutils to Travis deps

	ce6d54e2f: Add wheel generation support for osx and Linux.

	36e029aec: Upload sdist and examples.

	2e400aa41: Quote filenames [build wheel]

	04bfcff4d: Give better wheel upload path [build wheel win]

	8167ff410: Fix wheel building on all platforms (#5812)

1.10.0 (May 7, 2017)

Breaking changes

	[#3891 [https://github.com/kivy/kivy/issues/3891]] ButtonBehavior.always_release defaults to False, so by default a release outside the button is ignored.

	[#4132 [https://github.com/kivy/kivy/issues/4132]] ButtonBehavior.MIN_STATE_TIME was removed and instead has been added to the config. Each button and dropdown now has their own configurable min_state_time property that defaults to the config value.

	[#4168 [https://github.com/kivy/kivy/issues/4168]] kivy.metrics.metrics was removed, use kivy.metrics.Metrics instead.

	[#4211 [https://github.com/kivy/kivy/issues/4211]] TextInput.background_disabled_active was removed, the normal background is used instead.

	[#4254 [https://github.com/kivy/kivy/issues/4254]] kivy.utils.platform is now a string describing the platform and not a callable.

	[#4603 [https://github.com/kivy/kivy/issues/4603]] Made App.on_pause default to return True.

	[#4819 [https://github.com/kivy/kivy/issues/4819]] Remove kivy module extension support - it wasn’t used.

	[#4224 [https://github.com/kivy/kivy/issues/4224]] Remove pygst (audio, video, camera), gi (audio, video) and videocapture (camera) providers. Use gstplayer or ffpyplayer instead (https://kivy.org/docs/guide/environment.html#restrict-core-to-specific-implementation)

	[#5011 [https://github.com/kivy/kivy/issues/5011], #4828 [https://github.com/kivy/kivy/issues/4828]] added support for opencv 2 and 3 (camera)

	[#5033 [https://github.com/kivy/kivy/issues/5033]] Clock trigger call doesn’t return True (or anything) anymore, use is_triggered instead.

	[#5088 [https://github.com/kivy/kivy/issues/5088]] Change the auto scale option in BorderImage from bool to string with multiple scaling options.

Core

Audio

	Add FLAC to GstPlayer extensions

	[#4372 [https://github.com/kivy/kivy/issues/4372]] Added pitch shifting to audio using sdl2

	[#4853 [https://github.com/kivy/kivy/issues/4853]] Add ‘mp4’ support to audio with gstplayer

	[#4875 [https://github.com/kivy/kivy/issues/4875]] Added note that to seek, sound must be playing

Clipboard

	Detect correct Activity regardless of bootstrap (android)

	[#3990 [https://github.com/kivy/kivy/issues/3990]] Store clipboard contents for gtk3 (ClipboardManager spec)

	[#4093 [https://github.com/kivy/kivy/issues/4093]] Make clipboard_android work for both old and new toolchain

	[#4371 [https://github.com/kivy/kivy/issues/4371]] Fix version warning for clipboard_gtk3

	Fix Python 3.5-x64 Windows clipboard, see asweigart/pyperclip#25

	[#5152 [https://github.com/kivy/kivy/issues/5152]] Fixed crash on python3, due to items not being subscriptable

Image

	Add JPE to supported sdl2 image extensions

	[#3971 [https://github.com/kivy/kivy/issues/3971]] Fix stopping an image animation with value of -1 for anim_delay

	[#4186 [https://github.com/kivy/kivy/issues/4186]] Accept data URIs for image filename

	[#4708 [https://github.com/kivy/kivy/issues/4708]] Get actual image format instead of extension (imghdr)

	[#4728 [https://github.com/kivy/kivy/issues/4728]] Use PILImage.frombytes when PILImage.fromstring gives an exception

	[#4753 [https://github.com/kivy/kivy/issues/4753], #4727 [https://github.com/kivy/kivy/issues/4727]] Image saving using ‘save()’ throws error

	[#5155 [https://github.com/kivy/kivy/issues/5155]] Fix unicode image source in Python 2

Text

	[#3888 [https://github.com/kivy/kivy/issues/3888]] Fix PIL deprecated tostring() scrambling the text

	[#3896 [https://github.com/kivy/kivy/issues/3896]] Add font rendering options - hinting, kerning, blending (sdl2)

	[#3914 [https://github.com/kivy/kivy/issues/3914]] Add underline and strikethrough styling for Label and MarkupLabel

	[#4265 [https://github.com/kivy/kivy/issues/4265], #3816 [https://github.com/kivy/kivy/issues/3816]] Implement text outline for sdl2

	[#4012 [https://github.com/kivy/kivy/issues/4012]] Fix label color handling

	[#4047 [https://github.com/kivy/kivy/issues/4047], #4043 [https://github.com/kivy/kivy/issues/4043]] Fix alpha rendering of text color for pygame

	[#4063 [https://github.com/kivy/kivy/issues/4063]] Performance improved for comparing an entire string for Label

halign and valign
- Add ‘center’ as an alias of ‘middle’ for Label.valign
- Register all /usr/share/fonts subfolders
- [#4625 [https://github.com/kivy/kivy/issues/4625]] Add ellipsis styling for markup label
- [#4813 [https://github.com/kivy/kivy/issues/4813], #2412 [https://github.com/kivy/kivy/issues/2412]] Change default font to core.text.DEFAULT_FONT
- [#4846 [https://github.com/kivy/kivy/issues/4846]] Allow skipping italic, bold and bolditalic for the default_font
config option
- [#4858 [https://github.com/kivy/kivy/issues/4858], #4589 [https://github.com/kivy/kivy/issues/4589], #3753 [https://github.com/kivy/kivy/issues/3753]] Add is_shortened to Label

Video

	[#4345 [https://github.com/kivy/kivy/issues/4345]] ffpyplayer provider was updated to work with the latest FFPyPlayer codebase.

	[#5052 [https://github.com/kivy/kivy/issues/5052]] Fix ffpyplayer img.to_memoryview returning None

Window

	[#3890 [https://github.com/kivy/kivy/issues/3890]] turn Window.focus into a read-only property

	set Window.focus to false when the window is started in a hidden state

	[#3919 [https://github.com/kivy/kivy/issues/3919]] SDL2/Android: fixes pause/resume crash using sdl2 bootstrap on

android
- sdl2/android: redo fix on_pause/on_resume for SDL2 bootstrap. No more
freeze on resume.
- [#3947 [https://github.com/kivy/kivy/issues/3947]] release gil when polling for sdl events
- [#4104 [https://github.com/kivy/kivy/issues/4104]] window_sdl2: fix title and icon_filename to accept bytes or str
- [#4207 [https://github.com/kivy/kivy/issues/4207]] add map_key/unmap_key, automatically map android back key
- [#4209 [https://github.com/kivy/kivy/issues/4209]] Add SDL2 window events
- [#4217 [https://github.com/kivy/kivy/issues/4217]] Fix Window resizing for X11
- [#4239 [https://github.com/kivy/kivy/issues/4239]] X11: honor borderless configuration
- [#4310 [https://github.com/kivy/kivy/issues/4310]] X11: implement on_title
- [#4316 [https://github.com/kivy/kivy/issues/4316]] Animate the window content based on softinput_mode, introducing
keyboard_padding and keyboard_anim_args
- [#4403 [https://github.com/kivy/kivy/issues/4403], #4377 [https://github.com/kivy/kivy/issues/4377]] Take care to account for density for mouse_pos
- [#4468 [https://github.com/kivy/kivy/issues/4468]] Prevent buffer crash on RPi if window was closed
- [#4631 [https://github.com/kivy/kivy/issues/4631], #4423 [https://github.com/kivy/kivy/issues/4423]] Fixes keycode typo
- [#4665 [https://github.com/kivy/kivy/issues/4665]] Add softinput_mode handling for SDL2
- [#4707 [https://github.com/kivy/kivy/issues/4707]] Add grab mouse in sdl2 window
- [#4851 [https://github.com/kivy/kivy/issues/4851]] Add Window position manipulation
- [#4919 [https://github.com/kivy/kivy/issues/4919]] Disable SDL2’s accelerometer-as-joystick behaviour
- [#4921 [https://github.com/kivy/kivy/issues/4921]] Add an allow_screensaver property for Window
- [#4952 [https://github.com/kivy/kivy/issues/4952]] Add multiple joysticks support
- [#5019 [https://github.com/kivy/kivy/issues/5019]] Add note for elevated use of on_dropfile
- [#5048 [https://github.com/kivy/kivy/issues/5048]] Fix missing sys.stdout.encoding when piped or frozen

Data

Keyboards

	[#4334 [https://github.com/kivy/kivy/issues/4334]] Add German keyboard layout

Style.kv

	Fix disabled_color for markup

	[#3925 [https://github.com/kivy/kivy/issues/3925], #3922 [https://github.com/kivy/kivy/issues/3922]] Fix FileListEntry text alignment

	[#3864 [https://github.com/kivy/kivy/issues/3864]] Avoid end-dev setting ColorWheel internal values

	[#4176 [https://github.com/kivy/kivy/issues/4176]] Change TextInput images for selection handles

	[#4364 [https://github.com/kivy/kivy/issues/4364]] Fix missing sp() in style.kv

	[#4447 [https://github.com/kivy/kivy/issues/4447], #4416 [https://github.com/kivy/kivy/issues/4416]] Fix filechooser size text align

	Filechooser: Align size labels with the table header

	[#4558 [https://github.com/kivy/kivy/issues/4558]] Separate image and button in Switch

	[#4732 [https://github.com/kivy/kivy/issues/4732]] Hide Image if no app_icon in ActionPrevious

Base

	[#3955 [https://github.com/kivy/kivy/issues/3955]] Deprecate the interactive launcher

	[#4427 [https://github.com/kivy/kivy/issues/4427], #4361 [https://github.com/kivy/kivy/issues/4361]] Fix multiprocessing.freeze_support()

	[#4449 [https://github.com/kivy/kivy/issues/4449]] Store kivy_home_dir as a unicode string in python 2

	Make gif loader last (Gif loader is slow and should be used if PIL or FFPY providers don’t work)

	Gst should be imported first since it cannot use sdl2’s zlib but sdl2 can use gst’s zlib

	[#4737 [https://github.com/kivy/kivy/issues/4737]] Remove sdl2 presplash after initialised (needs android package)

	[#4874 [https://github.com/kivy/kivy/issues/4874]] Add Include folder to get_includes()

	[#4949 [https://github.com/kivy/kivy/issues/4949]] Normalize version

Animation

	[#4223 [https://github.com/kivy/kivy/issues/4223], #4222 [https://github.com/kivy/kivy/issues/4222]] Implement cancel_property on animation’s Sequence

	[#4494 [https://github.com/kivy/kivy/issues/4494]] Update ClutterAlpha URL in AnimationTransition

	[#4563 [https://github.com/kivy/kivy/issues/4563]] Draw animation every frame by default, use step=0 instead of 1 / 60.0

	[#4643 [https://github.com/kivy/kivy/issues/4643]] Animation object is passed with the event docs <<< REMOVE?

	[#4696 [https://github.com/kivy/kivy/issues/4696], #4695 [https://github.com/kivy/kivy/issues/4695]] Remove sequential animations from Animation._instances when

complete

App

	[#4075 [https://github.com/kivy/kivy/issues/4075]] Fix missing path separator

	[#4636 [https://github.com/kivy/kivy/issues/4636], #4634 [https://github.com/kivy/kivy/issues/4634]] App.stop() clear window children only if window exists

Compat

	[#4617 [https://github.com/kivy/kivy/issues/4617]] Add isclose to compat based on py3.5 function

Clock

	[#3603 [https://github.com/kivy/kivy/issues/3603]] Add clock to compat

	Include clock changes for freebsd

	[#4531 [https://github.com/kivy/kivy/issues/4531]] Bump max_iteration to 20

Config

	[#4813 [https://github.com/kivy/kivy/issues/4813]] Add variable for default_font

	[#4921 [https://github.com/kivy/kivy/issues/4921]] Add variable for allow_screensaver

EventDispatcher

	[#3736 [https://github.com/kivy/kivy/issues/3736], #3118 [https://github.com/kivy/kivy/issues/3118]] Make widget kwargs passing higher priority than kv

Factory

	[#3975 [https://github.com/kivy/kivy/issues/3975]] Remove duplicate definition of SelectableView

	[#4046 [https://github.com/kivy/kivy/issues/4046]] Register missing properties in factory

	[#4108 [https://github.com/kivy/kivy/issues/4108]] Update factory registers (RecycleView, RecycleBoxLayout)

Graphics

	[#3866 [https://github.com/kivy/kivy/issues/3866]] Allow Line.points definition to be a mix of lists/tuples

	[#3970 [https://github.com/kivy/kivy/issues/3970]] Fix upload uniform without calling useprogram

	[#4208 [https://github.com/kivy/kivy/issues/4208]] Fix error in Line.rectangle documentation

	[#4554 [https://github.com/kivy/kivy/issues/4554]] Allow requesting graphics instruction update

	[#4556 [https://github.com/kivy/kivy/issues/4556]] Segmenats is 180 everywhere and in the docs

	what is that? -> a37c8dd, 6dd8c5e

	[#4700 [https://github.com/kivy/kivy/issues/4700], #4683 [https://github.com/kivy/kivy/issues/4683]] Reactivate free calls in smoothline

	[#4837 [https://github.com/kivy/kivy/issues/4837]] Restore gl/gles selection at compile-time

	[#4873 [https://github.com/kivy/kivy/issues/4873]] path changes for config.pxi

	[#4913 [https://github.com/kivy/kivy/issues/4913], #4912 [https://github.com/kivy/kivy/issues/4912]] Fix missing ‘return’ in get method for Mesh mode property

	[#5030 [https://github.com/kivy/kivy/issues/5030]] Fix BorderImage border ordering description

	[#5091 [https://github.com/kivy/kivy/issues/5091]] Fix get_pixel_color for py3

Lang

	[#3909 [https://github.com/kivy/kivy/issues/3909]] Add apply_rules to BuilderBase

	[#3984 [https://github.com/kivy/kivy/issues/3984]] Refactored lang.py - moved into its own module

	Fix missing global_idmap in new kivy.lang refactor

	[#4013 [https://github.com/kivy/kivy/issues/4013]] New ColorProperty and rgba function

	[#4015 [https://github.com/kivy/kivy/issues/4015]] More robust kv string detection

	[#4073 [https://github.com/kivy/kivy/issues/4073], #4072 [https://github.com/kivy/kivy/issues/4072]] Split imports on all whitespace

	[#4187 [https://github.com/kivy/kivy/issues/4187]] Fix Parser.execute_directive() not using resource_find() for including directive

	[#4301 [https://github.com/kivy/kivy/issues/4301]] Fix parser not continuing after warning

	[#4358 [https://github.com/kivy/kivy/issues/4358]] Allow spaces before colons for classes, properties

	[#4583 [https://github.com/kivy/kivy/issues/4583]] Use consistent ‘Lang’ for logs instead of ‘Warning’

	[#4615 [https://github.com/kivy/kivy/issues/4615]] Fix profiling tool HTML output generation

	Catch TypeError in dump_builder_stats

	[#5054 [https://github.com/kivy/kivy/issues/5054]] Fix inconistent naming if kv files are not unloaded

	[#5068 [https://github.com/kivy/kivy/issues/5068]] Unload matching rules

	[#5153 [https://github.com/kivy/kivy/issues/5153]] Fix KV include for quoted paths

Lib

	[#4122 [https://github.com/kivy/kivy/issues/4122]] Add ‘with oscLock’ in sendBundle to always release lock

	Correctly use oscLock in sendMsg

	[#3695 [https://github.com/kivy/kivy/issues/3695]] Extend OSC library

	Fix py2 print in OSC

	[#4433 [https://github.com/kivy/kivy/issues/4433]] OSC - convert to bytes for python3

	Ctypes supported on Android

Loader

	[#4359 [https://github.com/kivy/kivy/issues/4359]] Fix Exception on remote image

	[#4545 [https://github.com/kivy/kivy/issues/4545], #4366 [https://github.com/kivy/kivy/issues/4366]] Fix Asyncimage on error

Logger

	[#4057 [https://github.com/kivy/kivy/issues/4057], #4039 [https://github.com/kivy/kivy/issues/4039]] Properly format log text

	[#4375 [https://github.com/kivy/kivy/issues/4375]] Fix handling of PermissionError for logger.purge_logs

	[#4400 [https://github.com/kivy/kivy/issues/4400]] Recognize {rxvt,rxvt-unicode}-256color as color capable

	[#4404 [https://github.com/kivy/kivy/issues/4404]] Use a shorter field width for non-colored output

	[#4538 [https://github.com/kivy/kivy/issues/4538]] Fix “no isatty() method” errors

	[#5067 [https://github.com/kivy/kivy/issues/5067]] Replace hardcoded value maxfiles with config setting

Multistroke

	[#4803 [https://github.com/kivy/kivy/issues/4803]] Fix a silly multistroke crash

Network

	[#2772 [https://github.com/kivy/kivy/issues/2772]] Handle proxy servers in UrlRequest

	[#4297 [https://github.com/kivy/kivy/issues/4297]] Fix py3 returning wrong results

	[#4448 [https://github.com/kivy/kivy/issues/4448]] Fix url in UrlRequest

Parser

	[#4011 [https://github.com/kivy/kivy/issues/4011]] List supported input formats for parse_color

	[#4021 [https://github.com/kivy/kivy/issues/4021]] Append alpha for 3 digit hex colors

Properties

	[#4013 [https://github.com/kivy/kivy/issues/4013]] New ColorProperty and rgba function

	[#4304 [https://github.com/kivy/kivy/issues/4304]] AliasProperty should update when underlying prop changes even if cache is True

	[#4314 [https://github.com/kivy/kivy/issues/4314]] Don’t cache until first dispatch, otherwise it’s never dispatched if read before the dispatch

	[#4623 [https://github.com/kivy/kivy/issues/4623]] Fix grammar in exceptions

	[#4627 [https://github.com/kivy/kivy/issues/4627]] Allow conversion from strings without trailing units

	[#5135 [https://github.com/kivy/kivy/issues/5135]] Add py3 object.__init__() reference to properties

Resources

	[#4490 [https://github.com/kivy/kivy/issues/4490]] Return abspath in resource_find.

Input

	[#3915 [https://github.com/kivy/kivy/issues/3915], #2701 [https://github.com/kivy/kivy/issues/2701]] Don’t offset WM_TOUCH with caption size when fullscreen

	[#4045 [https://github.com/kivy/kivy/issues/4045], #4040 [https://github.com/kivy/kivy/issues/4040]] Late import window for wm_touch

	[#4318 [https://github.com/kivy/kivy/issues/4318], #4309 [https://github.com/kivy/kivy/issues/4309]] Fix touch scaling for WM_TOUCH

	[#4468 [https://github.com/kivy/kivy/issues/4468]] Fix HIDinput to dispatch events from main thread and don’t eat escape

	[#4501 [https://github.com/kivy/kivy/issues/4501]] Add on_stop to recorder

	[#4621 [https://github.com/kivy/kivy/issues/4621]] Fix mtdev provider max_touch_minor option

	Fix MTDev crashing if ‘x’ and ‘y’ are not in args

	Fix MTDev crashing if touch not in last_touches

	[#4725 [https://github.com/kivy/kivy/issues/4725], #4413 [https://github.com/kivy/kivy/issues/4413], #4682 [https://github.com/kivy/kivy/issues/4682]] Catch permission errors in MTDev

	[#4923 [https://github.com/kivy/kivy/issues/4923]] Prevent an attempt to import AndroidJoystick with SDL2

Modules

	[#5143 [https://github.com/kivy/kivy/issues/5143]] Fix listing modules via -m list

Monitor

	[#4567 [https://github.com/kivy/kivy/issues/4567]] Fix monitor drawing issues after window resize

	Code cleanup

Screen

	[#4396 [https://github.com/kivy/kivy/issues/4396]] Add a lot of new devices

Touchring, Cursor

	[#4721 [https://github.com/kivy/kivy/issues/4721], #3097 [https://github.com/kivy/kivy/issues/3097]] Touchring and Cursor are now two modules

WebDebugger

	Use events size function instead of list comprehension

Joycursor

	[#5094 [https://github.com/kivy/kivy/issues/5094]] Add JoyCursor module

Storage

	[#4269 [https://github.com/kivy/kivy/issues/4269]] Fix clear() not syncing the storage file

	[#4722 [https://github.com/kivy/kivy/issues/4722]] Add JSON dump indention and sort_keys option to JSONStorage

Widgets

	Deprecate ListView

	[#4944 [https://github.com/kivy/kivy/issues/4944]] Deprecate modules pertaining to ListView (AbstractView, Adapters)

	[#4108 [https://github.com/kivy/kivy/issues/4108]] Integrate Recycleview into Kivy

	Add warnings about RecycleView being experimental

	[#4617 [https://github.com/kivy/kivy/issues/4617]] Adds size_hint_min/max to widgets

ActionBar

	[#3128 [https://github.com/kivy/kivy/issues/3128]] Introduce ActionGroup.dropdown_width property

	[#4347 [https://github.com/kivy/kivy/issues/4347], #4119 [https://github.com/kivy/kivy/issues/4119]] Fix ActionView layout more dense/packed after increase of width

	[#4441 [https://github.com/kivy/kivy/issues/4441]] Fix dismiss in ActionGroup

	[#4891 [https://github.com/kivy/kivy/issues/4891], #4867 [https://github.com/kivy/kivy/issues/4867]] Fix Actionview window maximize/minimize bug

	[#5049 [https://github.com/kivy/kivy/issues/5049]] Fix ActionDropDown.on_touch_down

AnchorLayout

	[#4628 [https://github.com/kivy/kivy/issues/4628]] Fix asymmetric padding list

Behaviors

	[#3900 [https://github.com/kivy/kivy/issues/3900]] Add CoverBehavior

	[#4258 [https://github.com/kivy/kivy/issues/4258]] Allow keeping direct ref in knspace, fix crash when child knspace attr is None but parent doesn’t have attr

	[#4509 [https://github.com/kivy/kivy/issues/4509]] Fix CompoundSelectionBehavior example

	[#4598 [https://github.com/kivy/kivy/issues/4598], #4593 [https://github.com/kivy/kivy/issues/4593]] Fix ToggleButton released with allow_no_selection=False in CompoundSelection

	[#4599 [https://github.com/kivy/kivy/issues/4599]] Add text_entry_timeout to CompoundSelection

	[#4600 [https://github.com/kivy/kivy/issues/4600]] Allow all chars that are not e.g. arrow, and fix holding down key in CompoundSelection

	Don’t return true when already selected in CompoundSelection

	[#4782 [https://github.com/kivy/kivy/issues/4782], #4484 [https://github.com/kivy/kivy/issues/4484]] Allow unselect an item when multiselect is False in CompoundSelection

	[#4850 [https://github.com/kivy/kivy/issues/4850], #4817 [https://github.com/kivy/kivy/issues/4817]] Add CompoundSelectionBehavior.touch_deselect_last property

	[#4897 [https://github.com/kivy/kivy/issues/4897], #4816 [https://github.com/kivy/kivy/issues/4816]] Make _get_focus_* methods public in FocusBehavior

	[#4981 [https://github.com/kivy/kivy/issues/4981], #4979 [https://github.com/kivy/kivy/issues/4979]] Fix typo in CompoundSelection

Carousel

	[#4081 [https://github.com/kivy/kivy/issues/4081], #2087 [https://github.com/kivy/kivy/issues/2087]] Fix repeating addition of widget

	Use is operator for identity comparison

	[#4522 [https://github.com/kivy/kivy/issues/4522]] Fix carousel scrollview children touch_move

CheckBox

	[#4266 [https://github.com/kivy/kivy/issues/4266]] Add checkbox color

CodeInput

	[#3806 [https://github.com/kivy/kivy/issues/3806]] Add EmacsBehavior to CodeInput

	[#3894 [https://github.com/kivy/kivy/issues/3894]] Rename active_key_bindings to key_bindings

	[#3898 [https://github.com/kivy/kivy/issues/3898]] Remove CodeInput.key_binding

Dropdown

	[#4112 [https://github.com/kivy/kivy/issues/4112], #4092 [https://github.com/kivy/kivy/issues/4092]] Convert absolute coordinates of the touch.pos to relative

coordinates of self.attach_to(dropdown’s button)
- [#4511 [https://github.com/kivy/kivy/issues/4511]] Fix dropdown and spinner dismissing issue
- [#4550 [https://github.com/kivy/kivy/issues/4550], #4353 [https://github.com/kivy/kivy/issues/4353]] Rework of #4353 DropDown.max_height
- [#4805 [https://github.com/kivy/kivy/issues/4805], #4730 [https://github.com/kivy/kivy/issues/4730]] Fix first click in ActionGroup

FileChooser

	[#3710 [https://github.com/kivy/kivy/issues/3710]] Fix directory selection double-selecting

	[#4200 [https://github.com/kivy/kivy/issues/4200]] Handle children’s size_hints equal to zero

	[#5010 [https://github.com/kivy/kivy/issues/5010]] Fix a crash when using a file as the path

GestureSurface

	[#3945 [https://github.com/kivy/kivy/issues/3945]] Remove line_width

	[#4779 [https://github.com/kivy/kivy/issues/4779]] Fix collision check for on_touch_move

	[#4034 [https://github.com/kivy/kivy/issues/4034]] Don’t limit size to cols/rows_minimum, but treat it as real min.

	[#4035 [https://github.com/kivy/kivy/issues/4035]] Respect size_hint in gridlayout

Image

	[#4510 [https://github.com/kivy/kivy/issues/4510]] Fix py2 ASCII error

	[#4534 [https://github.com/kivy/kivy/issues/4534]] Removed long tracebacks

	[#4545 [https://github.com/kivy/kivy/issues/4545], #4549 [https://github.com/kivy/kivy/issues/4549]] Asyncimage on error

Label

	[#3946 [https://github.com/kivy/kivy/issues/3946]] Fix label rendering options

	[#3963 [https://github.com/kivy/kivy/issues/3963], #3959 [https://github.com/kivy/kivy/issues/3959]] Show disabled_color when disabled=True for markup label

ListView

	Include ListItemReprMixin

	Add note about possible deprecation of ListView

	[#2729 [https://github.com/kivy/kivy/issues/2729]] Don’t require a text argument for CompositeListItems

ModalView

	[#4136 [https://github.com/kivy/kivy/issues/4136]] Fix model center not syncing with window center

	[#4149 [https://github.com/kivy/kivy/issues/4149], #4148 [https://github.com/kivy/kivy/issues/4148]] Fix modal background not resizing

	[#4156 [https://github.com/kivy/kivy/issues/4156]] Fix incorrect ModalView position after window resize

	[#4261 [https://github.com/kivy/kivy/issues/4261]] Don’t return ModalView instance in open and dismiss methods

PageLayout

	[#4042 [https://github.com/kivy/kivy/issues/4042]] Fixed bug if zero or one widgets are in pagelayout

	Code style improvement

ScreenManager

	[#4107 [https://github.com/kivy/kivy/issues/4107]] Fix Screen removal leaving screen.parent property != None

	[#3924 [https://github.com/kivy/kivy/issues/3924]] Don’t generate a new screen name for existing screens

	[#4111 [https://github.com/kivy/kivy/issues/4111], #4107 [https://github.com/kivy/kivy/issues/4107], #2655 [https://github.com/kivy/kivy/issues/2655]] Remove the last screen and leave ScreenManager in a valid state

	Don’t check the Screen parent type, it can only be a ScreenManager

	[#4464 [https://github.com/kivy/kivy/issues/4464]] Fix SwapTransition not scaling

	Add missing import of Scale

	[#5032 [https://github.com/kivy/kivy/issues/5032]] Add CardTransition to ScreenManager

ScrollView

	[#3926 [https://github.com/kivy/kivy/issues/3926], #3783 [https://github.com/kivy/kivy/issues/3783]] Fix scroll distance bug

	[#4014 [https://github.com/kivy/kivy/issues/4014]] Revert accidental non-pep8 scrollview changes

	[#4032 [https://github.com/kivy/kivy/issues/4032]] Fix ScrollView not properly ignoring touch_up

	[#4067 [https://github.com/kivy/kivy/issues/4067]] All touches that don’t scroll should be skipped in touch move

	[#4180 [https://github.com/kivy/kivy/issues/4180]] Scroll to touch pos if the touch is within the scrollbar but does not collide with the handle

	[#4235 [https://github.com/kivy/kivy/issues/4235]] Make sure import does not load a window

	[#4455 [https://github.com/kivy/kivy/issues/4455], #4399 [https://github.com/kivy/kivy/issues/4399]] Focused widget inside ScrollView should unfocus on tap

	[#4508 [https://github.com/kivy/kivy/issues/4508], #4477 [https://github.com/kivy/kivy/issues/4477]] Always pop the touch

	[#4565 [https://github.com/kivy/kivy/issues/4565], #4564 [https://github.com/kivy/kivy/issues/4564]] Fix scrollview click registering on PC

	[#4633 [https://github.com/kivy/kivy/issues/4633]] Postpone scroll_to if the viewport has pending layout operation

	[#4646 [https://github.com/kivy/kivy/issues/4646]] Fix on_scroll_move to obey scroll_distance

	[#4653 [https://github.com/kivy/kivy/issues/4653]] Add checks to start scroll if do_scroll enabled for axis

	Add size_hint_min/max support to ScrollView

	Use viewport’s size_hint

	Fix ScrollView ignoring scroll_y, scroll_x being set from outside

Settings

	Fix string_types double import

	[#3625 [https://github.com/kivy/kivy/issues/3625]] Add show_hidden and dirselect to SettingPath

Slider

	[#4028 [https://github.com/kivy/kivy/issues/4028]] Fix Slider.value exceeding Slider.max

	[#4127 [https://github.com/kivy/kivy/issues/4127], #4124 [https://github.com/kivy/kivy/issues/4124], #4125 [https://github.com/kivy/kivy/issues/4125]] Change use of dimension conversion in Slider

	Add styling properties for Slider widget

	Added value_track* properties

Spinner

	Ensure Spinner text is updated when text_autoupdate changes

	Autoupdate spinner text only if the current text is not between the new values

	[#4022 [https://github.com/kivy/kivy/issues/4022]] Add option to sync Spinner dropdown children heights

	Update Spinner.text if empty, without comparing values

	[#4511 [https://github.com/kivy/kivy/issues/4511]] Don’t re add all widgets upon resize, it just lead to infinite size calc.

	Fix type and don’t used children directly since it could be modified

	[#4547 [https://github.com/kivy/kivy/issues/4547]] Fixes opening for empty values

StackLayout

	[#4236 [https://github.com/kivy/kivy/issues/4236]] Fix stacklayout not sizing if children is empty

	[#4579 [https://github.com/kivy/kivy/issues/4579], #4504 [https://github.com/kivy/kivy/issues/4504]] Fix stackLayout children rearranging themselves unexpectedly when their parent’s size changes

TabbedPanel

	[#4559 [https://github.com/kivy/kivy/issues/4559]] Fix scrolling in TabbedPanel

	[#4601 [https://github.com/kivy/kivy/issues/4601]] Remove tab limit

TextInput

	[#3935 [https://github.com/kivy/kivy/issues/3935]] Altered get_cursor_from_xy to intuitively place cursor

	[#3962 [https://github.com/kivy/kivy/issues/3962]] Add TextInput.password_mask to customize the password placeholder

	[#4009 [https://github.com/kivy/kivy/issues/4009]] hint_text in TextInput shows when focused and no text entered

	[#4024 [https://github.com/kivy/kivy/issues/4024]] Always show the textinput cursor at the moment of touch

	[#4048 [https://github.com/kivy/kivy/issues/4048]] Use a trigger when resetting the textinput cursor state

	[#4055 [https://github.com/kivy/kivy/issues/4055]] Implement wrapping of continuous text in textinput

	[#4088 [https://github.com/kivy/kivy/issues/4088], #4069 [https://github.com/kivy/kivy/issues/4069]] Fix disabled backspace

	Fix infinite loop when width is negative

	Don’t reset focus when focus changes

	[#4204 [https://github.com/kivy/kivy/issues/4204]] hint_text decode text by default

	[#4227 [https://github.com/kivy/kivy/issues/4227], #4169 [https://github.com/kivy/kivy/issues/4169]] Push flags correctly for linebreak in _split_smart

	[#4367 [https://github.com/kivy/kivy/issues/4367], #4244 [https://github.com/kivy/kivy/issues/4244]] Don’t try to split lines shorter than 1px

	[#4445 [https://github.com/kivy/kivy/issues/4445]] Prevent an infinite loop when trying to fit an overlong word

	[#4453 [https://github.com/kivy/kivy/issues/4453]] Fix text going off-screen while wrapping

	[#4560 [https://github.com/kivy/kivy/issues/4560], #3765 [https://github.com/kivy/kivy/issues/3765]] Fix app crashing on do_cursor_movement(‘cursor_end’) on empty text

	[#4632 [https://github.com/kivy/kivy/issues/4632], #4331 [https://github.com/kivy/kivy/issues/4331]] Clear selection_text directly

	[#4712 [https://github.com/kivy/kivy/issues/4712]] Fixed space input under SDL2 for some Android keyboards

	[#4745 [https://github.com/kivy/kivy/issues/4745]] Add cursor_width to TextInput

	[#4762 [https://github.com/kivy/kivy/issues/4762], #4736 [https://github.com/kivy/kivy/issues/4736]] Prevent setting suggestion_text crashes if text is empty string and canvas is not setup yet

	[#4784 [https://github.com/kivy/kivy/issues/4784]] Made sure Selector gets on_touch_down only once

	[#4836 [https://github.com/kivy/kivy/issues/4836]] Fix Bubble not reachable on Android when touch in textinput is near the borders

	[#4844 [https://github.com/kivy/kivy/issues/4844], #3961 [https://github.com/kivy/kivy/issues/3961]] Fix not working BubbleButton on_touch_up

	[#5100 [https://github.com/kivy/kivy/issues/5100]] Fix TextInput crash when text, focus is set and enter pressed at same time

TreeView

	[#4561 [https://github.com/kivy/kivy/issues/4561]] Add TreeView.deselect_node()

Video

	[#4961 [https://github.com/kivy/kivy/issues/4961]] Fix on_duration_change typo

Videoplayer

	[#4920 [https://github.com/kivy/kivy/issues/4920]] Replace old video with CC0 licensed video

VKeyboard

	[#4900 [https://github.com/kivy/kivy/issues/4900]] Add font_size for key text size

	[#5020 [https://github.com/kivy/kivy/issues/5020]] Fix file/kblayout opening

Widget

	[#4121 [https://github.com/kivy/kivy/issues/4121], #3589 [https://github.com/kivy/kivy/issues/3589]] Check if canvas was found in parent canvas for export_to_png

	[#3529 [https://github.com/kivy/kivy/issues/3529]] Rebind Widget.parent by default

	[#4584 [https://github.com/kivy/kivy/issues/4584], #4497 [https://github.com/kivy/kivy/issues/4497]] Avoid being behind parent’s canvas when inserting a widget at last index

Tools

Highlighting

	Update Emacs mode to modern way of enabling newline and indent

Packaging

	[#4840 [https://github.com/kivy/kivy/issues/4840], #4811 [https://github.com/kivy/kivy/issues/4811]] Fixed get_deps_minimal crash in Python3

PEP8checker

	Add shebang again

	[#4798 [https://github.com/kivy/kivy/issues/4798]] Update pep8.py to version 2.2.0

	Add E402 to pep8 ignore list

	Normalize paths excluded from style checks

	Match start of folder paths during pep8 check

	Ignore E741 and E731

	Exclude dir kivy/tools/pep8checker

	Delete sample_for_pep8.py

	Remove stylereport target from Makefile

	Print error count during style check instead of passing it as exit code

	Ignore style issues in kivy/deps

Report

	Fix StringIO for py2, raw_input/input, crash if GL not available. Add more detailed platform checking. Warn the user the gist is pasted anonymously.

	Made ConfigParser py2/3 compatible

Doc

	[#4271 [https://github.com/kivy/kivy/issues/4271], #2596 [https://github.com/kivy/kivy/issues/2596]] Fix docs build on Windows

	[#4237 [https://github.com/kivy/kivy/issues/4237]] Add screenshots for widgets

	Tons of doc fixes thanks to the awesome community

	Special Thanks to ZenCODE for his awesome work on improving the doc

Examples

	[#3806 [https://github.com/kivy/kivy/issues/3806]] Add EmacsBehavior example

	[#3866 [https://github.com/kivy/kivy/issues/3866]] Fix examples/canvas/lines.py example

	[#4268 [https://github.com/kivy/kivy/issues/4268]] Fix takepicture requirements, use android.mActivity instead of autoclass

	Add RecycleView example

	[#4573 [https://github.com/kivy/kivy/issues/4573]] Add clipboard example

	[#4513 [https://github.com/kivy/kivy/issues/4513]] Add an examples for Window.on_dropfile

	[#4807 [https://github.com/kivy/kivy/issues/4807]] Add example for various color input

	[#4862 [https://github.com/kivy/kivy/issues/4862]] Add joystick example

	[#4883 [https://github.com/kivy/kivy/issues/4883]] Fix attribution in examples/widgets/lists

	[#4925 [https://github.com/kivy/kivy/issues/4925]] Replace images with CC0

	Fix KVrun example

	Fix Settings example

	Fix tabbed showcase example

	[#5022 [https://github.com/kivy/kivy/issues/5022]] Revert SmoothLine in example

	[#5027 [https://github.com/kivy/kivy/issues/5027]] Fix unicode error in KeyboardListener example

	[#5035 [https://github.com/kivy/kivy/issues/5035]] Added KV example for CoverBehavior

	Fix camera example - save image with extension

	[#5079 [https://github.com/kivy/kivy/issues/5079]] Add shape collision example

	Fix examples gallery

	Fix SVG example - scale with only one value

	[#5075 [https://github.com/kivy/kivy/issues/5075], #4987 [https://github.com/kivy/kivy/issues/4987]] Split examples into separate wheel for windows

Unit Tests

	Adapt ListView selection test to new behavior

	Add test for TextInput focused while being disabled

	[#4223 [https://github.com/kivy/kivy/issues/4223], #4222 [https://github.com/kivy/kivy/issues/4222]] Add a test for issue #4222

	[#4227 [https://github.com/kivy/kivy/issues/4227]] Add test case for word break

	[#4321 [https://github.com/kivy/kivy/issues/4321], #4314 [https://github.com/kivy/kivy/issues/4314]] Internal alias property details should not be assumed and tested

	[#4624 [https://github.com/kivy/kivy/issues/4624]] Fix test_wordbreak fail on Retina Mac

	Add simple tests for JsonStore options

	[#4821 [https://github.com/kivy/kivy/issues/4821]] Fix test_fonts file deleting

	Use almost equal for float assert

	Clipboard should only accept unicode

	[#5115 [https://github.com/kivy/kivy/issues/5115]] Replace Pygame with SDL2 for image comparing test

	[#5111 [https://github.com/kivy/kivy/issues/5111]] Add test for Fbo.get_pixel_color

Packaging

	Tons of more fixes that weren’t mentioned here, details of which can be gathered from http://github.com/kivy/kivy

Migration

	[#3594 [https://github.com/kivy/kivy/issues/3594]] Remove KEX (extension) support

	[#3891 [https://github.com/kivy/kivy/issues/3891], #3312 [https://github.com/kivy/kivy/issues/3312]] ButtonBehavior.always_release default to False

	[#4132 [https://github.com/kivy/kivy/issues/4132]] Include a min delay before dismissing

	[#4168 [https://github.com/kivy/kivy/issues/4168]] Remove deprecated kivy.metrics.metrics

	[#4211 [https://github.com/kivy/kivy/issues/4211]] Remove TextInput.background_disabled_active

	[#4224 [https://github.com/kivy/kivy/issues/4224]] Remove deprecated video and audio providers: pygst, pyglet and pygi

	[#4254 [https://github.com/kivy/kivy/issues/4254]] kivy.utils.platform is a string and it’s not callable anymore

	[#4603 [https://github.com/kivy/kivy/issues/4603], #4796 [https://github.com/kivy/kivy/issues/4796]] Made on_pause default to True

1.9.1 (Jan 1, 2016)

Changelog published here [https://groups.google.com/forum/#!topic/kivy-users/7LTIHnRCuG4].

1.9.0 (Apr 3, 2015)

Core

	[#2280 [https://github.com/kivy/kivy/issues/2280]] When core critically fails to load a lib, print all the exceptions.

	[#2488 [https://github.com/kivy/kivy/issues/2488]] Sdl2 support

	[#2800 [https://github.com/kivy/kivy/issues/2800]] core:core_register_lib: make sure libs are registered in order mentioned…

Audio

	[#1926 [https://github.com/kivy/kivy/issues/1926]] handle URL’s with parameters

	[#2131 [https://github.com/kivy/kivy/issues/2131]] fix bug with sound state in audio_gstplayer.py

	[#2278 [https://github.com/kivy/kivy/issues/2278]] fix socket leak in gstplayer

	[#2125 [https://github.com/kivy/kivy/issues/2125]] gstplayer: fix audio/video volume handling, as setting only once in load() doesnt work after stop().

	[#3004 [https://github.com/kivy/kivy/issues/3004]] audio: Fixed the get_pos method

	core/audio: accept m4a as input format.

	core/audio: add pygame m4a for android

	audio: fix leak in SDL implementation (iOS)

Camera

	a couple of fixes for camera/avfoundation

Clipboard

	[#2258 [https://github.com/kivy/kivy/issues/2258]] Clipboard: move copy and paste methods from TextInput to core.clipboard implementation.

	[#2743 [https://github.com/kivy/kivy/issues/2743]] os specific clipboard

	core:clipboard_pygame is able to paste unicode text

	fix clipboard_pygame.py to encode only for py2

Image

	[#1963 [https://github.com/kivy/kivy/issues/1963]] texture: add icolorfmt parameters to define alternative color format storage.

	[#2085 [https://github.com/kivy/kivy/issues/2085]] add .jpe to the supported extensions for providers that supports jpeg

	[#2358 [https://github.com/kivy/kivy/issues/2358]] Add ffpyplayer provider for image

	[#2037 [https://github.com/kivy/kivy/issues/2037]] PIL: detect and use frame disposal method

	[#2556 [https://github.com/kivy/kivy/issues/2556]] core:img_io add py3 support, img_sdl2 add save support

	[#2232 [https://github.com/kivy/kivy/issues/2232]] convert image data to a bytearray to more consistently get color info

	[#2170 [https://github.com/kivy/kivy/issues/2170]] Fix image unicode issues

	[#2645 [https://github.com/kivy/kivy/issues/2645]] img_pil:check for attribute’s existance before accessing it. closes #2641

	[#2695 [https://github.com/kivy/kivy/issues/2695]] add optional flipped param to pil image save

	[#2718 [https://github.com/kivy/kivy/issues/2718]] uix:Image introduce anim_loop property

	[#2826 [https://github.com/kivy/kivy/issues/2826]] allow In-memory image loading

	[#2834 [https://github.com/kivy/kivy/issues/2834]] fixes zip files not loaded by ImageLoaderPygame

	[#2836 [https://github.com/kivy/kivy/issues/2836]] core:Image:zip_loader start using the new functions for loading from memory

	[#2403 [https://github.com/kivy/kivy/issues/2403]] Update Imageio.pyx with fox for cython.21

	[#2282 [https://github.com/kivy/kivy/issues/2282]] core/imageio: dont advertise to support gif cause we are not able to animate it

	core/image: remove rowlength slot

	imageio: accelerate bgra->rgba conversion using Accelerate framework

Text

	[#1998 [https://github.com/kivy/kivy/issues/1998]] use a more natural method to check if self._text is unicode.

	[#2050 [https://github.com/kivy/kivy/issues/2050]] Workaround for pygame font issue with unicode filesnames.

	[#2166 [https://github.com/kivy/kivy/issues/2166]] Use correct options to finish of markup layout

	[#2259 [https://github.com/kivy/kivy/issues/2259]] Fixed issue where anchors not reporting correct position

	[#2248 [https://github.com/kivy/kivy/issues/2248]] [core/text] When stip is False allow space to remain on last line if it fits.

	[#2225 [https://github.com/kivy/kivy/issues/2225]] Use int for texture size, otherwise it’d never equal to the actual texture size.

	[#2677 [https://github.com/kivy/kivy/issues/2677]] fix stripping for wrapped text

	[#2696 [https://github.com/kivy/kivy/issues/2696]] add unicode error handling to core text

	[#2673 [https://github.com/kivy/kivy/issues/2673]] use available system fonts

	[#2840 [https://github.com/kivy/kivy/issues/2840]] Fix text stripping issues

	[#2891 [https://github.com/kivy/kivy/issues/2891]] Change the default font from DroidSans to Roboto

	[#2897 [https://github.com/kivy/kivy/issues/2897]] Update readme, font files and kv as part of moving to Roboto

	[#3014 [https://github.com/kivy/kivy/issues/3014]] core/text: allow others font extension to be loaded

	core.text: Make sure colorformat is specified while blitting texture.

	Align text flush with justify.

Video

	[#1629 [https://github.com/kivy/kivy/issues/1629]] Add ffpyplayer provider.

	[#2125 [https://github.com/kivy/kivy/issues/2125]] gstplayer: fix audio/video volume handling, as setting only once in load() doesnt work after stop().

	[#2275 [https://github.com/kivy/kivy/issues/2275]] video: fix video.unload called when position is changing.

	[#2962 [https://github.com/kivy/kivy/issues/2962]] Video fixes

Window

	[#1904 [https://github.com/kivy/kivy/issues/1904]] Exit on escape changes

	[#2130 [https://github.com/kivy/kivy/issues/2130]] Add on_request_close event to window to check before the window is closed

	[#2148 [https://github.com/kivy/kivy/issues/2148]] Add read-only tag to WindowBase width and height properties

	[#2329 [https://github.com/kivy/kivy/issues/2329]] Import glReadPixels from the correct place. Fixes #2032

	[#2359 [https://github.com/kivy/kivy/issues/2359]] add __self__ property to Window

	[#2384 [https://github.com/kivy/kivy/issues/2384]] Wrong ‘F3’ key value.

	[#2386 [https://github.com/kivy/kivy/issues/2386]] respect keyboard height when providing window height in softinput resize mode

	[#2564 [https://github.com/kivy/kivy/issues/2564]] joystick support with sdl2

	[#2662 [https://github.com/kivy/kivy/issues/2662]] Window.screenshot python 3 fix

	[#2688 [https://github.com/kivy/kivy/issues/2688]] Add pause_on_minimize config option

	[#2689 [https://github.com/kivy/kivy/issues/2689]] core: window_pygame fix conflict with command_mode and ctrl+a

	[#3047 [https://github.com/kivy/kivy/issues/3047]] Joystick support on WindowPygame

	[#3092 [https://github.com/kivy/kivy/issues/3092]] Don’t add force to kwargs since it’s not a prop.

	[#3115 [https://github.com/kivy/kivy/issues/3115]] X11: fix CWOverrideRedirect handling

	[#3147 [https://github.com/kivy/kivy/issues/3147]] on_textinput event for handling text input events from IME, and other custom input methods

	[#2590 [https://github.com/kivy/kivy/issues/2590]] Add maximize, minimize, restore, hide and show methods for SDL2 Window

	[#3200 [https://github.com/kivy/kivy/issues/3200]] Add window_state Config option

Base

	[#2528 [https://github.com/kivy/kivy/issues/2528]] allow customizing the location of the Kivy config data

	[#2873 [https://github.com/kivy/kivy/issues/2873]] environment: add an option to prevent parsing command line argument as kivy arguments.

App

	[#2171 [https://github.com/kivy/kivy/issues/2171]] Add root_window property to App class

Animation

	[#1959 [https://github.com/kivy/kivy/issues/1959]] animation: copy the original value to correctly animate list/tuple/dict.

	[#2739 [https://github.com/kivy/kivy/issues/2739]] unbind on_anim1_complete in Sequence

	[#3100 [https://github.com/kivy/kivy/issues/3100]] fix animation with new WeakProxy objects

	[#2458 [https://github.com/kivy/kivy/issues/2458]] animation: fix crash when widget is gone. (also #2561, #2676)

Atlas

	[#1841 [https://github.com/kivy/kivy/issues/1841]] atlas: Avoids the “Too many open files” error in case of a large number of input fil

	[#3042 [https://github.com/kivy/kivy/issues/3042]] Atlas fixes (#2822 and accept glob patterns)

Config

	[#1937 [https://github.com/kivy/kivy/issues/1937]] Add ConfigParserProperty

	[#1937 [https://github.com/kivy/kivy/issues/1937]] Add remove_callback method to ConfigParser

	[#2122 [https://github.com/kivy/kivy/issues/2122]] Config.set can now convert ints to string in Python3

	[#2030 [https://github.com/kivy/kivy/issues/2030]] Add warning about Settings.on_config_change() value type

	[#2127 [https://github.com/kivy/kivy/issues/2127]] Placement of import config critical to opening window size.

	[#2228 [https://github.com/kivy/kivy/issues/2228]] Add largs in config register func.

	[#2288 [https://github.com/kivy/kivy/issues/2288]] add upgrade method to ConfigParser

	[#2122 [https://github.com/kivy/kivy/issues/2122]] config: ensure python3 configparser will always set strings.

	[#2351 [https://github.com/kivy/kivy/issues/2351]] Get the configparse object when obj is created if it exists already.

	[#2932 [https://github.com/kivy/kivy/issues/2932]] Get the configparse object during linking if it exists already.

	Add ConfigParserProperty and remove_callback method to ConfigParser.

Clock

	[#2072 [https://github.com/kivy/kivy/issues/2072]] Only execute events that have not been removed.

	[#2310 [https://github.com/kivy/kivy/issues/2310]] Make Clock thread safe.

	[#2315 [https://github.com/kivy/kivy/issues/2315]] Use class object for hash instead of the class method

	[#2330 [https://github.com/kivy/kivy/issues/2330]] Use wrap to give correct name to mainthread wrapped func. Fixes #2027.

EventDispatcher

	[#2069 [https://github.com/kivy/kivy/issues/2069]] Add kwargs to dispatch.

	[#2566 [https://github.com/kivy/kivy/issues/2566]] Enable cyclic garbage collection to EventObservers.

	[#2724 [https://github.com/kivy/kivy/issues/2724]] assert that event callbacks are actually callable

	[#2797 [https://github.com/kivy/kivy/issues/2797]] Restore internal EventObservers to use python objects instead of structs.

	[#2899 [https://github.com/kivy/kivy/issues/2899]] Forward args when creating property.

	event: try to fix events compilation with older cython

	Make explicit dependance of event and properties pxd files.

	Propogate exceptions from EventObservers methods.

	_event only depends on prop.pxd and prop.pyx.

	Fix use after free when unbinding a currently dispatching function. Also, don;t dispatch callbacks added during a dispatch

Factory

	[#2052 [https://github.com/kivy/kivy/issues/2052]] Warn when factory tries to re-register an existing class with different bases

Gesture

	[#2058 [https://github.com/kivy/kivy/issues/2058]] Add bbox_margin as a property of GestureSurface

Graphics

	[#1899 [https://github.com/kivy/kivy/issues/1899]] Adding enforcement of the wanted graphics system (GL/GLES)

	[#1876 [https://github.com/kivy/kivy/issues/1876]] Fixed UnicodeDecodeError for bad closed-source Intel drivers

	[#1946 [https://github.com/kivy/kivy/issues/1946]] add a RoundedRectangle instruction

	[#1876 [https://github.com/kivy/kivy/issues/1876]] fix shader for intel drivers

	[#1996 [https://github.com/kivy/kivy/issues/1996]] created method flip_horizontal() for kivy.graphics.texture.Texture

	[#2186 [https://github.com/kivy/kivy/issues/2186]] Use memoryviews for blit_buffer

	[#2352 [https://github.com/kivy/kivy/issues/2352]] Fix cython shader ‘python temp coercion’ exception.

	[#2421 [https://github.com/kivy/kivy/issues/2421]] Fix line joints when doing a PI angle

	[#2430 [https://github.com/kivy/kivy/issues/2430]] Add gles_limits env variable.

	[#1600 [https://github.com/kivy/kivy/issues/1600]] texture: enforce the Texture.blit_* colorfmt/bufferfmt to be the same as the texture, if we have GLES_LIMITS activated

	[#2440 [https://github.com/kivy/kivy/issues/2440]] Tesselator

	[#2414 [https://github.com/kivy/kivy/issues/2414]] Add SmoothLine reload_observer. Fixes #2377

	[#2266 [https://github.com/kivy/kivy/issues/2266]] add debug method for recursive updates

	[#2554 [https://github.com/kivy/kivy/issues/2554]] fix line circle angles

	[#2170 [https://github.com/kivy/kivy/issues/2170]] Fix image unicode issues

	[#2428 [https://github.com/kivy/kivy/issues/2428]] Fix bgr conversion memory leak

	[#2630 [https://github.com/kivy/kivy/issues/2630]] fix size issue for 3D models loaded in kivy

	[#2809 [https://github.com/kivy/kivy/issues/2809]] Default gles_limits to whether we’re on desktop.

	[#2784 [https://github.com/kivy/kivy/issues/2784]] Added property name setters in Color __init__

	[#3030 [https://github.com/kivy/kivy/issues/3030]] Matrix: add get method to retrieve the current matrix

	[#3040 [https://github.com/kivy/kivy/issues/3040]] Matrix: add a put method to directly set matrix value

	[#1600 [https://github.com/kivy/kivy/issues/1600]] texture: enforce the Texture.blit_* colorfmt/bufferfmt to be the same as the texture, if we have GLES_LIMITS activated

	graphics: fixes for cython 0.20.2 (old version) and remove gcc warning.

	[#2445 [https://github.com/kivy/kivy/issues/2445]] shader: correctly ask for the length of the info. Maybe this is why the odoo crash.

	sdl2/texture: fix compilation for older cython with python3

	texture: fix invalid color conversion for texture when introduced icolorfmt (need double check with SMAA).

	[#2857 [https://github.com/kivy/kivy/issues/2857]] graphics/context: release shaders the same way we do for others graphics

	shader: fix for python3

Interactive Launcher

	[#1847 [https://github.com/kivy/kivy/issues/1847]] interactive.py illegally lists instance methods in __slots__

Lang

	[#1920 [https://github.com/kivy/kivy/issues/1920]] Allows comments in kv after a root level decleration

	[#2094 [https://github.com/kivy/kivy/issues/2094]] Fixes to not include comments when binding kv properties.

	[#2083 [https://github.com/kivy/kivy/issues/2083]] create Observable class to allow creating bindable objects for kv

	[#2235 [https://github.com/kivy/kivy/issues/2235]] include inner traceback in BuilderException

	[#2269 [https://github.com/kivy/kivy/issues/2269]] Create BooleanProperty if a bool is given for the kv property.

	[#2174 [https://github.com/kivy/kivy/issues/2174]] Introduces rebind keyword for some properties to enable dynamic rebinding

	[#2317 [https://github.com/kivy/kivy/issues/2317]] Ignore key exceptions when binding kv rules.

	[#2533 [https://github.com/kivy/kivy/issues/2533]] kv binding optimization

	[#2639 [https://github.com/kivy/kivy/issues/2639]] fix unicode and Builder in Python 2

	[#2908 [https://github.com/kivy/kivy/issues/2908]] kvlang: Fix binding issues

	[#2864 [https://github.com/kivy/kivy/issues/2864]] lang: fix_double include. closes #2821

	[#3012 [https://github.com/kivy/kivy/issues/3012]] py3: Python 3 doesn’t have ClassType anymore.

	[#3068 [https://github.com/kivy/kivy/issues/3068]] Improved error when canvas instructions are added after child widgets in kv

	lang: fixes invalid name (mixed typo between cache_match and match_case)

Loader

	[#1918 [https://github.com/kivy/kivy/issues/1918]] loaders: guess extension from mime type

	[#1928 [https://github.com/kivy/kivy/issues/1928]] Loader: allow override via URL fragment

	possibility to load image from a buffer, and make the loader GIL-free

Logger

	[#1660 [https://github.com/kivy/kivy/issues/1660]] Logger logs the version of python in use.

	[#1948 [https://github.com/kivy/kivy/issues/1948]] Fix displaying logs on debug level by default

	[#2169 [https://github.com/kivy/kivy/issues/2169]] Make log_dir absolute path checking cross-platform

	[#2167 [https://github.com/kivy/kivy/issues/2167]] Add config callback to change the log file when the config log_dir/log_name change.

Network

	[#1975 [https://github.com/kivy/kivy/issues/1975]] Decode byte string result when using Python 3

Properties

	[#2141 [https://github.com/kivy/kivy/issues/2141]] Made NumericProperty work with unicode strings. References Issue #2078

	[#2321 [https://github.com/kivy/kivy/issues/2321]] add default read-only setter to AliasProperty

	[#2747 [https://github.com/kivy/kivy/issues/2747]] Add force_dispatch option to properties

	[#2812 [https://github.com/kivy/kivy/issues/2812]] prevent dispatch in ReferenceListProperty.setitem if values haven’t changed

	[#3088 [https://github.com/kivy/kivy/issues/3088]] use WeakMethod for property bindings

	[#3106 [https://github.com/kivy/kivy/issues/3106]] raise AttributeError on missing property

Storage

	[#1938 [https://github.com/kivy/kivy/issues/1938]] Added persistence to DictStore using pickle

	[#2815 [https://github.com/kivy/kivy/issues/2815]] fix bad params for async storage

Input

HIDInput

	[#2638 [https://github.com/kivy/kivy/issues/2638]] hidinput: add late import and fix closure error

	[#3072 [https://github.com/kivy/kivy/issues/3072]] Fixed two bugs with incompatibilities with python3 in hidinput.py.

	[#3109 [https://github.com/kivy/kivy/issues/3109]] keyboard management: add missing keys

	[#3124 [https://github.com/kivy/kivy/issues/3124]] keyboard: add alt as modifier

Keyboard

	[#1917 [https://github.com/kivy/kivy/issues/1917]] introduce keyboard_height and softinput_mode property that can be set to ‘’ or pan or

	[#1930 [https://github.com/kivy/kivy/issues/1930]] VKeyboard: add key repeat on long press

	[#1932 [https://github.com/kivy/kivy/issues/1932]] VKeyboard: add extended layouts

	[#1967 [https://github.com/kivy/kivy/issues/1967]] Fix setting exit_on_escape atribute on on_keyboard method

MTDev

	mtdev: fix a crash when a finger is already on the touchscreen at the application start

	mtdev: fix a race condition where we received 2 tracking code id for the same slot within the same SYN_REPORT

MotionEvent

	[#2292 [https://github.com/kivy/kivy/issues/2292]] handle weakproxy objects in MotionEvent.grab()

Mouse

	[#2132 [https://github.com/kivy/kivy/issues/2132]] Adds simulated touch as a profile option

	[#2333 [https://github.com/kivy/kivy/issues/2333]] Make multitouch sim enabled by default and add multitouch_on_demand to config to disable it

PostProc

Modules

Inspector

	[#1897 [https://github.com/kivy/kivy/issues/1897]] Make property list draggable by scrollbar too [modules-inspector]

	[#1949 [https://github.com/kivy/kivy/issues/1949]] Make state normal on ‘inspect’ toggle button when inspector is deactivated

	[#2387 [https://github.com/kivy/kivy/issues/2387]] Inspector: handle bad properties/values

	[#2521 [https://github.com/kivy/kivy/issues/2521]] Fix inspector scrollview

	[#2618 [https://github.com/kivy/kivy/issues/2618]] let inspector view the Window object

	[#2720 [https://github.com/kivy/kivy/issues/2720]] fix inspector for touch devices

Recorder

	[#2344 [https://github.com/kivy/kivy/issues/2344]] fix recorder module imports

Behaviors

ButtonBehavior

	[#2531 [https://github.com/kivy/kivy/issues/2531]] ButtonBehavior: enforce minimum down state time

CompoundSelectBehavior

	[#1957 [https://github.com/kivy/kivy/issues/1957]] Adds a CompoundSelection behavior class

	[#2154 [https://github.com/kivy/kivy/issues/2154]] Fixes #2140 Syntax error

	[#3122 [https://github.com/kivy/kivy/issues/3122]] Fixes #3120 Keyboard behavior in select_for_key_down elides over pauses, combining keys

FocusBehavior

	[#1909 [https://github.com/kivy/kivy/issues/1909]] initial focus behavior

	[#2708 [https://github.com/kivy/kivy/issues/2708]] uix:FocusBehavior make sure changing focus for previous and next don’t clash

ToggleButtonBehavior

	[#2557 [https://github.com/kivy/kivy/issues/2557]] uix:ToggleButton Behavior: make it consistent with ButtonBehavior

Widgets

	[#1887 [https://github.com/kivy/kivy/issues/1887]] Added export_to_png method to Widget

	[#2452 [https://github.com/kivy/kivy/issues/2452]] Fix for stencil not being applied when using export_to_png()

	[#3098 [https://github.com/kivy/kivy/issues/3098]] add WeakProxy with comparison

	update add_widget exception message

ActionBar

	[#1839 [https://github.com/kivy/kivy/issues/1839]] fix android crash in ActionBar

	[#3107 [https://github.com/kivy/kivy/issues/3107]] make icons scale properly in actionbar

AnchorLayout

	[#1981 [https://github.com/kivy/kivy/issues/1981]] Add padding between layout and children

	[#2483 [https://github.com/kivy/kivy/issues/2483]] anchorlayout: fix positioning and remove size change when the children is bigger than the layout itself

	uix:AnchorLayout improve do_layout to account for changes in padding.

BoxLayout

	[#2588 [https://github.com/kivy/kivy/issues/2588]] BoxLayout honour padding when using pos_hint

Bubble

	[#2318 [https://github.com/kivy/kivy/issues/2318]] Bubble, makes arrow use soft pixels instead of hard ones, for device independant result

	[#2536 [https://github.com/kivy/kivy/issues/2536]] uix:bubble: don’t assign to window when using limit_to

Carousel

	[#2542 [https://github.com/kivy/kivy/issues/2542]] Fix carousel crash on load_next if empty, replace float(nan) with None

	[#3067 [https://github.com/kivy/kivy/issues/3067]] Fixed carousel calculation that had switched w, h

CheckBox

	[#2336 [https://github.com/kivy/kivy/issues/2336]] Use ToggleButtonBehavior

	[#2424 [https://github.com/kivy/kivy/issues/2424]] Always change the CheckBox state on press

	[#2484 [https://github.com/kivy/kivy/issues/2484]] uix:checkbox introduce allow_no_selection property

	[#2880 [https://github.com/kivy/kivy/issues/2880]] Add background properties for checkbox

CodeInput

	[#2316 [https://github.com/kivy/kivy/issues/2316]] Use proper cid in codeinput cache.

	[#2874 [https://github.com/kivy/kivy/issues/2874]] add an easier way to use different pygments styles for the CodeInput widget.

Dropdown

	[#2429 [https://github.com/kivy/kivy/issues/2429]] Ensure that container is set before everything for dropdown. Fixes issue with dynamic declared dropbox in kv.

	[#2429 [https://github.com/kivy/kivy/issues/2429]] Ensure that container is set before everything for dropdown.

	[#2126 [https://github.com/kivy/kivy/issues/2126]] uix:DropDown check for collision with the widgets dropdown is attached to while dismissing.

EffectWidget

	[#2095 [https://github.com/kivy/kivy/issues/2095]] Added AdvancedEffectBase

	[#2095 [https://github.com/kivy/kivy/issues/2095]] Added source property to EffectBase

	[#2095 [https://github.com/kivy/kivy/issues/2095]] Add new EffectWidget uix module

FileChooser

	[#2106 [https://github.com/kivy/kivy/issues/2106]] Fix problem with list(bool) in filechooser.py

	[#2338 [https://github.com/kivy/kivy/issues/2338]] Catch None in filechooser when iterating files.

	[#2366 [https://github.com/kivy/kivy/issues/2366]] uix:FileChooser fix multiselect behavior consistent, honor dirselect.

	[#2523 [https://github.com/kivy/kivy/issues/2523]] FileChooserIconView: scroll to top when entries cleared

	[#2525 [https://github.com/kivy/kivy/issues/2525]] add multi-view file chooser

	[#3060 [https://github.com/kivy/kivy/issues/3060]] Fixed filechooser path incorrectly updated when going to parent directory

	uix:FileChooser make use of abspath to store current path.

Image

	[#2286 [https://github.com/kivy/kivy/issues/2286]] uix:Image delayed importing of loader. Import it only when used

Label

	[#1878 [https://github.com/kivy/kivy/issues/1878]] Label: Shorten the string only if it’s larger than texture size.

	[#1935 [https://github.com/kivy/kivy/issues/1935]] Improve text rendering algorithm, fully implement padding, implement justify everywhere

	[#1907 [https://github.com/kivy/kivy/issues/1907]] Correct label padding to be positive, not negative.

	[#1944 [https://github.com/kivy/kivy/issues/1944]] Fix shorten to work the old way for now with the update text algo

	[#2175 [https://github.com/kivy/kivy/issues/2175]] Shorten fixes

	[#2251 [https://github.com/kivy/kivy/issues/2251]] Clear refs and anchors when clearing text. Fixes #2250.

	[#2238 [https://github.com/kivy/kivy/issues/2238]] Keep the markup color attribute after creation. Fixes #2210.

ListView

	[#1973 [https://github.com/kivy/kivy/issues/1973]] dictadapter update sorted_keys when data is updated

	[#2090 [https://github.com/kivy/kivy/issues/2090]] Allow VariableListProperty to accept any list derivative

	[#2091 [https://github.com/kivy/kivy/issues/2091]] Use dp for filechooserlistview instead of sp

	[#2420 [https://github.com/kivy/kivy/issues/2420]] Changed ListAdapter cls to accept string

	[#2598 [https://github.com/kivy/kivy/issues/2598]] fix ListItem* repr for python 2

	[#2782 [https://github.com/kivy/kivy/issues/2782]] bind listview adapter triggers on adapter change

	[#1972 [https://github.com/kivy/kivy/issues/1972]] dictadapter: fix unit tests related to it.

PageLayout

	[#1871 [https://github.com/kivy/kivy/issues/1871]] fix pagelayout assumes fullscreen for swipe threshold calculation

	[#3007 [https://github.com/kivy/kivy/issues/3007]] Fix PageLayout indexing issues.

Popup

	[#2825 [https://github.com/kivy/kivy/issues/2825]] allow horizontal align for popup title

	[#3104 [https://github.com/kivy/kivy/issues/3104]] Don’t create a prop named popup in content. Fixes #3103.

RelativeLayout

	[#2444 [https://github.com/kivy/kivy/issues/2444]] Old kv rules for Relative Layout removed

RstDocument

	[#1989 [https://github.com/kivy/kivy/issues/1989]] Allow reloading rst files and allow source to be ‘’

	[#2162 [https://github.com/kivy/kivy/issues/2162]] make rst underline color configurable

	Allow setting source to empty string to clear text, if it wasnt empty before.

Scatter

	[#2206 [https://github.com/kivy/kivy/issues/2206]] Add on_bring_to_front event to Scatter

	[#2714 [https://github.com/kivy/kivy/issues/2714]] fixes Scatter crash on windows

ScatterPlaneLayout

	[#2682 [https://github.com/kivy/kivy/issues/2682]] widgets: add new ScatterPlaneLayout,

ScreenManager

	[#1943 [https://github.com/kivy/kivy/issues/1943]] Add attribute to change fbo transparency in FadeTransition

	[#1985 [https://github.com/kivy/kivy/issues/1985]] moved remove_screen(self.screen_out) to _on_complete

	[#2005 [https://github.com/kivy/kivy/issues/2005]] Swap docstrings in screenmanager.py

	[#2804 [https://github.com/kivy/kivy/issues/2804]] provide better exception message when Screen is added to its current manager

	[#2946 [https://github.com/kivy/kivy/issues/2946]] screenmanager: swap up/down SlideTransition

	[#2749 [https://github.com/kivy/kivy/issues/2749]] prevent flicker when using shader transitions

	[#3080 [https://github.com/kivy/kivy/issues/3080]] screenmanager: screen’s layout is fixed before on_enter is dispatched.

	fix initial screen position in screenmanager

ScrollView

	[#1866 [https://github.com/kivy/kivy/issues/1866]] Fix scrolling on empty scrollview.

	[#2296 [https://github.com/kivy/kivy/issues/2296]] Add bar_inactive_color property for ScrollView

	[#2328 [https://github.com/kivy/kivy/issues/2328]] When mouse scrolling, don’t pass it on to children. Fixes #2031.

	[#2362 [https://github.com/kivy/kivy/issues/2362]] update _scroll_x_mouse and _scroll_y_mouse to fix scrollview jumping

	[#2371 [https://github.com/kivy/kivy/issues/2371]] fix nested scrollviews

	[#2526 [https://github.com/kivy/kivy/issues/2526]] Fix scrollbar scroll touches

	[#2522 [https://github.com/kivy/kivy/issues/2522]] fix horizontal scrolling with mouse wheel/touchpad

	[#3089 [https://github.com/kivy/kivy/issues/3089]] Fix scrollview crash on multitouch events

	[#3131 [https://github.com/kivy/kivy/issues/3131]] fix ScrollView._apply_transform

	increase scrollbar width

Settings

	[#2036 [https://github.com/kivy/kivy/issues/2036]] Automatically focus SettingString textinput when popup opens

	[#2074 [https://github.com/kivy/kivy/issues/2074]] Made settings popup sizes dynamic and sensible

Slider

	[#2769 [https://github.com/kivy/kivy/issues/2769]] Minor fix in slider.py. slider.value now set to slider.min at init

	[#3021 [https://github.com/kivy/kivy/issues/3021]] change slider default padding to sp(16) to match sp(32) size of slider cursor.

Splitter

	[#2000 [https://github.com/kivy/kivy/issues/2000]] Splitter: Added rescale_with_parent property

	[#2000 [https://github.com/kivy/kivy/issues/2000]] Added splitter options to keep within parent bounds and to rescale with the parent

	fix rescale_with_parent property name in docstring

StackLayout

	[#2653 [https://github.com/kivy/kivy/issues/2653]] Fix stacklayout size hint

	[#2803 [https://github.com/kivy/kivy/issues/2803]] properly handle StackLayout size_hint and spacing

TextInput

	[#2332 [https://github.com/kivy/kivy/issues/2332]] Fix TextInput bubble not following cursor position on window resize.

	[#1954 [https://github.com/kivy/kivy/issues/1954]] TextInput space stripping fixed, should now account correctly for kerning in cursor positioning

	[#1913 [https://github.com/kivy/kivy/issues/1913]] use a blank 1x1 texture for empty line

	[#1954 [https://github.com/kivy/kivy/issues/1954]] Fix textinput space stripping

	[#1969 [https://github.com/kivy/kivy/issues/1969]] Fix TextInput padding_x being ignored when calculating cursor position

	[#1997 [https://github.com/kivy/kivy/issues/1997]] Add cursor_color property for TextInput

	[#2008 [https://github.com/kivy/kivy/issues/2008]] Selection handles

	[#2055 [https://github.com/kivy/kivy/issues/2055]] Introduce input_filter to TextInput to allow only e.g. int, float inputs

	[#2267 [https://github.com/kivy/kivy/issues/2267]] minimum_height depends on line_height

	[#2302 [https://github.com/kivy/kivy/issues/2302]] Prevent cache clash for textinput width between password = True/False.

	[#2349 [https://github.com/kivy/kivy/issues/2349]] ensure _win is set when updating graphics

	[#2369 [https://github.com/kivy/kivy/issues/2369]] Fixed textinput height calculation based on padding

	[#2331 [https://github.com/kivy/kivy/issues/2331]] Keep correct cursor pos when resizing. Fixes #2018.

	[#2357 [https://github.com/kivy/kivy/issues/2357]] uix:TextInput move checking for command modes out of insert_text

	[#2283 [https://github.com/kivy/kivy/issues/2283]] correctly calculate texture coordinates when erasing at the end of a long line, fixes #508

	[#2389 [https://github.com/kivy/kivy/issues/2389]] fix textinput scroll direction

	[#2390 [https://github.com/kivy/kivy/issues/2390]] make textinput play nice in scatter and scrollview

	[#2332 [https://github.com/kivy/kivy/issues/2332]] uix:TextInput fix bubble positioning.

	[#2612 [https://github.com/kivy/kivy/issues/2612]] Update textinput.py to improve pg_move speed

	[#3063 [https://github.com/kivy/kivy/issues/3063]] move TextInput handles/bubble to window with transformation

	uix:TextInput use int not round, pageup/down was still crashing

TreeView

	[#1901 [https://github.com/kivy/kivy/issues/1901]] properly unset the selected_node attribute for TreeView

VideoPlayer

	[#1890 [https://github.com/kivy/kivy/issues/1890]] Fix VideoPlayer state inaccurate after end of stream

	[#1879 [https://github.com/kivy/kivy/issues/1879]] Fixes problems with seeking and length for the gst audio player

	[#1893 [https://github.com/kivy/kivy/issues/1893]] Fix VideoPlayer not responding to source change

	[#2275 [https://github.com/kivy/kivy/issues/2275]] Fix issue where a frame might load after video.unload() is called

	[#2866 [https://github.com/kivy/kivy/issues/2866]] image_overlay_play and image_loading attributes of VideoPlayer fixed

Platforms

Android

	[#1869 [https://github.com/kivy/kivy/issues/1869]] Changing Sound.volume should now have an effect on Android

	[#1947 [https://github.com/kivy/kivy/issues/1947]] core:Clipboard ensure clipboard works on older android versions.

	[#2471 [https://github.com/kivy/kivy/issues/2471]] skip processing some about touch when not touching screen on android

	[#3119 [https://github.com/kivy/kivy/issues/3119]] Fixes crash using latest pyjnius

	[#2710 [https://github.com/kivy/kivy/issues/2710]] fix android and ios rotation

iOS

	[#2754 [https://github.com/kivy/kivy/issues/2754]] Fixes typo in system font directory path on iOS

	[#2413 [https://github.com/kivy/kivy/issues/2413]] ios/simulator: fix color inconsistency for text rendering

	[#2710 [https://github.com/kivy/kivy/issues/2710]] fix android and ios rotation

	[#1792 [https://github.com/kivy/kivy/issues/1792]] ios: fix initial window display / sizing issue / redisplay issue.

Linux

	[#1830 [https://github.com/kivy/kivy/issues/1830]] X11 compilation improvements

OSX

	[#2010 [https://github.com/kivy/kivy/issues/2010]] Added save flipped image implementation on MacOS

Raspberry Pi

	[#2382 [https://github.com/kivy/kivy/issues/2382]] Simple keyboard implementation for raspberry pi.

	[#2581 [https://github.com/kivy/kivy/issues/2581]] Solving issues #2373 and #2364 on rpi running archlinux

	[#2656 [https://github.com/kivy/kivy/issues/2656]] support rpi touchscreen

	[#1302 [https://github.com/kivy/kivy/issues/1302]] rpi: add stencil support when creating the egl context.

Libs

GSTPlayer

	[#2200 [https://github.com/kivy/kivy/issues/2200]] fix for #2129 automatic pause in gstplayer after a few frames

	[#2466 [https://github.com/kivy/kivy/issues/2466]] Made local variable reference to fix cython 0.21

	[#2722 [https://github.com/kivy/kivy/issues/2722]] gstplayer: fix invalid size passed when we have a row stride (width * 3 not a multiple of 4).

	[#2454 [https://github.com/kivy/kivy/issues/2454]] gstplayer: fix deadlock when changing the volume on linux / pulseaudio.

libtess2

	[#2440 [https://github.com/kivy/kivy/issues/2440]] added libtess2

	backport a libtess2 fixes found in others forks to prevent a infinite loop (not all of them :()

OSC

	[#2314 [https://github.com/kivy/kivy/issues/2314]] OscAPI: Changed error check on dispatch, to avoid hidding program errors as well as osc errors

	[#2806 [https://github.com/kivy/kivy/issues/2806]] various cleanup in osc.py

	[#3114 [https://github.com/kivy/kivy/issues/3114]] osc convert data to bytes before packing

	[#3149 [https://github.com/kivy/kivy/issues/3149]] Osc fixes

Tools

	[#2621 [https://github.com/kivy/kivy/issues/2621]] Pep8 checker fix

	[#2960 [https://github.com/kivy/kivy/issues/2960]] Add new checks to kivy/tools/pep8.py

	[#3116 [https://github.com/kivy/kivy/issues/3116]] report.py sends report to https://gist.github.com/

	Add a tool to generate all the icons version your application needs, Google Play, App Store, Amazon Store, and for all devices (mdpi->xxxhdpi, iPhone/iPad/iTunes).

	texturecompress: use a POT size of PVRTC (same for width/height), otherwise the OSX texturecompress will fail.

	icons: fix icon generation for iPadx2

Compatibility

Twisted

	[#1805 [https://github.com/kivy/kivy/issues/1805]] better twisted integration

	[#1805 [https://github.com/kivy/kivy/issues/1805]] Multiple cycles of install/uninstall of Twisted Reactor

Sublime Text

	[#2033 [https://github.com/kivy/kivy/issues/2033]] Fix Syntax Highlighting for Sublime Text

Emacs

	[#2207 [https://github.com/kivy/kivy/issues/2207]] emacs integration: Disable indent-tabs-mode in kivy-mode.el.

Examples

	[#1987 [https://github.com/kivy/kivy/issues/1987]] Python3 and pep8 fixes for 3d rendering example

	[#2007 [https://github.com/kivy/kivy/issues/2007]] Correct config example

	[#2020 [https://github.com/kivy/kivy/issues/2020]] Fix shadertree example for python3

	[#2066 [https://github.com/kivy/kivy/issues/2066]] make touchtracer use pressure if available

	[#2058 [https://github.com/kivy/kivy/issues/2058]] $N-Protractor multistroke recognizer and demo app

	[#2376 [https://github.com/kivy/kivy/issues/2376]] Added texture example, showcasing wrap and tex_coord manipulation

	[#2360 [https://github.com/kivy/kivy/issues/2360]] fix android/takepicture for samsung galaxy S4

	[#2742 [https://github.com/kivy/kivy/issues/2742]] Create app_suite demo

	[#2704 [https://github.com/kivy/kivy/issues/2704]] change video example so it works when tried on an android phone

	[#2813 [https://github.com/kivy/kivy/issues/2813]] Kivycatalog fix: prevent extra spinner events

	[#2814 [https://github.com/kivy/kivy/issues/2814]] handle invalid font paths in CodeInput example

	[#2886 [https://github.com/kivy/kivy/issues/2886]] Added miscellaneous examples folder and a first entry

	[#2924 [https://github.com/kivy/kivy/issues/2924]] KivyCatalog LabelContainer demo update, clearer labels

	[#2944 [https://github.com/kivy/kivy/issues/2944]] Fix escape exiting on unfocus in kivycatalog

	[#2956 [https://github.com/kivy/kivy/issues/2956]] Add documentation to examples/animation/animate.py

	[#2955 [https://github.com/kivy/kivy/issues/2955]] Add description to examples/3Drendering/main.py

	[#2957 [https://github.com/kivy/kivy/issues/2957]] Add documentation to examples/camera/main.py

	[#2963 [https://github.com/kivy/kivy/issues/2963]] Documentation for examples/canvas/bezier.py

	[#2964 [https://github.com/kivy/kivy/issues/2964]] Updated examples/audio/main.py docstring

	[#2965 [https://github.com/kivy/kivy/issues/2965]] Update examples/canvas/canvas_stress.py with docs and new button

	[#2966 [https://github.com/kivy/kivy/issues/2966]] Add examples/canvas/circle.py docstring

	[#2967 [https://github.com/kivy/kivy/issues/2967]] examples/canvas/clearbuffers.py changes and rename.

	[#2969 [https://github.com/kivy/kivy/issues/2969]] examples/canvas/lines.py Add docstring.

	[#2971 [https://github.com/kivy/kivy/issues/2971]] Added examples/canvas/lines_extended.py docstring

	[#2972 [https://github.com/kivy/kivy/issues/2972]] Add documentation to examples/canvas/mesh.py

	[#2976 [https://github.com/kivy/kivy/issues/2976]] Fix examples/ PEP8 errors. Mostly white space

	[#2979 [https://github.com/kivy/kivy/issues/2979]] examples/canvas/multitexture.py documentation

	[#2981 [https://github.com/kivy/kivy/issues/2981]] examples/canvas/rotation.py Added docstring

	[#2982 [https://github.com/kivy/kivy/issues/2982]] examples/canvas/tesselate.py: Add docstring, logging, update display.

	[#2973 [https://github.com/kivy/kivy/issues/2973]] Create and document examples/canvas/mesh_manipulation.py

	[#3008 [https://github.com/kivy/kivy/issues/3008]] py3 division fix in mesh example

	[#3125 [https://github.com/kivy/kivy/issues/3125]] multitexture example: Original texture is displayed along with combined texture

	[#1869 [https://github.com/kivy/kivy/issues/1869]] example: add slider volume for audio examples

	fix audio example

	shadereditor: allow to use another image in command line

Unit Tests

	[#2422 [https://github.com/kivy/kivy/issues/2422]] fix test_keep_data so that it looks up the texture

	[#2862 [https://github.com/kivy/kivy/issues/2862]] Updated test of kivy.utils to 100% (platform detection)

	[#2950 [https://github.com/kivy/kivy/issues/2950]] Update testing and documentation of utils.py

	[#2953 [https://github.com/kivy/kivy/issues/2953]] Get kivy/tests/test_graphics.py to clean up results.png

	tests: add the possibility to run tests without internet (use NONETWORK=1 make test)

	python 3 tests fixes (Fix filechooser unicode test, vector test)

	fix benchmarks, update benchmark.py

	Audio tests were failing on OSX/Windows

Packaging

	[#2855 [https://github.com/kivy/kivy/issues/2855]] add .pxd and .pxi files to package

	[#2867 [https://github.com/kivy/kivy/issues/2867]] Use the correct build path when generating files in setup.py

	[#2883 [https://github.com/kivy/kivy/issues/2883]] Print warning when executed shell command does not return code 0

	[#2888 [https://github.com/kivy/kivy/issues/2888]] avoid make distclean to error when git is missing

	[#2914 [https://github.com/kivy/kivy/issues/2914]] show warning/error for cython versions

	[#2911 [https://github.com/kivy/kivy/issues/2911]] packaging: Fix licensing and extras

	[#2959 [https://github.com/kivy/kivy/issues/2959]] Simplify pip install (resolves kivy/kivy#2958)

	[#3015 [https://github.com/kivy/kivy/issues/3015]] fixes #3011 some files always rebuilt at make

	[#3041 [https://github.com/kivy/kivy/issues/3041]] Use distutils for cython version comparision.

	[#2934 [https://github.com/kivy/kivy/issues/2934]] Add both src and build paths to setup.py for generating setupconfig and co.

	[#3101 [https://github.com/kivy/kivy/issues/3101]] handle LooseVersion == str comparisons in py3

	Fixes for Cython 0.21

	setup: fix python3

	py3 compatibility fix for osx packaging

	setup.py: changes to not force SDL2 or GStreamer if they are explicitly disabled + reduce the code that generates configuration.

	[#2879 [https://github.com/kivy/kivy/issues/2879]] setup: fixes issues with gstreamer autodetection / compilation.

	osx packaging fixes

	Don’t remove debian subdirectory if it exists on git cleanup.

	[#2299 [https://github.com/kivy/kivy/issues/2299]] [#2324 [https://github.com/kivy/kivy/issues/2324]] conflict with debian repository

Miscellaneous

	[#2760 [https://github.com/kivy/kivy/issues/2760]] Style Guide/Pep8 fixes

	[#2961 [https://github.com/kivy/kivy/issues/2961]] Fix spacing and long lines. ‘make style’ is now clean.

	[#2975 [https://github.com/kivy/kivy/issues/2975]] Modify Makefile’s ‘make style’ to check entire tree

	python 3 fixes (unich/chr), throughout codebase

Doc

	[#2679 [https://github.com/kivy/kivy/issues/2679]] doc: add a Common Pitfalls section to RelativeLayout

	[#2751 [https://github.com/kivy/kivy/issues/2751]] Doc fix to clarify kv property behaviour (fixes #2374)

	[#2763 [https://github.com/kivy/kivy/issues/2763]] doc: corrected and improved size_hint doc

	[#2785 [https://github.com/kivy/kivy/issues/2785]] doc: Clarified button background_color

	[#2764 [https://github.com/kivy/kivy/issues/2764]] remove old doc about fixed fmt, short explanations of fmt param

	[#2787 [https://github.com/kivy/kivy/issues/2787]] doc: colour -> color fixes

	[#2824 [https://github.com/kivy/kivy/issues/2824]] Removed experimental tag from pause mode, screenmanager

	[#2893 [https://github.com/kivy/kivy/issues/2893]] fix default font_size value in docstring

	[#2909 [https://github.com/kivy/kivy/issues/2909]] doc: Added clarification to Color docstring

	[#2919 [https://github.com/kivy/kivy/issues/2919]] rebuild cython code to build up to date doc

	[#2922 [https://github.com/kivy/kivy/issues/2922]] Close Issue #2921 - build doc failure

	[#2950 [https://github.com/kivy/kivy/issues/2950]] Update testing and documentation of utils.py

	[#2927 [https://github.com/kivy/kivy/issues/2927]] Fix the default of border property (in PageLayout) in the documentation

	[#3022 [https://github.com/kivy/kivy/issues/3022]] Create gallery of examples.

	[#3043 [https://github.com/kivy/kivy/issues/3043]] Document combining behavior with other widgets. Fixes #2995.

	[#3082 [https://github.com/kivy/kivy/issues/3082]] doc: Add links to source, Circle and Rectangle in the pong tutorial

	[#3031 [https://github.com/kivy/kivy/issues/3031]] document automatic dependencies some more.

	make doc autobuild.py work under python 3

	Added scroll effect info to scrollview doc

	added explanation for AsyncImage

	added background example to uix.widget

	revisions to uix/relativelayout.py

	fixed typos in uix/widget.py

	add argument for code-block

	Document TextInput filtering.

	Rst fixes

	pagelayout: fix documentation

	Added custom keyboard example

	Improved coverage of dynamic classes

	added warning for ordering of dynamic classes

	Minor improvements to stencil_instructions

	Added appropriate documentaion for eos

	Updated garden to explain kivy-garden module

	revisions to graphics/vertex_instructions.pyx

	Add more details in stacklayout doc

	add instructions for Raspberry Pi

	update gettingstarted image to add raspberry pi

	grammar correction in uix/widget.py

	changed to standard version tagging

	restored python highlighting to remove red error surrounds

	layout/tag fixes to uix/gridlayout.py

	corrected versionchanged spacing + small grammar corrections

	Make the doc makefile work on windows.

	update settings documentation

	revisions to sources/guide/lang.rst

	autobuild: Return an empty string for missing summary lines. Can’t compare None to string

	replace template documentation in guide by dynamic class one

	made function names more obvious in kivy/_event.pyx

	Replaced jquery-ui.min.js with uniminified versions.

	Document fixes to label padding.

	Document that widgets created before load_file was called doesn’t have styling.

	Document line_height vs minimum_height of TextInput

	added event bubbling explanation to the widget class

	examples: add a camera example (easy for testing the camera widget)

	added observation for on_touch_move and on_touch_up events

	fixed code example for the storage module

	Fixed a typo in the firstwidget.rst tutorial.

	fixed typo in kivy.storage example

	uix:Image improve FullImage Example

	corrected canvas descriptions and link

	added warning note, to help others not to waste 2 hours on a pygame bug on OSX

	Mention <app_name> folder creation in user_data_dir docs

	Added matrix docs

	Add note about twisted on iOS

	Add Contribution section to readme

	Fix label ref example

	Update supported python version.

	Add note about fully qualified path for iOS packaging

	Add dt description on Clock docs

	Clarify Config.set corner case

	add notes on packaging re py2/py3

	Links for Twisted echo server examples were broken, fixed the links

	Changing the sample json url

	fix obstrusive versionadded

	Adding instructions how to install Pygame for python3

	Add note about mouse_pos to motion event

	example: add slider volume for audio examples. #1869

	corrected inaccuracies in uix/widget.py

	added link to selection_mode in adapter/listadapter.py

	revisions to adapters/models.py

	more concise introduction for uix/listview.py

	simplified example in uix/listview.py

	fixed example, made more minimal

	revisions to uix/listview.py

	removed extraneous code from example in uix/listview.py

	grammar tweaks to uix/listview.py

	tweaks to uix/listview.py

	linked property names to property docs for uix/listview.py

	fixed args_converter link in uix/listview.py

	added links to uix/listview.py docs

	Fix EventDispatcher docs.

	added link, clarified cls/ctx in uix/listview.py

	tweaked example, removed repeated explanations in uix/listview.py

	stripped out invalid referral, inessential detail, added link to uix/listview.py

	stripped out repetition, more concise wording to uix/listview.py

	corrected imports in example in uix/listview.py

	tweaks to uix/listview.py

	added note on intializing selection for the ListAdapter

	corrected explanation for multiple selection

	pep8 in example in uix/listview.py

	property name in docstring

	typo fix in splitter.py

	doc autobuild.py work under python 3

	fixed list numbering, clarified wording in lang.py

	changed examples redefining Widget in lang.py

	eloborated on ids in lang.py

	added dot sytax for ids to lang.py

	escaped backslash, spelling corrections to lang.py

	added proper escaping to example in graphics/texture.py

	added warning about animation the same property to animation.py

	removed redundant space in animation.py

	doc syntax error for relativelayout

	rt “fix doc syntax error for relativelayout”

	moved addition note to the corresponding property

	Fixed defaultvalue name in docstrings

	tweaks to uix/pagelayout.py

	fixed formatting in graphics/vertex_instructions.pyx

	docs to use focused vs focus. Fixes #2725.

	refinements to uix/__init__.py

	clarified bahaviors in uix/__init__.py

	grammar tweaks to README.md

	tweaks to CONTRIBUTING.md

	revisions to CONTRIBUTING.md

	fixed unmatched string literal in core/text/__init__py

	added missing layouts to uix/__init__.py

	added missing comma to uix/__init__.py

	specify icon spec for various OS

	added PageLayout to ‘getting started’ guide

	added ScatterLayout to ‘getting started’ guide

	integrated layout links into descriptions

	added links, gramma improvements to kivy/weakmethod.py

	revisions to vector.py

	added module description

	grammar tweaks to utils.py

	explanded on utils docs, simplified platform

	explained preference for ObjectProperty

1.8.0 (Jan 30, 2014)

	Python 3.3 compatibility

Core

	[#1631 [https://github.com/kivy/kivy/issues/1631]] Extend core_select_lib to be used for other libs other than just kivy.core

	[#1678 [https://github.com/kivy/kivy/issues/1678]] Gracefully exit if no core provider is found

	[#1740 [https://github.com/kivy/kivy/issues/1740]] Dynamically lookup the class when a string is set for various widget with _cls properties

Audio

	[#1196 [https://github.com/kivy/kivy/issues/1196]] Fix sound looping issues

	[#1209 [https://github.com/kivy/kivy/issues/1209]] Fix audio issues on iOS

	[#1311 [https://github.com/kivy/kivy/issues/1311], #1269 [https://github.com/kivy/kivy/issues/1269]] Fix volume property

	New GstPlayer backend

Camera

	[#1369 [https://github.com/kivy/kivy/issues/1369], #1053 [https://github.com/kivy/kivy/issues/1053], #65 [https://github.com/kivy/kivy/issues/65]] New avfoundation Camera provider for Mac OSX

Clipboard

	Introduce native clipboard provider for Android

	Add only the correct provider depending on the platform

Image

	[#1696 [https://github.com/kivy/kivy/issues/1696]] Improve reload of images on context reload

	[#1809 [https://github.com/kivy/kivy/issues/1809]] Use resource_find to load images

	Image/texture: add flipped parameter for save method

Text

	[#1186 [https://github.com/kivy/kivy/issues/1186]] Various fixes for managing proper GL reload on GL context change

	[#1274 [https://github.com/kivy/kivy/issues/1274]] Fix unicode handling in shorten routine

	[#1334 [https://github.com/kivy/kivy/issues/1334]] Make shorten work with single words

	[#1376 [https://github.com/kivy/kivy/issues/1376]] Label: add max_lines to limit the number of lines rendered in a label

	[#796 [https://github.com/kivy/kivy/issues/796]] Pygame provider: Try to use ftfont before font

	Fix for handling unicode font names

Video

	[#1490 [https://github.com/kivy/kivy/issues/1490]] Fix detection or uri

	Introduce GstPlayer backend replacing pygst and pygi

	Make sure video stop and play works on Windows

Window

	[#1253 [https://github.com/kivy/kivy/issues/1253]] Change default clearcolor to (0, 0, 0, 1)

	[#1408 [https://github.com/kivy/kivy/issues/1408]] Avoid multiple binding to keyboard

	[#1455 [https://github.com/kivy/kivy/issues/1455], #1711 [https://github.com/kivy/kivy/issues/1711]] Improve screenshot method

	[#1667 [https://github.com/kivy/kivy/issues/1667]] Fix bad-looking icon on Windows 7

	[#1830 [https://github.com/kivy/kivy/issues/1830]] X11 window provider improvements. Introduction of KIVY_WINDOW_ABOVE and NETWM_PID

	Fix handling of escape key

Base

App

	[#1233 [https://github.com/kivy/kivy/issues/1233]] Fix title change not reflecting on ui after build

	[#1546 [https://github.com/kivy/kivy/issues/1546]] Raise a default exception when app.root is not of type Widget

	Adds new methods to display/configure Settings panel

	New properties for configuring Kv file search

	Changed to consistently use Properties for configuration

Animation

	[#1547 [https://github.com/kivy/kivy/issues/1547], #1682 [https://github.com/kivy/kivy/issues/1682]] Avoid duration=0 animations from crashing the app

	Fix leak caused by cancel() not releasing widget reference

Atlas

	[#1285 [https://github.com/kivy/kivy/issues/1285]] Allow generation of an atlas with path info in the ids from the command line

	Update command line to allow padding and size specification with “WIDTHxHEIGHT”

Config

	Various fixes for default values on Windows and Linux.

	[#1084 [https://github.com/kivy/kivy/issues/1084]] Fix for allowing unicode string / path in Settings

	[#1537 [https://github.com/kivy/kivy/issues/1537]] Add option to not exit app on escape

Clock

	New properties for tracking frame time

	Introduce @mainthread decorator for working with threads

	Allow clock events to be canceled, utilizing cancel method

EventDispatcher

	[#1315 [https://github.com/kivy/kivy/issues/1315]] Make sure disabling multi-touch emulation works

	[#1335 [https://github.com/kivy/kivy/issues/1335]] Fix touch ring persistence when using multiple virtual keyboards

	[#1338 [https://github.com/kivy/kivy/issues/1338]] Reverse the order of dispatching event stack

	Introduce events and get_property observers() method that returns a dict of properties/events and a list of methods that are bound to them

Factory

	[#1223 [https://github.com/kivy/kivy/issues/1223]] Allow unregistering of widgets

	[#1726 [https://github.com/kivy/kivy/issues/1726], #1729 [https://github.com/kivy/kivy/issues/1729], #1277 [https://github.com/kivy/kivy/issues/1277]] Raise appropriate error when trying to access a non-existent class

Gesture

	[#1790 [https://github.com/kivy/kivy/issues/1790]] Use BytesIO for internal encoding/compression instead of StringIO

Graphics

	[#1199 [https://github.com/kivy/kivy/issues/1199]] Fix Python Bindings

	[#1337 [https://github.com/kivy/kivy/issues/1337]] Allow graphics instructions to be animated

	[#1345 [https://github.com/kivy/kivy/issues/1345]] Allow 3D picking

	[#1393 [https://github.com/kivy/kivy/issues/1393]] Texture fix repeating texture loss while GL context reload

	[#1422 [https://github.com/kivy/kivy/issues/1422]] FBO use memoryview instead of buffer

	[#1488 [https://github.com/kivy/kivy/issues/1488]] Added VBO support for glDrawElements and glVertexAttribute

	[#1529 [https://github.com/kivy/kivy/issues/1529]] Ellipse - Faster algorithm when drawing circle

	[#1551 [https://github.com/kivy/kivy/issues/1551]] Introduce segment_intersection

	[#1671 [https://github.com/kivy/kivy/issues/1671]] Support member for origin in rotate constructor

	[#1723 [https://github.com/kivy/kivy/issues/1723]] Use ctypes to display a dialog on win32 instead of win32ui

	[#955 [https://github.com/kivy/kivy/issues/955]] Correctly deallocate shader sources

	Force npot texture allocation with GPUs that only support npot

	Shaders: Fix loss of precision that breaks rendering

	Shaders: Support array

Lang

	[#1028 [https://github.com/kivy/kivy/issues/1028], #1734 [https://github.com/kivy/kivy/issues/1734], #302 [https://github.com/kivy/kivy/issues/302]] Allow app.kv_directory to work

	[#1234 [https://github.com/kivy/kivy/issues/1234]] Use resource_find to find the filename

	[#1388 [https://github.com/kivy/kivy/issues/1388]] Fix various memory leaks

	[#1519 [https://github.com/kivy/kivy/issues/1519]] Instead of creating an ObjectProperty for every new property declared in Kv lang, detect it’s type and instantiate relevant Numeric/String/List/DictProperty

	[#991 [https://github.com/kivy/kivy/issues/991]] Add warning if Kv file is loaded multiple times

	Allow _ to be checked as if it was a key.value property

Logger

	[#1721 [https://github.com/kivy/kivy/issues/1721]] Python3 compatibility fixes

	[#825 [https://github.com/kivy/kivy/issues/825]] Ensure arguments to the logger are strings

	Force logging.root to use Kivy Logger instance. Fixes infinite loop

Network

	[#1248 [https://github.com/kivy/kivy/issues/1248]] Introduce decode property. Makes decoding optional

	[#1316 [https://github.com/kivy/kivy/issues/1316], #1224 [https://github.com/kivy/kivy/issues/1224], #1221 [https://github.com/kivy/kivy/issues/1221], #1286 [https://github.com/kivy/kivy/issues/1286]] UrlRequest: various improvements

	[#1457 [https://github.com/kivy/kivy/issues/1457]] Make sure parameters aren’t removed

	[#1719 [https://github.com/kivy/kivy/issues/1719]] OSC: Fix usage for client

	Introduce file_path argument

Properties

	[#1243 [https://github.com/kivy/kivy/issues/1243]] Make BoundedNumeric Property more accurate

	[#1389 [https://github.com/kivy/kivy/issues/1389]] Allow individual elements of ReferenceListProperty to be changed

	[#1468 [https://github.com/kivy/kivy/issues/1468]] Stop DictProperty from deleting key if value is None

	Introduce VariableListProperty

	Properly return result in ObservableDict.setdefault

Input

	[#1119 [https://github.com/kivy/kivy/issues/1119]] Fix touch offset on various touch screen hardware

	[#1489 [https://github.com/kivy/kivy/issues/1489]] New input provider for Leap Motion

	Add support for tuio/2dblb(CCV 15)

	Introduce MotionEvent.`last__motion_event`

PostProc

	[#1204 [https://github.com/kivy/kivy/issues/1204]] Fix double tap and triple tap detection

	[#1348 [https://github.com/kivy/kivy/issues/1348]] Fix double and triple tap detection on Windows

Modules

	[#1668 [https://github.com/kivy/kivy/issues/1668]] Add late configuration if module has been added manually before the window creation

Inspector

	[#1549 [https://github.com/kivy/kivy/issues/1549], #1684 [https://github.com/kivy/kivy/issues/1684]] Fix inspection of elements in popup. by looking at ModalView before other elements

	[#1361 [https://github.com/kivy/kivy/issues/1361], #1365 [https://github.com/kivy/kivy/issues/1365]] Allow position of inspector to be adjustable

Recorder

	[#1800 [https://github.com/kivy/kivy/issues/1800]] Introduce F6 shortcut to play last record in a loop

Screen

	[#1448 [https://github.com/kivy/kivy/issues/1448]] Add support for scale

	[#1687 [https://github.com/kivy/kivy/issues/1687], #1686 [https://github.com/kivy/kivy/issues/1686]] Fix all resolutions to be landscape

	Remove 25dp from height to simulate the Android systemui bar

WebDebugger

	[#1819 [https://github.com/kivy/kivy/issues/1819]] WebDebugger: Display instant value of each box

Widgets

	[#1238 [https://github.com/kivy/kivy/issues/1238]] PageLayout: A simple multi-page layout allowing flipping through pages using borders

	[#1264 [https://github.com/kivy/kivy/issues/1264]] ActionBar: Mimics Android’s own ActionBar appearance and mechanisms

	[#1471 [https://github.com/kivy/kivy/issues/1471]] Behaviors: ButtonBehavior, ToggleButtonBehavior ,DragBehavior

	SandBox (experimental): Runs itself and its children in an exception-catching sandbox

Accordion

	[#1249 [https://github.com/kivy/kivy/issues/1249]] Stop empty accordion from accessing it’s first child

	[#1340 [https://github.com/kivy/kivy/issues/1340]] Fix select method

Bubble

	[#1273 [https://github.com/kivy/kivy/issues/1273]] Honor arrow_pos when passed as a arg in constructor.

	Introduce`show_arrow` property

Button

	[#1212 [https://github.com/kivy/kivy/issues/1212]] Introduce trigger_action() for triggering the button programmatically

Carousel

	Introduce load_slide method to animate the provided slide in/out

	Introduce anim_type property to be able to choose the type of animation

CheckBox

	[#1695 [https://github.com/kivy/kivy/issues/1695]] Fix active state in group

CodeInput

	Minor rendering fixes

	Use MonoSpace font by default

Dropdown

	Delay container binding, allow it to be used in Kv

	[#1450 [https://github.com/kivy/kivy/issues/1450]] Introduce on_dismiss event

	Pressing escape when dropdown is active now dismisses the dropdown

	Make auto-dismiss of dropdown optional. Introduces auto_dismiss property

FileChooser

	[#1476 [https://github.com/kivy/kivy/issues/1476]] Fix inability to browse up to the root path

	[#1758 [https://github.com/kivy/kivy/issues/1758]] Prevent infinite loop

	[#1780 [https://github.com/kivy/kivy/issues/1780]] Fix incorrect selections caused by touch offset

	[#1818 [https://github.com/kivy/kivy/issues/1818], #1829 [https://github.com/kivy/kivy/issues/1829]] Fix unicode issues. Now, path defaults to a unicode string

	Abstracted filesystem access

	If a path is expected to contain non unicode-decodable characters, a bytes path string should be used. Otherwise, unicode paths are preferred

Image

	[#1561 [https://github.com/kivy/kivy/issues/1561]] Don’t crash if an invalid image is loaded

ListView

	[#1303 [https://github.com/kivy/kivy/issues/1303], #1304 [https://github.com/kivy/kivy/issues/1304]] Set ListItemButton background_color

	[#1396 [https://github.com/kivy/kivy/issues/1396], #1397 [https://github.com/kivy/kivy/issues/1397]] Accepts objects inheriting from list or tuple in SimpleListAdaptor

	[#1788 [https://github.com/kivy/kivy/issues/1788]] Fix None, int comparison

Popup

	Introduce title_color property

Progressbar

	Avoid dev/zero when max is zero

RstDoc

	Introduce background_color property

Scatter

	[#1459 [https://github.com/kivy/kivy/issues/1459]] Minor fixes for scaling

	[#1797 [https://github.com/kivy/kivy/issues/1797]] Fix div by 0 issue where touch itself was chosen as anchor

	[#947 [https://github.com/kivy/kivy/issues/947]] Fix scale being dispatched again due to error in floating point calculation

	Various fixes for transformation

ScreenManager

	[#1750 [https://github.com/kivy/kivy/issues/1750]] Add NoTransition transition

	[#573 [https://github.com/kivy/kivy/issues/573], #1045 [https://github.com/kivy/kivy/issues/1045]] Introduce switch_to method fixes for

	Fix Shader-based transitions, allowing them to work in non-fullscreen mode

	New Screen transitions, mimicking Android

	Reduce default transition duration and set default transition to SlideTransition

	Set clear color to be transparent

ScrollView

	[#1387 [https://github.com/kivy/kivy/issues/1387]] Show scrollbars only when viewport is scrollable

	[#1463 [https://github.com/kivy/kivy/issues/1463]] Refactor kinect constants

	[#1478 [https://github.com/kivy/kivy/issues/1478], #1567 [https://github.com/kivy/kivy/issues/1567]] Introduce bars scrolling for desktop type behavior

	[#1604 [https://github.com/kivy/kivy/issues/1604]] Fix overscroll on low FPS

	Accelerated scrolling by default using Matrix instead of moving the child

	Introduce bar_pos, bar_side_x and bar_side_y properties allowing the user to control where the the bars are displayed

	Introduce scroll_wheel_distance property

Slider, Spinner

	DPI fixes making the widget aware of screen metrics

Splitter

	[#1655 [https://github.com/kivy/kivy/issues/1655], #1658 [https://github.com/kivy/kivy/issues/1658]] Make double tap on border alternate between max/min size

	[#1656 [https://github.com/kivy/kivy/issues/1656], #1672 [https://github.com/kivy/kivy/issues/1672], #1673 [https://github.com/kivy/kivy/issues/1673], #1810 [https://github.com/kivy/kivy/issues/1810], #1812 [https://github.com/kivy/kivy/issues/1812]] Miscellaneous fixes

	[#1657 [https://github.com/kivy/kivy/issues/1657]] Don’t allow negative sizes

	Make sure splitter remains between min/max_size when these properties are changing

Settings

	[#1228 [https://github.com/kivy/kivy/issues/1228]] Fix for allowing unicode path

	[#1556 [https://github.com/kivy/kivy/issues/1556]] Made SettingsString textinput scale independent

	[#1590 [https://github.com/kivy/kivy/issues/1590]] Prevent import of SettingsWithSpinner when custom class is used

	Fixes for SettingsPanel that allows it to adjust to mobile screens

	Fix handling of numeric input

	Made various behaviors (settings popups, fonts) more scale independent

	Make the default tab active in SettingsWithTabbedPanel

	Now includes different Settings widgets, suitable for different devices

StackLayout

	[#1390 [https://github.com/kivy/kivy/issues/1390]] Simply do_layout

TabbedPanel

	[#1402 [https://github.com/kivy/kivy/issues/1402]] Introduce strip_image and strip_border properties to allow skinning the TabbedPanelStrip

	[#1799 [https://github.com/kivy/kivy/issues/1799]] Honor index while inserting TabbedPanelHeader

	Fix bug when selected tab is removed before switching to it

TextInput

	[#1496 [https://github.com/kivy/kivy/issues/1496]] Introduce allow_copy, to allow the user to choose whether Textinput allows copy or not

	[#1632 [https://github.com/kivy/kivy/issues/1632], #1717 [https://github.com/kivy/kivy/issues/1717]] Fixes for selection offset issues

	[#1639 [https://github.com/kivy/kivy/issues/1639], #1500 [https://github.com/kivy/kivy/issues/1500]] Make sure cursor remains inside TextInput

	[#1647 [https://github.com/kivy/kivy/issues/1647]] Introduction of Handles for selection on mobile enabled by `use_handles`property

	[#1697 [https://github.com/kivy/kivy/issues/1697]] Introduce Keyboard_mode to allow custom management of keyboard

	[#1702 [https://github.com/kivy/kivy/issues/1702]] copy, cut, paste methods to allow the user to manage clipboard operations

	[#1774 [https://github.com/kivy/kivy/issues/1774]] Fixes for voice input

	Introduce line_spacing

	Introduce minimum_height property to be used in conjunction with scrollview

	Introduction of input_type property that is used to specify the kind of IME to request from the OS

	Introduction of keyboard_suggestion allowing native keyboards on Android to show word suggestions

	Various fixes for cut/copy/paste

	Various Unicode fixes. Textinput now maintains a unicode sandwich

Videoplayer

	[#1275 [https://github.com/kivy/kivy/issues/1275]] Fix looping

	[#1823 [https://github.com/kivy/kivy/issues/1823]] Ensure vdeo is loaded before loading the state

Vkeyboard

	[#958 [https://github.com/kivy/kivy/issues/958]] Fix custom layout usage

	[#1333 [https://github.com/kivy/kivy/issues/1333]] Don’t dispatch touch to other widgets while moving

	[#1404 [https://github.com/kivy/kivy/issues/1404]] Introduce dual keyboard mode systemanddock`and `systemandmulti

	Layout property can directly point to a JSON file name now

Widget

	[#1209 [https://github.com/kivy/kivy/issues/1209]] Introduce disabled property

	[#1452 [https://github.com/kivy/kivy/issues/1452]] Add children= argument to clear_widgets()

Platforms

RaspberryPi

	[#1241 [https://github.com/kivy/kivy/issues/1241]] Fix installation of vidcore_lite for RPi

	Add support for “relative” hid input as mouse

	Fix configuration generation, and fix hidinput provider for multitouch hardware

	Introduce new window provider specifically for RPi

Tools

	[#1352 [https://github.com/kivy/kivy/issues/1352]] Improvements to highlighting file for emacs

	[#1527 [https://github.com/kivy/kivy/issues/1527], #1538 [https://github.com/kivy/kivy/issues/1538]] Move Kivy Garden to it’s own repository

	[#1807 [https://github.com/kivy/kivy/issues/1807]] support for using hidinput to display mouse cursor

	Make Garden Tool Python 3 compatible

Doc

	Tons of doc fixes thanks to the awesome community

	Special Thanks to ZenCODE for his awesome work on improving the doc

Examples

	Various redesign, fixes and improvements making examples fit better on mobile

	New Kivy Showcase, designed to fit much better on mobile devices

	New Take Picture example to demonstrate how to use startActivtyForResult and how to get the result with python-for-android android.activity module

	Rework compass example to work with py4a and remove all broken code

Unit Tests

	[#1226 [https://github.com/kivy/kivy/issues/1226]] New test for testing unicode font names

	[#1544 [https://github.com/kivy/kivy/issues/1544]] Add unit tests for Vector class

	[#1828 [https://github.com/kivy/kivy/issues/1828]] Unicode Filechooser tests

	[#823 [https://github.com/kivy/kivy/issues/823]] Add test case for issue

	Improve tests with new proxy_ref

	Various tests introduced to test Python3 port

Packaging

	Tons of fixes and new packages for Python 3

	[#1540 [https://github.com/kivy/kivy/issues/1540]] Various fixes for Windows launcher

	[#1599 [https://github.com/kivy/kivy/issues/1599]] Various fixes for installation on 32 bit Mac OSX

1.7.2 (Aug 4, 2013)

	[#1270 [https://github.com/kivy/kivy/issues/1270]] Fix slowdown in graphics pipeline during gc

	[#1253 [https://github.com/kivy/kivy/issues/1253]] Change Window.clearcolor to 0, 0, 0, 1

	[#1311 [https://github.com/kivy/kivy/issues/1311], #1269 [https://github.com/kivy/kivy/issues/1269]] Fix audio volume property

	Add audio loop property for Sound object

	Fix leak when using Animation.cancel() method

	Fix few leaks related to Kv language

1.7.1 (May 28, 2013)

	[#1192 [https://github.com/kivy/kivy/issues/1192]] “Black label” issue on old phone

	[#1186 [https://github.com/kivy/kivy/issues/1186]] Reloading mipmapped label

	[#1204 [https://github.com/kivy/kivy/issues/1204]] doubletap/tripletap for windows hardware

	First-time configuration generation for linux/windows

1.7.0 (May 13, 2013)

Core

	[#1020 [https://github.com/kivy/kivy/issues/1020]] new App.user_data_dir, where user can store app state

	[#1047 [https://github.com/kivy/kivy/issues/1047]] new markup subscript/superscript

	[#1145 [https://github.com/kivy/kivy/issues/1145]] fix numpad keys mapping in Window

	Animation starts the timer at the first frame instead on start()

	Enhance clock calculation to have less glitch and be closer to 60 FPS.

	New VariableListProperty property that support 1, 2 or 4 values. used for padding, spacing…

	No more crash if no video core provider have been found

	Refactoring event declaration, use __events__ instead of register_event_type()

	Refactoring properties storage into a Cython class instead of a dict

Graphics

	[#1014 [https://github.com/kivy/kivy/issues/1014]] force Context.gc() to dealloc gl resources

	add etc1 support for textures

	fix Buffer memory allocation for block with the same size

	fixes to support GL from Android emulator

	fix shader warning when both vertex and fragment are set

	new Fbo.pixels

	new Matrix.project() for 3d to 2d transformation

	new RenderContext use_parent_modelview and use_parent_projection

	new Texture.pixels and Texture.save(fn)

Widgets

	[#1005 [https://github.com/kivy/kivy/issues/1005]] new Popup.title_size for title font size

	[#1018 [https://github.com/kivy/kivy/issues/1018]] better Slider support for padding

	[#1021 [https://github.com/kivy/kivy/issues/1021]] fix widget insertion with/without canvas.before

	[#1032 [https://github.com/kivy/kivy/issues/1032]] fix Carousel animation when looping between 2 slides

	[#1052 [https://github.com/kivy/kivy/issues/1052]] fix TextInput to allow ctrl+c work in readonly

	[#1091 [https://github.com/kivy/kivy/issues/1091]] fix StackLayout spacing in multiple orientations

	[#1122 [https://github.com/kivy/kivy/issues/1122]] improve splitter dragging

	[#1140 [https://github.com/kivy/kivy/issues/1140]] fix ScreenManager when rotation is applied

	[#1148 [https://github.com/kivy/kivy/issues/1148]] avoid freezing when a ModalView is open twice

	fix DPI issues on Slider

	introduce ScrollView effect, such as DampingScrollView and OpacityScrollview

	introducing ScatterLayout (which is same as RelativeLayout, but based on Scatter)

	new ColorPicker widget

	new Scatter.translation_touches to allow translation only with X touches

	refactoring RelativeLayout with only translation

	refactoring ScrollView, improved performance and behavior

	TextInput now use double and triple tap to select word and line

	TextInput select the whole text on 4 touches

	Various changes for padding, spacing, for supporting 1, 2 or 4 values

Lang

	introduce prefix ‘-’ to avoid applying previous rules

	new Dynamic classes, Templates are now deprecated

Inputs

	fix doubletap behavior

	new tripletap post-processor module

Others

	[#1023 [https://github.com/kivy/kivy/issues/1023]] better inspector widget selection

	[#1024 [https://github.com/kivy/kivy/issues/1024]] add font-size demo to showcase

	[#1038 [https://github.com/kivy/kivy/issues/1038]] fix Gstreamer sound.seek()

	[#1125 [https://github.com/kivy/kivy/issues/1125]] more fixes on listview examples

	[#849 [https://github.com/kivy/kivy/issues/849]] new kivywinescript to execute kivy python within wine

	Garden project! Including kivy.garden and garden script

	new kivy.storage api for storage abstraction (experimental)

	Refactoring documentation

	tons of documentation fixes by Zen-CODE!

1.6.0 (Mar 10, 2013)

Core

	[#1001 [https://github.com/kivy/kivy/issues/1001]] Add justify support for text alignment

	[#828 [https://github.com/kivy/kivy/issues/828]] Fixed descriptor error in EventDispatcher.getattr

	[#886 [https://github.com/kivy/kivy/issues/886]] Fixes memory leak when log_enable = 0 in config

	[#895 [https://github.com/kivy/kivy/issues/895]] Fixes network image reloading

	[#902 [https://github.com/kivy/kivy/issues/902]] Fixes Python strings for 2.6

	[#920 [https://github.com/kivy/kivy/issues/920]] Fixes ImageIO crash if image cannot be loaded

	[#985 [https://github.com/kivy/kivy/issues/985]] Fixes zip loader to skip errors

	Add support for GIF transparency in PIL

	Core logs are now reduced, and traceback is available only in trace

	Enhance Clock to accept only callable() in schedule methods

	EventDispatcher can be weak-referenced

	Fixes image reloading when Window is resized on OSX

	Fixes Window fullscreen, even when the config is “auto”

	Fixes Window.screenshot for rotated window

	Improve Kv: avoid to parse on_* expression, just exec them.

	New MotionEvent.is_mouse_scrolling

	Rework Loader internals, limit to 2 threads workers and images upload per frames

Graphics

	[#913 [https://github.com/kivy/kivy/issues/913]] Fixes Line.ellipse/circle instructions

	Add Texture support for paletted texture

	Add Texture support for PVRTC (iOS and PowerVR GPU only)

	Enhanced vertex format to allow custom format.

	Fixes crash on the Adreno 200 GPU / Android - force POT texture

	Reworked graphics vertex instructions to support custom format as well

Widgets

	[#863 [https://github.com/kivy/kivy/issues/863]] Improve ListView usage with Kv language

	[#865 [https://github.com/kivy/kivy/issues/865]] New Bubble.limit_to for limiting the bubble position

	[#868 [https://github.com/kivy/kivy/issues/868]] Fixes Slider positioning when padding is used

	[#883 [https://github.com/kivy/kivy/issues/883]] Fixes empty markup rendering

	[#916 [https://github.com/kivy/kivy/issues/916]] Fixes cursor positionning in CodeInput

	[#921 [https://github.com/kivy/kivy/issues/921]] Fixes Scrollview scrolling with mousewheel if it’s disabled

	[#928 [https://github.com/kivy/kivy/issues/928]] Image log an error when an image cannot be loaded

	[#937 [https://github.com/kivy/kivy/issues/937]] Fixes BoxLayout.pos_hint for children

	[#940 [https://github.com/kivy/kivy/issues/940]] Enhance TextInput bubble for long-press and readonly

	[#941 [https://github.com/kivy/kivy/issues/941]] Fixes ProgressBar value boundaries

	[#954 [https://github.com/kivy/kivy/issues/954]] Fixes GridLayout children size_hint

	[#959 [https://github.com/kivy/kivy/issues/959]] Add ListAdapter.data property to allow changing the data

	[#961 [https://github.com/kivy/kivy/issues/961]] Fixes ScreenManager green color to black in ShaderTransition

	[#966 [https://github.com/kivy/kivy/issues/966]] New TextInput placeholder

	[#989 [https://github.com/kivy/kivy/issues/989]] Fixes Carousel positioning and reduce calculations

	Add mousewheel support on Slider

	Enhance TabbedPanel to allow no default tab

	Fixes for TextInput rendering glitch

	Fixes RelativeLayout.clear_widgets()

	Fixes ScrollView gesture ability on X when scrollview is Y only (and the inverse)

	Fixes TextInput wrapping

	New (Async)Image.nocache no prevent caching (data, texture)

	New Screen events: on_pre_enter/enter/pre_leave/leave

	New ScreenManager.has_screen() method

Others

	Fixes inspector crash

	iOS: Updated SDL, launch images are now supported

	New 3D rendering example with lightning and a monkey

	Tons of fixes on Documentation !

1.5.1 (Dec 13, 2012)

Widgets

	[#847 [https://github.com/kivy/kivy/issues/847]] Avoid to react on scrollleft/right on Button + FileChooser

Graphics

	[#856 [https://github.com/kivy/kivy/issues/856]] Fix Line instruction

Examples

	[#848 [https://github.com/kivy/kivy/issues/848], #855 [https://github.com/kivy/kivy/issues/855]] Fix Kivy catalog to work from a different cwd

1.5.0 (Dec 9, 2012)

Core

	[#731 [https://github.com/kivy/kivy/issues/731]] BoundedNumericProperty can have float bounds

	[#755 [https://github.com/kivy/kivy/issues/755]] Fix SetWindowLongPtr on 32/64 Windows

	[#768 [https://github.com/kivy/kivy/issues/768]] Fix AsyncImage loader on iOS

	[#778 [https://github.com/kivy/kivy/issues/778]] Prevent the Pygame parachute if we don’t have the required

GL version. Instead, show a msgbox.
- [#779 [https://github.com/kivy/kivy/issues/779]] Better DPI support, with new sp and dp units
- [#783 [https://github.com/kivy/kivy/issues/783]] New screen module for simulating different DPI devices
- [#789 [https://github.com/kivy/kivy/issues/789]] Fix on_resize dispatch on Windows and OSX
- Allow multiple providers in Kivy env variables
- Fix line off-by-one issue in Kv errors
- New errorhandler/errorvalue in Property class
- New experimental X11 window provider, that support transparent
window.
- Normalize android pressure and radius
- Reduce gstreamer audio/video out-of-sync
- Support ability to stop/restart the EventLoop

Graphics

	[#481 [https://github.com/kivy/kivy/issues/481]] Avoid error in case of multiple Canvas.rremove()

	[#610 [https://github.com/kivy/kivy/issues/610]] Add more information when GLEW fail to initialize

	[#671 [https://github.com/kivy/kivy/issues/671]] Allow source unicode filename in BindTexture

	[#790 [https://github.com/kivy/kivy/issues/790]] Allow to change Stencil operators

	Avoid BGRA->RGBA conversion for OSX if the GPU support BRGA.

	Fix issue with Cython 0.14, “by” is now considered as a keyword

	Line: add bezier and bezier_precision properties

	Line: fix missing ellipse/circle/rectangle in the Line constructor

	Texture: always flip the texture vertically for Image and Label

Widgets

	[#618 [https://github.com/kivy/kivy/issues/618]] Raise exception if ScreenManager.start() is called twice

	[#648 [https://github.com/kivy/kivy/issues/648]] Avoid touch event propagation on ScreenManager transition

	[#662 [https://github.com/kivy/kivy/issues/662]] Enhance TextInput performance

	[#706 [https://github.com/kivy/kivy/issues/706]] Fix pos_hint Boxlayout calculation

	[#725 [https://github.com/kivy/kivy/issues/725]] Fix collapse management in Accordion

	[#734 [https://github.com/kivy/kivy/issues/734]] Fix widget opacity when passed in the constructor

	[#736 [https://github.com/kivy/kivy/issues/736]] Fix slider bug when min < 0, max < 0 and step > 0

	[#737 [https://github.com/kivy/kivy/issues/737]] Better swipe gesture detection for Carousel

	[#747 [https://github.com/kivy/kivy/issues/747]] Honor index in Carousel.add_widget() (and Bubble)

	[#750 [https://github.com/kivy/kivy/issues/750]] New CodeInput widget

	[#771 [https://github.com/kivy/kivy/issues/771]] Dispatch modalview.on_open after animation

	[#785 [https://github.com/kivy/kivy/issues/785]] Allow event binding in Widget constructor

	[#819 [https://github.com/kivy/kivy/issues/819]] Fix canvas positioning when inserting at first position

	[#824 [https://github.com/kivy/kivy/issues/824]] Add top-to-bottom + right-to-left Stacklayout orientations.

	[#832 [https://github.com/kivy/kivy/issues/832]] Fix shorten routine

	Automatically register new Widget classes in Factory

	Enhance ScrollView scrolling

	Fix Carousel API, containers are now hidden, and

slides/current_slide/previous_slide/next_slide are the user
widgets.
- Fix Label.color property for markup labels
- Multiples fixes to TabbedPanel (tab_strip, unbind, tab selection)

Others

	[#670 [https://github.com/kivy/kivy/issues/670]] New compass demo for Android using sensors

	Many many fixes on the documentation, thanks for all the PR!

	New KivyCatalog example: interactive Kv editor

	Started Guide 2.0

1.4.1 (Sep 30, 2012)

Core

	[#625 [https://github.com/kivy/kivy/issues/625]] Extend NumericProperty to support DPI notation

	[#660 [https://github.com/kivy/kivy/issues/660]] Add callbacks support on ConfigParser for a (section, key)

	[#666 [https://github.com/kivy/kivy/issues/666]] Fix Markup text disapear on GL reloading

	[#678 [https://github.com/kivy/kivy/issues/678]] Enhance UrlRequest for small chunks, callbacks and GC

	[#679 [https://github.com/kivy/kivy/issues/679]] New Audio.get_pos()

	[#680 [https://github.com/kivy/kivy/issues/680]] Fix key translations on Keyboard

	Force on_parent dispatching for children in a kv rule

	Expose ‘app’ instance keyword in Kv language

Graphics

	[#686 [https://github.com/kivy/kivy/issues/686]] Added opacity support in the graphics pipeline

	Enhanced Line instruction that support width, joint, cap.

	Added Line.circle/ellipse/rectangle properties

Widgets

	[#664 [https://github.com/kivy/kivy/issues/664]] Fix TextInput crashes is some cases

	[#686 [https://github.com/kivy/kivy/issues/686]] New Widget.opacity property

	[#690 [https://github.com/kivy/kivy/issues/690]] New TextInput.background_normal/active

	[#694 [https://github.com/kivy/kivy/issues/694]] Fix Slider value when min and step > 0

	[#676 [https://github.com/kivy/kivy/issues/676]] Fix Carousel.remove_widget()

	[#669 [https://github.com/kivy/kivy/issues/669]] Fix SettingNumeric with int/float values

	[#698 [https://github.com/kivy/kivy/issues/698]] Enhance BoxLayout to support pos_hint

	Fix ModalView background property

Windows

	[#675 [https://github.com/kivy/kivy/issues/675]] Fix WM_Touch / WM_Pen for 32 bits / 64 bits

Others

	[#462 [https://github.com/kivy/kivy/issues/462]] Fixes gstreamer packaging with PyInstaller

	[#659 [https://github.com/kivy/kivy/issues/659]] Updated documentation concerning PyInstaller 2.0

1.4.0 (Sep 02, 2012)

Core

	[#513 [https://github.com/kivy/kivy/issues/513]] Fix nested template

	[#547 [https://github.com/kivy/kivy/issues/547]] Fix url loader with querystring

	[#576 [https://github.com/kivy/kivy/issues/576]] Markup text can be vertically aligned

	[#585 [https://github.com/kivy/kivy/issues/585]] Enhance add_widget() to raise an Exception on multiple parents

	[#642 [https://github.com/kivy/kivy/issues/642]] Support of smb:// in url loader with pysmb

	Enhance AliasProperty to cache the result if use_cache is set to True

	Enhance App.get_application_config() to get a correct config filename on all platforms

	Fix Animation.stop_all() + new Animation.cancel()

	Fix Property.unbind() for bounded methods

Graphics

	[#516 [https://github.com/kivy/kivy/issues/516]] Fix crash when loading 1bit image

	[#546 [https://github.com/kivy/kivy/issues/546]] Fix Quad() initialization

Widgets

	[#543 [https://github.com/kivy/kivy/issues/543]] Fix multiple content in TabbedPanel from Kv

	[#549 [https://github.com/kivy/kivy/issues/549]] Enhance TabbedPanel to introduce default_tab_class

	[#562 [https://github.com/kivy/kivy/issues/562]] Popup can now define the content in Kv

	[#593 [https://github.com/kivy/kivy/issues/593]] Enhance TextInput with select_all() and select_text() methods

	[#658 [https://github.com/kivy/kivy/issues/658]] Fix usage of Camera within Kv

	Enhanced VideoPlayer to have pause ability and state property

	Enhance Image widget to add keep_data for further pixel collision detection

	New Carousel widget

	New Checkbox widget

	New Dropdown widget

	New ModalView widget

	New RelativeLayout, identical from FloatLayout with relative coordinates

	New ScreenManager widget for changing views with transitions

	New Slider.step property

	New Spinner widget

Windows

	[#621 [https://github.com/kivy/kivy/issues/621]] Fix ghost touch due to a raise condition

	Add python scripts into the PATH

	Enhance input wm_touch/pen to be compatible with 64bits

	Severals fixes around window resizing

Others

	New Getting Started

	Tons of documentation typo, fixes. Really, a ton.

1.3.0 (Jun 19, 2012)

Core

	[#420 [https://github.com/kivy/kivy/issues/420]] Fix pygame error when texture is too large

	[#450 [https://github.com/kivy/kivy/issues/450]] Updated Sound class to use Kivy properties

	[#467 [https://github.com/kivy/kivy/issues/467]] New Sound.length

	[#484 [https://github.com/kivy/kivy/issues/484]] New kivy.interactive module: doesn’t break REPL anymore

	[#487 [https://github.com/kivy/kivy/issues/487]] Make default values in properties optionals

	[#489 [https://github.com/kivy/kivy/issues/489]] Replaced all relative import with absolute imports

	[#498 [https://github.com/kivy/kivy/issues/498]] Fixes Image to allow re-loading of image from disk

	[#503 [https://github.com/kivy/kivy/issues/503]] Renamed unicode parameter to codepoint in all on_key_*

events
- Changed default screenshot to be PNG instead of JPEG
- Enhance Kv lang rules lookup
- Enhance Label initialitazion
- Fixes crash on App when the configuration file cannot be read
- Fixes for graphics reloading mechanism, force the GC before
flushing GL
- New default UI theme
- New KIVY_NO_CONFIG, KIVY_NO_FILELOG, KIVY_NO_CONSOLELOG env
variables
- New kivy.utils.escape_markup() to escape untrusted text when
markup=True
- Support MacOSX clipboard

Graphics

	[#118 [https://github.com/kivy/kivy/issues/118]] Fixes for glColorMask on android

	[#447 [https://github.com/kivy/kivy/issues/447]] Add new ClearColor and ClearBuffers instructions

	[#463 [https://github.com/kivy/kivy/issues/463]] Fixes glGetIntegerv with new Cython

	[#479 [https://github.com/kivy/kivy/issues/479]] Fixes for Translate instance when args passed in on

creation
- Avoid drawing of empty VBO
- Enhance Stencil instruction, you can nest up to 128 layers instead
of 8
- Fixes crash when texture is empty (0px width or height)
- Fixes Point instruction when new point is appended
- Fixes to enable support of NPOT texture on android/ios platform

Widgets

	[#401 [https://github.com/kivy/kivy/issues/401]] New Scatter.do_collide_after_children property

	[#419 [https://github.com/kivy/kivy/issues/419]] New TabbedPanel widget

	[#437 [https://github.com/kivy/kivy/issues/437]] New TextInput.readonly property

	[#447 [https://github.com/kivy/kivy/issues/447]] Fix popup background resizing when Window resize

	[#480 [https://github.com/kivy/kivy/issues/480]] Fixes StackLayout size_hint missing calculation

	[#485 [https://github.com/kivy/kivy/issues/485]] Fixes VideoPlayer scrollbar with multitouch

	[#490 [https://github.com/kivy/kivy/issues/490]] Fixes ToggleButton memory leak

	Add FileChooser.file_encodings for a better unicode conversion

	Better handling of mousewheel in Button

	Delayed Label texture creation

	Enhance RST widget to support :align: in image directive

	Fixes RST widget to use document root for loading images and

videos
- New Popup.dismiss(animation) attribute to disable the fadeout when
dismiss
- New RstDocument.goto(reference) for scrolling the document to a
specific section
- New Undo/Redo for TextInput

Android

	Map BACK key to ESCAPE by default

	Partial fixes for black screen after wake-up

Windows

	Fixes preference order for the camera provider

	Fixes some GL crash on Windows due to missing dynamic lookup of

some functions (glGenerateMipMap, glGenFramebuffers, …)

1.2.0 (Apr 2, 2012)

Core

	[#325 [https://github.com/kivy/kivy/issues/325]] New Window.mouse_pos to get the main mouse position anytime

	[#427 [https://github.com/kivy/kivy/issues/427]] Improved markup positioning with glpyhs+kerning

	Avoid rendering of empty text lines

	Fixed setter() and getter() EventDispatcher methods

	Implement new Dropfile event, to be able to open files on macosx

	Optimized texture upload from 3 to 1 upload in somes cases

	The system/Window can now “pause” the application if the app support it

Graphics

	Disable mipmapping for people using Desktop GL kivy < 3.0

	Enhanced graphics engine to support OpenGL reloading / context-lost

	Optimized shaders uniform upload if not used

	Optimized VBO drawing by using a GPU buffer for storing indices

Modules

	[#415 [https://github.com/kivy/kivy/issues/415]] Recorder now record keyboards events

	[#309 [https://github.com/kivy/kivy/issues/309]] Fixes for inspector / memory leak

	New webdebugger module for having statistics on the current running app

Widget

	[#331 [https://github.com/kivy/kivy/issues/331]] New VideoPlayer widget: Video + controls buttons, annotations and

fullscreen
- [#411 [https://github.com/kivy/kivy/issues/411]] Propagate touchs to children for Label and Button
- [#412 [https://github.com/kivy/kivy/issues/412]] Removed redundant background_texture on Bubble
- [#416 [https://github.com/kivy/kivy/issues/416]] New background_color and foreground_color to TextInput
- [#429 [https://github.com/kivy/kivy/issues/429]] New password mode to TextInput
- [#431 [https://github.com/kivy/kivy/issues/431]] Fixes clipboard for linux, works perfect on linux, windows and mac
- [#439 [https://github.com/kivy/kivy/issues/439]] Improve performance on TextInput dealing with large text
- Enhanced FileChooser to delay the file creation over the time, and display
a progression bar if it’s too slow.
- Enhance FileChooser to animate when scrollwheel is used
- Enhance scrollview to animate when scrollwheel is used
- Fixed Bubble not listening to color changes
- New FileChooser.rootpath to restrict file browsing
- New scrollview scrollbar (not touchable)
- New “.. video::” directive in the RstDocument widget
- New Video.seek() method
- Updated filechooser icon theme

Examples

	[#405 [https://github.com/kivy/kivy/issues/405]] New examples dealing with unicode

Others

	[#404 [https://github.com/kivy/kivy/issues/404]] Fixes for msvc9 compilation errors

	[#424 [https://github.com/kivy/kivy/issues/424]] Fixed pyinstaller packaging for macosx

	Add installation instructions for mageia

	New instructions for packaging on iOS

1.1.1 (Feb 15, 2012)

Core

	[#403 [https://github.com/kivy/kivy/issues/403]] Pygame audio loader doesn’t work (in addition to camera opencv provider)

1.1.0 (Feb 13, 2012)

Core

	[#319 [https://github.com/kivy/kivy/issues/319]] Allow dynamic changes to url in Loader

	[#371 [https://github.com/kivy/kivy/issues/371]] Allow BoundedNumericProperty to have custom min/max per widget

	[#373 [https://github.com/kivy/kivy/issues/373]] Allow Property.dispatch() to be called from Python

	[#376 [https://github.com/kivy/kivy/issues/376]] Fix list.reverse() in ListProperty

	[#386 [https://github.com/kivy/kivy/issues/386]] Fix GC with Clock triggered events

	[#306 [https://github.com/kivy/kivy/issues/306]] Fix video uri support with gstreamer

	Add support for italic/bold text in core/text

	Better traceback when an exception happen within kv

	Enhance properties exceptions

	Fixes for camera frame update

	Fixes for python-for-android project

	Fixes list/dict properties on pop/popitem method

	Merged android-support branch to master

	New Atlas class for merging png/jpeg and acces with atlas://

	New SettingPath in settings

	New markup text rendering: “[b]Hello[/b] [color=ff0000]World[/color]”

	New on_pause handler in App: used in android for sleeping

	Removed text/cairo rendering, ttf doesn’t work.

	Various speedup on cython files

Graphics

	[#375 [https://github.com/kivy/kivy/issues/375]] Fix clear_color in Fbo

	[#64 [https://github.com/kivy/kivy/issues/64]] New Mesh instruction for custom 2D mesh

	Fix black screenshot on GLES devices

	Fix warnings of cython compilation + debian issues

Modules

	[#389 [https://github.com/kivy/kivy/issues/389]] Fix missing image for Touchring

	New recorder module: you can save and replay touch events

Input

	[#366 [https://github.com/kivy/kivy/issues/366]] Fix time_end never set for all providers except mouse

	[#377 [https://github.com/kivy/kivy/issues/377]] Removed TUIO provider by default in configuration

Lang

	[#364 [https://github.com/kivy/kivy/issues/364]] Fixes for unicode BOM in .kv

	Rewrite kvlang parser / builder: improved performance + fixes some design

issues.

Widget

	[#317 [https://github.com/kivy/kivy/issues/317], #334 [https://github.com/kivy/kivy/issues/334], #335 [https://github.com/kivy/kivy/issues/335]] Fix AsyncImage when source is empty or already loaded

	[#318 [https://github.com/kivy/kivy/issues/318]] Fix textinput auto scroll

	[#386 [https://github.com/kivy/kivy/issues/386]] Scatter will not accept touches if none of transformations are enabled

	[#395 [https://github.com/kivy/kivy/issues/395]] Enhance doc for label/textinput about unicode chars

	Enhance FileChooser for feedback when item is selected

	Enhance FileChooser to have a directory selection mode

	Enhance Popup with more properties for styling

	Fixes for Textinput focus

	Fixes Layout when parent are changing

	Fix for not propagating touch events in Popup

	Fix Textinput with invalid selection when releasing shift key

	New Bubble widget, for displaying contextual menu

	New Copy/Cut/Paste menu in Textinput using Bubble

	New RstDocument widget, for rendering RST text

Examples

	New RST_Editor example for playing with RstDocument rendering

	Various examples fixes due to new kv lang restrictions

Others

	[#333 [https://github.com/kivy/kivy/issues/333]] Fixes for allowing omnicompletion in vim

	[#361 [https://github.com/kivy/kivy/issues/361], #379 [https://github.com/kivy/kivy/issues/379], #381 [https://github.com/kivy/kivy/issues/381] ,:repo:387] Lots of documentations fixes from contributors!

	[#367 [https://github.com/kivy/kivy/issues/367]] Fixes for pip+virtualenv installation

	Fixes for pep8 and pyflakes

	New architecture diagram

	New documentation layout

	New pong tutorial

	Repository moved to github.com/kivy/kivy

1.0.9 (Nov 14, 2011)

Core

	[#307 [https://github.com/kivy/kivy/issues/307]] Fixes invalid video start (play=True)

	[#308 [https://github.com/kivy/kivy/issues/308]] Fixes memleak in gstreamer video providers

	Enhance properties for introspection

	Enhance Windows to use new Property from EventDispatcher

	Fixes crash when text rendering is 0 width

	Move properties discovery in EventDispatcher instead of Widget

Graphics

	[#300 [https://github.com/kivy/kivy/issues/300]] Use rgba mode for Line/Bezier dash mode

Modules

	New inspector module (firebug like for Kivy)

Input

	Disable mactouch input provider by default on OSX

Lang

	[#293 [https://github.com/kivy/kivy/issues/293]] Fixes multiline properties

Widget

	[#287 [https://github.com/kivy/kivy/issues/287]] Fixes invalid positioning of StackLayout with spacing

	[#292 [https://github.com/kivy/kivy/issues/292]] Fixes Image iteration when anim_delay=-1

	[#303 [https://github.com/kivy/kivy/issues/303]] Fixes for crash with ScrollView without viewport

	Add visibility of minimum_width/height/size for TextInput

	Fixes crash when text of textinput is None

Android

	[#294 [https://github.com/kivy/kivy/issues/294]] Fixes android package for Android SDK rev14

Examples

	[#291 [https://github.com/kivy/kivy/issues/291]] New Sequenced images examples

1.0.8 (Oct 24, 2011)

Core

	[#205 [https://github.com/kivy/kivy/issues/205]] Fixes invalid label rendering when text changes

	[#212 [https://github.com/kivy/kivy/issues/212]] Fixes asynchronous loader when pygame is used

	[#216 [https://github.com/kivy/kivy/issues/216]] Fixes window icon when filename for special charset

	[#220 [https://github.com/kivy/kivy/issues/220]] Add audio support for Android

	[#221 [https://github.com/kivy/kivy/issues/221]] Add video support for Android using ffmpeg-android project

	[#240 [https://github.com/kivy/kivy/issues/240]] Fixes modules usage on android (pyo/pyc are accepted)

	Add kivy.resources.resource_remove_path

	Enhance event dispatching

	Enhance gobject support, reduced gstreamer lag

	Enhance UrlRequest to report download progression

	Fixes BoundedNumericProperty that wasn’t working anymore

	Fixes configuration upgrade

	New GIF support, or images inside ZIP files

	New kivy.utils.format_bytes_to_human function

	New kivy.utils.platform to determine on which platform we are

	Rewrite video/gstreamer to use playbin2, no more issues with video/audio

Graphics

	[#1 [https://github.com/kivy/kivy/issues/1]] Add Bezier instruction

	[#201 [https://github.com/kivy/kivy/issues/201]] Fixes deletion of vbo/fbo that happen outside main context

	[#207 [https://github.com/kivy/kivy/issues/207]] Removed LineWidth instruction, wasn’t working at all

	[#271 [https://github.com/kivy/kivy/issues/271]] Fixes Line instruction crash when we have less than 2 x, y

	Add Batch.clear_data

	Enhance Bezier and Line to add a stipple mode

	Enhance graphics compilation

	Fixes for Ellipse angle_start/angle_end

Input

	Enhance mouse provider to provide button index in touch event

Lang

	[#227 [https://github.com/kivy/kivy/issues/227]] Add Builder.unload_file() to remove kv definitions

	Enhance lang by compile() part of the kv before eval/exec

Widget

	[#206 [https://github.com/kivy/kivy/issues/206]] Fixes video eos property

	[#217 [https://github.com/kivy/kivy/issues/217]] Fixes texture position when textinput widget is moving

	[#224 [https://github.com/kivy/kivy/issues/224]] Add scroll_timeout/distance/friction configuration

	[#225 [https://github.com/kivy/kivy/issues/225]] Allow stream url for Video widget

	[#276 [https://github.com/kivy/kivy/issues/276]] Fixes scrollview with grabbed touch

	Add Button.background_color, Button.border

	Enhance Widget to add property introspection

	Fixes popup position when window size is changed

	New Accordion widget

	New Image.keep_ratio property

	New native support for mousewheel in ScrollView

	New ProgressBar widget

	New VKeyboard widget

	Fixes layout with conflicting usage of minimum_size and size_hint.

(Note: layout will not update its size if no size_hint are set.)

Examples

	[#214 [https://github.com/kivy/kivy/issues/214]] Add example of twister integration with kivy

	Add FboFloatFayout widget to demonstrate how to optimize widget tree

	New audio demo with 8bit sounds

	New demo with custom shape and custom collision func

	New Gesture example

Modules

	Enhance touchring to support alpha and scale

Documentation

	Lots of documentation fixes, typo, rewording…

	Started translation for differents languages

	Add easing images in animation

	Add instructions about how to remove kivy

1.0.7 (Jul 16, 2011)

Announcement [https://groups.google.com/d/topic/kivy-dev/feofn6ebhSs/discussion]

Core

	[#32 [https://github.com/kivy/kivy/issues/32]] Implement window rotation (0,90,180,270)

	[#150 [https://github.com/kivy/kivy/issues/150]] Fix to prevent gcc bug on Mageia

	[#153 [https://github.com/kivy/kivy/issues/153]] Add packaging doc and hooks for Windows and MacOSX

	[#155 [https://github.com/kivy/kivy/issues/155]] Replaced import in class methods with late binding

	[#157 [https://github.com/kivy/kivy/issues/157]] Implement Label.valign support

	[#166 [https://github.com/kivy/kivy/issues/166]] Prevent to open too many fonts at the same time

	[#184 [https://github.com/kivy/kivy/issues/184]] Remove unlink() in properties, not needed anymore

	[#186 [https://github.com/kivy/kivy/issues/186]] Fixes extension support for MacOSX

	Disable window resizing until we are OpenGL context resistant

	Enhance extensions wizard and auto-created setup.py

	Enhance pixels from pygame surface

	Enhance properties list to prevent memory leak

	Enhance properties to store data inside Widget class

	Fixes for Audio class creation

	Fixes for Clock dictionnary crashes

	Fixes for volume usage on gstreamer video implementation

	Fixes infinite loop when we hit max iteration

	Fixes ordering of Window.add_widget

	Fixes to avoid resync error with gstreamer

	New DDS Image loader using new S3TC support

	New DictProperty property

Graphics

	[#27 [https://github.com/kivy/kivy/issues/27]] Implement mipmap support

	[#130 [https://github.com/kivy/kivy/issues/130]] Implement caching for Shader source/compilation result

	[#161 [https://github.com/kivy/kivy/issues/161]] Prevent to upload texture twice when NPOT is supported

	[#182 [https://github.com/kivy/kivy/issues/182]] Fix Rotation.angle caching with degrees/radians

	[#190 [https://github.com/kivy/kivy/issues/190]] Fix crash when too many vertices are pushed in VBO

	Enhance Ellipse to add angle_start/angle_end properties

	Enhance GridLayout to have minimum and default size per col/row

	Enhance logging of OpenGL capabilities

	Enhance texture memory by using native NPOT if available

	Enhance texture upload by using the best pixel packing

	Fixes Color.hsv property crashes

	Fixes for GLES2 by using GL_UNSIGNED_SHORT in VBO

	Fixes some typo on OpenGL wrapper

	New $HEADER$ token that can be used in fragment/vertex shader code

	New OpenGL Utils module for checking texture capabilities and others

	New S3TC texture support

	New Texture.colorfmt property

Input

	Enhance Wacom support on linux platform

	Fix leak/slowdown in MouseMotionEvent

Lang

	[#189 [https://github.com/kivy/kivy/issues/189]] Fixes for not allowing dot in properties name

	Concat property value when the value is shifted to one level

	Enhance key resolution ([x for x in list] can be used now.)

	Enhance module/class resolution at import

Widget

	[#139 [https://github.com/kivy/kivy/issues/139]] Add TreeView.remove_node()

	[#143 [https://github.com/kivy/kivy/issues/143]] Fix crash when group is changing on ToggleButton

	[#146 [https://github.com/kivy/kivy/issues/146]] Fix invalid calculation for Image.norm_image_size

	[#152 [https://github.com/kivy/kivy/issues/152]] Fix Camera.play property

	[#160 [https://github.com/kivy/kivy/issues/160]] Prevent label creation until text is set

	[#178 [https://github.com/kivy/kivy/issues/178]] Set default values only on properties

	Enhance ScrollView to have kind of kinetic movement

	Fixes calculation of Stacklayout.size with padding

	Fixes FloatLayout relayout when children size* is changing

	Fixes for initial Label.font_name assignement

	Fixes to prevent call of on_release twice

	Fix ScrollView with grab events

	New Image.allow_stretch property

	New Popup (modal popup) widget

	New Settings widget

	New Switch widget

	New Widget.uid property

Examples

	New tiny shader editor demo

Documentation

	[#17 [https://github.com/kivy/kivy/issues/17]] Enhance all cythonized classes documentation

	[#84 [https://github.com/kivy/kivy/issues/84]] Add previous/next link in the bottom of the documentation

	[#153 [https://github.com/kivy/kivy/issues/153]] Enhance Environment documentation

	[#159 [https://github.com/kivy/kivy/issues/159]] Remove warning on unimplemented Template in lang

	[#191 [https://github.com/kivy/kivy/issues/191]] Fix logo link to go to http://kivy.org/

	[#192 [https://github.com/kivy/kivy/issues/192]] Add PDF download link in sidebar

	Added vim highlighter

	Enhanced documentation widget with images

	Enhance OpenGL wrapper documentation with Kronos website links

	Rework documentation for Graphics part

	Several typo fixes

1.0.6 (May 3, 2011)

Announcement [https://groups.google.com/d/topic/kivy-dev/E6pbzLxWFgg/discussion]

Core

	[#109 [https://github.com/kivy/kivy/issues/109]] Logger write stderr to his file now

	[#113 [https://github.com/kivy/kivy/issues/113]] Support window resizing

	[#115 [https://github.com/kivy/kivy/issues/115]] Correctly parse ‘OpenGL ES 2.0’ now

	[#62 [https://github.com/kivy/kivy/issues/62]] Add kv_directory to load kv from another directory in App

	[#66 [https://github.com/kivy/kivy/issues/66]] Take care of dependencies for Makefile and setup.py

	Bump initial width/height to 800x600

	Fix test of callback for Clock.unschedule

	Speedup logger trace call using __debug__

	Speedup Widget creation by caching properties attributes

Graphics

	[#129 [https://github.com/kivy/kivy/issues/129]] Fixes stencil usage in another stencil

	[#28 [https://github.com/kivy/kivy/issues/28]] Fixes to enable canvas drawing only when something changes

	Allow to retrigger event inside a callback in Clock

	Fixes in Fbo to not create Fbo with depthbuffer by default

	Fixes in shader to prevent too much name lookup with matrix

	Fixes memory leak and use __dealloc__ instead of __del__ in python

	Fixes to reduce OpenGL call (test down from 644 to 495 gl call)

	Fixes to reduce python overhead in Shader

	Fixes to use trigger for releasing texture

Input

	[#132 [https://github.com/kivy/kivy/issues/132]] Fixes for WM_Touch

Lang

	[#131 [https://github.com/kivy/kivy/issues/131]] Allow the usage of “id” in template

	Add #:set <key> <expr> directive, can be used for global const

	Better exception when a class cannot be instanciate in Kv lang

Widget

	[#107 [https://github.com/kivy/kivy/issues/107]] Fixes for win32/shortcuts textinput widget

	[#116 [https://github.com/kivy/kivy/issues/116]] Fixes in filechooser to avoid crashing on unreadable dir

	Add “color” property for Image, to tint the source image

	Change “orientation” for Stacklayout + implement lr-tb, tb-lr

	Fixes FloatLayout for handling child’s position changes

	Fixes for stacklayout calculation when padding is used

	Fixes for usage of minimum_size in layout

	Fixes for win32 platform in filechooser

Examples

	Add Scatter examples in showcase

	Rework demos to have the same background + icon + title bar

Documentation

	[#122 [https://github.com/kivy/kivy/issues/122], #136 [https://github.com/kivy/kivy/issues/136]] Add missing documentation for treeview, allownone

	[#124 [https://github.com/kivy/kivy/issues/124]] Add send-to method for starting kivy app on Windows

	[#126 [https://github.com/kivy/kivy/issues/126]] Cleanup old documentation

	[#127 [https://github.com/kivy/kivy/issues/127]] Add jinja2 as deps for android

	Add “Designing with kv” in user guide

	Add instructions for packaging app on Android

	Fixes on_touch_down in architecture documentation

Windows platform

	[#137 [https://github.com/kivy/kivy/issues/137]] Improve kivy.bat to execute kivy file or cmd (thx remip)

	Add win32file as a dependency, needed for filechooser

Android platform

	[#119 [https://github.com/kivy/kivy/issues/119]] Move configuration into the directory of the application

	[#121 [https://github.com/kivy/kivy/issues/121]] Fixes for black screen on some device at start

	[#128 [https://github.com/kivy/kivy/issues/128]] Fixes to not handle input before application start

	[#134 [https://github.com/kivy/kivy/issues/134]] Fixes to correctly show splashscreen

	Avoid the dispatch of touches if they don’t move

	Support of {request,release}_keyboard on Window

	Temporary disable glColorMask call for android,

unexpected crash happen in the internals of android gl

1.0.5 (April 16, 2011)

Announcement [http://groups.google.com/group/kivy-dev/browse_thread/thread/5e6aba158671722f]

Core

	[#106 [https://github.com/kivy/kivy/issues/106]] New title/icon properties in App class to set title/icon

of the Windows
- [#92 [https://github.com/kivy/kivy/issues/92]] Fixes to detect recursion in Kivy language
- [#52 [https://github.com/kivy/kivy/issues/52]] Update Kivy icon for 512, 256, 128, 64, 32 pixels size
- [#49 [https://github.com/kivy/kivy/issues/49], #41 [https://github.com/kivy/kivy/issues/41]] Add videocapture support for Windows platform
- [#17 [https://github.com/kivy/kivy/issues/17]] New template support in Kivy language
- [#6 [https://github.com/kivy/kivy/issues/6]] New lang directive: #:import <alias> <package>
- Clean setup.py and update packages
- Disable gstreamer/camera on Mac OSX
- Enhance and speedup Clock internals
- Enhance properties exception message with its name
- Fixes for logger with ascii/unicore
- Fixes for OpenCV Camera provider on Mac OSX
- Fixes many part of lang / widget related to properties
- Fixes python path on Mac OSX
- Fixes to support jpeg extension in Pygame image loader
- Fixes to support only extensions with read support in PIL image
loader
- New -c/–config section:key:value to change the configuration
- New Clock.create_trigger (replace unschedule/schedule_once)
- New exception if Python 32 bits is used on Mac OSX
- New extensions system (experimental)
- Removed kivy.utils.curry, use functools.partial instead.

Graphics

	[#89 [https://github.com/kivy/kivy/issues/89]] Add documentation for Color class

	Fixes for bgr->rgb conversion

	Fixes for matrix multiplication order and matrix internals

Input

	[#87 [https://github.com/kivy/kivy/issues/87]] Fix retaintouch postproc

	Fixes for the mouse provider using disable_on_activity

Widget

	[#40 [https://github.com/kivy/kivy/issues/40]] Fixes for scatter.[center_x, center_y, top, right]

	[#47 [https://github.com/kivy/kivy/issues/47]] Fixes for scatter usage inside scatter

	[#79 [https://github.com/kivy/kivy/issues/79]] Correctly update child when size_hint/pos_hint is updated

	[#94 [https://github.com/kivy/kivy/issues/94]] Fixes graphicals glitch when using Layout*

	Clean hacks for add_widget/remove_widget in Widget

	Fixes for correctly honnor Scatter.do_scale

	Fixes for ScrollView.scroll_timeout

	New alternating line colors for TreeView

	New FileChooser widget (experimental)

	New on_text_validate event for TextInput

	New shorten property for Label

	New StackLayout widget (experimental)

Documentation

	[#69 [https://github.com/kivy/kivy/issues/69], #88 [https://github.com/kivy/kivy/issues/88]] Fix ubuntu installation and installation execution

	[#86 [https://github.com/kivy/kivy/issues/86]] New FAQ entry: pip installation failed

	[#98 [https://github.com/kivy/kivy/issues/98]] New FAQ entry: undefined symbol: glGenerateMipmap

	Reword kivy language API

1.0.4-beta (March 20, 2011)

Announcement [http://groups.google.com/group/kivy-dev/browse_thread/thread/bb5734e29f23683e]

Core

	[#70 [https://github.com/kivy/kivy/issues/70]] Fixes for video_gstreamer to prevent memory leak

	[#78 [https://github.com/kivy/kivy/issues/78]] Fixes for ListProperty: correctly observe inplace changes

	New Window.request_keyboard / Window.release_keyboard

	New kv lang callback: <event> or on_<propname> will be binded

as a callback of the widget
- Fixes for 1 sec video/audio delay issue
- Fixes to allow Animation on a subset of a dict
- Fixes to make AliasProperty.dispatch working properly
- Fixes for kv lang to correctly inherith rules from an Widget
with multiples bases
- Fixes on App to add the root widget before dispatching on_start

Graphics

	[#76 [https://github.com/kivy/kivy/issues/76], #77 [https://github.com/kivy/kivy/issues/77]] Fixes to prevent blank screen

	Fixes for glReadPixels to prevent reading outside the bounds

	New BindTexture.index to allow binding on another unit

	New Callback() instruction, to call a Python func

	New Canvas.ask_update() to force update of the Canvas

	New minimal opengl version check

	New StencilPush, StencilUse, StencilPop instructions

	Rework and speedup Buffer/VBO internals

Input

	Fixes for dejitter postproc

Widget

	[#71 [https://github.com/kivy/kivy/issues/71]] Fix Image ratio calculation

	[#74 [https://github.com/kivy/kivy/issues/74]] New GridLayout widget

	[#75 [https://github.com/kivy/kivy/issues/75]] Fix Label.font_color

	Fixes for Video.volume to make it work

	Fixes in BoxLayout

	Fixes Label.font_name attribute to use resource_find()

	New ScrollView widget

	New TextInput widget

	New TreeView widget

	New Label.text_size: control the size of the text texture

	New Video.eos property: control if the video should be

paused or loop at the end

Examples

	New demo/pictures example (photo viewer)

	New kinect example (linux only, need libfreenect)

	New widgets/stencilcanvas example

	New widgets/videoplayer example

	Updated demo/showcase to use TreeView

Documentation

	New PDF version of the documentation, generated with buildbot

and published at http://kivy.org/docs/pdf/Kivy-latest.pdf
- New “Your First Widget” section in the Programming Guide
- Severals part of the documentation have been fixed and reworded

Others

	[#81 [https://github.com/kivy/kivy/issues/81]] Add missing gstreamer binaries to the Windows build

	[#82 [https://github.com/kivy/kivy/issues/82]] Fixes to remove all unused and obsolete modules

	New OpenGL debug compilation now print arguments

	Fixes for opengl debug compilation on MacOSX

	Fixes for Windows crash if the icon is not found

	Fixes for Windows glitch on touchtracer

1.0.3-alpha (Feb 22, 2011)

Announcement [http://groups.google.com/group/kivy-dev/browse_thread/thread/72dd6615d10faff2]

Core

	[#34 [https://github.com/kivy/kivy/issues/34]] Fixes lang for invalid detection of floating number

	[#45 [https://github.com/kivy/kivy/issues/45]] New clearcolor property in Window

	[#55 [https://github.com/kivy/kivy/issues/55]] New CMD+Q and CMD+W support in OSX

	[#61 [https://github.com/kivy/kivy/issues/61]] ListProperty is now able to observe inplace changes

	[#63 [https://github.com/kivy/kivy/issues/63]] Fixes for PIL loader

	Fixes for AliasProperty: dispatch the observer set return True

	Fixes for Camera and Video, reporting an error with Texture

	Fixes on Window dispatch on_close event when the window is closed

	Fixes to use the user canvas if it’s set

	New Clock.get_boottime()

	New kivy.tools.report tools, can be used for debugging install

	Removed old attributes in Label

	Removed setuptools and nose dependencies in setup.py

Graphics

	[#46 [https://github.com/kivy/kivy/issues/46]] No more glitch when the Label have no text

	[#56 [https://github.com/kivy/kivy/issues/56], #44 [https://github.com/kivy/kivy/issues/44]] Fixes for adding/removing BindTexture automatically

	[#57 [https://github.com/kivy/kivy/issues/57]] Texture min/mag_filter and wrap are string, not gl const

	Canvas.clear() don’t clear before and after context now

	New error checking for Shader compilation and linking

	New RenderContext.shader to access on internal shader class

	New Shader fs, vs and success to change glsl source code

	Reduce shader header, and removing unused varying + uniform

Input

	[#59 [https://github.com/kivy/kivy/issues/59]] Fixes for Tuio, 2Dcur wasn’t accepted as a Touch

Widget

	New center_x, center_y value for Widget.pos_hint

	New design (button, slider and fonts)

Examples

	Add shader/plasma.py for an example of custom shader usage

	Add shader/treeshader.py for an example of custom shader for

widget rendering.

Documentation

	Various fixes everywhere

	Add working devices for android

	Add a section about how to report an issue

Android

	Fix crash for devices with more than 4 touches

Others

	[#50 [https://github.com/kivy/kivy/issues/50]] Versionning portable-deps for OSX

	Add unit tests for Point and Ellipse

	New keybinding module, with only F12 to take screenshot

1.0.2-alpha (Feb 10, 2011)

Announcement [http://groups.google.com/group/kivy-dev/browse_thread/thread/eccaaf38fdf84a17]

Core

	New kivy.require() method to require a minimum kivy version

	New App.stop() method

	[#22 [https://github.com/kivy/kivy/issues/22]] Autodetection of GLES2 support

	Speedup Kivy language callbacks

	Reduce text memory footprint using new luminance_alpha format

	Remove old vsync/fps token in Configuration, use maxfps.

	FPS is limited to 60 by default now.

	Fixes for pip installer

Graphics

	New Ellipse.segments property

	Support of luminance + luminance_alpha color format in texture

	Speedup of internals classes (VBO, VertexBatch, Buffer)

	[#42 [https://github.com/kivy/kivy/issues/42], #48 [https://github.com/kivy/kivy/issues/48]] Fixes and activate graphics compiler

	Fixes compilation for Linux + ATI card

Documentation

	[#54 [https://github.com/kivy/kivy/issues/54]] Enhance Vector documentation

	Installation for Windows, MacOSX, Linux and Android

	Fixes Quickstart

Widgets

	New layouts: FloatLayout, GridLayout and AnchorLayout

Examples

	Fixes for touchtracer to make it run on android

Android

	Initial release of Android Kivy launcher.

	You need Android 2.2 + OpenGL ES 2.0 support

	Tested on Motorola Droid 1, Motorola Droid 2, Samsung Galaxy Tab,

Xperia 10.

1.0.0 (Feb 1, 2011)

Announcement [http://groups.google.com/group/kivy-dev/browse_thread/thread/631a838dcbd8e654]

	Running on Windows, MacOSX, Linux and Android

	Same application code for all platforms

	Graphics API on top of OpenGL ES 2.0

	Uniform access to Audio, Camera, Video, Text rendering, Spelling

	Native input support: Tuio, WM_Touch, MacOSX MT, mtdev, wacom…

	Multitouch widgets: Label, Button, Image, Scatter, Video, Camera…

	Stable and documented API

	Extensive documentation at http://kivy.org/docs/

	Continuous integration via buildbot (coverage and gl unit tests)

Installation on Linux

To install Kivy on Linux using pip, please follow the main installation guide.
Otherwise, continue to the PPA instructions below.

Installation components

Following, are additional information linked to from some of the steps in the
main pip installation guide, specific to Linux.

Installing Python

Python and pip are already installed on most Linux distributions. If you don’t have Python installed, you can
install it using your distribution’s package manager.

Ubuntu

Using apt:

sudo apt-get update

sudo apt-get install -y \
 python3-pip \
 python3

Fedora

You will likely need to do this preliminary step which installs the rpmfusion-free repository unless you have some
other 3rd-party repo installed which has the required packages. See rpmfusion.org for complete installation
instructions, but only the rpmfusion-free repo is needed for acquiring kivy dependencies
(though rpmfusion-nonfree is recommended by rpm fusion installation instructions) as shown in this step.

Using dnf:

sudo dnf install -y https://download1.rpmfusion.org/free/fedora/rpmfusion-free-release-$(rpm -E %fedora).noarch.rpm

After you ensure that a 3rd-party repository containing any packages that dnf is otherwise unable to find,
continue installing dependencies:

sudo dnf install -y python3-devel

Source installation Dependencies

To install Kivy from source, please follow the installation guide until you reach the
Kivy install step and then install the dependencies below
before continuing. Additionally, if you’d like to be able to use the x11 window backend do:

export USE_X11=1

Ubuntu

Using apt:

sudo apt-get update

Install build tools, and dependencies to perform a full build (including SDL2 dependencies)
sudo apt-get -y install python3-dev build-essential git make autoconf automake libtool \
 pkg-config cmake ninja-build libasound2-dev libpulse-dev libaudio-dev \
 libjack-dev libsndio-dev libsamplerate0-dev libx11-dev libxext-dev \
 libxrandr-dev libxcursor-dev libxfixes-dev libxi-dev libxss-dev libwayland-dev \
 libxkbcommon-dev libdrm-dev libgbm-dev libgl1-mesa-dev libgles2-mesa-dev \
 libegl1-mesa-dev libdbus-1-dev libibus-1.0-dev libudev-dev fcitx-libs-dev

Fedora

Using dnf:

sudo dnf install epel-release

Install build tools, and dependencies to perform a full build (including SDL2 dependencies)
yum -y install autoconf automake cmake gcc gcc-c++ git make pkgconfig \
 ninja-build alsa-lib-devel pulseaudio-libs-devel \
 libX11-devel libXext-devel libXrandr-devel libXcursor-devel libXfixes-devel \
 libXi-devel libXScrnSaver-devel dbus-devel ibus-devel fcitx-devel \
 systemd-devel mesa-libGL-devel libxkbcommon-devel mesa-libGLES-devel \
 mesa-libEGL-devel wayland-devel wayland-protocols-devel \
 libdrm-devel mesa-libgbm-devel libsamplerate-devel

Install xclip in case you run a kivy app using your computer, and the app requires a CutBuffer provider:
sudo dnf install -y xclip

#
In case you get the following error preventing kivy install:
annobin: _event.c: Error: plugin built for compiler version (8.0.1) but run with compiler version (8.1.1)
cc1: error: fail to initialize plugin /usr/lib/gcc/86_64-redhat-linux/8/plugin/annobin.so
This has been resolved in later updates after the on-disk release of Fedora 28, so upgrade your packages:
sudo dnf -y upgrade

Using software packages (PPA etc.)

Ubuntu / Kubuntu / Xubuntu / Lubuntu (Saucy and above)

	Add one of the PPAs as you prefer

	stable builds:

	$ sudo add-apt-repository ppa:kivy-team/kivy

	nightly builds:

	$ sudo add-apt-repository ppa:kivy-team/kivy-daily

	
	Update your package list using your package manager
	$ sudo apt-get update

	Install Kivy

	Python3 - python3-kivy:

	$ sudo apt-get install python3-kivy

	optionally the gallery of Examples - kivy-examples:

	$ sudo apt-get install kivy-examples

Debian (Jessie or newer)

	Add one of the PPAs to your sources.list in apt manually or via Synaptic

	stable builds:

	deb http://ppa.launchpad.net/kivy-team/kivy/ubuntu xenial main

	daily builds:

	deb http://ppa.launchpad.net/kivy-team/kivy-daily/ubuntu xenial main

Notice: Wheezy is not supported - You’ll need to upgrade to Jessie at least!

	Add the GPG key to your apt keyring by executing

as user:

sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys A863D2D6

as root:

apt-key adv --keyserver keyserver.ubuntu.com --recv-keys A863D2D6

	Refresh your package list and install python-kivy and/or python3-kivy and optionally the examples
found in kivy-examples

Linux Mint

	Find out on which Ubuntu release your installation is based on, using this
overview [https://linuxmint.com/download_all.php].

	Continue as described for Ubuntu above, depending on which version your
installation is based on.

Bodhi Linux

	Find out which version of the distribution you are running and use the table below
to find out on which Ubuntu LTS it is based.

	Bodhi 1:

	Ubuntu 10.04 LTS aka Lucid (No packages, just manual install)

	Bodhi 2:

	Ubuntu 12.04 LTS aka Precise

	Bodhi 3:

	Ubuntu 14.04 LTS aka Trusty

	Bodhi 4:

	Ubuntu 16.04 LTS aka Xenial

	Continue as described for Ubuntu above, depending on which version your installation is based on.

OpenSuSE

	To install kivy go to http://software.opensuse.org/package/python-Kivy and use the “1 Click Install” for your openSuse version. You might need to make the latest kivy version appear in the list by clicking on “Show unstable packages”. We prefer to use packages by “ devel:languages:python”.

	If you would like access to the examples, please select python-Kivy-examples in the upcoming installation wizard.

Gentoo

	Add the raiagent overlay [https://github.com/leycec/raiagent]
packaging the full Kivy + KivyMD + Buildozer + python-for-android stack [https://github.com/kivy/kivy/issues/7868].

eselect repository enable raiagent

	Synchronize (i.e., fetch) this overlay.

emerge --sync raiagent

	Install Kivy and optionally KivyMD, Buildozer, and
python-for-android.

emerge --ask --autounmask Kivy kivymd buildozer python-for-android

	(Optional) Describe all USE flags supported by these ebuilds.

equery u Kivy kivymd buildozer python-for-android

Device permissions

When you app starts, Kivy uses Mtdev [http://wiki.ubuntu.com/Multitouch] to
scan for available multi-touch devices to use for input. Access to these
devices is typically restricted to users or groups with the appropriate
permissions.

If you do not have access to these devices, Kivy will log an error or warning
specifying these devices, normally something like:

Permission denied:'/dev/input/eventX'

In order to use these devices, you can add your user to a group
that has the required permissions. For example, in Ubuntu, you can add the user to
the ‘input’ group:

$ sudo adduser $USER input

Note that you need to log out then back in again for these permissions to
be applied.

Installation on macOS

To install Kivy on macOS using pip, please follow the main
installation guide.
Otherwise, continue to the Kivy.app instructions below.

Installation components

Following, are additional information linked to from some of the steps in the
main installation guide, specific to macOS.

Installing Python

Homebrew

If you’re using Homebrew [http://brew.sh], you can install Python with:

brew install python3

MacPorts

If you’re using Macports [https://www.macports.org], you can install Python with:

Install and set e.g. Python 3.8 as the default
port install python38
port select --set python python38

Install and set pip as the default::
port install py38-pip
port select --set pip py38-pip

Frameworks

To install frameworks Python on macOS, download it from the main
Python website [https://www.python.org/downloads/macos/] and follow the
installation steps. You can read more about the installation in the
Python guide [https://docs.python.org/3/using/mac.html].

Source installation Dependencies

To install Kivy from source, please follow the installation guide until you reach the
Kivy install step and then install the additional dependencies
below before continuing.

pkg-config is required to build Kivy from source. If you’re using brew as your
package manager, you can install it with:

brew install pkg-config

Now that you have all the dependencies for kivy, you need to make sure
you have the command line tools installed:

xcode-select --install

Using The Kivy.app

Note

Kivy.app is built with MACOSX_DEPLOYMENT_TARGET=10.9.

You can find complete instructions to build and package apps with Kivy.app in the readme
of the kivy-sdk-packager repo [https://github.com/kivy/kivy-sdk-packager/tree/master/osx].

To install the Kivy virtualenv, you must:

	Navigate to the latest Kivy release on Kivy’s website [https://kivy.org/downloads/] or
GitHub [https://github.com/kivy/kivy/releases] and download Kivy.dmg.
You can also download a nightly snapshot of
Kivy.app [https://kivy.org/downloads/ci/osx/app/Kivy.dmg].

	Open the dmg

	In the GUI copy the Kivy.app to /Applications by dragging the folder icon to the right.

	Optionally create a symlink by running the following command:

ln -s /Applications/Kivy.app/Contents/Resources/script /usr/local/bin/kivy

This creates the kivy binary that you can use instead of python to run scripts.
I.e. instead of doing python my_script.py or python -m pip install <module name>, write
kivy my_script.py or kivy -m pip install <module name> to run it using the kivy
bundled Python interpreter with the kivy environment.

As opposed to activating the virtualenv below, running with kivy will use the virtualenv
but also properly configure the script environment required to run a Kivy app (i.e. setting
kivy’s home path etc.).

Using the App Virtual environment

The path to the underlying virtualenv is /Applications/Kivy.app/Contents/Resources/venv.
To activate it so you can use python, like any normal virtualenv, do:

pushd /Applications/Kivy.app/Contents/Resources/venv/bin
source activate
source kivy_activate
popd

Warning

On the default mac (zsh) shell you must be in the bin directory containing activate to be
able to activate the virtualenv, hence why we changed the directory temporarily.

kivy_activate sets up the environment to be able to run Kivy, by setting the kivy home, and other variables.

Start any Kivy Application

You can run any Kivy application by simply dragging the application’s main file
onto the Kivy.app icon.

Installation on Raspberry Pi

To install Kivy on the RPi using pip, please follow the main installation guide.

Installation components

Following, are additional information linked to from some of the steps in the
main pip installation guide, specific to the RPi.

Installing Python

Python and python-pip must be installed from the package manager:

Raspberry Pi OS Buster/Bullseye

Using apt:

sudo apt update
sudo apt install python3 python3-pip

Arch Linux ARM

Images to use:

http://raspex.exton.se/?p=859 (recommended)
https://archlinuxarm.org/

Using pacman:

sudo pacman -Syu
Note: python-setuptools needs to be installed through pacman or it will result with conflicts!
sudo pacman -S python-setuptools

Install pip from source
wget https://bootstrap.pypa.io/get-pip.py
or curl -O https://bootstrap.pypa.io/get-pip.py
sudo python get-pip.py

Source installation Dependencies

To install Kivy from source, please follow the installation guide until you reach the
Kivy install step and then install the dependencies below
before continuing.

Raspberry Pi OS Buster/Bullseye

Using apt:

sudo apt update
apt-get -y install build-essential git make autoconf automake libtool \
 pkg-config cmake ninja-build libasound2-dev libpulse-dev libaudio-dev \
 libjack-dev libsndio-dev libsamplerate0-dev libx11-dev libxext-dev \
 libxrandr-dev libxcursor-dev libxfixes-dev libxi-dev libxss-dev libwayland-dev \
 libxkbcommon-dev libdrm-dev libgbm-dev libgl1-mesa-dev libgles2-mesa-dev \
 libegl1-mesa-dev libdbus-1-dev libibus-1.0-dev libudev-dev fcitx-libs-dev

apt-get install xorg wget libxrender-dev lsb-release libraspberrypi-dev raspberrypi-kernel-headers

If we're on Debian buster, we need to install cmake from backports as the cmake version
in buster is too old to build sdl2
if ["$(lsb_release -cs)" = "buster"]; then \
 echo "deb http://deb.debian.org/debian buster-backports main" >> /etc/apt/sources.list; \
 apt-get update; \
 apt-get -y install -t buster-backports cmake; \
fi

Cross-Compilation for Raspberry Pi OS Buster/Bullseye (32 bit)

Kivy performs a dockerized cross-compilation for Raspberry Pi OS Buster/Bullseye (32 bit) wheels.
The base images used for cross-compilation are the balenalib [https://www.balena.io/docs/reference/base-images/base-images-ref/] images for raspberrypi3 (buster and bullseye).

The docker images are built using the Dockerfile.armv7l file in the .ci directory.

The raspberrypi3 balenalib images have almost the same environment as the real Raspberry Pi OS Buster/Bullseye (32 bit) system,
which makes it possible to include/exclude RPi specific features (like the egl_rpi window provider) during the build process.

We have an helper, named generate_rpi_wheels, that can be used to easily generate the wheels and copy the artifacts for Raspberry Pi OS Buster/Bullseye (32 bit).
To cross-compile the wheels, you need to run the following commands:

source .ci/ubuntu_ci.sh

Generate wheels for Raspberry Pi OS Buster (32 bit, Python 3.7)
generate_rpi_wheels balenalib/raspberrypi3-debian-python:3.7-buster

Generate wheels for Raspberry Pi OS Bullseye (32 bit, Python 3.9)
generate_rpi_wheels balenalib/raspberrypi3-debian-python:3.9-bullseye

Kivy determines automatically the sub-packages to build based on the environment it is compiled within. By default, the egl_rpi renderer that
uses the (now deprecated but still useful) DISPMANX API is only compiled when running on a Raspberry Pi with Raspberry Pi OS Buster (32 bit), as it is the only
platform that still supports it.

Please note that the egl_rpi window handler is not supported on Raspberry Pi 4 and higher.

Headless support on Raspberry Pi

If you followed the previous steps, or you’re using the pre-built wheels, the headless support is enabled by default.

On supported platforms (RPi 1-3 with Raspberry Pi OS Buster), the egl_rpi window provider is used by default. This window provider uses the
(deprecated, will be removed in future) DISPMANX API to create a headless GL context.

On other platforms (e.g RPi 4 or 64 bit OS), the sdl2 window provider is used by default. If during the build process for the sdl2
dependencies the kmsdrm headers and libraries are found, the kmsdrm backend is enabled. This backend allows to create a headless
GL context using the KMS/DRM API.

Hardware acceleration

If you are getting output similar to this when running your app:

[INFO] GL: OpenGL vendor <b'VMware, Inc.'>
[INFO] GL: OpenGL renderer <b'llvmpipe (LLVM 9.0.1, 128 bits)'>

Then it means that the renderer is NOT hardware accelerated. This can be fixed by adding your user to the render group:

sudo adduser "$USER" render

You will then see an output similar to this:

[INFO] GL: OpenGL vendor <b'Broadcom'>
[INFO] GL: OpenGL renderer <b'V3D 4.2'>

Raspberry Pi window provider and GL backend

Where applicable, Kivy will use the egl_rpi window provider by default.

The window provider and GL backend can be changed at runtime by setting the KIVY_WINDOW [https://kivy.org/doc/stable/guide/environment.html#restrict-core-to-specific-implementation] and KIVY_GL_BACKEND [https://kivy.org/doc/stable/guide/environment.html#restrict-core-to-specific-implementation] environmental variables.

The table below shows the supported combinations of window provider and GL backend on the 4 platforms:

	Window provider (KIVY_WINDOW [https://kivy.org/doc/stable/guide/environment.html#restrict-core-to-specific-implementation]=)

	GL backend (KIVY_GL_BACKEND [https://kivy.org/doc/stable/guide/environment.html#restrict-core-to-specific-implementation]=)

	RPi 1

	RPi 2

	RPi 3

	RPi 4

	sdl2

	sdl2/gl

	y

	y

	y

	y

	x11

	gl

	y

	y

	y

	y

	egl_rpi

	gl

	y*

	y*

	y*

	n

*The egl_rpi (deprecated) window provider is only available on Raspberry Pi OS Buster (32 bit).

Change the default screen to use

You can set an environment variable named KIVY_BCM_DISPMANX_ID in order to
change the display used to run Kivy. For example, to force the display to be
HDMI, use:

KIVY_BCM_DISPMANX_ID=2 python3 main.py

Check Controlling the environment to see all the possible values.

Note that this is only available on Raspberry Pi OS Buster (32 bit) and only when using the egl_rpi window provider.

Using Official RPi touch display

If you are using the official Raspberry Pi touch display, you need to
configure Kivy to use it as an input source. To do this, edit the file
~/.kivy/config.ini and go to the [input] section. Add this:

mouse = mouse
mtdev_%(name)s = probesysfs,provider=mtdev
hid_%(name)s = probesysfs,provider=hidinput

For more information about configuring Kivy, see Configure Kivy

Installation on Windows

To install Kivy on Windows via pip, please follow the main installation guide.

Installation components

Following, are additional information linked to from some of the steps in the
main installation guide, specific to Windows.

Installing Python

To install Python on Windows, download it from the main
Python website [https://www.python.org/downloads/windows/] and follow the
installation steps. You can read about the individual installation options in the
Python guide [https://docs.python.org/3/using/windows.html#the-full-installer].

If you installed the
Python launcher [https://docs.python.org/3/using/windows.html#launcher],
you will be more easily able to install multiple Python versions side by side
and select, which to run, at each invocation.

Source installation Dependencies

To install Kivy from source, please follow the installation guide until you reach the
Kivy install step and then install the compiler below before continuing.

To install kivy from source, you need a compiler. On Windows, the Visual Studio Build Tools are
required, and they are available for free. You can either:

	Download and install the complete Visual Studio IDE, which contains the build tools.
This is the easiest approach and the IDE can be downloaded from here [https://www.visualstudio.com/downloads/].

	The IDE is very big, so you can also download just the smaller build tools, which are used from the command line.
The current download (2019) can be found on this page [https://visualstudio.microsoft.com/downloads/?q=build+tools]
under “Tools for Visual Studio 2019”. More info about this topic can be found
in the Kivy wiki [https://github.com/kivy/kivy/wiki/Using-Visual-C---Build-Tools-instead-of-Visual-Studio-on-Windows].

Now that the compiler is installed, continue to install Kivy.

Making Python available anywhere

There are two methods for launching Python when double clicking on your *.py files.

Double-click method

If you only have one Python installed, and if you installed it using the default options, then *.py files are already
associated with your Python. You can run them by double clicking them in the file manager, or by just executing their name in a console window (without having to prepend python).

Alternatively, if they are not assigned, you can do it the following way:

	Right click on the Python file (.py file extension) in the file manager.

	From the context menu that appears, select Open With

	Browse your hard disk drive and find the python.exe file that you want
to use (e.g. in the the virtual environment). Select it.

	Select “Always open the file with…” if you don’t want to repeat this
procedure every time you double click a .py file.

	You are done. Open the file.

Send-to method

You can launch a .py file with Python using the Send to menu:

	Browse to the python.exe you want to use. Right click on it and
copy it.

	Open Windows Explorer (the file explorer in Windows 8), and to go the address
‘shell:sendto’. You should get the special Windows directory SendTo.

	Paste the previously copied python.exe file as a shortcut.

	Rename it to python <python-version>. E.g. python39.

You can now execute your application by right clicking on the .py file ->
“Send To” -> “python <python-version>”.

 _images/gs-events-class.png

_images/gs-drawing.png
Trom kivy.app import App " o
from kivy.uix.widget inport Widget fron kivy.app import App N
TR e rom kivy.uix.widget inport Widge

ctass Hywidget (widget)
pass.
**kuargs)
)._init_(**k ctass Hyapp (App:
iate_canv: def build(--)
return Myl

it _nane
*args) FiyApp () . run)]

my.kv

fFiivy 1.0
<ywidget>

Ellipse(pos =

class HyApp (App)
def build(--)
return Mywidget, B
self.pos

it _nane
HyApp() . run()

_images/gs-events-input.png

_images/gs-events-clock.png

_images/gs-lang.png
Kivy

User Name:

Password:

_images/gs-introduction.png

_images/guide-3.jpg

_images/gs-tutorial.png

_images/guide-5.jpg

_images/guide-4.jpg

_images/gs-atlas.png

_images/filechooser_list.png
Name
/

> build

> doc

> examples

> kivy
AUTHORS
CONTRIBUTING.md
LICENSE
MANIFEST.in
Makefile
README.md
setup.cfg
setup.py

Size

2KB
3KB
1KB
3198
4KB
4KB
698
35KB

_images/freebsd.png

_images/floatlayout.gif
Float Layout

_images/gridlayout.gif
Grid Layout

_images/global_background.png
1 don't suffer from insanity, I
enjoy every minute of it

When I was born I was so
surprised; | didnt speak for a
year and a half.

A consultant is someone who
takes a subject you understand
and makes it sound confusing

_images/gridlayout_2.jpg

_images/gridlayout_1.jpg

_images/gs-animation.gif
- Widget Tree
> AppScreen <uid:8>

_images/gridlayout_3.jpg
Hello 1 World 1

Hello 2 World 2

_images/filechooser_icon.png
L N

/ build doc examples Kivy

AUTHORS ~ CONT..NG.md LICENSE ~ MANIFEST.in Makefile
2k8 KB 3198 4K8

3K8

README.md setup.cfg setup.py
e B 35K8

_images/dropdown.gif

_images/pos_hint.jpg
_hint: {*x

We Wil

Wee Wiill

ROCK YOU!!

We will

ROCK YOU!

Wee Willl

_images/popup.jpg
Modal popup example

Hello world

_images/property_events_binding.png

_images/progressbar.jpg

_images/raspberrypi.png

_images/quickstart.png
Hello world

_images/relativelayout-fixedposition.png
Test

_images/relativelayout-doubleposition.png
Test

_images/scatter.gif

_images/rstdocument.png
Hello world

This is an emphased text, some interpreted
text. And this s a reference to top:

$ print "Hello world"

_images/guide-6.jpg
0006 MmyPant

_images/input_xbox.png

_images/guide_customize_step1.png
User Name

_images/layout_background.png

_images/label.png
Hello World
Hello World
Hello World

_images/linux.png

_images/line-instruction.png
capi'none’
Joint: ‘none’
close: False

capt round'
joint: 'none’
close: False

capt round'
Joint: 'round'
close: False

cap:'square’
Joink: 'miter’
close: False

cap:'square'
Joint: 'round'
close: False

cap:'square'
Joint: bevel’
close: False

cap:'none’
Joint: bevel’
close: True

cap:'none’
Joint: 'round'
close: True

_images/pagelayout.gif

_images/macosx.png

_images/pong.jpg

_images/anim_out_quint.png

_images/anim_out_quart.png

_images/app-settings.jpg
Kivy

Kinect Viewer

Kinect

Index
Kinect index, from 0 to X

Shaders

Theme
Shader to use for a specific visualization

rgb

_images/anim_out_sine.png

_images/boxlayout.gif
Box Layout

_images/architecture.png
@ Kivy Architecture

EA Widget Kv language
H q
Cache || Clock ||Gesture ||Event loop || Properties
Core providers Graphics Inputs
Window Vertex Buffer Motion Event
Text Frame Buffer Post processing
Image Texture (double tap,
Video Shader dejitter...)
Audio Instructions
Pygame || PIL | |GStreamer| | GLESAPI || GLEW Mouse TUIO
FFMpeg. SDL Cairo WM_Touch| [Mac Touch

Low level
<

MTDev | | HIDInput

_images/anim_out_cubic.png

_images/anim_out_circ.png

_images/anim_out_expo.png

_images/anim_out_elastic.png

_images/anim_out_quad.png

_images/anim_in_quint.png

_static/plus.png

_images/anim_linear.png

_images/anim_in_sine.png

_images/anim_out_bounce.png

_images/anim_out_back.png

_images/anim_in_out_quart.png

_static/file.png

_images/anim_in_out_quad.png

_images/anim_in_out_sine.png

_static/logo-kivy.png

_images/anim_in_out_quint.png

_images/anim_in_quart.png

_images/anim_in_quad.png

_static/minus.png

_images/button.jpg
LE

_images/bubble.jpg
- Cut Copy Paste

_images/checkbox.png
Checkbox

_images/carousel.gif

_images/colorpicker.png
B
o
8 |
@ ®
] &
@ 0!

3

B s:ssire1

_images/codeinput.jpg
!
if _name_ ==_main_:
from kivy.app import App.
from kivy.uix boxlayout import Boxtayout

class TextInputApp(ADD):

def build(sel):
00t = BoxLayout(orientation="vertical)
textinput = Textinput(multiline=True)
textinputtext =_doc_
root.add_widget(extinput)
textinput2 = TextInput(text="monoline textinp!

size._hint=(1, None), height=30)

root.add widget(extinput2)
return root

TextInputAppo.rung.

[BoxLayout:
| #Double as a Tabbed Panel Demo!
TabbedPanel:
tab_pos: "top_right"”
default_tab_text: "List View"
defaul_tab_conten: list view_tab,

TabbedPanelHeader:
text: con View'
content: icon_view._tab

FilechooserListView:
d:list view_tab

| Filechoosertconview:
:icon_view_tab

_images/custom_layout_background.png
Gasoline SelfServe E {? [GET{RIGIRIERIENDATHEY{SAID]
sz, ARMG

pws
UntEape

BECAUSE IT'S
AWESOME!!!

_images/conda.png
{2 ANACONDA.

_images/boxshadow_demo.gif

_images/boxshadow_example_2.png

_images/boxshadow_example_1.png

_images/boxshadow.png

_images/stacklayout_sizing.png

_images/switch-off.jpg

_images/stencilview.gif

_images/size_hint[b_].jpg
Welcome Render Now.

BoxLayout
Button

Button 1

_images/size_hint[B].jpg
Welcome
AutoReload | Render N

Deutton1

_images/size_hint[oB].jpg
BoxLayout:
Button
text: ‘Button 1
ize_hint: 0.5, 1

Button:

text: ‘Button 2

| Butont Buton2

_images/size_hint[bb].jpg
Welcome AufoReload 1 Render Now

Button:
ta

Bution 1 Button 2

_images/spinner.jpg

_images/slider.jpg

_images/stacklayout.gif
Stack Layout

Irth

_images/splitter.jpg

nav.xhtml

 Table of Contents

 		
 Welcome to Kivy

 		
 Getting Started

 		
 Introduction

 		
 Installing Kivy

 		
 Using pip

 		
 Installation using Conda

 		
 Installing Kivy’s dependencies

 		
 Python glossary

 		
 A first App

 		
 Properties

 		
 Kv Design Language

 		
 Events

 		
 Non-widget stuff

 		
 Layouts

 		
 Drawing

 		
 Packaging

 		
 Diving in

 		
 Kivy Project

 		
 Philosophy

 		
 Why bother?

 		
 Contributing

 		
 Discussions

 		
 Code of Conduct

 		
 Feedback

 		
 Reporting an Issue

 		
 Code Contributions

 		
 Documentation Contributions

 		
 Unit tests contributions

 		
 GSOC

 		
 FAQ

 		
 Technical FAQ

 		
 Android FAQ

 		
 Project FAQ

 		
 Contact Us

 		
 Issue Tracker

 		
 Mail

 		
 Discord

 		
 Programming Guide

 		
 Kivy Basics

 		
 Installation of the Kivy environment

 		
 Create an application

 		
 Kivy App Life Cycle

 		
 Running the application

 		
 Customize the application

 		
 Controlling the environment

 		
 Path control

 		
 Configuration

 		
 Restrict core to specific implementation

 		
 Metrics

 		
 Graphics

 		
 Event Loop

 		
 Configure Kivy

 		
 Locating the configuration file

 		
 Local configuration

 		
 Understanding config tokens

 		
 Architectural Overview

 		
 Core Providers and Input Providers

 		
 Graphics

 		
 Core

 		
 UIX (Widgets & Layouts)

 		
 Modules

 		
 Input Events (Touches)

 		
 Widgets and Event Dispatching

 		
 Events and Properties

 		
 Introduction to the Event Dispatcher

 		
 Main loop

 		
 Widget events

 		
 Creating custom events

 		
 Attaching callbacks

 		
 Introduction to Properties

 		
 Declaration of a Property

 		
 Dispatching a Property event

 		
 Compound Properties

 		
 Input management

 		
 Input architecture

 		
 Motion event profiles

 		
 Touch events

 		
 Joystick events

 		
 Widgets

 		
 Introduction to Widget

 		
 Manipulating the Widget tree

 		
 Traversing the Tree

 		
 Widgets Z Index

 		
 Organize with Layouts

 		
 Adding a Background to a Layout

 		
 Nesting Layouts

 		
 Size and position metrics

 		
 Screen Separation with Screen Manager

 		
 Graphics

 		
 Introduction to Canvas

 		
 Context instructions

 		
 Drawing instructions

 		
 Manipulating instructions

 		
 Kv language

 		
 Concept behind the language

 		
 How to load KV

 		
 Rule context

 		
 Special syntax

 		
 Instantiate children

 		
 Event Bindings

 		
 Extend canvas

 		
 Referencing Widgets

 		
 Accessing Widgets defined inside Kv lang in your Python code

 		
 Dynamic Classes

 		
 Re-using styles in multiple widgets

 		
 Designing with the Kivy Language

 		
 More documentation

 		
 Integrating with other Frameworks

 		
 Using Twisted inside Kivy

 		
 Packaging your application

 		
 Create a package for Windows

 		
 Create a package for Android

 		
 Kivy on Android

 		
 Creating packages for macOS

 		
 iOS Prerequisites

 		
 Create a package for iOS

 		
 Package licensing

 		
 Dependencies

 		
 Windows (PyInstaller)

 		
 Linux

 		
 Android

 		
 macOS

 		
 iOS

 		
 Avoiding binaries

 		
 Tutorials

 		
 Pong Game Tutorial

 		
 Introduction

 		
 Getting Started

 		
 Add Simple Graphics

 		
 Add the Ball

 		
 Adding Ball Animation

 		
 Connect Input Events

 		
 Where To Go Now?

 		
 A Simple Paint App

 		
 Basic Considerations

 		
 Paint Widget

 		
 Crash Course

 		
 Basic Info

 		
 API Reference

 		
 Kivy framework

 		
 kivy_base_dir

 		
 kivy_config_fn

 		
 kivy_configure()

 		
 kivy_data_dir

 		
 kivy_examples_dir

 		
 kivy_home_dir

 		
 kivy_icons_dir

 		
 kivy_options

 		
 kivy_register_post_configuration()

 		
 kivy_shader_dir

 		
 kivy_usermodules_dir

 		
 parse_kivy_version()

 		
 require()

 		
 Animation

 		
 Application

 		
 Asynchronous data loader

 		
 Atlas

 		
 Cache manager

 		
 Clock object

 		
 Compatibility module for Python 2.7 and >= 3.4

 		
 Configuration object

 		
 Context

 		
 Event dispatcher

 		
 Factory object

 		
 Geometry utilities

 		
 Gesture recognition

 		
 Interactive launcher

 		
 Kivy Base

 		
 Kivy Logging

 		
 Low level Metrics

 		
 Metrics

 		
 Multistroke gesture recognizer

 		
 Parser utilities

 		
 Properties

 		
 Resources management

 		
 Support

 		
 Utils

 		
 Vector

 		
 Weak Method

 		
 Weak Proxy

 		
 Low level Metrics

 		
 Animation

 		
 Simple animation

 		
 Multiple properties and transitions

 		
 Sequential animation

 		
 Parallel animation

 		
 Repeating animation

 		
 Animation

 		
 AnimationTransition

 		
 Application

 		
 Creating an Application

 		
 Application configuration

 		
 Profiling with on_start and on_stop

 		
 Customising layout

 		
 Pause mode

 		
 Asynchronous app

 		
 Interacting with Kivy app from other coroutines

 		
 App

 		
 async_runTouchApp()

 		
 runTouchApp()

 		
 stopTouchApp()

 		
 Atlas

 		
 Definition of .atlas files

 		
 How to create an Atlas

 		
 How to use an Atlas

 		
 Manual usage of the Atlas

 		
 Atlas

 		
 Kivy Base

 		
 EventLoop

 		
 EventLoopBase

 		
 ExceptionHandler

 		
 ExceptionManager

 		
 ExceptionManagerBase

 		
 async_runTouchApp()

 		
 runTouchApp()

 		
 stopTouchApp()

 		
 Cache manager

 		
 Cache

 		
 Clock object

 		
 Schedule before frame

 		
 Triggered Events

 		
 Unscheduling

 		
 Clock Lifecycle

 		
 Exception Handling

 		
 Scheduling from __del__

 		
 Threading and Callback Order

 		
 Advanced Clock Details

 		
 Async clock support

 		
 Clock

 		
 ClockBase

 		
 ClockBaseBehavior

 		
 ClockBaseFreeInterruptAll

 		
 ClockBaseFreeInterruptOnly

 		
 ClockBaseInterrupt

 		
 ClockBaseInterruptBehavior

 		
 ClockBaseInterruptFreeBehavior

 		
 ClockEvent

 		
 ClockNotRunningError

 		
 CyClockBase

 		
 CyClockBaseFree

 		
 FreeClockEvent

 		
 mainthread()

 		
 triggered()

 		
 Compatibility module for Python 2.7 and >= 3.4

 		
 PY2

 		
 clock()

 		
 isclose()

 		
 string_types

 		
 Configuration object

 		
 Applying configurations

 		
 Usage of the Config object

 		
 Changing configuration with environment variables

 		
 Available configuration tokens

 		
 Config

 		
 ConfigParser

 		
 Context

 		
 Context

 		
 get_current_context()

 		
 register_context()

 		
 Core Abstraction

 		
 CoreCriticalException

 		
 Audio

 		
 Camera

 		
 Clipboard

 		
 OpenGL

 		
 Image

 		
 Spelling

 		
 Text

 		
 Video

 		
 Window

 		
 Audio

 		
 Event dispatching and state changes

 		
 Sound

 		
 SoundLoader

 		
 Camera

 		
 CameraBase

 		
 Clipboard

 		
 OpenGL

 		
 Image

 		
 In-memory image loading

 		
 Saving an image

 		
 Image

 		
 ImageData

 		
 Spelling

 		
 NoLanguageSelectedError

 		
 NoSuchLangError

 		
 SpellingBase

 		
 Text

 		
 Font Context Manager

 		
 LabelBase

 		
 Text layout

 		
 Text Markup

 		
 Text Markup

 		
 MarkupLabel

 		
 Text layout

 		
 LayoutLine

 		
 LayoutWord

 		
 layout_text()

 		
 Video

 		
 VideoBase

 		
 Window

 		
 Keyboard

 		
 WindowBase

 		
 Kivy module for binary dependencies.

 		
 Effects

 		
 Damped scroll effect

 		
 Kinetic effect

 		
 Opacity scroll effect

 		
 Scroll effect

 		
 Damped scroll effect

 		
 DampedScrollEffect

 		
 Kinetic effect

 		
 KineticEffect

 		
 Opacity scroll effect

 		
 OpacityScrollEffect

 		
 Scroll effect

 		
 ScrollEffect

 		
 Event dispatcher

 		
 EventDispatcher

 		
 ObjectWithUid

 		
 Observable

 		
 Event Manager

 		
 When to use an event manager

 		
 Defining and registering an event manager

 		
 Dispatching events to the widgets

 		
 EventManagerBase

 		
 MODE_DEFAULT_DISPATCH

 		
 MODE_DONT_DISPATCH

 		
 MODE_FILTERED_DISPATCH

 		
 Factory object

 		
 Factory

 		
 FactoryException

 		
 Garden

 		
 Update to garden structure

 		
 General Usage Guidelines

 		
 Legacy garden tool instructions

 		
 garden_system_dir

 		
 Geometry utilities

 		
 circumcircle()

 		
 minimum_bounding_circle()

 		
 Gesture recognition

 		
 Gesture

 		
 GestureDatabase

 		
 GestureStroke

 		
 Graphics

 		
 The basics

 		
 GL Reloading mechanism

 		
 ApplyContextMatrix

 		
 Bezier

 		
 BindTexture

 		
 BorderImage

 		
 BoxShadow

 		
 Callback

 		
 Canvas

 		
 CanvasBase

 		
 ChangeState

 		
 ClearBuffers

 		
 ClearColor

 		
 Color

 		
 ContextInstruction

 		
 Ellipse

 		
 Fbo

 		
 GraphicException

 		
 Instruction

 		
 InstructionGroup

 		
 Line

 		
 LoadIdentity

 		
 MatrixInstruction

 		
 Mesh

 		
 Point

 		
 PopMatrix

 		
 PopState

 		
 PushMatrix

 		
 PushState

 		
 Quad

 		
 Rectangle

 		
 RenderContext

 		
 Rotate

 		
 Scale

 		
 SmoothLine

 		
 StencilPop

 		
 StencilPush

 		
 StencilUnUse

 		
 StencilUse

 		
 Translate

 		
 Triangle

 		
 UpdateNormalMatrix

 		
 VertexInstruction

 		
 gl_init_resources()

 		
 BoxShadow

 		
 Canvas

 		
 CGL: standard C interface for OpenGL

 		
 Context instructions

 		
 Context management

 		
 Framebuffer

 		
 GL instructions

 		
 Graphics compiler

 		
 OpenGL

 		
 OpenGL utilities

 		
 Scissor Instructions

 		
 Shader

 		
 Stencil instructions

 		
 SVG

 		
 Tesselator

 		
 Texture

 		
 Transformation

 		
 Vertex Instructions

 		
 BoxShadow

 		
 Example:

 		
 BoxShadow

 		
 CGL: standard C interface for OpenGL

 		
 cgl_get_backend_name()

 		
 cgl_get_initialized_backend_name()

 		
 cgl_init()

 		
 Graphics compiler

 		
 Reducing the context instructions

 		
 Context management

 		
 Context

 		
 Context instructions

 		
 BindTexture

 		
 Color

 		
 MatrixInstruction

 		
 PopMatrix

 		
 PushMatrix

 		
 Rotate

 		
 Scale

 		
 Translate

 		
 gl_init_resources()

 		
 Framebuffer

 		
 Reloading the FBO content

 		
 Fbo

 		
 GL instructions

 		
 Clearing an FBO

 		
 ClearBuffers

 		
 ClearColor

 		
 Canvas

 		
 Callback

 		
 Canvas

 		
 CanvasBase

 		
 ContextInstruction

 		
 Instruction

 		
 InstructionGroup

 		
 RenderContext

 		
 VertexInstruction

 		
 OpenGL

 		
 glActiveTexture()

 		
 glAttachShader()

 		
 glBindAttribLocation()

 		
 glBindBuffer()

 		
 glBindFramebuffer()

 		
 glBindRenderbuffer()

 		
 glBindTexture()

 		
 glBlendColor()

 		
 glBlendEquation()

 		
 glBlendEquationSeparate()

 		
 glBlendFunc()

 		
 glBlendFuncSeparate()

 		
 glBufferData()

 		
 glBufferSubData()

 		
 glCheckFramebufferStatus()

 		
 glClear()

 		
 glClearColor()

 		
 glClearStencil()

 		
 glColorMask()

 		
 glCompileShader()

 		
 glCompressedTexImage2D()

 		
 glCompressedTexSubImage2D()

 		
 glCopyTexImage2D()

 		
 glCopyTexSubImage2D()

 		
 glCreateProgram()

 		
 glCreateShader()

 		
 glCullFace()

 		
 glDeleteBuffers()

 		
 glDeleteFramebuffers()

 		
 glDeleteProgram()

 		
 glDeleteRenderbuffers()

 		
 glDeleteShader()

 		
 glDeleteTextures()

 		
 glDepthFunc()

 		
 glDepthMask()

 		
 glDetachShader()

 		
 glDisable()

 		
 glDisableVertexAttribArray()

 		
 glDrawArrays()

 		
 glDrawElements()

 		
 glEnable()

 		
 glEnableVertexAttribArray()

 		
 glFinish()

 		
 glFlush()

 		
 glFramebufferRenderbuffer()

 		
 glFramebufferTexture2D()

 		
 glFrontFace()

 		
 glGenBuffers()

 		
 glGenFramebuffers()

 		
 glGenRenderbuffers()

 		
 glGenTextures()

 		
 glGenerateMipmap()

 		
 glGetActiveAttrib()

 		
 glGetActiveUniform()

 		
 glGetAttachedShaders()

 		
 glGetAttribLocation()

 		
 glGetBooleanv()

 		
 glGetBufferParameteriv()

 		
 glGetError()

 		
 glGetFloatv()

 		
 glGetFramebufferAttachmentParameteriv()

 		
 glGetIntegerv()

 		
 glGetProgramInfoLog()

 		
 glGetProgramiv()

 		
 glGetRenderbufferParameteriv()

 		
 glGetShaderInfoLog()

 		
 glGetShaderPrecisionFormat()

 		
 glGetShaderSource()

 		
 glGetShaderiv()

 		
 glGetString()

 		
 glGetTexParameterfv()

 		
 glGetTexParameteriv()

 		
 glGetUniformLocation()

 		
 glGetUniformfv()

 		
 glGetUniformiv()

 		
 glGetVertexAttribPointerv()

 		
 glGetVertexAttribfv()

 		
 glGetVertexAttribiv()

 		
 glHint()

 		
 glIsBuffer()

 		
 glIsEnabled()

 		
 glIsFramebuffer()

 		
 glIsProgram()

 		
 glIsRenderbuffer()

 		
 glIsShader()

 		
 glIsTexture()

 		
 glLineWidth()

 		
 glLinkProgram()

 		
 glPixelStorei()

 		
 glPolygonOffset()

 		
 glReadPixels()

 		
 glReleaseShaderCompiler()

 		
 glRenderbufferStorage()

 		
 glSampleCoverage()

 		
 glScissor()

 		
 glShaderBinary()

 		
 glShaderSource()

 		
 glStencilFunc()

 		
 glStencilFuncSeparate()

 		
 glStencilMask()

 		
 glStencilMaskSeparate()

 		
 glStencilOp()

 		
 glStencilOpSeparate()

 		
 glTexImage2D()

 		
 glTexParameterf()

 		
 glTexParameterfv()

 		
 glTexParameteri()

 		
 glTexParameteriv()

 		
 glTexSubImage2D()

 		
 glUniform1f()

 		
 glUniform1fv()

 		
 glUniform1i()

 		
 glUniform1iv()

 		
 glUniform2f()

 		
 glUniform2fv()

 		
 glUniform2i()

 		
 glUniform2iv()

 		
 glUniform3f()

 		
 glUniform3fv()

 		
 glUniform3i()

 		
 glUniform3iv()

 		
 glUniform4f()

 		
 glUniform4fv()

 		
 glUniform4i()

 		
 glUniform4iv()

 		
 glUniformMatrix2fv()

 		
 glUniformMatrix3fv()

 		
 glUniformMatrix4fv()

 		
 glUseProgram()

 		
 glValidateProgram()

 		
 glVertexAttrib1f()

 		
 glVertexAttrib1fv()

 		
 glVertexAttrib2f()

 		
 glVertexAttrib2fv()

 		
 glVertexAttrib3f()

 		
 glVertexAttrib3fv()

 		
 glVertexAttrib4f()

 		
 glVertexAttrib4fv()

 		
 glVertexAttribPointer()

 		
 glViewport()

 		
 gl_init_symbols()

 		
 OpenGL utilities

 		
 gl_get_extensions()

 		
 gl_get_texture_formats()

 		
 gl_get_version()

 		
 gl_get_version_major()

 		
 gl_get_version_minor()

 		
 gl_has_capability()

 		
 gl_has_extension()

 		
 gl_has_texture_conversion()

 		
 gl_has_texture_format()

 		
 gl_has_texture_native_format()

 		
 gl_register_get_size()

 		
 Scissor Instructions

 		
 Rect

 		
 ScissorPop

 		
 ScissorPush

 		
 ScissorStack

 		
 Shader

 		
 Header inclusion

 		
 Single file glsl shader programs

 		
 Shader

 		
 Stencil instructions

 		
 Limitations

 		
 Example of stencil usage

 		
 StencilPop

 		
 StencilPush

 		
 StencilUnUse

 		
 StencilUse

 		
 SVG

 		
 Svg

 		
 Tesselator

 		
 Usage

 		
 Tesselator

 		
 Texture

 		
 Blitting custom data

 		
 BGR/BGRA support

 		
 NPOT texture

 		
 Texture atlas

 		
 Mipmapping

 		
 Reloading the Texture

 		
 Texture

 		
 TextureRegion

 		
 Transformation

 		
 Matrix

 		
 Input management

 		
 MotionEvent

 		
 MotionEventFactory

 		
 MotionEventProvider

 		
 Input Postprocessing

 		
 Providers

 		
 Input recorder

 		
 Motion Event

 		
 Motion Event Factory

 		
 Motion Event Provider

 		
 Motion Event Shape

 		
 Motion Event Factory

 		
 MotionEventFactory

 		
 Motion Event

 		
 Flow of the motion events

 		
 Motion events and event managers

 		
 Listening to a motion event

 		
 Profiles

 		
 MotionEvent

 		
 Input Postprocessing

 		
 Calibration

 		
 Dejitter

 		
 Double Tap

 		
 Ignore list

 		
 Retain Touch

 		
 Triple Tap

 		
 Calibration

 		
 InputPostprocCalibration

 		
 Dejitter

 		
 InputPostprocDejitter

 		
 Double Tap

 		
 InputPostprocDoubleTap

 		
 Ignore list

 		
 InputPostprocIgnoreList

 		
 Retain Touch

 		
 InputPostprocRetainTouch

 		
 Triple Tap

 		
 InputPostprocTripleTap

 		
 Motion Event Provider

 		
 MotionEventProvider

 		
 Providers

 		
 Android Joystick Input Provider

 		
 Auto Create Input Provider Config Entry for Available MT Hardware (linux only).

 		
 Common definitions for a Windows provider

 		
 Leap Motion - finger only

 		
 Mouse provider implementation

 		
 Native support for HID input from the linux kernel

 		
 Native support for Multitouch devices on Linux, using libmtdev.

 		
 Native support of MultitouchSupport framework for MacBook (MaxOSX platform)

 		
 Native support of Wacom tablet from linuxwacom driver

 		
 TUIO Input Provider

 		
 Android Joystick Input Provider

 		
 AndroidMotionEventProvider

 		
 Native support for HID input from the linux kernel

 		
 HIDMotionEvent

 		
 Leap Motion - finger only

 		
 LeapFingerEvent

 		
 LeapFingerEventProvider

 		
 Native support of Wacom tablet from linuxwacom driver

 		
 LinuxWacomMotionEvent

 		
 Native support of MultitouchSupport framework for MacBook (MaxOSX platform)

 		
 MacMotionEventProvider

 		
 Mouse provider implementation

 		
 Using multitouch interaction with the mouse

 		
 MouseMotionEventProvider

 		
 Native support for Multitouch devices on Linux, using libmtdev.

 		
 MTDMotionEvent

 		
 Auto Create Input Provider Config Entry for Available MT Hardware (linux only).

 		
 TUIO Input Provider

 		
 Configure a TUIO provider in the config.ini

 		
 Configure a TUIO provider in the App

 		
 Tuio2dCurMotionEvent

 		
 Tuio2dObjMotionEvent

 		
 TuioMotionEventProvider

 		
 Common definitions for a Windows provider

 		
 Input recorder

 		
 Recording events

 		
 Manual play

 		
 Recording more attributes

 		
 Known limitations

 		
 Recorder

 		
 Motion Event Shape

 		
 Shape

 		
 ShapeRect

 		
 Interactive launcher

 		
 Creating an InteractiveLauncher

 		
 Interactive Development

 		
 Directly Pausing the Application

 		
 Adding Attributes Dynamically

 		
 InteractiveLauncher

 		
 SafeMembrane

 		
 Kivy Language

 		
 Overview

 		
 Syntax of a kv File

 		
 Value Expressions, on_property Expressions, ids, and Reserved Keywords

 		
 Relation Between Values and Properties

 		
 Graphical Instructions

 		
 Dynamic classes

 		
 Templates

 		
 Redefining a widget’s style

 		
 Redefining a widget’s property style

 		
 Order of kwargs and KV rule application

 		
 Lang Directives

 		
 BuilderBase

 		
 BuilderException

 		
 Observable

 		
 Parser

 		
 ParserException

 		
 Builder

 		
 Parser

 		
 Builder

 		
 Builder

 		
 BuilderBase

 		
 BuilderException

 		
 Observable

 		
 Parser

 		
 Parser

 		
 ParserException

 		
 External libraries

 		
 GstPlayer

 		
 DDS File library

 		
 Python mtdev

 		
 DDS File library

 		
 DDS Format

 		
 DDSException

 		
 QueryDict

 		
 GstPlayer

 		
 Python mtdev

 		
 input_absinfo

 		
 input_event

 		
 mtdev

 		
 mtdev_caps

 		
 timeval

 		
 Asynchronous data loader

 		
 Tweaking the asynchronous loader

 		
 LoaderBase

 		
 ProxyImage

 		
 Kivy Logging

 		
 Logger object

 		
 Logger Configuration

 		
 ColonSplittingLogRecord

 		
 ColoredLogRecord

 		
 ConsoleHandler

 		
 FileHandler

 		
 KivyFormatter

 		
 LoggerHistory

 		
 ProcessingStream

 		
 UncoloredLogRecord

 		
 add_kivy_handlers()

 		
 is_color_terminal()

 		
 Metrics

 		
 Dimensions

 		
 Examples

 		
 Manual control of metrics

 		
 Metrics

 		
 MetricsBase

 		
 cm()

 		
 dp()

 		
 dpi2px()

 		
 inch()

 		
 mm()

 		
 pt()

 		
 sp()

 		
 Modules

 		
 Activating a module

 		
 Create your own module

 		
 Console

 		
 Inspector

 		
 JoyCursor

 		
 Keybinding

 		
 Monitor module

 		
 Recorder module

 		
 Screen

 		
 Touchring

 		
 Web Debugger

 		
 Console

 		
 Usage

 		
 Mouse navigation

 		
 Keyboard navigation

 		
 Additional information

 		
 Addons

 		
 Console

 		
 ConsoleAddon

 		
 ConsoleButton

 		
 ConsoleLabel

 		
 ConsoleToggleButton

 		
 start()

 		
 stop()

 		
 Inspector

 		
 Usage

 		
 create_inspector()

 		
 stop()

 		
 JoyCursor

 		
 Usage

 		
 create_joycursor()

 		
 stop()

 		
 Keybinding

 		
 Usage

 		
 Monitor module

 		
 Usage

 		
 Recorder module

 		
 Configuration

 		
 Usage

 		
 Screen

 		
 Touchring

 		
 Configuration

 		
 Example

 		
 Web Debugger

 		
 Multistroke gesture recognizer

 		
 Conceptual Overview

 		
 Usage examples

 		
 Algorithm details

 		
 Candidate

 		
 MultistrokeGesture

 		
 ProgressTracker

 		
 Recognizer

 		
 UnistrokeTemplate

 		
 Network support

 		
 UrlRequest

 		
 UrlRequest

 		
 UrlRequest

 		
 UrlRequestBase

 		
 UrlRequestRequests

 		
 UrlRequestUrllib

 		
 Parser utilities

 		
 parse_bool()

 		
 parse_color()

 		
 parse_filename()

 		
 parse_float

 		
 parse_float4()

 		
 parse_int

 		
 parse_int2()

 		
 parse_string()

 		
 Properties

 		
 Comparison Python vs. Kivy

 		
 Observe Property changes

 		
 Binding to properties of properties.

 		
 AliasProperty

 		
 BooleanProperty

 		
 BoundedNumericProperty

 		
 ColorProperty

 		
 ConfigParserProperty

 		
 DictProperty

 		
 ListProperty

 		
 NumericProperty

 		
 ObjectProperty

 		
 OptionProperty

 		
 Property

 		
 ReferenceListProperty

 		
 StringProperty

 		
 VariableListProperty

 		
 Resources management

 		
 Resource lookup

 		
 Customizing Kivy

 		
 resource_add_path()

 		
 resource_find()

 		
 resource_remove_path()

 		
 Storage

 		
 Usage

 		
 Examples

 		
 Synchronous / Asynchronous API

 		
 Synchronous container type

 		
 AbstractStore

 		
 Dictionary store

 		
 JSON store

 		
 Redis Store

 		
 Dictionary store

 		
 DictStore

 		
 JSON store

 		
 JsonStore

 		
 Redis Store

 		
 RedisStore

 		
 Support

 		
 install_android()

 		
 install_gobject_iteration()

 		
 install_twisted_reactor()

 		
 uninstall_twisted_reactor()

 		
 Tools

 		
 Scripts

 		
 Modules

 		
 Other

 		
 Packaging

 		
 Packaging

 		
 Widgets

 		
 Behaviors

 		
 RecycleView

 		
 Accordion

 		
 Action Bar

 		
 Anchor Layout

 		
 Box Layout

 		
 Bubble

 		
 Button

 		
 Camera

 		
 Carousel

 		
 CheckBox

 		
 Code Input

 		
 Color Picker

 		
 Drop-Down List

 		
 EffectWidget

 		
 FileChooser

 		
 Float Layout

 		
 Gesture Surface

 		
 Grid Layout

 		
 Image

 		
 Label

 		
 Layout

 		
 ModalView

 		
 PageLayout

 		
 Popup

 		
 Progress Bar

 		
 RecycleBoxLayout

 		
 RecycleGridLayout

 		
 RecycleLayout

 		
 Relative Layout

 		
 reStructuredText renderer

 		
 Sandbox

 		
 Scatter

 		
 Scatter Layout

 		
 Screen Manager

 		
 ScrollView

 		
 Settings

 		
 Slider

 		
 Spinner

 		
 Splitter

 		
 Stack Layout

 		
 Stencil View

 		
 Switch

 		
 TabbedPanel

 		
 Text Input

 		
 Toggle button

 		
 Tree View

 		
 Video

 		
 Video player

 		
 VKeyboard

 		
 Widget class

 		
 Accordion

 		
 Simple example

 		
 Customize the accordion

 		
 Accordion

 		
 AccordionException

 		
 AccordionItem

 		
 Action Bar

 		
 ActionBar

 		
 ActionBarException

 		
 ActionButton

 		
 ActionCheck

 		
 ActionDropDown

 		
 ActionGroup

 		
 ActionItem

 		
 ActionOverflow

 		
 ActionPrevious

 		
 ActionSeparator

 		
 ActionToggleButton

 		
 ActionView

 		
 ContextualActionView

 		
 Anchor Layout

 		
 AnchorLayout

 		
 Behaviors

 		
 Behavior mixin classes

 		
 Adding behaviors

 		
 ButtonBehavior

 		
 CodeNavigationBehavior

 		
 CompoundSelectionBehavior

 		
 CoverBehavior

 		
 DragBehavior

 		
 EmacsBehavior

 		
 FocusBehavior

 		
 ToggleButtonBehavior

 		
 TouchRippleBehavior

 		
 TouchRippleButtonBehavior

 		
 Button Behavior

 		
 Code Navigation Behavior

 		
 Compound Selection Behavior

 		
 Cover Behavior

 		
 Drag Behavior

 		
 Emacs Behavior

 		
 Focus Behavior

 		
 Kivy Namespaces

 		
 ToggleButton Behavior

 		
 Touch Ripple

 		
 Button Behavior

 		
 Example

 		
 ButtonBehavior

 		
 Code Navigation Behavior

 		
 CodeNavigationBehavior

 		
 Compound Selection Behavior

 		
 Compound selection concepts

 		
 Selection mechanics

 		
 Example

 		
 CompoundSelectionBehavior

 		
 Cover Behavior

 		
 Example

 		
 CoverBehavior

 		
 Drag Behavior

 		
 Example

 		
 DragBehavior

 		
 Emacs Behavior

 		
 Emacs shortcuts

 		
 EmacsBehavior

 		
 Focus Behavior

 		
 Managing focus

 		
 Initializing focus

 		
 FocusBehavior

 		
 Kivy Namespaces

 		
 Basic examples

 		
 Setting the namespace

 		
 Inheriting the namespace

 		
 Accessing the namespace

 		
 Forking a namespace

 		
 KNSpace

 		
 KNSpaceBehavior

 		
 knspace

 		
 ToggleButton Behavior

 		
 Example

 		
 ToggleButtonBehavior

 		
 Touch Ripple

 		
 TouchRippleBehavior

 		
 TouchRippleButtonBehavior

 		
 Box Layout

 		
 BoxLayout

 		
 Bubble

 		
 BubbleContent

 		
 BubbleButton

 		
 Bubble

 		
 BubbleButton

 		
 BubbleContent

 		
 Button

 		
 Button

 		
 Camera

 		
 Camera

 		
 Carousel

 		
 Carousel

 		
 CheckBox

 		
 CheckBox

 		
 Code Input

 		
 Usage example

 		
 CodeInput

 		
 Color Picker

 		
 ColorPicker

 		
 ColorWheel

 		
 Drop-Down List

 		
 Basic example

 		
 Extending dropdown in Kv

 		
 DropDown

 		
 EffectWidget

 		
 Usage Guidelines

 		
 Provided Effects

 		
 Creating Effects

 		
 AdvancedEffectBase

 		
 ChannelMixEffect

 		
 EffectBase

 		
 EffectWidget

 		
 FXAAEffect

 		
 HorizontalBlurEffect

 		
 InvertEffect

 		
 MonochromeEffect

 		
 PixelateEffect

 		
 ScanlinesEffect

 		
 VerticalBlurEffect

 		
 FileChooser

 		
 Simple widgets

 		
 Widget composition

 		
 Usage example

 		
 FileChooser

 		
 FileChooserController

 		
 FileChooserIconLayout

 		
 FileChooserIconView

 		
 FileChooserListLayout

 		
 FileChooserListView

 		
 FileChooserProgressBase

 		
 FileSystemAbstract

 		
 FileSystemLocal

 		
 Float Layout

 		
 FloatLayout

 		
 Gesture Surface

 		
 GestureContainer

 		
 GestureSurface

 		
 Grid Layout

 		
 Background

 		
 Column Width and Row Height

 		
 Using a GridLayout

 		
 GridLayout

 		
 GridLayoutException

 		
 Image

 		
 Asynchronous Loading

 		
 Alignment

 		
 Adjustment

 		
 AsyncImage

 		
 Image

 		
 Label

 		
 Sizing and text content

 		
 Text alignment and wrapping

 		
 Markup text

 		
 Interactive zone in text

 		
 Catering for Unicode languages

 		
 Usage example

 		
 Label

 		
 Layout

 		
 Understanding the size_hint Property in Widget

 		
 Layout

 		
 ModalView

 		
 Examples

 		
 ModalView Events

 		
 ModalView

 		
 PageLayout

 		
 PageLayout

 		
 Popup

 		
 Examples

 		
 Popup Events

 		
 Popup

 		
 PopupException

 		
 Progress Bar

 		
 ProgressBar

 		
 RecycleBoxLayout

 		
 RecycleBoxLayout

 		
 RecycleGridLayout

 		
 RecycleGridLayout

 		
 RecycleLayout

 		
 RecycleLayout

 		
 RecycleView

 		
 Viewclass State

 		
 RecycleView

 		
 RecycleViewBehavior

 		
 RecycleView Data Model

 		
 RecycleView Layouts

 		
 RecycleView Views

 		
 RecycleView Data Model

 		
 RecycleDataModel

 		
 RecycleDataModelBehavior

 		
 RecycleView Layouts

 		
 LayoutChangeException

 		
 LayoutSelectionBehavior

 		
 RecycleLayoutManagerBehavior

 		
 RecycleView Views

 		
 RecycleDataAdapter

 		
 RecycleDataViewBehavior

 		
 RecycleKVIDsDataViewBehavior

 		
 Relative Layout

 		
 Coordinate Systems

 		
 Common Pitfalls

 		
 RelativeLayout

 		
 reStructuredText renderer

 		
 Usage with Text

 		
 Usage with Source

 		
 RstDocument

 		
 Sandbox

 		
 Sandbox

 		
 Scatter

 		
 Usage

 		
 Control Interactions

 		
 Automatic Bring to Front

 		
 Scale Limitation

 		
 Behavior

 		
 Scatter

 		
 ScatterPlane

 		
 Scatter Layout

 		
 ScatterLayout

 		
 ScatterPlaneLayout

 		
 Screen Manager

 		
 Basic Usage

 		
 Changing Direction

 		
 Advanced Usage

 		
 Changing transitions

 		
 CardTransition

 		
 FadeTransition

 		
 FallOutTransition

 		
 NoTransition

 		
 RiseInTransition

 		
 Screen

 		
 ScreenManager

 		
 ScreenManagerException

 		
 ShaderTransition

 		
 SlideTransition

 		
 SwapTransition

 		
 TransitionBase

 		
 WipeTransition

 		
 ScrollView

 		
 Scrolling Behavior

 		
 Limiting to the X or Y Axis

 		
 Managing the Content Size and Position

 		
 Overscroll Effects

 		
 ScrollView

 		
 Settings

 		
 Create a panel from JSON

 		
 Different panel layouts

 		
 ContentPanel

 		
 InterfaceWithSidebar

 		
 MenuSidebar

 		
 SettingBoolean

 		
 SettingItem

 		
 SettingNumeric

 		
 SettingOptions

 		
 SettingPath

 		
 SettingString

 		
 SettingTitle

 		
 Settings

 		
 SettingsPanel

 		
 SettingsWithNoMenu

 		
 SettingsWithSidebar

 		
 SettingsWithSpinner

 		
 SettingsWithTabbedPanel

 		
 Slider

 		
 Slider

 		
 Spinner

 		
 Spinner

 		
 SpinnerOption

 		
 Splitter

 		
 Splitter

 		
 Stack Layout

 		
 StackLayout

 		
 Stencil View

 		
 StencilView

 		
 Switch

 		
 Switch

 		
 TabbedPanel

 		
 Simple example

 		
 Customize the Tabbed Panel

 		
 StripLayout

 		
 TabbedPanel

 		
 TabbedPanelContent

 		
 TabbedPanelException

 		
 TabbedPanelHeader

 		
 TabbedPanelItem

 		
 TabbedPanelStrip

 		
 Text Input

 		
 Usage example

 		
 Selection

 		
 Filtering

 		
 Default shortcuts

 		
 TextInput

 		
 Toggle button

 		
 ToggleButton

 		
 Tree View

 		
 Introduction

 		
 Creating Your Own Node Widget

 		
 TreeView

 		
 TreeViewException

 		
 TreeViewLabel

 		
 TreeViewNode

 		
 Video

 		
 Video

 		
 Video player

 		
 Annotations

 		
 Fullscreen

 		
 End-of-stream behavior

 		
 VideoPlayer

 		
 VideoPlayerAnnotation

 		
 VKeyboard

 		
 Modes

 		
 Layouts

 		
 Request Keyboard

 		
 VKeyboard

 		
 Widget class

 		
 Using Properties

 		
 Basic drawing

 		
 Widget touch event bubbling

 		
 Usage of Widget.center, Widget.right, and Widget.top

 		
 Widget

 		
 WidgetException

 		
 Utils

 		
 QueryDict

 		
 SafeList

 		
 boundary()

 		
 deprecated()

 		
 difference()

 		
 escape_markup()

 		
 get_color_from_hex()

 		
 get_hex_from_color()

 		
 get_random_color()

 		
 interpolate()

 		
 intersection()

 		
 is_color_transparent()

 		
 platform

 		
 reify

 		
 rgba()

 		
 strtotuple()

 		
 Vector

 		
 Optimized usage

 		
 Vector operators

 		
 Vector

 		
 Weak Method

 		
 WeakMethod

 		
 Weak Proxy

 		
 WeakProxy

_images/settingswithspinner_kivy.jpg
Kivy
Windows

Fullscreen

Secin window I windowed rlscreen Lo
FPS Limit -

Maximum FPS limit i set, 0 for unlimited

Mouse cursor -
Show/hide the mouse cursor on the window

Rotation 0
Rotation of the window

Logging
File logging

Iracagt.the loggig wilbesored n afle o ew]
Log level -

Level of logging information

Keyboard

_images/screenmanager.gif
Screen 0

_static/element-enumeration-16.png

_images/anim_in_out_cubic.png

_static/element-method-16.png

_images/anim_in_out_circ.png

_static/element-field-16.png

_images/anim_in_out_expo.png

_static/element-structure-16.png

_images/anim_in_out_elastic.png

_static/element-property-16.png

_images/anim_in_circ.png

_images/windows.png

_images/anim_in_bounce.png

_images/vkeyboard.jpg

_images/anim_in_elastic.png

_static/disclosure_down.png

_images/anim_in_cubic.png

_images/anim_in_out_back.png

_static/element-class-16.png

_images/anim_in_expo.png

_static/disclosure_up.png

_images/anim_in_out_bounce.png

_images/anchorlayout.gif
Anchor Layout

_images/unicode-char.png

_images/treeview.png
 Level 1, enty 1
Eamert0
Emert 1
Eamert2
Eamert3
Ement s
Emert
Eement1

> Element i 2
> Lewi,eny2

_images/anim_in_back.png

_images/videoplayer.jpg

_images/android.png

_images/videoplayer-annotation.jpg

_images/tabbed_panel.jpg
Second tab content area

_images/switch-on.jpg

_images/tesselator-filled.png

_images/tesselator-debug.png

_images/textinput-multi.jpg
This is a multiine text input
with the Seléction Support

_images/textinput-mono.jpg
single line textinput

_images/togglebutton.jpg
- normal

_images/Events.png
Kivy's Main Thread

Input

Non GUI Operations that
can be deferred to @
diforent thread.

Dispatch input

F———=n
| File System :

Main Kivy Loop Clock Events
Loop

_images/accordion.jpg
Verybigcomert
Verybigcontert
Verybigcoert
eybigcoert
eybigcomert
eybigcomere
eybigcomene
Verybigconnt
Veryoigconnt
Verybigcomnt

_images/Kivy_App_Life_Cycle.png
App brought to foreground after
process i kiled(Android/05)

on_resume()
T

Kivy Bootstrap for
android/ios.

v
Python start, run()

build()
on_start()

Apps
functions.

>

External app/os or internal function
pauses app

on_stopl)

Kivy Window Destroyed

g
Python stop

on_pause(]
Save your work here.
Resume is not guaranteed

etum Fase

* retum e

_images/actionbar.png
@ Action Bar :1||| Bl Groupl

